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Abstract. Let M be a rational homology 3–sphere with |H1(M, Z)| = b. For any odd divisor c

of b, we construct a unified invariant IM,c lying in a cyclotomic completion of a certain polynomial
ring, which dominates Witten–Reshetikhin–Turaev SO(3) invariants of M at all roots of unity
whose order r satisfies (r, b) = c. For c = 1, we recover the unified invariant constructed by Le
and Beliakova–Le. If b = 1, our invariant coincides with Habiro’s invariant of integral homology
3–spheres. New structural properties of the set of quantum invariants at roots of unity not
coprime to the torsion are the main applications of our construction.

Introduction

The SO(3) Witten–Reshetikhin–Turaev invariant τM (ξ) ∈ Q(ξ) is defined for any closed oriented
3–manifold M and any root of unity ξ of odd order [16], [8]. If, in addition, the order of ξ is prime,
then by the results of Murakami [15] and Masbaum–Roberts [13], τM (ξ) is an algebraic integer. This
integrality result was the starting point for the construction of integral TQFTs, representations of
the mapping class group over Z[ξ] [5], and categorification of quantum 3–manifold invariants [9].
The proofs in [15] and [13] depend heavily on the arithmetic of Z[ξ] for a prime root of unity ξ and
do not extend to other roots of unity.

Recently, for any integral homology 3–sphere, Habiro [6] constructed a unified invariant whose
evaluation at any root of unity coincides with the value of the Witten–Reshetikhin–Turaev invariant
at that root. Habiro’s unified invariant is an element of the following ring

Ẑ[q] := lim
←−−n

Z[q]

((1 − q)(1 − q2)...(1 − qn))
.

Every element f(q) ∈ Ẑ[q] can be written as an infinite sum

f(q) =
∑

k≥0

fk(q) (1 − q)(1 − q2)...(1 − qk),

with fk(q) ∈ Z[q]. In particular, for a root of unity ξ, the evaluation evξ(f(q)) ∈ Z[ξ]. Thus, for
any integral homology sphere M , τM (ξ) is an algebraic integer at any root of unity ξ. The fact

that the unified invariant belongs to Ẑ[q] is stronger, than just integrality of τM (ξ). We will refer
to it as “strong” integrality.

In [2] Laplace transform method for constructing unified invariants of rational homology 3–
spheres was developed. An application of this method is the following result in [3].

Theorem (Beliakova–Le). For every closed 3–manifold M and any root of unity ξ of odd order,
τM (ξ) ∈ Z[ξ].

Strong integrality of quantum invariants for rational homology 3–spheres was studied in [10]
and [3]. In [10], for a rational homology 3–sphere M with |H1(M, Z)| = b, Le constructed an
invariant IM which dominates SO(3) quantum invariants of M at roots of unity of order coprime
to b. Habiro’s universal ring was modified by inverting b and cyclotomic polynomials of order not
coprime to b. In [3], it was proved that IM has even stronger integrality, i.e. it belongs to a smaller
ring. Moreover, a rational surgery formula for this invariant was given.

In this paper, we extend the theory to the case, where the orders of the root of unity and of
the torsion are not coprime. Our method uses Andrews’s identities generalizing those of Rogers–
Ramanujan.
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Results. Let Mb be the set of rational homology 3–spheres with |H1(M, Z)| = b. Let us fix an

odd divisor c of b and let b =
∏n

i=1 pki

i be the prime decomposition of b, i.e. the pi’s are distinct.

We have H1(M ; Z) =
n⊕

i=1

mi⊕
j=1

Z
p

kij
i

with
∑mi

j=1 kij = ki.

We renormalize τ(M) as

τ ′M (ξ) =
τM (ξ)

n∏
i=1

mi∏
j=1

τ
L(p

kij
i ,1)

(ξ)

.

We say that a closed 3–manifold is of diagonal type if it can be obtained by an integral surgery
along an algebraically split link.

Lemma 1. There are connected sums of lens spaces Modd and Mev with links inside, such that
Modd is uniquely determined by M and M ′ := M#Modd#Mev is of diagonal type. Moreover,
τ ′Modd

(ξ) is invertible in Z[ξ].

Suppose c =
∏

i p
ki,c

i is the prime decomposition of c. Define c′ :=
∏

i p
ki,c

i and b′′ :=
∏

i p
ki−ki,c

i ,

where the products are taken over i with 2ki,c < ki only. Put t := q
c′

b′′ and b′ = b/c. We denote

by Φi(x) the i–the cyclotomic polynomial in x and define a subring of Q(q1/b′′) by

Rb,c := Z[q±1, t±1][Φ−1
n (t) if (n, b′) 6= 1, Φ−1

j (q) if c ∤ j ]

and let

R̂b,c := lim
←−−

k

Rb,c

((q; q)k)

be its cyclotomic completion, where (a; b)k =
∏k−1

i=0 (1 − abi).

Let S = {r ∈ N | (r, b) = c}. For f ∈ R̂b,c and a root of unity ξ with ord(ξ) ∈ S, we define

evξ(f) by sending q to ξ and t = qc′/b′′ to (ξc′)d, where b′′d = 1 modulo ord(ξ)/c′. Note that
evξ(f) ∈ Z[1/b][ξ] in general.

We single out a subring Γ̂b,c of R̂b,c, such that evξ(Γb,c) = Z[c−1][ξ], if b is odd, and evξ(Γb,c) =

Z[(2c)−1][ξ] if b is even. We put bij = p
kij

i , cij = p
kij,c

i = (c, bij) and tij = qp
2kij,c−kij
i . Notice,

that tij are powers of t for all i and j.

Any f ∈ Γ̂b,c admits the following presentation

f =

∞∑

k=0

fk(t, q)xk with fk(t, q) ∈ Γb,c,k,

where xk := (qk+1; q)k+1/(1 − q) and, for k ∈ N, Γb,c,k is the subring of Rb,c generated over
Z[c−1][t±1, q±1] if b is odd, and over Z[(2c)−1][t±1, q±1], if b is even, by

∏

i,j with 2kij,c<kij

(tij ; tij)k+1+⌊ k+1
cij
⌋

(qcij ; qcij )k+1+⌊ k+1
cij
⌋

Notice, that the ideals ((q; q)k) and (xk) are cofinal in Rb,c.
The following theorem states the main result of this paper.

Theorem 2. For M ∈ Mb, there exists a unique unified invariant IM,c(t) ∈ Γ̂b,c, such that for
any root of unity ξ with ord(ξ) ∈ S,

τ ′M (ξ) = (τ ′Modd
(ξ))−1 evξ (IM,c)

Let Q = {q1, q2, . . . , ql} be the set of all prime numbers which divide c but not b
c . We deduce

the following.

Corollary 3. For M ∈ Mb and any prime p not dividing b, the set of quantum invariants {τM (ξ) |
ord(ξ) ∈ S} is as powerful as the set {τM (ξ) | ord(ξ) = c

∏l
i=1 qli

i pe, li, e ∈ N}.
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An interesting open problem is to verify whether the Le–Murakami–Ohtsuki invariant [11] de-
termines the SO(3) quantum invariants at the chosen family of roots for c > 1. In Proposition 12

(Part d) we show that the subrings of R̂b,c admit injective Taylor expansions.

Plan of the paper. In Section 1 we recall known results and definitions and compute quantum
invariants of lens spaces. In Section 2 we state the results on cyclotomic completions of polynomial
rings, needed in the proofs of Theorem 2 and Corollary 3. The rest of the paper is devoted to the
proof of Theorem 2.

Acknowledgments. The authors would like to thank Christian Krattenthaler and Kazuo Habiro
for helpful remarks and stimulating conversations.

1. Quantum invariants

Let us first fix the notation.

{n} = qn/2 − q−n/2, {n}! =

n∏

i=1

{i}, [n] =
{n}
{1} ,

[
n
k

]
=

{n}!
{k}!{n− k}! .

We denote the set {1, 2, 3, . . .} with N and the set {0, 1, 2, 3, . . .} with N0.

1.1. The colored Jones polynomial. Suppose L is a framed, oriented link in S3 with m ordered
components. For every positive integer n there is a unique irreducible sl2–module Vn of dimen-
sion n. For positive integers n1, . . . , nm one can define the quantum invariant JL(n1, . . . , nm) :=
JL(Vn1 , . . . , Vnm) known as the colored Jones polynomial of L (see e.g. [16]). Let us recall here a
few well–known formulas. For the unknot U with 0 framing one has

(1) JU (n) = [n] = {n}/{1}.
If L′ is obtained from L by increasing the framing of the i–th component by 1, then

(2) JL′(n1, . . . , nm) = q(n2
i−1)/4JL(n1, . . . , nm).

In general, JL(n1, . . . , nm) ∈ Z[q±1/4]. However, there is a number a ∈ {0, 1
4 , 1

2 , 3
4} such that

JL(n1, . . . , nm) ∈ qaZ[q±1].

1.2. Evaluation map and Gauss sum. Throughout this paper let ξ be a primitive root of unity
of odd order r. We first define, for each ξ, the evaluation map evξ, which replaces q by ξ. Suppose

f ∈ Q[q±1/d], where d is coprime with r, the order of ξ. There exists an integer d∗, unique modulo
r, such that (ξd∗)d = ξ. Then we define

evξf := f |q1/d=ξd∗ .

Suppose f(q; n1, . . . , nm) is a function of variables q and integers n1, . . . , nm. Let
∑

ni

ξ
f :=

∑

ni

evξ(f),

where in the sum all the ni run through the set of odd numbers between 0 and 2r. A variation
γd(ξ) of the Gauss sum is defined by

γd(ξ) :=
∑

n

ξ
qd n2−1

4 .

It is known that, for odd r, |γd(ξ)| =
√

r, and hence is never 0.
We define

FL(ξ) :=
∑

ni

ξ
JL(n1, . . . , nm)

m∏

i=1

[ni].

The following result is well–known (compare [10]).

Lemma 4. For the unknot U± with framing ±1, one has FU±(ξ) 6= 0. Moreover,

(3) FU± (ξ) = ∓2γ±1(ξ) evξ

(
q∓1/2

{1}

)
.
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1.3. Definition of the SO(3) invariant of 3–manifolds. All 3–manifolds in this paper are
supposed to be closed and oriented. Every link in a 3–manifold is framed, oriented, and has
components ordered.

Suppose M is an oriented 3–manifold obtained from S3 by surgery along a framed, oriented
link L. (Note that M does not depend on the orientation of L). Let σ+ (respectively, σ−) be the
number of positive (resp. negative) eigenvalues of the linking matrix of L. Suppose ξ is a root of
unity of odd order r. Then the quantum SO(3) invariant is defined by

τM (ξ) = τ
SO(3)
M (ξ) :=

FL(ξ)

(FU+ (ξ))σ+ (FU−(ξ))σ−
.

For connected sum, one has τM#N (ξ) = τM (ξ)τN (ξ).

1.4. Laplace transform. In [2], Laplace transform method for computing τM (ξ) was developed.
In [3], it was generalize to the case where r is not coprime with the torsion. Let us recall these
results.

Suppose r and b are positive integers, and r is odd. Let c := (r, b) and Lb;n : Z[q±n, q±1] →
Z[q±1/b] be the Z[q±1]–linear operator, called Laplace transform, defined by

(4) Lb;n(q±na) :=

{
0 if c ∤ a;

q−a2/b if a = ca′,

The following lemma was proven in [3].

Lemma 5 (Beliakova–Le). Suppose f ∈ Z[q±n, q±1]. Then
∑

n

ξ
qb n2−1

4 f = γb(ξ) evξ(Lb;n(f)).

1.5. Lens spaces. Applying Laplace transform method [2], it is easy to see that

(5) τLb,1
(ξ) =

γb(ξ)

γsn(b)(ξ)
evξ

(
(1 − q− sn(b)/b)χ(c)

1 − q− sn(b)

)
,

where c = (b, r), χ(c) = 0 if c > 1 and χ(c) = 1 if c = 1. Note that (compare [12])

(6)
γb(ξ)

γsn(b)(ξ)
=

√
c

(
b
c
r
c

)(
sn(b)

r

)
ǫ(r′)

ǫ(r)
evξ

(
q

sn(b)−b
4

)

where r′ := r
c and

(
x
y

)
denotes the Jacobi symbol. Further ǫ(x) = 1 if x ≡ 1 (mod 4) and ǫ(x) = I

if x ≡ 3 (mod 4).
Let us define (L(p, s), Kd) as described in Figure 1.

p/s Kd

Figure 1. The lens space (L(p, s), Kd) is obtained by p/s surgery on the first component of the

Hopf link, the second component is the knot K colored by d.

Assume p/s is given by the continued fraction

p

s
= mn − 1

mn−1 −
1

mn−2 − . . .
1

m2 −
1

m1

with all mi ≥ 2. Choose s∗ and p∗, such that pp∗ + ss∗ = 1 with 0 < s∗ < p.
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Lemma 6. For c = (p, r) and d such that c | (d − s∗), we have

τ(L(p,s),Kd)(ξ)

τL(p,1)(ξ)
=
(s

c

)
evξ

(
q

3(n−1)−
P

i mi+p

4 − s(d−s∗)2

4p −p∗(s∗−2)
4

)

Proof. The formula follows from Lemmas 4.12 and 4.21 in [12]1 after replacing er by ξ1/4.
�

Proof of Lemma 1. The manifold M determines a linking pairing φM on H1(M) =
n⊕

i=1

mi⊕
j=1

Z
p

kij
i

,

which can be expressed as a direct sum of linking pairings φ(p
kij

i , sij) on Z/p
kij

i and Ek
0 , Ek

1 on
Z/2k ⊕ Z/2k for pi = 2. These linking pairings generate the abelian semigroup of linking pairings
under block sum (see [14] and [17] for more details). Let us split φM = φodd

M ⊕ φev
M , where

φodd
M =

⊕
i,j,pi 6=2 φ(p

kij

i , sij).

On φodd
M , there is only one relation between generators: φ(pk, s)⊕φ(pk, s) = φ(pk, 1)⊕ φ(pk, 1).

We use this relation to minimize the number of sij 6= 1. The corresponding presentation of φodd
M

as a direct sum of generators is called minimal.

We define Modd as follows. Let φodd
M =

⊕
i,j,pi 6=2 φ(p

kij

i , sij) be the minimal presentation. Then

Modd = #i,j,pi 6=2 (L(p
kij

i , sij), Kdij)

where dij = 1 if sij = 1 or cij = 1 and dij = s∗ij + cij otherwise. In this form, Modd is uniquely
determined by M .

Similarly, Mev is defined by taking L(2k, s) for any generator φ2k,s of φev
M and L(2k,−1) and

L(2k, 3) for Ek
0 and Ek

1 , respectively. By Proposition 3.5 of [10], M ′ = M#Mev#Modd is of
diagonal type.

It remains to show that τ ′Modd
is invertible in Z[ξ]. According to the definition, τ ′Modd

is a
product of terms computed by Lemma 6. It is not difficult to see that each such term is a power of

ξ. Indeed, 4 is invertible modulo r (since r is odd), and p
kij

i /cij is invertible modulo r/cij . Observe
that c2

ij | (dij − s∗ij)
2. �

1.6. Habiro’s cyclotomic expansion of the colored Jones polynomial. In [6], Habiro de-

fined new bases P ′k and P̃ ′k, k = 0, 1, 2, . . . , for the Grothendieck ring of finite–dimensional sl2–
modules, where

P ′k :=
1

{k}!

k∏

i=1

(V2 − q(2i−1)/2 − q−(2i−1)/2) and P̃ ′k = q
1
4k(k−1)P ′k.

Further, he defined for k ≥ 0

Pk = SpanZ[q±1]{P̃ ′n | n ≥ k}.
For any link L, using the linearity of JL, one has

(7) JL(n1, . . . , nm) =
∑

0≤ki≤ni−1

JL(P ′k1
, . . . , P ′km

)

m∏

i=1

[
ni + ki

2ki + 1

]
{ki}!

Since there is a denominator in the definition of P ′k, one might expect that JL(P ′k1
, . . . , P ′km

) also
has non–trivial denominator. A difficult and important integrality result of Habiro is Theorem 8.2
in [6]. This result can be generalized to

Theorem 7. Let L be an m–component algebraically split 0–framed link in S3 and L′ be an l–
component 0–framed one. Assume that the ith component L′i of L′ is colored by Vji and ji is either
odd or lk (Lj , L

′
i) = 0 (mod 2) for all j. Then, for xi ∈ Pki , ki ≥ 0, we have

JL∪L′(x1, . . . , xm, Vj1 , . . . , Vjl
) ∈ (qk+1; q)k+1

1 − q
Z[q±1],

where k = max{k1, . . . , km}.

1There are misprints in Lemma 4.21: q∗ ± n should be replace by q∗ ∓ n.
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The proof is given in Appendix 2. Thus, JL∪L′(P̃ ′k1
, . . . , P̃ ′km

, Vj1 , . . . , Vjl
) is not only integral,

but also divisible by (q; q)k.
Suppose L is an algebraically split link with 0–framing on each component. Then we have

(8)

evξ(JL∪L′(n1, . . . , nm, j1, . . . , jl)) = evξ




(r−3)/2∑

k1,...,km=0

JL(P ′k1
, . . . , P ′km

, Vj1 , . . . , Vjl
)

m∏

i=1

[
ni + ki

2ki + 1

]
{ki}!


 .

2. Cyclotomic completions of polynomial rings

Let R be a commutative ring with unit. We assume that R is an integral domain of characteristic
zero. Let R[q] be the polynomial ring over R. For each n ∈ N, let

Φn(q) :=
∏

(i,n)=1

(q − ei
n)

denotes the n–th cyclotomic polynomial, where en is a primitive n–th root of unity. If S ⊂ N,
we set ΦS = {Φn(q) | n ∈ S}. Let Φ∗S denote the multiplicative set in Z[q] generated by ΦS and
directed with respect to the divisibility relation. The principal ideals (f(q)) ⊂ R[q] for f(q) ∈ Φ∗S
define a linear topology of the ring R[q]. In [7], Habiro defined the (S–)cyclotomic completion ring
R[q]S as follows:

(9) R[q]S := lim
←−−−−−−
f(q)∈Φ∗

S

R[q]

(f(q))
.

For example, since the sequence (q)n, n ∈ N, is cofinal to Φ∗N, we have

Ẑ[q] ≃ Z[q]N.

Note that if S is finite, then R[q]S is identified with the (
∏

ΦS–)adic completion of R[q]. In
particular,

R[q]{1} ≃ R[[q − 1]], R[q]{2} ≃ R[[q + 1]].

Suppose S′ ⊂ S, then Φ∗S′ ⊂ Φ∗S , hence there is a natural map

ρR
S,S′ : R[q]S → R[q]S

′

.

Recall important results concerning R[q]S from [7]. Two positive integers n, n′ are called adjacent
if and only if n′/n = pe with e ∈ Z, for a prime p, such that the ring R is p–adically separated.
A set of positive integers is connected if for any two distinct elements n, n′ there is a sequence
n = n1, n2 . . . , nk−1, nk = n′ in the set, such that any two consecutive numbers of this sequence
are adjacent. Theorem 4.2 of [7] says that if S is connected, then for any subset S′ ⊂ S, the natural

map ρR
S,S′ : R[q]S →֒ R[q]S

′

is an embedding.

If ζ is a root of unity of order in S, then for every f(q) ∈ R[q]S the evaluation evζ(f(q)) ∈ R[ξ]
can be defined by sending q → ζ. For a set Ξ of roots of unity whose orders form a subset T ⊂ S,
one defines the evaluation

evΞ : R[q]S →
∏

ζ∈Ξ

R[ζ].

Theorem 6.1 of [7] shows that if R ⊂ Q, S is connected, and there exists n ∈ S that is adjacent to
infinitely many elements in T , then evΞ is injective.

In this section we apply Habiro’s methods to study the ring Rb,c defined in the introduction.

Recall that for any positive integer b, we fix an odd divisor c of b. We put b′ := b/c. Let b =
∏

i pki

i

and c =
∏

i p
ki,c

i be the prime decompositions of b and c. Then we define c′ :=
∏

i p
ki,c

i and

b′′ :=
∏

i p
ki−ki,c

i , where the products are taken over i with 2ki,c < ki only. Let t = q
c′

b′′ . We fix
S = {cl | l ∈ N, (l, b′) = 1} for the rest of the paper.

Then
Rb,c := Z[q±1, t±1][Φ−1

n (t) if (n, b′) 6= 1, Φ−1
j (q) if c ∤ j ]

and its cyclotomic completion

R̂b,c := lim
←−−n

Rb,c

((q; q)n)
.
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Notice, that R̂b,c has a well–defined evaluation at roots of unity of order in S = {cl | l ∈
N, (l, b′) = 1}, which sends q 7→ ξ where ord(ξ) = cl ∈ S, and t 7→ (ξc′)d, where b′′d = 1
(mod cl/c′).

Lemma 8.

R̂b,c = lim
←−−−−−−−−
f(q)∈Φ∗

S(q)

Rb,c

(f(q))

Proof. We have to show that the systems of ideals (f(q)) ∈ Φ∗N and (f(q)) ∈ Φ∗S in Rb,c are cofinal.
We refer to them as systems of ideals with respect to N and S, respectively.

Since, all Φj(q), j ∈ N, c ∤ j are invertible in Rb,c, the completion with respect to N coincides
with the completion w.r.t. to {cl | l ∈ N} or with the completion w.r.t. ideals generated by (qc; qc)i

for i ∈ N. The last system of ideals is cofinal to the one with respect to S, since up to units, for
c′′ = c/c′, we have

∏
j|l Φcj(q) = (1− qcl) =

∏
i|c′′l,(i,b′)=1 Φi(t) and hence, for any k | b′, the ideals

generated by (1 − qclk) and (1 − qcl) coincide in Rb,c. �

Denote Λb := Z[1/b][t±1, q±1] and put

ΛS
b := lim

←−−−−−−−−
f(q)∈Φ∗

S(q)

Λb

(f(q))
.

Our main theorem is

Theorem 9. The ring R̂b,c is isomorphic to ΛS
b .

We split the proof of this theorem into lemmas. Let Icl be the ideal of Rb,c generated by (1−qcl).

Lemma 10. For any l coprime to b′, the inclusion Rb,c →֒ Rb,c[1/b] induces an isomorphism

Rb,c

Icl
→֒ Rb,c[1/b]

Icl
.

Proof. Injectivity is obvious. For surjectivity we have to show that any prime factor p of b is
invertible modulo Icl in Rb,c. Recall that (Φm(q))+ (Φn(q)) = (1) in Z[q] if and only if m/n is not
a power of a prime. If m/n = pe with prime p, then (p) ∈ (Φn(q), Φm(q)) and there is a j such
that Φj

n(q) ∈ (p, Φm(q)) by Lemma 4.1 in [7]. Moreover, j = 1 if e < 0.

Assume p | c, then c = pc̃ and there exists j, such that Φj
c̃i(q) ∈ (p, Φci(q)). It follows that p is

invertible modulo Φci(q) in Rb,c for any i, i.e. modulo Icl.
If p | b′, we have Φpi(t) ∈ (p, Φi(t)). Since Φpi(t) is invertible in Rb,c, we have that p is invertible

modulo Φi(t) in Rb,c for any i with (i, b′) = 1. �

Lemma 11. The localization
Λb

Icl
→ Rb,c[1/b]

Icl

is an isomorphism.

Proof. By Proposition 2.1 in [4], any localization at a non–zero divisor is injective. Since the
cyclotomic polynomials we invert in Rb,c are coprime to Icl, we do not have zero divisors.

For surjectivity we have to show that Φj(q) with j ∈ N, c ∤ j, and Φk(t), for k ∈ N, (k, b′) 6= 1,

are invertible in Z[1/b][t±1, q±1] modulo Icl. Since, for j with c ∤ j, j
cl is either not a power of a

prime, or a power of a divisor of c, which is invertible in Z[1/b], we deduce that Φj(q) is invertible
modulo Icl in Z[1/b][t±1, q±1].

Similarly, for k with (k, b′) 6= 1, k
i with (i, b′) = 1 is either not a power of a prime, or a power

of a divisor of b′, which is invertible in Z[1/b]. �

The main theorem follows.

Let Q = {q1, q2, . . . , ql} be the set of all prime numbers which divide c but not b
c . Assume p

is a prime not dividing b, let Tk(p) = {c∏i qki

i pe | ki, e ∈ N, qi ∈ Q} and Sk = {c∏i qki

i l | ki, l ∈
N, (l, b) = 1), qi ∈ Q}. We have S = ∪kSk.
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Proposition 12. (a) For Sk 6= Sk′ and a ∈ Sk, a′ ∈ Sk′ , we have (Φa(q), Φa′(q)) = (1) in Λb.
(b) We have

ΛS
b =

∏

k

ΛSk

b .

c) Suppose f, g ∈ ΛSk

b such that evξ(f) = evξ(g) for any root of unity ξ with ord(ξ) ∈ Tk(p),
then f = g.

d) For λk = c
∏

i qki

i , the map

ΛSk

b → Λb[[1 − qλk ]]

is injective.

Note that Corollary 3 follows from Proposition 12.

Proof. (a) We put a = c
∏

i qki

i l ∈ Sk and a′ = c
∏

i q
k′

i

i l′ ∈ Sk′ . There exists an i, such that
ki 6= k′i. Without lost of generality, we can assume i = 1. If l 6= l′, then a

a′ is never a prime power.

In the case of l = l′, we have a
a′ = q

k1−k′
1

1

∏
i>1 q

ki−k′
i

i . This can only be a prime power if ki = k′i
for i > 1. But q1 is invertible in Z[ 1b ] and therefore the claim holds.

(b) Since S = ∪kSk, we can write f ∈ Φ∗S as f =
∏

fk with fk ∈ Φ∗Sk
. From (a) we know, that

the fk’s are pairwise coprime. Applying the Chinese remainder theorem we get

Λb/(f) =
∏

k

Λb/(fk).

Taking the inverse limit we get the claim.
(c) This is an adaptation of the proof of Theorem 6.1 in [7] to our case.

Let c
∏

i qki

i = λk, then Sk = {λk l | (l, b) = 1, l ∈ N}. Suppose for contradiction that there is a

nonzero element a ∈ ΛSk

b with evΞ(a) = 0, where Ξ is a set of roots of unity with orders in Tk(p).

Since Sk is connected, the map ρ : ΛSk

b → Λ
{λk}
b is injective ([7, Proposition 4.2]). Therefore,

ρ(a) =
∑∞

j=l ajΦ
j
λk

(q), with aj ∈ Λb and for some l, 0 6= al /∈ (Φλk
(q)). Since the evaluation of

a at any root of unity of order in Tk(p) vanish, we have that Φλkpe(q)|a for infinitely many e.
Moreover, Φλkpe(q) | ρ(a) for any e. Note that Φλkpe ∈ (p, Φλk

). Therefore, āl = al (mod Φλk
(q))

is divisible infinitely many times by p in Λb/(Φλk
(q)). Any element of the last ring can be written

as
∑d−1

i=0

∑g−1
j=0 fi,jq

itj where fi,j ∈ Z[1/b], d = deg Φλk
(q) and g = deg Φλk/c′(t).

From the divisibility of āl infinitely many times by p, we deduce that āl = 0 and al ∈ Φλk
(q)

which is a contradiction.
d) By [7, Proposition 4.2], the map ρ : ΛSk

b → Λ
{λk}
b is injective. Any element f of the last ring

can be written in the form f =
∑

j ajΦ
j
λk

(q) with aj ∈ Λb/(Φλk
(q)). Since for any divisor i of λk,

Φi(q) is invertible in Λb/(Φλk
(q)), we can rewrite f =

∑
j ãj(1 − qλk)j ∈ Λb[[1 − qλk ]] by using

qn − 1 =
∏

d|n Φn/d(q).

�

3. Unified invariant

3.1. Technical results. As before let b′ = b/c. We choose t such that tb
′

= qc and define the sub-

ring Γ̃b,c,k of Q(q
1
b′ ) as generated over Z[t±1, q±1] by Ak(t, q), if b is odd, and by ((−t; t)k+1)

−1
Ak(t, q),

if b is even, where

Ak(t, q) =
(t; t)k+1+⌊ k+1

c ⌋

(qc; qc)k+1+⌊ k+1
c ⌋

1

(̃q; q)c(k+1)

.

Here we use the notation

˜(qa; qb)k =
k−1∏

i=0,c∤a+bi

(1 − qa+bi) .

The following proposition is the main technical result of the paper.
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Proposition 13. For b ∈ Z6=0, c ≥ 1, ξ a r–th root of unity and k ≤ (r − 3)/2, there are

Fk(q, t, b, c) ∈ q
k2+3k+2

4 Γ̃b,c,k, such that

∑

n

ξ
q
−b

“

n2−1
4

”
[

n + k
2k + 1

]
{k}!{n} = 2γ−b(ξ)evξ

(
(−1)(k+1)(1−sn(b))/2Fk(qsn(b), tsn(b), |b|, c)

)
.

We prove Proposition 13 in Appendix 1 and define now Fk(q, t, b, c) for odd b > 0. For the even

case we refer to Appendix 1. Put a := c+1
2 , d := ⌊ b′−1

2 ⌋, N := k + 1 and m := ⌊N
c ⌋. Let ω be a

primitive b′–th root of unity and p := (c + 1) b′

2 + 1. We define

Fk(q, t, b, c) := q
1
4 (k2+3k+2) (t; t)N+m

(qc; qc)N+m

1

(̃q; q)cN

∑

np≥np−1≥···≥n1=0

(t−N )np(tm+1)N−m+na

(t−N )na+1(t
m+1)na+1

·(−1)nptx
′ ·
∏a−1

j=1 (t2m)νj · (t−N+m)νa ·∏d
i=1(t

2m+1)νa+i(t
−1)νγ1+i

∏c−1
j=1(t

2m)νa+jd+i∏p−1
i=1 (t)νi

·(t−m)na ·
a−1∏

j=1

(t
−N+uj

c )nj (t
−N+c−uj

c )nj (t
N+c−uj

c +nj+1)N−nj+1(t
N+uj

c +nj+1)N−nj+1

·
d∏

i=1

(ωit−m)na+i(ω
−it−m)na+i(1 + ω±itnγ1+i)

(−νγ1+i+1)

‰

nγ1+i
1+nγ1+i

ı

(1 + ω±i)

—

1
1+nγ1+i+1

�

·
d∏

i=1

(ω±itm+1+na+i+1)N−na+i+1 ·
d∏

i=1

c−1∏

j=1

(ωit
N+c−uj

c +na+jd+i+1)N−na+jd+i+1

·
d∏

i=1

c−1∏

j=1

(ω−it
N+uj

c +na+jd+i+1)N−na+jd+i+1
(ωit

−N+uj
c )na+jd+i

(ω−it
−N+c−uj

c )na+jd+i

The notation is explained in Appendix 1.

3.2. Definition of the unified invariant. Let M ∈ Mb. In this subsection we define IM,c ∈ Γ̂b,c,
such that

τ ′M (ξ) = (τ ′Modd
(ξ))−1 evξ (IM,c)

where Modd is a connected sum of lens spaces with links inside defined in Proof of Lemma 1,
τ ′Modd

(ξ) is a power of ξ. The invariant IM,c is multiplicative with respect to the connected sum of
spaces. Let us consider 3 cases.

Case 1: M = L(2k, a). Then we define

IM,1 := q3s(1,2k)−3s(a,2k) ,

where s(b, a) is the Dedekind sum. By Lemma 6 or equation (3) in [10], evξ(IM,1) = τ ′M . Note

that 3s(1, 2k) − 3s(a, 2k) ∈ Z and IM is invertible in Γ̂b,c.
Case 2: M ∈ Mb is obtained by surgery along an algebraically split link L with m–components

and an l–component link L′ colored by Vj1 , · · · , Vjl
sits inside M . Assume that the linking pairing

on M decomposes into a direct sum of generators as follows:

φM = ⊕m
i=1 φ(|bi|, si)

where bi is the framing on Li. Let us denote the link L with all framings switched to zero as L0.

Further suppose that c is a fixed odd divisor of b =
∏

i bi, ci = (c, bi) and ti = qc2
i /bi .

We can now give a closed formula for the I(M,L′),c.

I(M,L′),c =

∞∑

ki=0

JL0∪L′(P ′k1
, . . . , P ′km

, Vj1 , . . . , Vjl
)(−1)

m
P

i=1

ki(1+sn(bi))

2
(10)

·
m∏

i=1

qsn(bi)/2 (1 − q− sn(bi))

(1 − t
− sn(bi)
i )χ(ci)

Fki(q
− sn(bi), t

− sn(bi)
i , |bi|, ci)
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where Fki(q, ti, bi, ci) is defined as above and χ(c) = 1 if c = 1 and zero otherwise.

Theorem 14. For (M, L′) as above, the unified invariant I(M,L′),c given by (10) satisfies

τ ′(M,L′)(ξ) = evξ

(
I(M,L′),c

)

Proof. Applying (2) and (8) to the definition of FL(ξ) we conclude

FL0∪L′(ξ) =

(r−3)/2∑

k1,...,km=0

evξ(JL0∪L′(P ′k1
, . . . , P ′km

, Vj1 , . . . , Vjl
))
∑

ni

ξ

(
m∏

i=1

q
−bi

„

n2
i −1

4

«[
ni + ki

2ki + 1

]
{ki}![ni]

)
.

Further we use Proposition 13 to obtain

FL0∪L′(ξ) = (−2)m
m∏

i=1

γbi(ξ) evξ

(
∞∑

ki

JL0∪L′(P ′k1
, . . . , P ′km

, Vj1 , . . . , Vjl
)

m∏

i=1

Fki(q
− sn(bi), t

− sn(bi)
i , |bi|, ci)

(−1)
(ki+1)(1+sn(bi))

2 {1}

)
.

Therefore we get for the WRT invariant the formula

τ(M,L′)(ξ) =

m∏

i=1

γbi(ξ)

γsn(bi)(ξ)
·

evξ

(
∞∑

ki

JL0∪L′(P ′k1
, . . . , Vjl

)

m∏

i=1

qsn(bi)/2(−1)ki(1+sn(bi))/2Fki (q
− sn(bi), t

− sn(bi)
i , |bi|, ci)

)

Using the definition of τ ′, (6) and (5), we get the claim.
�

Case 3: For any M ∈ Md, we define

IM,c = I(M ′,L′),c(IMev ,1)
−1

where (M ′, L′) = M#Modd#Mev is of diagonal type and Mev is a connected sum of lens spaces
considered in Case 1.

3.3. Proof of Theorem 2. It remains to show that IM,c ∈ Γ̂b,c or I(M ′,L′),c ∈ Γ̂b,c. By Theorem

7, we have JL0∪L(P ′k1
, . . . , P ′km

, Vj1 , . . . , Vjl
) ∈ (qk+1;q)k+1

1−q

∏m
i=1 q

1
4ki(ki−1) Z[q±1] for k = max

i
{ki}.

Moreover, ki(ki−1) ≡ k2
i +3ki (mod 4). From Proposition 13, we see that I(M ′,L′),c can be written

in the form ∑

k

fk(t, q)xk with fk(t, q) ∈
∏

i

Γ̃k,bi,ci .

Since the coefficient fk(t, q) can be reduced modulo (xk), we have I(M ′,L′),c ∈ Γ̂b,c. �

Appendix 1

Proof of Proposition 13. We have to calculate the Laplace transform

L−b;n

([
n + k
2k + 1

]
{k}!{n}

)
,

which is equal to 2 (−1)k+1

{k+1}! Sk(q, b), where

(11) Sk(q, b) := 1 +

∞∑

n=1

q(k+1)cn(q−k−1; q)cn

(qk+2; q)cn
(1 + qcn)q

c2n2

b .

See [3], Lemma 2.4 for details. Because of the term (q−k−1)cn, we can assume cn ≤ k + 1 (the
summands are otherwise zero) and the sum is therefore finite.

First notice that we can restrict our calculations to the case when b > 0, since

Sk(q, b) = Sk(q−1,−b).

Therefore, let us assume b to be positive for the rest of the proof.
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Let us choose t such that tb
′

= qc and a b′–th primitive root of unity ω where b′ := b
c and put

N = k + 1. Using the equalities

(qx; q)cl =
c−1∏

j=0

(qx+j ; qc)l

(qxc; qc)l =
b′−1∏

i=0

(ωitx; t)l

we can see that

Sk(q, b) = 1 +

∞∑

n=1

b′−1∏

i=0

c−1∏

j=0

(ωit
−N+j

c )n

(ωit
N+1+j

c )n

(1 + tb
′n)tn

2+b′Nn

Here we use the notation (t)l := (t; t)l.
The sum Sk(q, b) can be identified with the LHS of the Andrew’s identity (3.43) of [1]

∑

n≥0

(−1)nαnt−(n
2)+pn+Nn (t−N )n

(tN+1)n

p∏

i=1

(bi)n(ci)n

bn
i cn

i ( t
bi

)n( t
ci

)n
=

(t)N ( q
bpcp

)N

( t
bp

)N ( t
cp

)N

∑

np≥np−1≥···≥n1≥0

βn1

tnp(t−N )np(bp)np(cp)np

(t−Nbpcp)np

p−1∏

i=1

tni

bni

i cni

i

(bi)ni(ci)ni

( t
bi

)ni+1(
t
ci

)ni+1

( t
bici

)ni+1−ni

(t)ni+1−ni

with the parameters chosen as follows.
We use the special Bailey pair

α0 = 1, αn = (−1)nt
n(n−1)

2 (1 + tn)
β0 = 1, βn = 0 for n ≥ 1.

and define further a := c+1
2 , d := ⌊ b′−1

2 ⌋ and m := ⌊N
c ⌋. Notice, that for j ∈ {1, . . . , a − 1}, there

exist unique uj ∈ {0, . . . , c − 1}, such that uj = j + N (mod c).
There are two cases: b odd and b even.
Case b odd. We define

bj = t
−N+uj

c , cj = t
−N+c−uj

c , j = 1, . . . , a − 1
ba = t−m, ca = tN+1

ba+i = ωit−m, ca+i = ω−it−m, i = 1, . . . , d

ba+jd+i = ωit
−N+uj

c , ca+jd+i = ω−it
−N+c−uj

c , i = 1, . . . , d and j = 1, . . . , c − 1
bγ1+i = −ωit, cγ1+i = −ω−it i = 1, . . . , d

bp → ∞, cp → ∞.

where γ1 := a + cd. As a result, we have p = (c + 1) b
2 + 1.

Case b even. We choose a square root ν of ω and define

bj = t
−N+uj

c , cj = t
−N+c−uj

c , j = 1, . . . , a − 1
ba = t−m, ca = tN+1

ba+i = ωit−m, ca+i = ω−it−m, i = 1, . . . , d

ba+jd+i = ωit
−N+uj

c , ca+jd+i = ω−it
−N+c−uj

c , i = 1, . . . , d and j = 1, . . . , c − 1

bγ1+j = −t
−N+uj

c cγ1+j = −t
−N+c−uj

c j = 1, . . . , a − 1

bγ2+i = −ν2i−1t, cγ2+i = −ν−(2i−1)t i = 1, . . . , d + 1
bγ2+d+2 = −t−m, cγ2+d+2 = −t0 = −1

bp → ∞, cp → ∞,

where γ1 := a + cd and γ2 := 2a + cd − 1. As a result, we have p = (c + 1) b
2 + 2.

We now look at the case b odd and since the calculations for the even case are very similar, we
omit these details and state the result after the calculations for the odd case.
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The RHS of the identity gives

(t)N

∑

np≥np−1≥···≥n1=0

tx · (t−N )np(bp)np(cp)np∏p−1
i=1 (t)ni+1−ni(t

−Nbpcp)np

·
a−1∏

j=1

(t
−N+uj

c )nj (t
−N+c−uj

c )nj (t
2m)nj+1−nj

(t
N+c−uj

c )nj+1 (t
N+uj

c )nj+1

· (t−m)na(tN+1)na(t−N+m)na+1−na

(tm+1)na+1(t
−N )na+1

·
d∏

i=1

(ωit−m)na+i(ω
−it−m)na+i(t

2m+1)na+i+1−na+i

(ωitm+1)na+i+1(ω
−itm+1)na+i+1

(−ωit)nγ1+i(−ω−it)nγ1+i(t
−1)nγ1+i+1−nγ1+i

(−ωi)nγ1+i+1(−ω−i)nγ1+i+1

·
d∏

i=1

c−1∏

j=1

(ωit
−N+uj

c )na+jd+i
(ω−it

−N+c−uj
c )na+jd+i

(t2m)na+jd+i+1−na+jd+i

(ωit
N+c−uj

c )na+jd+i+1
(ω−it

N+uj
c )na+jd+i+1

where

x = np +
a−1∑

j=1

2m nj + (m − N)na +
d∑

i=1

(2m + 1)na+i +
d∑

i=1

c−1∑

j=1

2m na+jd+i −
d∑

i=1

nγ1+i.

For c = 1, we use the convention, that empty products are set to be 1.
Notice, that

(bp)np(cp)np

(t−Nbpcp)np

= (−1)npt
np(np−1)

2 tNnp , lim
c→∞

(
t

c

)

n

= 1.

Now, from the second last term in the sum we can follow that nγ1+i+1 − nγ1+i ≤ 1. Therefore, we
have

d∏

i=1

(−ω±it)nγ1+i

(−ω±i)nγ1+i+1

=

d∏

i=1

(1 + ω±itnγ1+i)
(nγ1+i−nγ1+i+1+1)

‰

nγ1+i

1+nγ1+i

ı

(1 + ω±i)

—

1
1+nγ1+i+1

�

.

Notice, that np ≤ N and therefore ni ≤ N for all i. We multiply the numerator and denominator
of the sum by

d∏

i=1

(ω±itm+1+na+i+1)N−na+i+1

a−1∏

j=1

(t
N+c−uj

c +nj+1)N−nj+1(t
N+uj

c +nj+1)N−nj+1

·
d∏

i=1

c−1∏

j=1

(ωit
N+c−uj

c +na+jd+i+1)N−na+jd+i+1
(ω−it

N+uj
c +na+jd+i+1)N−na+jd+i+1

such that we achieve in the denominator the term
∏b−1

i=0

∏c−1
j=1(ω

it
N+uj

c )N ·∏b−1
i=1 (ωitm+1)N which

is equal to

c−1∏

j=1

(tb
N+uj

c ; tb)N · (tb(m+1); tb)N

(tm+1; t)N
= ˜(qN+1; q)cN

̂(qN+1; q)cN

(tm+1; t)N
.

Here we use the notation ̂(qa; qb) = (qa;qb)

˜(qa;qb)
.

To get the wanted Laplace transform, we still have to multiply by (−1)k+1

{k+1}! . Notice that {k+1}! =

(−1)k+1q−
(k+1)(k+2)

4 (q; q)N . Using the notation νj := nj+1 − nj , we get
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qy (tm+1; t)N

̂(qN+1; q)cN

1

˜(qN+1; q)cN

∑

np≥np−1≥···≥n1=0

(−1)nptx
′ · (t)N (t−N )np(tN+1)na

(t−N )na+1(t
m+1)na+1

∏a−1
j=1 (t2m)νj · (t−N+m)νa ·∏d

i=1(t
2m+1)νa+i(t

−1)νγ1+i

∏c−1
j=1(t

2m)νa+jd+i∏p−1
i=1 (t)νi

·(t−m)na ·
a−1∏

j=1

(t
−N+uj

c )nj (t
−N+c−uj

c )nj (t
N+c−uj

c +nj+1)N−nj+1(t
N+uj

c +nj+1)N−nj+1

·
d∏

i=1

(ωit−m)na+i(ω
−it−m)na+i(1 + ω±itnγ1+i)

(−νγ1+i+1)

‰

nγ1+i

1+nγ1+i

ı

(1 + ω±i)

—

1
1+nγ1+i+1

�

·
d∏

i=1

(ω±itm+1+na+i+1)N−na+i+1 ·
d∏

i=1

c−1∏

j=1

(ωit
N+c−uj

c +na+jd+i+1)N−na+jd+i+1

·
d∏

i=1

c−1∏

j=1

(ω−it
N+uj

c +na+jd+i+1)N−na+jd+i+1
(ωit

−N+uj
c )na+jd+i

(ω−it
−N+c−uj

c )na+jd+i

where x′ = x +
np(np−1)

2 + Nnp and y = − (k+1)(k+2)
4 .

Notice, that

(t)N (tN+1)na = (t)N+na = (t)m(tm+1)N−m+na .

From the term (t−N+m)na+1−na follows that na+1 − na ≤ N − m, and therefore (tm+1)na+1

divides (tm+1)N−m+na . It is now easy to see, that the denominator of the summands divides its
numerator and we get as a result

L
([

n + k
2k + 1

]
{k}!{n}

)
= 2qy · (t; t)N+m

(qc; qc)N+m

1

(̃q; q)cN

∑

np≥np−1≥···≥n1=0

(t−N )np(tm+1)N−m+na

(t−N )na+1(t
m+1)na+1

·(−1)nptx
′ ·
∏a−1

j=1 (t2m)νj · (t−N+m)νa ·∏d
i=1(t

2m+1)νa+i(t
−1)νγ1+i

∏c−1
j=1(t

2m)νa+jd+i∏p−1
i=1 (t)νi

·(t−m)na ·
a−1∏

j=1

(t
−N+uj

c )nj (t
−N+c−uj

c )nj (t
N+c−uj

c +nj+1)N−nj+1(t
N+uj

c +nj+1 )N−nj+1

·
d∏

i=1

(ωit−m)na+i(ω
−it−m)na+i(1 + ω±itnγ1+i)

(−νγ1+i+1)

‰

nγ1+i

1+nγ1+i

ı

(1 + ω±i)

—

1
1+nγ1+i+1

�

·
d∏

i=1

(ω±itm+1+na+i+1)N−na+i+1 ·
d∏

i=1

c−1∏

j=1

(ωit
N+c−uj

c +na+jd+i+1)N−na+jd+i+1

·
d∏

i=1

c−1∏

j=1

(ω−it
N+uj

c +na+jd+i+1)N−na+jd+i+1
(ωit

−N+uj
c )na+jd+i

(ω−it
−N+c−uj

c )na+jd+i

In the case b even, the calculation works similar and the result is
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L
([

n + k
2k + 1

]
{k}!{n}

)
= 2qy · (t; t)N+m

(qc; qc)N+m

1

(̃q; q)cN

1

(−t)N

∑

np≥np−1≥···≥n1=0

(−1)nptx
′′

· (t
−N )np(tm+1)N−m+na

(t−N )na+1(t
m+1)na+1

·
(tm+1)νγ2+d+2

·∏d+1
i=1 (t−1)νγ2+i∏p−1

i=γ2
(t)νi

·
(t−N+ N

c )νa ·
∏a−1

j=1 (t2m)νj (t
2m)νγ1+j ·

∏d
i=1(t

2m+1)νa+i

∏c−1
j=1(t

2m)νa+jd+i∏γ2−1
i=1 (t)νi

·(t−m)na · (−tm+1+np)N−np · (−t−m)nγ2+d+2
· (−t)nγ2+d+2−1 · (−tnp+1)N−np

·
a−1∏

j=1

(t
−N+uj

c )nj (t
−N+c−uj

c )nj (t
N+c−uj

c +nj+1)N−nj+1(t
N+uj

c +nj+1)N−nj+1(−t
−N+uj

c )nγ1+j

·
a−1∏

j=1

(−t
−N+c−uj

c )nγ1+j(−t
N+c−uj

c +nγ1+j+1)N−nγ1+j+1(−t
N+uj

c +nγ1+j+1)N−nγ1+j+1

·
d∏

i=1

(ωit−m)na+i(ω
−it−m)na+i(ω

itm+1+na+i+1)N−na+i+1(ω
−itm+1+na+i+1)N−na+i+1

·
d∏

i=1

c−1∏

j=1

(ωit
−N+uj

c )na+jd+i
(ω−it

−N+c−uj
c )na+jd+i

(ωit
N+c−uj

c +na+jd+i+1)N−na+jd+i+1

·
d∏

i=1

c−1∏

j=1

(ω−it
N+uj

c +na+jd+i+1)N−na+jd+i+1
·

d+1∏

i=1

(1 + ν±(2i−1)tnγ2+i)
(nγ2+i−nγ2+i+1+1)

‰

nγ2+d+2
1+nγ2+d+2

ı

·
d+1∏

i=1

(
(−ν2i−1)1(−ν−(2i−1))1

)j

1
1+na+cd+i+2

k

where x′′ = x′ +
∑a−1

j=1 2m nγ1+j + nγ2+d+2(m + 1) −
∑d

i=1(nγ2+i + nγ1+i).

Let us denote the sum in the above expressions by Tk(q, t, b, c). Notice that the denominator of
Tk(q, t, b, c) divides its numerator. Therefore we proved that Tk(q, t, b, c) ∈ Z[t±1, t1/c, ω] if b odd
and Tk(q, t, b, c) ∈ Z[t±1, t1/c, ν] if b even. Now, we look again at the odd case. Since

(−1)k+1

{k + 1}!Sk(q, b) = qy (tm+1; t)N

̂(qN+1; q)cN

1

˜(qN+1; q)cN

Tk(q, t, b, c)

there are f0, g0 ∈ Z[t±1, q±1] such that Tk(q, t, b, c) = f0

g0
. We need the following lemma to prove

that Tk(q, t, b, c) lies in Z[t±1, q±1].

Lemma. If f, g ∈ Z[t±1, q±1] and f/g ∈ Z[t±1, t1/c, ω] for ω a b′–th root of unity, we have
f/g ∈ Z[t1/c, t±1, q±1].

Proof. Since f and g do not change under the ring automorphisms ϕij which send ωi to ωj for
ord(ωi) = ord(ωj), f/g is unchanged as well. Therefore the ωi’s of the same order must have the
same coefficients in f/g. Notice that the sum over the b′–th root of unity of the same order lies in
Z. We can conclude that f/g ∈ Z[t±1, t1/c]. �

Since f0 and g0 are independent of the choice of the c–th root of t (we only need t1/c when we

replace (qx, q) by (tx/c; t)(ωtx/c; t) · · · (ωb′−1tx/c; t) and this equation is true for all c–th root of t)
we can apply the argument of the Lemma to t1/c and get Tk(q, t, b, c) ∈ Z[t±1, q±1].

The proof for the even case works similar.
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Appendix 2

We first recall Habiro’s setting. We denote by Uh = Uh(sl2) the h–adically complete Q[[h]]–
algebra, topologically generated by H, E and F , satisfying the relations

HE − EH = 2E, HF − FH = −2F, EF − FE =
K − K−1

v − v−1
,

where we set K = vH = e
hH
2 . Further, Uq (Uev

q ) denotes the subalgebra of Uh freely generated

over Z[q±1] by F̃ (i)Kjek (F̃ (i)K2jek, respectively) for i, k ≥ 0, j ∈ Z, where

F̃ (n) =
FnKn

v
n(n−1)

2 [n]!
and e = (v − v−1)E.

On Uev
q , Habiro introduced the filtration Fn(Uev

q ), which is spanned by (F̃ (k)Kk)K2jel over Z[v±1],
and the completion

Ûev
q = lim

←−−n

Uev
q

Fn(Uev
q )

.

Further, he denoted Ũ ev
q as the image of the map Ûev

q → Uh, the ”completion in Uh” of Uev
q .

Lemma 15. For odd k and x ∈ Uq, we have

(1 ⊗ trVk
q )(e

h
2 H⊗H)(1 ⊗ x) ∈ Uev

q

Proof. For fixed k and x, we can find a basis e1, . . . , ek of Vk, such that

H =




k − 1 0
k − 3

. . .

0 1 − k


 .

Therefore,

(1 ⊗ trVk
q )(e

h
2 H⊗H)(1 ⊗ x) =

∑

m

1

m!

(
h

2

)m

Hm ⊗ trVk(K−1Hmx)

=
∑

i

∑

m

1

m!

(
h

2

)m

Hm⊗ < ei, K
−1Hmxei >

is only nonzero if x contains summands of the form F̃ (l)Kjel with l ≤ k. In the last case, we have

∑

m

1

m!

(
h

2

)m

Hm⊗ < ei, K
−1HmF̃ (l)Kjelei >=

∑

m

1

m!

(
h

2

)m

Hm⊗ < ei, K
−1F̃ (l)KjelHmei >

=
∑

m

1

m!

(
h

2

)m

(2ci)
mHm⊗ < ei, K

−1F̃ (l)Kjelei >=
∑

i

K2ci⊗ < ei, K
−1F̃ (l)Kjelei > ∈ Uev

q

where 2ci := k − 2i + 1 is even because k is odd. �

Now, we prove Theorem 7.

Proof of Theorem 7. Let us open the first component of L ∪ L′ and denote the resulting (1, 1)–
tangle by T . The universal invariant JT of T is defined in Section 4 of [6]. We claim that

(1 ⊗ · · · ⊗ 1 ⊗ t
Vj1
q ⊗ · · · ⊗ t

Vjl
q )JT ∈ Ũev

q .

If lk(Li, L
′
j) = 0 for all i, j, the result follows from Theorem 4.1 of Habiro [6]. Assume

lk(Li, L
′
j) = lkij 6= 0. Then according to the definition, JT is an infinite sum of terms

eh
P

i,j

lkij
2 Hij y1 ⊗ · · · ⊗ ym+l
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where yi ∈ Uq for all i and Hij is defined to be 1⊗· · ·⊗H⊗1⊗· · ·⊗1⊗H⊗· · ·⊗1 with everywhere
a 1 expect an H at the i–th and the j–th position. By Lemma 15, if lkij = 0 (mod 2) or ki is odd,
we have

(1 ⊗ · · · ⊗ trVkj ⊗ · · · ⊗ 1)(eh
lkij
2 Hij )(1 ⊗ · · · ⊗ ym+j ⊗ · · · ⊗ 1) ∈ Uev

q .

This proves the claim. The rest is analogous to the proof of Theorem 8.2 in [6].
�
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