Products of hyperbolic metric spaces
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Abstract

Let (X;,d;), ¢ = 1,2, be proper geodesic hyperbolic metric spaces. We
give a general construction for a “hyperbolic product” Xixp,X2 which is
itself a proper geodesic hyperbolic metric space and examine its boundary
at infinity.

1 Introduction

Let (X;,d;), 1 = 1,2, be proper geodesic hyperbolic metric spaces (for defini-
tions see Section 2). We give a general construction for a “hyperbolic product”
X1 %, X5 which is itself a proper geodesic hyperbolic metric space.

This construction only depends on chosen basepoints z; € X; or on points
u; € 0X;, where 9X; is the boundary at infinity.

For given points z; € X; consider the set
Y = {(331,.’1:2) € X1 x Xo ‘ dl(xl,zl) = dg(%g,Zz)} Cc X1 xXs

with the induced product metric

1
de ((9617952)» (y17y2)) = (df(xlayl) + d§($2,y2)) -
Let d: Y x Y — Rt be the corresponding interior metric
d(z,y) := inf {L(c) ‘ ¢ connecting z to y in Y},

where L(c) denotes the length of ¢ in (Y, d).
We call (Y, d) the hyperbolic product of (X1,21) and (X2, 22) and denote it also
by

Y = (Xl,Zl) Xhp (XQ,ZQ).

This notion is justified by the following
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Theorem 1 Let X;, ¢t = 1,2, be proper geodesic hyperbolic spaces and z; € X;,
1=1,2. ThenY = (X1, 21)xn(Xa, 22) is also a proper geodesic hyperbolic space
and JY is naturally homeomorphic to 0X; X 0Xs.

The construction can be carried over in the limit case that the points z; tend
to infinity. This limit case seems to be of particular interest.

Let u; € 0X; be given. These points give rise to Busemann functions B; :
X; — R. Define now

Y = {(wl,xz) € Xi xXo | Bi(z1) = B2(372)} C X1 x X

and consider as above the interior metric d on Y.
We call (Y,d) the hyperbolic product of (X1, B;1) and (Xs, Bs), denote it by

Y = (X1,B1) xp (X3, Ba),
and obtain the

Theorem 2 Let X;, ¢« = 1,2, be proper geodesic hyperbolic spaces and B; :
X; — R Busemann functions on X;. Then'Y = (X1, B1)X (X2, Bs) is also
a proper geodesic hyperbolic space and JY is naturally homeomorphic to the
smashed product 0X; A 0X>.

Remark 1 i) The smashed product A is a standard construction for pointed
topological spaces (see e.g. [M]). Let (Up,u1), (Us,uz) be two pointed
spaces then the smashed product Uy A Us is defined as Uy x Uz /Uy V Us,
where Uy x Uy is the usual product and

U VU, = ({ul} xUQ) U (U2 x {uz}) C Uy xUy

is the wedge product canonically embedded in Uy X Us. Thus Uy A Us is
obtained from Uy x Us by collapsing Uy V Us to a point. For example
S™m A ST = §mtn,

ii) In [BrFa] the authors proved that the hyperbolic product of real hyperbolic
spaces (H™! uy)xp(H™2 uy), with u; in the ideal boundary, is isometric
to a real hyperbolic space H™1+m2—1,

In [FS] the authors proved that, more generally, the hyperbolic product
(Y, d) of Hadamard manifolds of pinched negative sectional curvature —b? <
K; < —a? < 0 is hyperbolic. This was done by showing that there exists a
metric on Y that is bilipschitz to the one induced by the canonical embed-
ding i : Y — X and that carries pinched negative sectional curvature.
For related results also see [L1], [L2], [F1] and [F2].

iii) Instead of the Euclidean product metric d, on'Y we could also take e.g. the
mazimum metric

dm ((:cl,xQ), (yl,y2)> = max {dl (xl,yl),dg(:cg,yg)}



and the corresponding inner metric d on Y. Note that de and d,, and
therefore also d and d' are bilipschitz related.

The following holds in general: If (Y,d) is a proper geodesic metric space
and d' is an other interior metric on Y which is bilipschitz related to d,
then (Y,d') also is a proper metric space which implies that it is geodesic
since (Y,d) is a length space (see e.g. Theorem 2.5.23 in [BuBul]). In
addition, (Y,d) is hyperbolic if and only if (Y,d') is hyperbolic (see e.g.
Theorem 8.4.16 in [BuBul]) and in that case O(Y,d) is homeomorphic to
oy, d).

For technical reasons we use in our proof the metric d,, on X1 x Xs.

iv) It is worth mentioning that the hyperbolic product of CAT(—k) spaces is
not necessarily of negative curvature in the sense of Alexandrov. Consider
for example the hyperbolic product of two pointed real hyperbolic spaces
(H2, z1) %, (H?, 22). This space is singular in (21,22) and the sectional
curvatures are not bounded from above in any meighborhood of the sin-
gularity. An example in the limit case is given by taking the hyperbolic
product of the complex hyperbolic plane CH? with R k-times. The calcula-
tions in [FS] show that for sufficiently large k this product admits positive
sectional curvatures.

v) Finally note that the hyperbolic product can similar be defined for finitely
many factors and the analogue of Theorems 1 and 2 hold in that case.

Outline of the paper:

In Section 2 we collect the necessary results on hyperbolic metric spaces. In
Sections 3 and 4 we give a proof of Theorem 2. At the end of Section 3 we
indicate the necessary changes for the situation of Theorem 1.

Acknowledgment: We want to thank Urs Lang for useful discussions.

2 Preliminaries

2.1 Hyperbolicity

A metric space (X,d) is called geodesic, if any two points z,y € X can be
joined by a geodesic segment zy that is the image of a geodesic path v, :
[0,d(z,y)] — X from zx to y which is parameterized by arclength.

A geodesic metric space is called d-hyperbolic if for any triangle with geodesic
sides in X each side is contained in the §- neighborhood of the union of the two
other sides.

The space is called hyperbolic if it is §-hyperbolic for some ¢ > 0.

Let X be a metric space and z,y,2 € X. Then there exist unique a,b,c € ]R(J{
such that

dz,y)=a+b, d(z,z)=a+c and d(y,z)=0b+c.



In fact those numbers are given through
a= Y2z, b=(@x2, ad c=(r-y).,

where for instance
1
(v-2)s = 5|dy,2) + dzo) - d(y,2)].

In the case that Xis geodesic we may consider a geodesic triangle TyUZzZUyz C
X, where for example Ty denotes a geodesic segment connecting = to y. Given
such a triangle we denote by & = ~4,.(b) the unique point on yZ satisfying
d(Z,y) = (z - )y and in the same way we define § € 77 and % € Ty.

Note that for X being a tree all these points coincide, i.e. £ = ¢ = Z. In general
an upper bound for the distances of these points measures the hyperbolicity of
(X, d).

Lemma 1 i) If (X,d) is 6-hyperbolic, then
d(z,3) < c+26, d(’yxy(t),%z(t)) < 46 Vte[0,d]

and the points T, §, Z have pairwise distance < 49.

ii) A metric space (X,d) is hyperbolic if and only if there exists a &' € RS such
that given any geodesic triangle TyUTzUYz C X the points T € Yz, § € Tz
and Z € Ty as defined above have distance less than &' to each other.

Proof: i) By §-hyperbolicity d(Z,7z) < § or d(Z,7Zz) < §. By triangle inequality
we have in the first case d(Z,§) < 2§ and hence d(Z, z) < ¢+ 2§. The other case
is similar.

Assume that there is to € [0,a] with d(vgy(to),Vzz(to)) > 44, then
d(Vay(to — 0), Y2z (to — 6)) > 26 which implies d(v,,(to — 0),Tz) > 6 and by
hyperbolicity d(v4,(to — 0),9yZ) < 6. Let p € 3z be a point of minimal distance
to y(to — 0). By triangle inequality d(p,y) > b and hence d(p, z) < ¢. Thus

a+e=dw2) < (to-9) + d(vyto—0).p) + dp,2)
< a + c;

a contradiction. Since the corresponding estimate holds for the other sides as
well the points Z, § and Z have pairwise distance < 44.
For ii) compare to Proposition III.H.1.17 in [BriH]. O

2.2 T-functions

In this section we discuss a special class of functions. We call them T-functions
since they arise naturally as distance functions in metric trees.

Definition 1 Let a,w € R and I := [a,w].



i) A function f : I — R is called o T-function if f is continuous and there
exists a + a € [a,w] such that the restrictions f|(a,a+a) and f|(ataw) are
differentiable with

[Maata) = —1 and Fliataw) = 1.

ii) A function f : I — R is called a 6-T-function, § € RY, if there ezists a
T-function g : I — R such that ||f — gl|sup < 0.

iii) Let X be a geodesic metric space. A function f: X — R is called o (6-)T'-
function, if for any geodesic segment v : [a,w] — R the function foy isa
(0-)T -function.

Remark 2 [t is straightforward to check that
i) Ewvery T-function f is convex and Lipschitz with Lipschitz constant | = 1.

ii) For [a,w] C R and t;,ts € R with |t; —t2| < |a—w| there ezists a unique T'-
function with f(a) =t and f(w) = to. Indeed there are unique a,b € R},
c € R such that a+b=|a—w|, a+c=t1, b+c=ty. These are given via

1

a = §(|a—w|+t1—t2),
1

b = §(|a—w|+t2—t1),
1

c = §(t1 + ty — |a—w|).

Now f satisfies
fla) = t1, fla+a) =c¢ flw) = ta
iii) f is a (0-)T-function => f + const is a (6-)T-function.
iv) A limit of a sequence of (5-)T-functions is a (§-)T -function.
Lemma 2 Let X be a geodesic metric space. Then the following are equivalent:
i) X is hyperbolic.
ii) There exists a § € Rt such that for all z € X the function
dy : X — R, y — d(z,y)
is a §-T-function.

Proof: “i)= i1)” Let X be §-hyperbolic, z,y,z € X, d(z,z) = a+c¢, d(y,z) =
b+ c and v : [0,a + b] — Ty an arc length parameterized geodesic connecting



T to y.
Now consider the T-function f : [0,a + b] — R determined by

f(0)=d(z,7(0)=a+c¢ and f(a+b)=d(z,v(a+b)=b+c.

Note that f(a) = ¢ and (d, o v)(a) < ¢+ 26 by Lemma 1 7).
From the fact that d, o : [0,a+ b] — RT is 1-Lipschitz it immediately follows
that

lldz07 = fllsup < 20.

Hence d, o 7y is a 26-T-function.

“j)<=ii)” Let now X satisfy condition i7). We show that X is hyperbolic using
the criterion of Lemma 1 4i):

For x,y,z € X and geodesic segments Ty, Tz and yz connecting these points,
condition 1) yields ¢ < d(z, %) < ¢+ . We now consider the geodesic triangle
27 U 22 U7z, where 7 C Ty and 27 is any geodesic segment connecting z to
Z. For 2 € %z satisfying d(z,2) = (z - Z), condition i) gives d(Z,2) < 24,
c<d(z,2) <c+ % and d(g,2) < % Thus we achieve

d(z,9) < d(5.2) + d(2.9) < 26 + § = 2.
The same argument of course yields d(2,7) < 26 and d(g,%) < 20. By Lemma
1 i) we obtain the result. O
d; oy
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Figure 1: The graph of d, o« lies in the region between the graphs of f and
f+20.

2.3 The boundary at infinity and Busemann functions

We associate to a hyperbolic space (X, d) a boundary 0X at infinity. There are
different descriptions in the literature (see e.g. [BeKa]) all of which coincide for



proper geodesic hyperbolic spaces.
We choose a basepoint z € X. We say that a sequence {z"} ren Of points in X
converges to infinity, if

liminf (2" -2'), = oo.

kl—ro0

Two sequences {z*},  and {y*},.y converging to infinity are equivalent,
{2} pen ~ " heen 1

liminf (z* -y'), = oo.
kJl—o0

One shows that ~ is an equivalence relation and defines 0.X as the set of equiv-
alence classes. We write [{z*}] € X for the corresponding class. One can also
show that for every x € X and v € X there is a geodesic ray vz : [0,00] — X
parameterized by arclength with v, (0) = z and [{yzv(k)}] = v.

For v € 0X and r > 0 one defines

Ulv,r) = {w € 0X ‘ 32k}, {yF) st [{2F)] = v, [{y*)] = w, liminf (% - y}), > r}.
k,l— 00

On 90X we consider the topology generated by U(v,r), v € 0X, r > 0.

If X is proper, 0X is a compact topological space. We now also fix a basepoint
u € 0X and a geodesic ray 7, from z to u. The function B : X — R,
B(z) := limy_,o0[d(z, ¥4 (t)) — t] is called the Busemann function associated to
Yzu- B is a §-T-function as a limit of §-T-functions.

Definition 2 A geodesic ray 7y : [0,00) — X is called a B-ray if and only if v
s parameterized by arc length and

B<fy(t)) - 3(7(0)) —t Vte[0,00).
By a standard limit argument we obtain the

Lemma 3 Let X be a complete, locally compact, hyperbolic metric space and
B a Busemann function on X. Then for every x € X there exists a B-ray vy
with v(0) = z.

Let now v € X \ {u} and consider B-rays 7,,, ;) starting at 7., (t). Then these
rays subconverge as sets to a geodesic from v to v and by suitable reparameter-
ization we obtain the existence of a geodesic 7,, : R — X with

B(1u®) = =t [{0u®}] = u and  [{ru(-R}] = v

The hyperbolicity of X also implies that there exists a constant C' (depending
on u, v, z) such that

(%0 7)) < € and  d(10),7u(-H) < € VE>0.



Let now z,y € X and v;,7, be B-rays starting at z,y. Then 7.,7, and a
geodesic segment Ty form an ideal triangle with vertices z,y and u = v,,(00) €
0X. We want to look for points @, Z,§ as for finite triangles. Clearly there are
a,b > 0 such that d(z,y) = a+ b and B(yz(a)) = B(yz(b)). Indeed

o=@ B. = (A7) + B@) - B)) and
b=(@B), = (dwy) + Bl ~ B@).

Let @ € Ty be the point with d(z, @) = a and let § = v, (a), T = v, (b).

ul

Figure 2: Triangle and ideal triangle in the hyperbolic space.

Lemma 4 i) The points &, § and @ have pairwise distance < 89.
ii) For allt > 0 it holds d(vz(a+t),7,(b+1)) < 8.

Proof: Let B(x) = limy—o0 (d(, 720 (t)) — 1), 2i = Y2u(i), @ € N, and consider
the triangle x,vy, 2; with corresponding values a;, b;, c; € Rt as well as points

Zi = 'wa(ai)a Ui = 'Yaczi(az') and T = Yy (bz)

Clearly one has a; — a and b; — b.
Consider also the triangles z, v;(a;), z;. Note that |d(z;, vz (a:)) —d(2i, §:)| — 0
which implies

lim supd(fyw (ai)»ﬂi) < 26

11— 00

In the same way we obtain

lim sup d(’yy(bi),ii) < 24

1—500

Since d(Z;,7;) < 46 by Lemma 1 we obtain 7).
The proof of i7) is similar. m|

We need the following



Lemma 5 Let z,y € X and o : [0,d(z,y)] — X a curve parameterized by
arclength such that 0(0) =z and d(o(d(z,y)),y) < R. Then

Ay (1), 0(8)) < gR + 25 Vte0,d(z,y)].

Proof: For fixed ¢t € [0,d(z,y)] consider the triangle x,y,z := o(t). Since
d(z,z) < t and d(z,y) < d(z,y) —t + R we have ¢ = (z - y), < £ and hence
by Lemma 1 d(z,%) < £ 4 26. Note that Z = ,,(t') with ¢/ = d(z,z) — c and
d(z,y) —t =d(z,y) — c. Thus |t —t'| < R from which the claim follows. O

2.4 A Morse estimate

We need an estimate whose proof is similar to the proof of the Morse inequality.

Lemma 6 Let (X,d) be 6-hyperbolic, z,y € X and v : [0,1] — X be a con-
tinuous path from x to y. If there exists a point p = vz (s0) € Ty such that
d(p,¥(t)) > R for all t € [0,1] and R > 900, then

Proof: Define a(t) := (y - v(t))z € [0,d(z,y)]. Since a is continuous, a(0) = 0
and a(1) = d(z,y) there are 0 < t_ <ty < 1 such that

R R R
a(ty) = so+ =, at) € [so——,so+§] Vio <t <tg.

a(t-) = so — 5 5

E )
Choose k + 1 := [{&] + 1 points 51 < ... < spq1 € [so — &, 50 + £] such that
|SZ'+1 — Sz'| > 126 and let t; € [t_7t+] be points t; < ty < ... < tht1 with
a(ti) = S;. Now
k
L) > d(za(t-)) + Y d(ta) 2 w) + d(v(t),y)-

=1

By construction
d(2.(t-)) > a(t-)  and  d(y,2(ts)) > d(z.y) — alt-).

Thus d(z,y(t-)) + d(v(t4),y) = d(z,y) — R.

Let ¢; € 7y be a point such that d(y(t:),q:) = d(v(t:),7y). Since dy,) 0 Y2y is a
44-T-function by Lemma 2, a minimum of this function is assumed in distance
< 46 of the minimum of the corresponding T-function. Thus d(g;, vzy(si)) < 49,
which implies d(g;, gi+1) > 46 since d(Vgy(Si+1), Yay(si)) > 120.

By Lemma 8.4.23 in [BuBul] we obtain

d<7(ti+1)»7(ti)) > d(V(ti+1)7qz'+1) + d(y(ti),qi) — 46,



Since d(vy(t;),p) > R and d(gi,p) < % + 40 we obtain d(y(tit1),7v(t:)) >
R —124. Thus

L) = dey) + [](R - 120) - R

for R > 904. O

3 The hyperbolic product

In this section we prove the first part of Theorem 2, which is equal to Proposi-
tion 3.

Let (X;,d;) be §;-hyperbolic spaces, ¢ = 1,2, and § := max{d;, 2 }. Let further
B; : X; — R be Busemann functions on X;. We study the set

Y = {(.’L’l,.’EQ) € Xl X XQ ‘ Bl(.’L']_) = Bz($2)}
On Y we consider the maximum metric d,,, : Y XY — R,

dp, ((xl,xz), (x'l,x'z)) = max {dl(xl,x'l)7d2(a:2,m'2)}.

For our use of d,, instead of d. compare Remark 1 4¢) in the Introduction.
Let p,p’ € Y. We first construct two curves in Y between p and p’, the I'-curve
I'pp and the continuous I'-curve I, .

The advantage of I'py is that this curve is conceptually easy to understand.
However, I,y is in general not continuous, I'; , is a continuous variation of
Tpp -

Let p = (p1,p2), P’ = (P}, p5) and v;, v, be Bj-rays starting at p;, p}. Let further
7,7 : Rf — Y be the geodesic rays

1) = (n@®.n®), YO = (H0.%0).

These geodesics are parameterized by constant speed 1. We set

a; = (p;,BZ)pl = %(d(plap;,) + Bi(pi) - Bl(p;)> and
b= By = (s + B - Bip)

such that a; + b; = di(ps, p;). Let a :== max{a;,a>} and b := max{by, b2}, then
a+b=dn,(p,p'). We define by a slight abuse of notation

-1
F = Fppl = 7|[0,a] % '7/|[0,b] .

10



Note that I'p, is not necessarily continuous, since y(a) = (y1(a),v2(a)) is not
necessarily equal to y'(b) = (v1(b),v4(b)). However, d;(vi(a),~i(b)) < 84; by
Lemma 4.

The curve I') , is a continuous modification of I'p,» and defined as

-1
F;p, = ”y|[0,a+25] * I' x [y x '7l|[0,b+26] )

where Iy is a continuous curve in Y form (v1(a + 26),v2(a + 26)) to (v (b +
26),v2(a + 26)) and I's a continuous curve in Y from (1 (b + 26),v2(a + 2§)) to
(71 (b4 268),~5(b+ 26)) given in the following way:

Let m1 : [a1,81] — X1 be a geodesic from 4 (a + 25) to v1(b + 25). Note
that L(n;) < 85 and Bi(n(a1)) = Ba(m(asz)). Since Bj is 1-Lipschitz and a
26-T-function we obtain

B (nl(t)) < B (nl(al)) +20 = Bi(p) — a.

Thus —B1(m1(t)) + B1(p1) > a > 0 and

Tat) = (m(t)n(—Bum(®) + Bi(p)))

is well defined. By construction 't () € Y and Ly, (T';) < 89.
In a similar way one constructs I's.

We can easily estimate the length of I'; , and obtain the

Lemma 7 Given two points p,p’' € Y the continuous curve I'¢ = L2, has length
L(T°) < dn,(p,p') + 206.

This immediately implies the

Proposition 1 Given two points p,p' € Y, it holds

dm(p,p') < d(p,p') < dm(p,p') + 206.

Thus (Y,dn,) and (Y,d) are quasi-isometric and hence bilipschitz on a large
scale. But also on a local scale they induce the same topology:

Lemma 8 The metrics d and dp,|y induce the same topology on Y.
Proof: We need to show that
lim dply(yiy0) =0 = lim d(yi,y0) = 0.
12— 00 11— 00

Thus it suffices to prove the

11



Sublemma 1 Let {y:},cy be a sequence in Y that converges to yo € Y with
respect to dm|y. Then for all € > 0 there exists p(€) > 0 such that for ally; €Y
satisfying dm |y (yi,yo) < p there exists a curve I'; in'Y connecting y; to yo of
length L(T;) <e.

A sequence {y;},cny = { (W1, ¥i2) ey in Y C X1 x X converges with respect to
dmly if and only if the sequences {y;;},.y in X; converge with respect to dj,
j=1,2.
Define €

K; = {7(1) ‘ v is a Bj-ray with v(0) = yoj}
and let v;; be Bj-rays with 7;;(0) = y;;. The local compactness of X; implies
that there exists p > 0 such that d;(yi;,y0;) < p implies d(v;;(7), K;) < §-

Let now dp(ys,y0) < p, then d;(yi;,y0;) < p and thus there are Bj-rays v;
starting at yo; such that d(v:;(§),7v;(§)) < §. Similar to the construction of
"7, one now finds a continuous path I'° in Y connecting successively the points

(%17?/1’2)7 (%‘1(2)7%2(2))7 (71(&)7%2(2))7 (71(2)772(2))7 (y017yo2>

of length

O
Corollary 1 (Y,d) is locally compact, complete and hence proper and geodesic.

Proof: Since the Busemann functions B;, ¢ = 1, 2, are continuous, Y is a closed
subset of the locally compact space (X1 x Xa,d,,) and therefore locally com-
pact itself when endowed with the induced metric dy,|y. Thus from Lemma 8
it follows that (Y, d) is also locally compact.

Every Cauchy-sequencein (Y, d) is a Cauchy-sequencein (Y, d, |y). But (Y, dn|yv)
is complete and therefore the Cauchy-sequence converges in (Y, dy,|y). Now the
proof of Lemma 8 yields convergence in (Y, d). Hence (Y, d) is complete.
Finally every locally compact, complete length space is proper and geodesic (see
e.g. Proposition 1.3.7. in [BriH]). O

Let p,p’ € Y and let
o 0,dp )] =Y, oft) = (o1(),02(4))
be a unit speed geodesic from p to p’ in (Y, d). We want to compare o with the

curve I'(p,p’). To have the same domain, we modify I',, a little: Let a,b as
above and

a* a + %(d(p,p’) - dm(p,p’)) ;

o= b+ %(d(p,p') - dm(pm’))-

12



We define I'" =T} , : [0,d(p,p')] — Y via

* —1
Fpp,(t) = ’y'[O,a*] kS ’yl|[0,b*]

and prove the

Proposition 2 For o and T'* as above it holds
d(a(t), r*(t)) < 5000,
To simplify the arguments, we will assume:
(a) d(p1,p})) > d(p2,ph) which implies a = a; and b = by,
(b) Bi(pi) =0, Bi(vi(t)) = —t and B;(v(t)) = -t + (b — a).

We can assume this without loss of generality: (a) by interchanging the factors
and (b) by adding the same constant to both Busemann functions.

The first step in the proof of Proposition 2 is the
Lemma 9 There exists to € [0,d(p,p")] with di(o1(to),v1(a)) < 304.
Proof: Consider the ideal triangle p1,pi,u1 = 71(00) = v(00) in Xy with

points p) = 71(a), p1 = 71(b), U1 = Yp,p; (@) € p1,p) of pairwise distance < 89.
Choose tg such that

M = d(al(to)7a1) = mtind(al(t),al).

By Lemma 6 we have Lg, (01) > (a + b) + 565 M?. Since Lg,(01) < Laq,, (o)
(a + b) + 206 we obtain M < 206 and thus the result.

OIA

We decompose o into two pieces o = a3 where & = olg,4,] and B = 0|4.a(p,p')]>
write @ = (@1, as) and 8 = (81, f2) and prove the

Lemma 10 With the notation above it holds
‘L(ai) - a‘ < 506 and ‘L(Bi) - b‘ < 506 for i=1,2.

Proof: With M as in Lemma 9 we compute

L(a;) > ‘Bi(fn’(to)) — Bi(ps)

- ‘Bl(al(to))‘ > a— M-8 > a— 300
and

LB) > |Bi(oito) - Bilwh)

- ‘Bl(ol(to)) - (b—a)| > b — 300.

Since L(a@;) + L(B;) < a + b+ 200 by Lemma 7 we obtain the result. |
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Lemma 11 With to as in Lemma 9 it holds da(o2(to),v2(a)) < 1000.

Proof: Consider the ideal triangle ps,q = oa(tg) = @2(to), uzs = 72(00) in Xy
with corresponding points § = v2((q - B2)p,), 2, P2. Since

(¢ B2l = 5 (d(p2,32(t0)) + Ba(ps) — Balan(io))
and |L(a1) — a| < 500, |Ba(p2) — Ba2(aa(to))| > a — 300 by Lemma 10, we get
(@ B2)p — af < 408
and
iz, 72) = 5 (02, Galto)) + Ba(Galto)) = Balrn)) < 406
Together with Lemma 4 we get the estimate. m|

Proof of Proposition 2: Lemmata 9, 11 and Proposition 1 imply that
d(o(tg),v(a)) < 1206. Combining some triangle inequalities we obtain |tg —a| <
1506 and

d(a(a*),v(a*)) <3000, d(a(a*),'y(b*)) < 3000.
Together with Lemma 5 we obtain Proposition 2. m|
Proposition 3 (Y, d) is hyperbolic.

Proof: By Lemma 2 it suffices to show that there exists a A such that for all
q,p,p' € Y and all minimal geodesics o : [0,d(p,p)] — Y from p to p’ the
function t — d(q,o(t)) is a A-T-function. By Propositions 1 and 2 it suffices
to show that there exists A such that for all ¢, p, p’ the function

[0,a* +b*] — R s d,, (q,r*(t))

is a A-T-function, where I'* = 7|[g 4] * 'y’|{0,b*]71 as defined above.
Define f,g:[0,a* + b*] — R via

f©) = di(@.Ti®)  and  g(t) = do(T50))-

We have to show that max{f,g} is a A-T-function. We use without loss of
generality as above that dj(p1,p}) > da(p2, ph), i-e. that dp,(p,p') = di(p1,p])-
In this case d(T'1 (t), vpp (t)) < ¢’ for all ¢ € [0, a+b], where §’ only depends on §
and not on p,p'. It follows that f is a A-T-function for some A only depending
on 4.

Note further that glj o+] and gljg«c,q+45+] are 26-T-functions by Lemma 2 for
every € > 0, and hence g|[4+ +4b+] is @ 106-T-function since the jump at a* is
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bounded by 8.
Let v = (g2 - B2)p,, then the function

0,00) = [0,00),  t—d>(2,%2(1))

assumes the minimum 8J-close to the point ¢t = v.

If v > a, hence v > a* — 100, then by the properties of §-T-functions g|g,q+-5+]
is easily checked to be a 300-T-function.

Let us assume that v < a. Set u := d2(g2,p2) — v and let 42 : [0,00) — X
be a Bs-ray starting at ga. Then da(F2(u + t),y2(v +¢)) < 8 for all t > 0. In
particular da(%2(u + (a* — v)),v2(a*)) < 80 which implies

86

v

@2 (a2,2(0)) = [Bata) — B (e
@2 (12,2(@) = [Brta) — By (@)

Since dj (¢1,71(a*)) > |B1(q1) — B1(71(a))| we obtain

fla*) = dl(Qla'Yl(a*)) > d2(Q2,’72(a*)) — 85 > g(a*) — 86.

Since g|jo,q+] and g|jg+ q++b+] are 100-T-functions and f is a ¢'-T-function we see
that (g — f)+ < 200 + ¢’ which implies that max{f, g} is a 208 + 26’-T-function.
* 0O

T 72(a”)
f
| T A2(u) T 12(v)
<83 g u
v
0 v a b @ u
v
D2

Figure 3: This figure visualizes the situation in the proof of Proposition 3.

We finally indicate how the arguments of this section have to be modified to
prove Theorem 1. In the case of Theorem 1 let By :=d(z1,-), By := d(23, ) and
z = (21, 22). The B;-rays correspond to the geodesics v; = Yp,;, V; = Vp!z;- Let
further

v [O,d(p,Z)] — Y 9 Y= (’71772)
71 : [Oad(paz)] — Y, 71 = (7{7'75) >



a; = (p} - zi)p, and b; := (pi - 2:)p.-

While the definition of T' is analog to the one in the case of Theorem 2, the
definition of I'{ , needs to be slightly modified in the case that a + 26 > d(p, 2).
In that case just take

-1
o = Yot * Yoprr >

where a < 7 < 2§ is chosen such that v(7) = +/(1) = 2
The proof of Lemma 8 stays valid in the case yg # z, € < d(yo,2). In the case
1o = z the result is obvious.

4 The boundary of YV

In the case of Theorem 1 it is easy to see that 0Y = 0X; x 0X5. The situation
of Theorem 2 is more interesting:

We study 9Y and show that it is homeomorphic to 9X; A 0X5.

Recall that the Busemann functions B; are defined as B;(z) = limy;—yo0 (d; (2, v:(t))—
t), where v; : [0,00) — X; is a geodesic ray, i = 1, 2.

Let z; = v;(0) and u; = [{v:i(k)}] € 0X;, i = 1,2. Let further 2 = (21,22) € ¥
and (t) = (71(t),72(t)). Then « is a ray with 4(0) = z and clearly the Buse-
mann function B : Y — R of this ray is B(y1,y2) = B1(y1) = Ba(y2).

Let u := [{7y(k)}] € 0Y. Using the results of Sections 2 and 3 there exists a A
such that the following holds:

(1) Y is A-hyperbolic,

(2) d(T75, (1) Yay(t)) <

(3) d(I'z,(1),T7.(1) <

(4) d(I'7,(1),7(1)) <

(8) ldm(2,y) —d(z,y)| < A.

For any point v € JY consider a geodesic ray o : [0, 00) — Y such that 0(0) = z
and v = [{o(k)}]. Consider the curves L7, with d(F;U(k) (t),0(t)) < A for
0 <t < k. By Section 3 an(k) = 7|[0,GZ] *7k|[0,b2]_17 where |a; — (0 - B),| <A
and ¥ : [0, 00) — X is a By-ray with v7(0) = 0;(k) and d(vF(b}), vi(a})) < A.
We distinguish two cases:

(Case 1) There exists a subsequence {aj, } with lim;_,o af = 0c.

Then lim; o (0(k;) - B), = oo and thus liminf; ;. (c(k;) - ¥(1)), = oo, which
implies {o(k;)} ~ {7(4)}, hence [{o(k;)}] = u. Since ~ is an equivalence
relation and clearly {o(k;)} ~ {o(j)} we also see that limy_,o ax = .

(Case 2) {a}} is bounded.

Then it holds b — co. Reparameterize vk [0,00) — X; as

3%+ [ag — bj,00) () = Af(t+bj, — af).
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By the discussion of Sections 2 and 3 the 4% converge to a complete geodesic v}
with B;(7;(t)) = —t and d;(vi(a},),v*(a};)) < 8. Clearly we have [{v;(k)}] = u;.
Let V; = [{’y;k(—k')}] S 8X1 \ {’U,z}

From the discussion of Case 2 it is not difficult to show that the map
Y \{u} — (OX1\{ws}) x (0X2\{u2})
v — (v1,v2)

is a homeomorphism, which by the discussion of Case 1 extends naturally to a
homeomorphism
Y — 90Xy A 0Xs.
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