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Abstract. The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson
geometry, and is proven by means of graded geometry. In this note we provide the background
material about graded geometry necessary for the proof in [2]. Further, we provide an alternative
algebraic proof for the main result.
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1. INTRODUCTION

Many geometric structures on an ordinary manifold may be rephrased as the data of
a Poisson-self-commuting function on an associated super symplectic manifold (with
a refinement in the grading—a graded symplectic manifold). This is the case, e.g., of
Poisson and Courant structures.

The problem of reduction of such structures may be equivalently rephrased in the
associated super version. One then has to perform some form of symplectic reduction
– the most general being that of presymplectic submanifolds – in the super setting, and
further one has to find conditions for the associated function to descend and to be still
self-commuting on the quotient. In the special case of coisotropic submanifolds the first
condition implies the second, but in general this is not the case. Some rather general
sufficient, but not necessary, conditions may be worked out in a reduction-by-stages
framework.

Once these results have been obtained, they can be translated back into the ordinary
diffeogeometric language. Namely, one gets a general reduction theory for Poisson man-
ifolds in terms of vector bundles on submanifolds satisfying certain conditions. Once the
result is known, it can also be proved directly without reference to supergeometry, see
Section 8.

All this generalizes the known reduction procedures in Poisson geometry, in particular
the celebrated Marsden–Ratiu reduction [4].

In this note we concentrate on the main results of this approach referring to [2] for
more details and complete proofs. The classical proof of Section 8 is new. The case of
reduction of Courant algebroids and of generalized complex structures will be treated in
[1].



2. POISSON MANIFOLDS

Definition 1 M is a Poisson manifold if C∞(M) is endowed with a Lie bracket {•,•}M
satisfying

{ f ,gh}M = { f ,g}Mh+g{ f ,h}M. (1)

Let M be a smooth manifold. The Lie bracket of vector fields on M extends to a
bracket – called Schouten bracket – on all multivector fields on M. The Schouten bracket,
together with the wedge product, endows the set of multivector fields A := Γ(∧•T M)
with the structure of a Gerstenhaber algebra (also called graded Poisson algebra of
degree 1). This means that A is a graded commutative algebra, that A[1] (defined by
A[1]i = Ai+1) is a graded Lie algebra (see [6]), and that the two structures are compatible
in the sense that the adjoint action of a homogeneous element X ∈ A is a graded
derivation of degree deg(X)−1:

[X ,Y ∧Z] = [X ,Y ]∧Z +(−1)(deg(X)−1)·deg(Y )Y ∧ [X ,Z]. (2)

The Schouten bracket between a vector field and a function is [X , f ] = X( f ), and the
Schouten bracket of two vector fields is the usual Lie bracket. This determines the
Schouten bracket on the whole of Γ(∧•T M) by virtue of (2).

The Gerstenhaber algebra of multivector fields is relevant for us because it allows us
to describe a Poisson manifold M as a manifold with a bivector field π ∈ Γ(∧2T M) sat-
isfying the Schouten-bracket relation [π,π] = 0. The connection to Def. 1 is established
as follows: the bracket {•,•}M is encoded by a bivector field π due to (1), the corre-
spondence being { f ,g}M = π(d f ,dg). The fact that {•,•}M satisfies the Jacobi identity
is equivalent to [π,π] = 0.

3. GRADED MANIFOLDS AND THE PROBLEM

Ordinary manifolds are modeled on open subsets of Rn. We start describing the local
model for a graded manifold.

Definition 2 Let U ⊂ Rn open subset and V = ⊕i 6=0Vi a finite dimensional Z-graded
vector space.
The local model for a graded manifold consists of the pair

• U (the “body”)

• C∞(U)⊗S•(V ∗) (the graded commutative algebra of “functions”).

Notice that here S•(V ∗) denotes the graded symmetric algebra over V ∗, so its homoge-
neous elements anticommute if they both have odd degree.

Definition 3 A graded manifold consists of a pair as follows:

• a topological space M (the “body”)



• a sheaf OM over M of graded commutative algebras, locally isomorphic to the
above local model (the sheaf of “functions”).

We use the notation C(M ) for OM(M), the space of “functions on M ”.

Remark 4 Graded manifolds as defined above are sometimes referred to as Z-graded
manifolds, because their algebras of functions are Z-graded. A special case are Z≥0-
graded manifolds, whose algebras of functions are concentrated in non-negative degrees
(so in the local model V is concentrated in negative degrees and V ∗ in positive degrees).
An example is provided by ordinary manifolds (the case V = {0}), for which all functions
have degree zero.

A graded vector bundle E = ⊕i 6=0Ei→ M can be viewed as a graded manifold with
body M and functions Γ(S•E∗). Recall that E[1] is defined by (E[1])i = Ei+1.

Example 5 T ∗[1]M is a graded manifold with body M and functions

Γ(S•(T [−1]M)) = Γ(∧•T M) = {multivector fields on M}.

Explicitly, we can choose coordinates x j on M, giving rise coordinates p j on the fibers
of T ∗M; assigning degree 1 to them we obtain coordinates ξ j of fibers of T ∗[1]M. In
these coordinates, a vector field ai(x)∂xi corresponds to the degree 1 function ai(x)ξi on
T ∗[1]M.

Exactly as usual cotangent bundles, T ∗[1]M has a symplectic form ω = −dx j ∧
dξ j, which gives rise to a Poisson bracket of degree −1 on C(T ∗[1]M) determined
by {ξ j,xk} = δ jk, {ξ j,ξk} = 0, {x j,xk} = 0 and the Leibniz rule. But this is just the
Schouten bracket on multivector fields! Hence we see that the degree 1 graded Poisson
algebra structure on the functions on T ∗[1]M coincides with the one defined in Section
2. Summarizing, we obtain the following bijective correspondences (this is Prop. 4.1 of
[5]):

Proposition 6 Poisson bracket {•,•}M on M↔
bivector field π ∈ Γ(∧2T M) satisfying [π,π] = 0↔
degree 2 function S on T ∗[1]M satisfying {S ,S }= 0.

Hence a Poisson structure on a manifold M can equivalently be regarded as a very
simple kind of structure – indeed, just a function – on T ∗[1]M.

Remark 7 A degree n graded symplectic manifold is a Z≥0-graded manifold endowed
with a non-degenerate, closed 2-form whose corresponding Poisson bracket has degree
−n. The degrees of coordinates on the graded manifold lie between 0 and n (Lemma
2.4 of [5]). A choice of degree n + 1 self-commuting function determines a geometric
structure by the so-called derived bracket construction.

For n = 1 this geometric structure is the one of a Poisson manifold (Prop. 6). All
degree 1 symplectic manifolds are of the form T ∗[1]X for some X (Prop. 3.1 of [5]).

For n = 2 the geometric structure is a so-called Courant algebroid [5]. Some of the
constructions for the case n = 2 carried out in this note for n = 1 are considered in [1].



In the rest of this note we want to consider the following reduction problem:

Let M be a Poisson manifold. Specify geometric data on M out of which
one can construct canonically a new Poisson manifold.

In virtue of Prop. 6 the problem becomes: specify geometric data on the pair
(T ∗[1]M,S ) which allow us to construct canonically a new degree 1 symplectic man-
ifold – which will be of the from T ∗[1]X for some manifold X , see Remark 7 – and a
self-commuting degree 2 function on it.

A common way in ordinary symplectic geometry to construct new symplectic mani-
folds is to take a submanifold N which is presymplectic (i.e. ker(ι∗ω) = T Nω ∩T N has
constant rank; the special case where T Nω ⊂ T N is called coisotropic) and to consider
the quotient N/ker(ι∗ω), which is automatically symplectic if smooth.

This suggests to consider presymplectic submanifolds C of T ∗[1]M so that the func-
tion S descends to the quotient of C by its characteristic distribution and is self-
commuting there. In the next sections we will carry this out, and in Thm 14 we will
give an answer to the above reduction problem.

4. GRADED SUBMANIFOLDS

In the rest of this note we will consider graded manifolds of degree 1, i.e. graded
manifolds whose algebra of functions is generated by functions of degree 0 and 1. They
are always of the form M = W [1] where W →M is a vector bundle.

We define graded submanifolds of M in terms of coordinate functions on M . To
this aim recall that functions xi of degree zero (i ≤ dim(M)) and ξ j of degree one
( j ≤ rk(W )) defined over an open subset U ⊂ M are called coordinates if the xi are
usual coordinates on U and there is an isomorphism of graded commutative algebras
from OM(U) to the local model C∞(U)⊗ S•(V ∗) so that under this isomorphism the
ξ j correspond a basis of V ∗. Here V is a vector space concentrated in degree −1 with
dim(V ) = rk(W ).

Definition 8 A graded submanifold C of M is given by a homogeneous graded ideal
I ⊂C(M ) := OM(M) satisfying the following “smoothness” property. In a neighbor-
hood U of any point x ∈ M satisfying I0(x) = 0 there exist coordinates xi and ξ j so
that I (U) is generated by xdim0(C )+1, · · · ,xdim(M) and ξdim1(C )+1, · · · ,ξrk(W ). Further,
we require that the vanishing set of I0 be closed in M. The integers dimi(C ) are called
the dimensions of C in degree i (i = 0,1).

In concrete terms, we have I0 = Z(C) for some closed submanifold C of M and
I1 = Γ̃(E) for some vector subbundle E → C of W ∗ → M. Here and in the sequel
we use the notation Γ̃(•) to denote sections of a vector bundle which restrict to sections
of the subbundle •, so Γ̃(E) = {X ∈ Γ(W ∗) : X |C ⊂ E}.

Since C(M )/I is canonically isomorphic to C(E◦[1]) we write C = E◦[1]. Here
E◦ ⊂W |C denotes the annihilator of E.



5. COISOTROPIC SUBMANIFOLDS

In the previous section we saw that a submanifold C of M := T ∗[1]M is of the form
E◦[1] for some vector subbundle E →C of T M→M. Denote by I the ideal defining
C and by N (I ) the Poisson normalizer of I , i.e. the set of functions φ ∈ C(M )
satisfying {φ ,I } ⊂I . One computes

N (I )0 = { f ∈C∞(M) : d f |C ⊂ E◦}=: C∞
E (M), (3)

N (I )1 = {X ∈ Γ̃(TC) : [X , Γ̃(E)]⊂ Γ̃(E)}. (4)

Definition 9 The submanifold C is coisotropic if {I ,I } ⊂I (i.e. I ⊂N (I )).

Proposition 10 A coisotropic submanifold C of T ∗[1]M corresponds to a submanifold
C of M endowed with an integrable distribution E. The coisotropic quotient of C is
smooth iff C = C/E is smooth, and in that case the coisotropic quotient is canonically
symplectomorphic to T ∗[1]C.

If M further has a Poisson structure π , the induced function S on T ∗[1]M descends
to a degree 2 self-commuting function on T ∗[1]C (which hence corresponds to a Poisson
structure on C) iff ]N∗C ⊂ E and C∞

E (M) is closed under the Poisson bracket. Here
] : T ∗M→ T M denotes contraction with π and N∗C := {ξ ∈ T ∗M|C : 〈ξ ,TC〉= 0}.

Proof By degree reasons {I0,I0} always vanishes. If X ∈ I1 = Γ̃(E) and f ∈
I0 = Z(C) we have { f ,X} = −X( f ). So {I0,I1} ⊂ I0 is equivalent to E ⊂ TC.
If X ,Y ∈I1 then {X ,Y}= [X ,Y ], so {I1,I1} ⊂I1 is equivalent to the involutivity of
the distribution E on C.

In this case, since by construction I is a Poisson ideal in the Poisson algebra N (I ),
the Poisson bracket descends making N (I )/I into a graded Poisson algebra. In
degree 0 by eq. (3) it consists of the E-invariant functions on C, so let us assume that the
quotient C of C by the foliation integrating E be a smooth manifold (so that C→C is a
submersion). In degree 1 by eq. (4) N (I )/I consists of vector fields on C which are
projectable w.r.t. the projection C→ C, modulo vector fields lying in the kernel of the
projection. In other words (N (I )/I )1 is isomorphic to the space of vector fields on
C. We conclude that N (I )/I is the graded Poisson algebra on a graded symplectic
manifold iff C is smooth, and in that case it is the Poisson algebra of functions on T ∗[1]C.

Further, if M is a Poisson manifold, the function S induces a function S on T ∗[1]C
iff S ∈N (I ). In that case, by the way we defined the bracket on N (I )/I , it is
clear that S commutes with itself. Hence we obtain a reduced Poisson structure on C.
We spell out what it means for S to lie in N (I ). Since for any function f on M we
have {S , f} = [π, f ] = ]d f , {S ,I0} ⊂ I1 is equivalent to ]N∗C ⊂ E. Notice that in
particular C is a coisotropic submanifold of M. Further, for any vector field X on M,
{S ,X}= [π,X ] =−LX π , so {S ,I1} ⊂I2 is equivalent to (LX π)|C ∈ Γ(E ∧T M|C)
for any X ∈ Γ̃(E), which using eq. (13) below is equivalent to C∞

E (M) being closed under
the Poisson bracket of M. �

The result obtained in the coisotropic case is the simplest statement concerning
Poisson reduction. In order to obtain more interesting results we need to allow for more
general submanifolds S, namely, presymplectic submanifolds.



6. PRESYMPLECTIC SUBMANIFOLDS

Let M be a smooth manifold. We consider again a submanifold C = E◦[1] of M :=
T ∗[1]M, and denote by I its vanishing ideal. To define presymplectic submanifolds we
need the following

Definition 11 Let Ai j be a matrix with entries in C(C ) := C(M )/I .
We say that A has constant rank along C iff, switching rows and adding C(C )-multiples
of a row to another row, the matrix A can be brought to the form (?

0) where the degree
zero part of the rows of ? are linearly independent at every point of the body of C .

Definition 12 A submanifold C is presymplectic iff I is generated by homogeneous
functions φi for which the matrix {φi,φ j} mod I has constant rank along C .

Translating in terms of classical geometry we obtain

Lemma 13 C is a graded presymplectic submanifold iff TC ∩ E is a constant rank,
involutive distribution on C .
The quotient of C by its characteristic distribution, defined as N (I )/N (I )∩I ,
is smooth iff the quotient C := C/(TC∩E) is smooth. In this case it is isomorphic to
T ∗[1]C as a graded symplectic manifold.

Now we assume that M is a Poisson manifold and address the issue of when the
function S induces a function S on the quotient C := T ∗[1]C. S descends iff its
image under the map C(M )→C(M )/I lies in N (I )/N (I )∩I , i.e. iff S lies in
N (I )+I .

When S descends, S might not commute with itself. The reason is that the Poisson
bracket on N (I )/N (I )∩I is computed lifting to elements of N (I ) (and not to
arbitrary elements of N (I )+I ).

It is clear that if S lies in N (I ) then the induced function on C still commutes with
itself. It turns out that it suffices to require that

{S ,I0} ⊂I1 (5)

(or equivalently ]TC◦ ⊂ E); this conditions leads to the statement of Prop. 3.6 of [2]
and Prop. 4.1 of [3], which is a mild improvement of that of [4]. We do not state it here
because in Thm. 14 we will state a yet better result.

7. REDUCTION IN STAGES AND THE THEOREM

To derive a condition weaker than (5) we perform reduction in stages, as follows. We
imbed the presymplectic submanifold C in a larger coisotropic submanifold A of M .
We assume that the quotient C of C by its characteristic distribution TC ∩ TC ω is
smooth. Locally the quotient can be realized in two stages: first take the image C̄ of
C under the projection A → ¯A := A /TA ω ; assuming that TC ∩TA ω has constant
rank, C̄ is a presymplectic submanifold. Then take the presymplectic quotient of C̄ . It



will be (locally) symplectomorphic to C . Now assume that

S descends to C (6)
S descends to a function S̄ on ¯A (7)
S̄ satisfies condition (5), i.e. {S̄ ,(IC̄ )0} ⊂ (IC̄ )1. (8)

Then the reasoning of the previous section implies that the function S on C commutes
with itself. Since we are ultimately interested in a quotient of C , it is clear that condition
(7) can be weakened.

The geometric procedure described above is carried out in algebraic terms in [2].
Writing A = D◦[1] for a subbundle D→ A of T M, we obtain

Theorem 14 Let C be a submanifold of the Poisson manifold (M,π) and E ⊂ T M|C a
subbundle such that F := TC∩E is a constant rank, involutive distribution on C.

Let D|C be a subbundle of T M|C with F ⊂ D|C ⊂ E and

]E◦ ⊂ TC +D|C. (9)

Let A be a submanifold containing C such that TA|C = TC +D|C, and assume that D|C
can be extended to an integrable distribution D on A such that

(LXiπ)|C ⊂ E ∧T M|C (10)

where {Xi} is an extension from A to M of a (local) frame of sections of D.
Then C := C/F inherits a Poisson manifold structure.

8. AN ALGEBRAIC PROOF

Without the graded geometric interpretation it would have been hard to derive Thm. 14.
Once the statement is known, however, it is easy to give an alternative algebraic proof.
We will do so in this section.

The following algebraic statement generalizes slightly Prop. A.1 in [3] and reduces
to an obvious one when B = D , for in that case B∩I a Poisson ideal in the Poisson
subalgebra B.

Proposition 15 Let P be a Poisson algebra, B ⊂ D multiplicative subalgebras of P
and I a multiplicative ideal of P . Assume that

{B,B} ⊂D ∩ (I +B) (11)

and
{B,I ∩D} ⊂I . (12)

Then there is an induced Poisson algebra structure on B
B∩I , whose bracket is deter-

mined by the commutative diagram

B×B

��

{·,·} // D ∩ (I +B)

��
B

B∩I ×
B

B∩I
// B
B∩I

.



Proof The above diagram is well-defined because of (11) and {B,I ∩B} ⊂ I
(which holds by (12)). The induced bilinear operation on B

B∩I satisfies the Leibniz
rule (1) because the Poisson bracket on P does. To check the Jacobi identity consider
f ,g,h ∈ B

B∩I and lifts f̃ ,g̃,h̃ and {̃g,h} to elements of B. Since {̃g,h} and {g̃, h̃}
are lifts of the same element, using again (11) we see that their difference ∆ lies in
I ∩ [D ∩ (I +B)] = I ∩D . Hence

{ f ,{g,h}}= { f̃ , {̃g,h}} modI = { f̃ ,{g̃, h̃}}+{ f̃ ,∆} modI

where { f̃ ,∆} lies in I by (12). Taking the cyclic sum over f ,g,h we see that the Jacobi
identity on B

B∩I follows from the one on P . �

Lemma 16 Theorem 14 follows from Prop. 15 setting (P,{•,•}) = (C∞(M),{•,•}M),
D = C∞(M)D|C , B = C∞

E (M)∩C∞
D(M) and I = { f ∈C∞(M) : f |C = 0}. Here we use

the notation introduced for C∞
E (M) at the beginning of Section 5.

Proof Condition (12) is satisfied because of requirement (9). Now we check condition
(11) in two steps.

First, using (9) (i.e. ]E◦ ⊂ TA|C), requirement (10) is equivalent to {B,B}M ⊂ D .
To see this apply to f ,g ∈B and X ∈ Γ̃(D) the identity

X{ f ,g}M = (LX Π)(d f ,dg)+Π(d(X f ),dg)+Π(d f ,d(Xg)). (13)

Second, we have {B,B}M ⊂ I + B. Indeed the bracket of two elements of B
annihilates D|C by the above, so its restriction to C annihilates D|C ∩ TC = F . So it
suffices to show: any function h in C∞

F (C) can be extended to a function in B. Using
fact that locally C/F embeds naturally into A/D we can extend h to a function in C∞

D(A).
Choosing a complement of E ∩TA|C = D|C in E, we can extend to an element of B.

Hence the assumptions of Prop. 15 are satisfied, and therefore B
B∩I is a Poisson

algebra. It is clear that B
B∩I ⊂ C∞

F (C). Equality holds because, as shown above, any
function in C∞

F (C) can be extended to a function in B. �
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