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THE BARNES G FUNCTION AND ITS RELATIONS WITH

SUMS AND PRODUCTS OF GENERALIZED GAMMA

CONVOLUTION VARIABLES

A. NIKEGHBALI AND MARC YOR

Abstract. We give a probabilistic interpretation for the Barnes G-
function which appears in random matrix theory and in analytic num-
ber theory in the important moments conjecture due to Keating-Snaith
for the Riemann zeta function, via the analogy with the characteristic
polynomial of random unitary matrices. We show that the Mellin trans-
form of the characteristic polynomial of random unitary matrices and
the Barnes G-function are intimately related with products and sums of
gamma, beta and log-gamma variables. In particular, we show that the
law of the modulus of the characteristic polynomial of random unitary
matrices can be expressed with the help of products of gamma or beta
variables, and that the reciprocal of the Barnes G-function has a Lévy-
Khintchin type representation. These results lead us to introduce the
so called generalized gamma convolution variables.

1. Introduction, motivation and main results

The Barnes G-function, which was first introduced by Barnes in [3] (see
also [1]), may be defined via its infinite product representation:

G (1 + z) = (2π)z/2 exp

[
−

1

2

[
(1 + γ) z2 + z

]] ∞∏

n=1

(
1 +

z

n

)n
exp

[
−z +

z2

2n

]

(1.1)
where γ is the Euler constant.

From (1.1), one can easily deduce the following (useful) development of
the logarithm of G (1 + z) for |z| < 1:

logG (1 + z) =
z

2
(log (2π) − 1) −

1

2
(1 + γ) z2 +

∞∑

n=3

(−1)n−1 ζ (n− 1)
zn

n

(1.2)
where ζ denotes the Riemann zeta function.

This Barnes G-function has recently occurred in the work of Keating and
Snaith [14] in their celebrated moments conjecture for the Riemann zeta
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2 A. NIKEGHBALI AND MARC YOR

function. More precisely, they consider the set of unitary matrices of size
N , endowed with the Haar probability measure, and they prove the following
results:

Proposition 1.1 (Keating-Snaith [14]). If Z denotes the characteristic poly-
nomial of a generic random unitary matrix, considered at any point of the
unit circle (for example 1), then the following hold:

(1) For λ any complex number satisfying Re(λ) > −1:

EN

[
|Z|2λ

]
=

N∏

j=1

Γ (j) Γ (j + 2λ)

(Γ (j + λ))2
(1.3)

(2) For Re(λ) > −1:

lim
N→∞

1

Nλ2
EN

[
|Z|2λ

]
=

(G (1 + λ))2

G (1 + 2λ)
(1.4)

Then, using a random matrix analogy (now called the ”Keating-Snaith
philosophy”), they make the following conjecture for the moments of the
Riemann zeta function (see [14],[16]):

lim
T→∞

1

(log T )λ
2

1

T

∫ T

0
dt

∣∣∣∣ζ
(

1

2
+ ıt

)∣∣∣∣
2λ

= M (λ)A (λ)

where M (λ) is the ”random matrix factor”

M (λ) =
(G (1 + λ))2

G (1 + 2λ)

and A (λ) is the arithmetic factor

A (λ) =
∏

p∈P

[(
1 −

1

p

)λ2
(

∞∑

m=0

(
Γ(λ+m)

m!Γ(λ)

)2

p−m

)]

where, as usual, P is the set of prime numbers.
Due to the importance of this conjecture, as discussed in several papers

in [16], it seems interesting to obtain probabilistic interpretations of the non
arithmetic part of the conjecture. More precisely, the aim of this paper is
twofold:

• to give a probabilistic interpretation of the ”random matrix factor”
M (λ), and more generally of the Barnes G-function;

• to understand better the nature of the limit theorem (1.4) and its
relations with (generalized) gamma variables.

To this end, we first give a probabilistic translation in Theorem 1.2 of the
infinite product (1.1) in terms of a limiting distribution involving gamma
variables (we note that, concerning the Gamma function, similar translations
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have been presented in [10] and [9]). Let us recall that a gamma variable γa

with parameter a > 0 is distributed as:

P (γa ∈ dt) =
ta−1 exp (−t) dt

Γ (a)
, t > 0 (1.5)

and has Laplace transform

E [exp (−λγa)] =
1

(1 + λ)a , Re(λ) > −1 (1.6)

and Mellin transform:

E [(γa)
s] =

Γ (a+ s)

Γ (a)
, Re(s) > −a (1.7)

Theorem 1.2. If (γn)n≥1 are independent gamma random variables with

respective parameters n, then for z such that Re(z) > −1:

lim
N→∞

1

N
z2

2

E

[
exp

(
−z

(
N∑

n=1

(γn

n

)
−N

))]
=

(
Az exp

(
z2

2

)
G (1 + z)

)−1

(1.8)
where

A =

√
e

2π
. (1.9)

The next theorem gives an identity in law for the characteristic polynomial
which shall lead to a probabilistic interpretation of the ”random matrix
factor”:

Theorem 1.3. Let Λ denote the generic matrix of U (N), the set of unitary
matrices, fitted with the Haar probability measure, and ZN (Λ) = det (I − Λ).
Then the following hold:

(1) For Re(t) > −1, we have:

E
[
|ZN (Λ) |t

]
=

N∏

j=1

Γ (j) Γ (j + t)
(
Γ
(
j + t

2

))2 (1.10)

(2) Equivalently, in probabilistic terms:

N∏

j=1

γj
law
= |ZN (Λ) |

N∏

j=1

√
γjγ

′
j (1.11)

where all variables in sight are assumed to be independent, and γj, γ
′
j are

gamma random variables with parameter j.

The Barnes G-function now comes into the picture via the following limit
results:

Theorem 1.4. Let (γn)n≥1 be independent gamma random variables with
respective parameters n; then the following hold:
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(1) for any λ, with Re(λ) > −1, we have:

lim
N→∞

1

Nλ2/2
E







N∏

j=1

γj




λ

 exp


−λ

N∑

j=1

ψ (j)


 =

(
AλG (1 + λ)

)−1

(1.12)

where A =

√
e

2π
and ψ (z) =

Γ′ (z)

Γ (z)
.

(2) consequently, from (1.12), together with (1.11), we recover the limit
theorem (1.4) of Keating and Snaith: for Re(λ) > −1:

lim
N→∞

1

Nλ2
EN

[
|Z|2λ

]
=

(G (1 + λ))2

G (1 + 2λ)

We then naturally extend Theorem 1.2 to the more general case of sums
of the form:

SN =

N∑

n=1

(Yn − E [Yn]) (1.13)

where

Yn =
1

n

(
y

(n)
1 + . . .+ y(n)

n

)
,

and where
(
y

(n)
i

)
1≤i≤n<∞

are independent, with the same distribution as

a given random variable Y , where Y is a generalized gamma convolution
variable (in short GGC), that is an infinitely divisible R+-valued random
variable whose Lévy measure is of the form

ν (dx) =

(
dx

x

)(∫
µ (dξ) exp (−xξ)

)
, (1.14)

where µ (dξ) is a Radon measure on R+, called the Thorin measure associ-
ated to Y . We shall further assume that∫

µ (dξ)
1

ξ2
<∞,

which, as we shall see is equivalent to the existence of a second moment for
Y .

The GGC variables have been studied by Thorin [19] and Bondesson [6],
see, e.g., [12] for a recent survey of this topic.

Theorem 1.5. Let Y be a GGC variable, and let (SN ) as in (1.13). We
note

σ2 = E
[
Y 2
]
− (E [Y ])2 .

Then the following limit theorem for (SN ) holds: if λ > 0,

1

N
λ2σ2

2

E [exp (−λSN )] −−−−→
N→∞

H (λ) , (1.15)
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where the function H (λ) is given by:

H (λ) = exp

{
λ2σ2

2
(1 + γ) +

∫ ∞

0

dy

y
Σµ (y)

(
exp (−λy) − 1 + λy −

λ2y2

2

)}
,

(1.16)
with

Σµ (y) =

∫
µ (dξ)

1
(

2 sinh

(
ξy

2

))2 . (1.17)

Limit results such as (1.15) are not standard in Probability theory, and
we intend to develop a systematic study in a forthcoming paper [11]. The
rest of the paper is organized as follows:

• in Section 2, we prove Theorems 1.2, 1.3 and 1.4. We also give an
interpretation of Theorem 1.2 in terms of Bessel processes as well as
an important Lévy-Khintchine type representation for 1/G (1 + z).

• in Section 3, we compare Theorems 1.2 and 1.4, which help us find
adequate extensions for each of them (in particular we shall introduce
there generalized gamma convolution variables and prove Theorem
1.5);

2. Proofs of Theorems 1.2, 1.3 and 1.4 and additional
probabilistic aspects of the Barnes G-function

2.1. Proof of Theorem 1.2 and interpretation in terms of Bessel

processes.

2.1.1. Proof of Theorem 1.2. To prove Theorem 1.2, we simply use the fact
that

E

[
exp

(
−z

γn

n

)]
=

1(
1 +

z

n

)n .

Hence, for z ≥ 0, the quantity

E

[
exp

(
−z

(
N∑

n=1

(γn

n

)
−N

))]

equals
1

∏N
n=1

(
1 +

z

n

)n
exp (−z)

≡
1

DN
.

We then write

DN exp

(
z2

2
logN

)
= DN exp

(
z2

2

N∑

n=1

1

n

)
exp

(
z2

2

(
logN −

N∑

n=1

1

n

))

which from (1.1) converges, as N → ∞, towards

G (1 + z) (2π)−z/2 exp

(
z + z2

2

)
,
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which proves formula (1.8), for z ≥ 0, and thus for Re(z) > −1 by analytic
continuation.

2.1.2. An interpretation of Theorem 1.2 in terms of Bessel processes. Let
(R2n (t))t≥0 denote a BES(2n) process, starting from 0, with dimension 2n;

we need to consider the sequence (R2n)n=1,2,... of such independent processes.

It is well known (see [17] for example) that:

for fixed t > 0, R2
2n (t)

law
= (2t) γn.

Moreover, we have:

for fixed t > 0, R2
2n (t) = 2

∫ t

0

√
R2

2n (s)dβ(n)
s + 2nt

the stochastic differential equation of R2
2n, driven by a Brownian Motion

β(n). Thus

N∑

n=1

R2
2n (t)

2n

law
= t

(
N∑

n=1

γn

n

)
.

We now write Theorem 1.2, for Re(z) > −1/t as:

lim
N→∞

1

N
t2z2

2

E

[
exp

(
−z

N∑

n=1

R2
2n (t) − 2nt

2n

)]
=

(
Atz exp

(
t2z2

2

)
G (1 + tz)

)−1

(2.1)
where

A =

√
e

2π
.

We now wish to write the LHS of (2.1) in terms of functional of a sum of
squared Orstein-Uhlenbeck processes; indeed, if we write:

N∑

n=1

R2
2n (t) − 2nt

2n
= 2

N∑

n=1

∫ t

0

1

2n

√
R2

2n (s)dβ(n)
s ,

the RHS appears as a martingale in t, with increasing process

N∑

n=1

∫ t

0

1

n2
R2

2n (s) ds,

and we obtain that (2.1) may be written as:

lim
N→∞

1

N
t2z2

2

E
(z)

[
exp

(
−
z

2

N∑

n=1

∫ t

0

1

n2
R2

2n (s) ds

)]
=

(
Atz exp

(
t2z2

2

)
G (1 + tz)

)−1
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where, under P
(z) the process (R2n (t))t≥0 satisfies (by Girsanov’s theorem)

R2
2n (t) = 2

∫ t

0

√
R2

2n (s)

(
dβ̃(n)

s −
z

n

√
R2

2n (s)ds

)
+ 2nt

= 2

∫ t

0

√
R2

2n (s)dβ̃(n)
s −

2z

n

∫ t

0
R2

2n (s) ds+ 2nt

That is, under P
(z),

(
R2

2n (t)
)
t≥0

now appears as the square of a one dimen-

sional Ornstein-Uhlenbeck process, with parameter
(
−
z

n

)
.

2.2. Proof of Theorem 1.3. Formula (1.10) is due to Keating-Snaith [14].
Formula (1.11) follows from (1.10) once one recalls formula (1.7).

2.3. The characteristic polynomial and beta variables. One can use
the beta-gamma algebra (see, e.g., Chaumont-Yor [8], p.93-98, and the refer-
ences therein) and (1.11) to represent (in law) the characteristic polynomial
as products of beta variables. More precisely,

Theorem 2.1. With the notations of Theorem 1.3, we have:

|ZN |
law
= 2N




N∏

j=1

√
β j

2
, j

2






N∏

j=2

√
β j+1

2
, j−1

2


 (2.2)

where all the variables in sight are assumed to be independent beta variables.

Proof. To deduce the result stated in the theorem from (1.11), we use the
following factorization:

γj
law
=

√
γjγ′jξj, (2.3)

where on the RHS, we have:

for j = 1 ξ1
law
= 2

√
β 1

2
, 1
2

for j > 1 ξj
law
= 2

√(
β j

2
, j

2

)(
β j+1

2
, j−1

2

)
.

Indeed, starting from (2.3), then multiplying both sides by
√
γjγ′j and using

the beta-gamma algebra, we obtain that (2.3) is equivalent to:

γj
law
= 2

√
γ j

2

γ′j+1

2

which easily follows from the duplication formula for the gamma function
(again, see, e.g., Chaumont-Yor [8], p.93-98). �

Remark 2.2. In the above Theorem, the factor 2N can be explained by the
fact that the characteristic polynomial of a unitary matrix is, in modulus,
smaller than 2N . Hence the products of beta variables appearing on the
RHS of the formula (2.2) measures how the modulus of the characteristic
polynomial deviates from the largest value it can take.
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2.4. A Lévy-Khintchine type representation of 1/G (1 + z). In this
subsection, we give a Lévy-Khintchine representation type formula for 1/G (1 + z)
which will be used next to prove Theorem 1.4.

Proposition 2.3. For any z ∈ C, such that Re(z) > −1, one has:

1

G (1 + z)
= exp



−

1

2
(log (2π) − 1) z + (1 + γ)

z2

2
+

∫ ∞

0

du
(
exp (−zu) − 1 + zu− u2z2

2

)

u (2 sinh (u/2))2





(2.4)

Before proving Proposition 2.3, a few remarks are in order.

Remark 2.4. Note that formula (2.4) cannot be considered exactly as a
Lévy-Khintchine representation. Indeed, the integral featured in (2.4) con-

sists in integrating the function
(
exp (−zu) − 1 + zu− u2z2

2

)
against the

measure
du

u (2 sinh (u/2))2
, which is not a Lévy measure. Indeed, Lévy mea-

sures integrate (u2∧1), which is not the case here because of the equivalence:

u (2 sinh (u/2))2 ∼ u3, when u→ 0. Also, due to this singularity, one cannot

integrate
(
exp (−zu) − 1 + zu1(u≤1)

)
with respect to this measure, and one

is forced to ”bring in” under the integral sign the companion term u2z2

2 .

Proof. From the consideration of the series

L (z) :=
∞∑

n=3

(−1)n−1 ζ (n− 1)
zn

n
(2.5)

featured in (1.2), it seems natural to introduce a random variable Q taking
values in R+, with Mellin transform:

E [Qs] =

(
E
[
es+2

]

2

)(
ζ (s+ 2)

ζ (2)

)
(2.6)

where e denotes a standard exponential variable. A little more analytically,
formula (2.6) may be presented as

E [Qs] =
3

π2
Γ (s+ 3) ζ (s+ 2) . (2.7)

We first show the existence of the random variable Q by computing its
density (for an example of occurrence of the random variable Q in the theory
of stochastic processes and some relation with the theory of the Riemann
Zeta function, see e.g. [5] and [4]).

From the definition ofQ via its Mellin transform, we get for f : R+ → R+:

E [f (Q)] =
3

π2

∞∑

n=1

(
1

n2

∫ ∞

0
dt t2 exp (−t) f

(
t

n

))
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Hence by some elementary change of variables:

P (Q ∈ du) =
3

π2
u2

(
∞∑

n=1

n exp (−nu)

)
du.

Now, since
∑∞

n=1 exp (−nu) =
1

exp (u) − 1
, we get:

∑∞
n=1 n exp (−nu) =

1
(
2 sinh

(
u
2

))2 . Hence,

P (Q ∈ du) =
3

π2

(
u/2

sinh
(

u
2

)
)2

du (2.8)

Now, we consider the following series development for |z| < 1:

E

[
1

Q3

(
∞∑

n=1

(−zQ)n

n!

)]
=

3

π2

∞∑

n=3

(−1)n ζ (n− 1)
zn

n
,

hence, in comparison with formula (2.5) we obtain:

L (z) = −
π2

3
E

[
1

Q3

(
∞∑

n=1

(−zQ)n

n!

)]

= −
π2

3
E

[
1

Q3

(
exp (−zQ) − 1 + zQ−

Q2z2

2

)]
.

Now, formula (2.4), for |z| < 1, follows from (2.8) and the fact that:

1

G (1 + z)
= exp (logG (1 + z))

= exp

{
−
z

2
(log (2π) − 1) +

1

2
(1 + γ) z2 − L (z)

}
.

The formula extends by analytic continuation to the case Re(z) > −1. �

2.5. Proof of Theorem 1.4. To prove Theorem 1.4, we shall use the fol-
lowing lemma:

Lemma 2.5. For any a > 0, the random variable log (γa) is infinitely di-
visible and its Lévy-Khintchine representation is given, for Re(λ) > −a,
by:

E

[
γλ

a

]
=

Γ (a+ λ)

Γ (a)

= exp

{
λψ (a) +

∫ ∞

0

exp (−au) (exp (−λu) − 1 + λu)

u (1 − exp (−u))
du

}

where

ψ (a) ≡
Γ′ (a)

Γ (a)
.
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Proof. This is classical: it follows from (1.7) and some integral represen-
tation of the ψ-function, see, e.g. Lebedev [15] and Carmona-Petit-Yor [7]
where this lemma is also used. �

We are now in a position to prove Theorem 1.4. We start by proving the
first part, i.e. formula (1.12). Let us write

IN (λ) :=
1

Nλ2/2
E







N∏

j=1

γj




λ

 .

Thus with the help of Lemma 2.5, we obtain:

Nλ2/2IN (λ) = exp



λ

N∑

j=1

ψ (j) +

∫ ∞

0

∑N
j=1 exp (−ju)

u (1 − exp (−u))
(exp (−λu) − 1 + λu) du





(2.9)
Note that:

1

u (1 − exp (−u))

N∑

j=1

exp (−ju) =
exp (−u) (1 − exp (−Nu))

u (1 − exp (−u))2

and we may now write:

IN (λ) = exp



λ

N∑

j=1

ψ (j) + JN (λ)



 (2.10)

where

JN (λ) =

{∫ ∞

0

du exp (−u)

u (1 − exp (−u))2
(1 − exp (−Nu)) (exp (−λu) − 1 + λu)

}
−
λ2

2
logN

(2.11)
Next, we shall show that:

JN (λ) −−−−→
N→∞

J∞ (λ)

together with some integral expression for J∞ (λ), from which it will be
easily deduced how J∞ (λ) and G (1 + λ) are related thanks to Proposition
2.3.

We now write (2.11) in the form:

JN (λ) =

∫ ∞

0

du exp (−u)

u (1 − exp (−u))2
(1 − exp (−Nu))

(
exp (−λu) − 1 + λu−

λ2u2

2

)

+
λ2

2

(∫ ∞

0

duu exp (−u)

(1 − exp (−u))2
(1 − exp (−Nu)) − logN

)

(2.12)

Now letting N → ∞, we obtain:

JN (λ) → J∞ (λ) , (2.13)
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with

J∞ (λ) =

∫ ∞

0

du exp (−u)

u (1 − exp (−u))2

(
exp (−λu) − 1 + λu−

λ2u2

2

)
+
λ2

2
C

≡ J̃∞ (λ) +
λ2

2
C

where

C = lim
N→∞

(∫ ∞

0

duu exp (−u)

(1 − exp (−u))2
(1 − exp (−Nu)) − logN

)
,

a limit which we shall show to exist and identify to be 1 + γ(= C) with the
following lemma:

Lemma 2.6. We have:
∫ ∞

0

u exp (−u)

(1 − exp (−u))2
(1 − exp (−Nu)) du = logN + (1 + γ) + o(1).

Consequently, we have:

C = 1 + γ.

Proof.

∫ ∞

0

u exp (−u)

(1 − exp (−u))2
(1 − exp (−Nu)) du =

∫ ∞

0

u exp (−u)

(1 − exp (−u))

(
N−1∑

k=0

exp (−ku)

)
du

=

N∑

k=1

∫ ∞

0

u

(1 − exp (−u))
exp (−ku) du =

N∑

k=1

∫ ∞

0
du exp (−ku)u

∞∑

r=0

exp (−ru)

=

N∑

k=1

∞∑

r=0

∫ ∞

0
du u exp (− (r + k) u) =

N∑

k=1

∞∑

r=0

1

(r + k)2

Now, we write:

N∑

k=1

∞∑

r=0

1

(r + k)2
= ζ (2) +

N−1∑

k=1

(
ζ (2) −

k∑

s=1

1

s2

)

= Nζ (2) −

N−1∑

k=1

k∑

s=1

1

s2

= Nζ (2) −

N∑

s=1

N − s

s2

= N
∞∑

s=N+1

1

s2
+

1

N
+

N∑

s=1

1

s
−

1

N
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The result now follows easily from the facts:

lim
N→∞

N

∞∑

s=N+1

1

s2
= 1

N∑

s=1

1

s
= logN + γ + o(1)

�

We have thus proved so far that:

lim
N→∞

1

Nλ2/2
E







N∏

j=1

γj




λ

 exp


−λ

N∑

j=1

ψ (j)


 = exp (J∞ (λ)) , (2.14)

where

J∞ (λ) =

∫ ∞

0

du exp (−u)

u (1 − exp (−u))2

(
exp (−λu) − 1 + λu−

λ2u2

2

)
+
λ2

2
(1 + γ) .

We can still rewrite J∞ (λ) as:

J∞ (λ) =

∫ ∞

0

du

u (2 sinh (u/2))2

(
exp (−λu) − 1 + λu−

λ2u2

2

)
+
λ2

2
(1 + γ) .

(2.15)
Now comparing (2.4) and (2.15), we obtain:

exp (J∞ (λ)) =
(
AλG (1 + λ)

)−1
(2.16)

Plugging (2.16) in (2.14) yields the first part of Theorem 1.4:

lim
N→∞

1

Nλ2/2
E







N∏

j=1

γj




λ

 exp


−λ

N∑

j=1

ψ (j)


 =

(√
2π

e

)λ
1

G (1 + λ)

To prove the second part of Theorem 1.4, we use formula (1.11) together
with formula (1.12). Formula (1.11) yields:

1

N2λ2
E







N∏

j=1

γj




2λ

 =

(
1

Nλ2
EN

[
|ZN |2λ

])






1

Nλ2/2
E







N∏

j=1

γj




λ






2


(2.17)

Multiplying both sides by exp
(
−2λ

∑N
j=1 ψ (j)

)
and using (1.12) we obtain:

lim
N→∞

1

Nλ2
EN

[
|Z|2λ

]
=

(G (1 + λ))2

G (1 + 2λ)
,

which completes the proof of Theorem 1.4.
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3. Generalized Gamma Convolutions

3.1. Definition and examples. We recall the definition of a GGC variable.

Definition 3.1. A random variable Y is called a GGC variable if it is
infinitely divisible with Lévy measure ν of the form:

ν (dx) =
dx

x

∫
µ (dξ) exp (−ξx) , (3.1)

where µ (dξ) is a Radon measure on R+, called the Thorin measure of Y .

Remark 3.2. Y is a selfdecomposable random variable because its Lévy mea-

sure can be written as ν (dx) =
dx

x
h (x) with h a decreasing function (see,

e.g. [18], p.95).

Remark 3.3. We shall require Y to have finite first and second moments;
these moments can be easily computed with the help of the Thorin measure
µ (dξ):

E [Y ] = µ−1 =

∫
µ (dξ)

1

ξ

σ2 = E
[
Y 2
]
− (E [Y ])2 = µ−2 =

∫
µ (dξ)

1

ξ2

Now we give some examples of GGC variables. Of course, γa falls into
this category with µ (dξ) = aδ1 (dξ) where δ1 (dξ) is the Dirac measure at 1.

More generally, the next proposition gives a large set of such variables:

Proposition 3.4. Let f be a nonnegative Borel function such that
∫ ∞

0
du log (1 + f (u)) <∞,

and let (γu) denote the standard gamma process. Then the variable Y defined
as

Y =

∫ ∞

0
dγuf (u) (3.2)

is a GGC variable.

Proof. It is easily shown, by approximating f by simple functions that

E [exp (−λY )] = exp

(
−

∫ ∞

0
du

∫ ∞

0

dx

x
exp (−x) (1 − exp (−λf (u) x))

)

= exp

(
−

∫ ∞

0

dy

y

(∫ ∞

0
du exp

(
−

y

f (u)

))
(1 − exp (−λy))

)

which yields the result. �

For much more details on GGC variables, see [12].
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3.2. Proof of Theorem 1.5. We now prove Theorem 1.5, which is a nat-
ural extension for Theorem 1.2. Recall that in (1.13), we have defined SN

as:

SN =
N∑

n=1

(Yn − E [Yn])

where

Yn =
1

n

(
y

(n)
1 + . . .+ y(n)

n

)
,

and where
(
y

(n)
i

)
1≤i≤n<∞

are independent, with the same distribution as

a given GGC variable Y , which has a second moment. For any λ ≥ 0, we
have:

E [exp (−λSN )] =

N∏

n=1

(
ϕ̃

(
λ

n

))n

(3.3)

where

ϕ̃ (λ) = E [exp (−λ (Y − E [Y ]))] . (3.4)

Now, using the form (3.1) of the Lévy-Khintchine representation for Y , we
obtain:

N∏

n=1

(
ϕ̃

(
λ

n

))n

= exp

{
−

N∑

n=1

n

∫
ν (dx)

(
1 −

λ

n
x− exp

(
−
λ

n
x

))}

= exp

(
−

∫
µ (dξ) IN (ξ, λ)

)
. (3.5)

where:

IN (ξ, λ) =

N∑

n=1

n

∫ ∞

0

dx

x
exp (−ξx)

(
1 −

λ

n
x− exp

(
−
λ

n
x

))

=
N∑

n=1

n

∫ ∞

0

dy

y
exp (−nξy) (1 − λy − exp (−λy))

=

∫ ∞

0

dy

y

(
N∑

n=1

n exp (−nξy)

)
(1 − λy − exp (−λy))

Some elementary calculations yield:

N∑

n=1

n exp (−na) =
exp (a) (1 − exp (−aN))

(exp (a) − 1)2
−
N exp (−aN)

(exp (a) − 1)
.

Consequently, taking a = ξy in the formula for IN (ξ, λ), we can write it as:

IN (ξ, λ) = JN (ξ, λ) −RN (ξ, λ) (3.6)
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where

JN (ξ, λ) =

∫ ∞

0

dy

y
(1 − λy − exp (−λy))

[
exp (ξy) (1 − exp (−ξyN))

(exp (ξy) − 1)2

]

(3.7)
and

RN (ξ, λ) =

∫ ∞

0

dy

y
(1 − λy − exp (−λy))

[
N exp (−ξyN)

(exp (ξy) − 1)

]
(3.8)

It is clear that

lim
N→∞

RN (ξ, λ) = 0.

Now let us study JN (ξ, λ) when N → ∞. Let us ”bring in” the additional

term
λ2y2

2
; more precisely, we rewrite JN (ξ, λ) as:

JN (ξ, λ) =

∫ ∞

0

dy

y

(
1 − λy +

λ2y2

2
− exp (−λy)

)[
exp (ξy) (1 − exp (−ξyN))

(exp (ξy) − 1)2

]

−
λ2

2

∫
dy y

exp (ξy) (1 − exp (−ξyN))

(exp (ξy) − 1)2

(3.9)

Hence:

JN (ξ, λ) = o(1)+

∫ ∞

0

dy

y

1

(2 sinh (ξy/2))2

(
1 − λy +

λ2y2

2
− exp (−λy)

)
−
λ2

2
KN (ξ) ,

(3.10)
where

KN (ξ) =

∫
dy y

exp (ξy) (1 − exp (−ξyN))

(exp (ξy) − 1)2

=
1

ξ2

∫ ∞

0

u exp (−u)

(1 − exp (−u))2
(1 − exp (−Nu)) du.

Moreover, from Lemma 2.6, we have:

KN (ξ) =
1

ξ2
(logN + 1 + γ + o(1)) . (3.11)

Now using the above asymptotics, and integrating with respect to µ (dξ)
(see (3.5)), we obtain:

N∏

n=1

(
ϕ̃

(
λ

n

))n

=

exp

{
o(1) +

λ2

2
µ−2 (logN + 1 + γ) +

∫ ∞

0

dy

y
Σµ (y)

(
1 − λy +

λ2y2

2
− exp (−λy)

)}

(3.12)
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Hence we have finally proved that if λ > 0,

1

N
λ2σ2

2

E [exp (−λSN )] −−−−→
N→∞

H (λ) , (3.13)

where the function H (λ) is given by:

H (λ) = exp

{
λ2σ2

2
(1 + γ) +

∫ ∞

0

dy

y
Σµ (y)

(
exp (−λy) − 1 + λy −

λ2y2

2

)}
,

(3.14)
with

Σµ (y) =

∫
µ (dξ)

1
(

2 sinh

(
ξy

2

))2 , (3.15)

which is Theorem 1.5.
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[18] K. Sato: Lévy processes and infinitely divisible distributions, Cambridge University

Press 68, (1999).
[19] O. Thorin: On the infinite divisibility of the lognormal distributions, Scand. Actu-

arial J., (1977), 121-148.
[20] A. Voros: Spectral functions, special functions and the Selberg Zeta function, Com-

mun. Math. Phys. 110, (1987), 439-465.

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190,
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