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CANCELLATION THEOREMS FOR RECIPROCITY
SHEAVES

ALBERTO MERICI AND SHUJI SAITO

ABSTRACT. We prove cancellation theorems for reciprocity sheaves
and cube-invariant modulus sheaves with transfers of Kahn—Miyazaki—
Saito-Yamazaki. It generalizes a cancellation theorem for A'-
invariant sheaves with transfers, which was proved by Voevodsky.
As an application, we get some new formulas for internal hom’s of
the sheaves Q' of absolute Kihler differentials.
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0. INTRODUCTION

We fix once and for all a perfect field k. Let Sm be the category of
separated smooth schemes of finite type over k. Let Cor be the cate-
gory of finite correspondences: Cor has the same objects as Sm and
morphisms in Cor are finite correspondences. Let PST be the cate-
gory of additive presheaves of abelian groups on Cor, called presheaves
with transfers. Let NST C PST be the full subcategory of Nisnevich
sheaves, i.e. those objects F' € PST whose restrictions F'y to the small
étale site Xy over X are Nisnevich sheaves for all X € Sm. By a fun-
damental result of Voevodsky, the inclusion NST — PST has an exact
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left adjoint aY;, such that for any F' € PST and X € Sm, (a¥ . F)x is
the Nisnevich sheafication of F'y as a presheaf on Xyis. In Voevodsky’s
theory of motives, a fundamental role is played by Al-invariant objects
F € NST, namely such F that F(X) — F(X x A') induced by the
projection X x A! — X are isomorphisms for all X € Sm. The A'-
invariant objects form a full abelian subcategory HlIy;, € INST that
carries a symmetric monoidal structure @5y such that

FaNs G =ha"Nogl (F @pgr G) for F,G € Hly,

where ®pgr is the symmetric monoidal structure on PST induced
formally from that on Cor and hoAl’NiS is a left adjoint to the inclusion
functor HIy;s — NST, which sends an object of NST to its maximal
Al-invariant quotient in NST. For integers n > 0, the twists of F' €

HIy;, are then defined as
F(1)= FRY G, F(n):=Fn—-1) 25 Gpn.

where G,,, € NST is given by X — I'(X, O*) for X € Sm.
Noting that — ®ﬁif’ G,, is an endo-functor on Hly;s, we get a natural
map:
(0.1)
LFG HomPST(F, G) — HomPST(F(l), G(l)) for F, G € Hlys .

One key ingredient in Voevodsky’s theory is the Cancellation theorem
[15, Cor, 4.10], which implies the following theorem:

Theorem 0.1. For F,G € Hlyis, tpg s an isomorphism.

The purpose of this paper is to generalize the above theorem to
reciprocity sheaves. The category RSCy;s of reciprocity sheaves was
introduced in [5] and [6] as a full subcategory of NST that contains
HIy;, as well as interesting non-A !-invariant objects such as the ad-
ditive group scheme G,, the sheaf of absolute Kahler differentials
and the de Rham-Witt sheaves 1,,Q". In [10], a lax monoidal structure
(-, -)RSCy;,, 01 RSCyys is defined in such a way that

(F> G)RSCNis =rI ®ﬁlls G for F,G € Hlyss .
It allows us to define the twists for /' € RSCyjs recursively as
F<1> = (F7 Gm)RSCN157 F<n> = (F<n - 1>7 Gm)RSCNis'

Some examples of twists were computed in [10]: If F' € Hly;s, then
F(n) = F(n), in particular Z(n) = KM (the Milnor K-sheaf), and
G,(n)y = Q" if ch(k) = 0.
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By the fact that (—, G,,)rscy,, is an endo-functor on RSCyys, we
get a natural map (cf. (5.14)) :
(0.2)

LFG HomPST(F, G) — HomPST(F<1), G<1>) for F, G e RSCNiS,

which coincides with (0.1) if F,G € HIy;. We will also get a natural
map in NST:
(0.3) Ap: F — Hompgp (KM F(n)) for F € RSCyis,

using the functoriality of (—, G,,)rscy,,, Where Hompgr denotes the
internal hom in PST.
The main result of this paper is the following:

Theorem 0.2 (Theorems 5.4 and 5.2). The maps tpc and A\p are
1somorphisms.

As an application of the above theorem, we prove the following.

Corollary 0.3. (Theorem 6.2) Assume ch(k) = 0. For integers m,n >
0, there are natural isomorphisms in NST':

HomPST(Qn> Qm) ~ Qm—n D Qm—n—l
HO—mPST(ICr]ya Qm) = Qm_n’

where Q' = 0 for i < 0 by convention.

Let PS be the category of additive presheaves of abelian groups on
Sm (without transfers). Note that PST is viewed as a subcategory
of PS. By a lemma due to Kay Riilling (see Lemma 1.1), we have a
natural isomorphism in PS:

(0.4) Hompgr (G, Q™) = Hompg (G, Q™) for any G € PST,
where Hompg is the internal hom in PS. Thanks to (0.4), the iso-
morphisms of Corollary 0.3 and its explicit descriptions (6.1) and (6.3)
imply

Homps(Q", Qm) = {wl A (—) + wo A d(—) | w1 € sz—n’ Wy € sz—n—l}’

Homps (KM, Q™) = {w A dlog(—) | w € Q" "},

where dlog : KM — Q™ is the map {1,...,2,} — dlogz A - -Adlogz,,.
It would be an interesting question if there is a direct proof of these

formulas which does not use the machinery of modulus sheaves with
transfers explained below.

Reciprocity sheaves are closely related to modulus sheaves with trans-
fers introduced in [3] and [4]: Voevodsky’s category Cor of finite cor-
respondences is enlarged to a new category MCor of modulus pairs:
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Its objects are pairs X = (X, D) where X is a separated scheme of
finite type over k and D is an effective Cartier divisor on X such that
X°:=X —|D| € Sm (X° is called the interior of A'). The morphisms
are finite correspondences on interiors satisfying some admissibility and
properness conditions. Let MCor C MCor be the full subcategory
of such objects (X, D) that X is proper over k. There is a symmetric
monoidal structure ® on MCor, which also induces that on M Cor by
restriction (cf. §1(19)) .

We then define MPST (resp. MPST) as the category of additive
presheaves of abelian groups on MCor (resp. MCor). We have a
functor

w:MCor — Cor; (X, Xy) = X — | Xool,

and two adjunctions

MPST < MPST, MPST  PST,

— —

where w* is induced by w and w, is its left Kan extension, and 7* is
induced by the inclusion 7 : MCor — MCor and 7 is its left Kan
extension, which turned out to be exact and fully faithful.

For F € MPST and X = (X, D) € MCor write Fx for the presheaf
on the small étale site X¢ over X given by U — F(Xy) for U — X
étale, where Xy = (U,D xx U) € MCor. We say F' is a Nisnevich
sheaf if so is Fyx for all X € MCor. We write MNST C MPST for
the full subcategory of Nisnevich sheaves.

The replacement of the A'-invariance in this new framework is the
-invariance, where [ := (P!, 00) € MCor: Let CI € MPST be the
full subcategory of those objects F' that F(X) — F(X ®0) induced by
the projection X ® [0 — X are isomorphisms for all X € MCor. Let
CI" € MPST be the essential image of CI under 7y and CI™* C CI"
be the full subcategory of semipure objects F, namely such objects
that the natural map F(X,D) — F(X — D,() are injective for all
(X,D) € MCor. We also define CI” = CI™" N MNST as a full
subcategory of MINST. A symmetric monoidal structure ®g; (resp.
Dey*?) on CI™ (resp. on CIYP) can be defined in the same spirit as
Qs (see §3).

The relationship between reciprocity (pre)sheaves and [-invariant
modulus (pre)sheaves with transfers is encoded in

RSC = w,(CI"™") and RSCyis = w,(CIyY).

There is a pair of adjoint functors

wCI wCI

CI™*? “- RSC and CIZ? - RSCy
w, =
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such that wC'F = w*F for ' € HI. Moreover, the lax monoidal
structure on RSCy;s is induced by the symmetric monoidal structure
on CI{;? via the formula:

(F,G)rscy, = w(WCF @gr™® w'@) for F,G € RSChjs -

The endo-functor — @y w*G,,, on CIZ? induces a natural map for
»SP.
F e CIyY:

(0.5) tp: F'— Homypgr(w “Go, F Ogn™ w* Gy,

where Homypgy denotes the internal hom in MPST. Now Theorem
0.2 will be a consequence of the following result:

Theorem 0.4 (Cor 3.6). For F' € RSCyy, and F = w'F € CIL?,
the map vz is an isomorphism.

We give an outline of the content of the paper:

e In section 1 we first review basic definitions and results of the
theory of modulus (pre)sheaves with transfers and reciprocity
sheaves from [3], [4] and [13]. We also prove some technical
lemmas which will be used in the later sections.

e In section 2 we define the contraction functors v on CI™*” and
CI{;?, which generalize Voevodsky’s contraction functors on
HI and HIyy (cf. [7, Lecture 23]) to the setting of modulus
(pre)sheaves with transfers. We prove some technical lemmas
which will be used in the later sections.

e In section 3 we define the symmetric monoidal structure ®g;
(resp. @) on CI™*P (resp. on CIYP) using results from
section 1. The endo-functor — @& w *Gm on CI"™" induces a
natural map for /' € CI™*":

We state the main Theorem 3.4: (r is an isomorphism. Theo-
rem 0.4 is deduced from it by using results from sections 2.

The last half of the section is devoted to the proof of the split-
injectivity of the map ¢p (0.6). In order to construct a section
of vp, we follow the same strategy as [15] by generalizing the
techniques used in loc. cite.

e In section 4 we finish the proof of Theorem 3.4 by showing the
surjectivity of tp. We again follow the same strategy as [15]
by generalizing the results of [16, Section 2.7]: here a technical
problem is that for (X, D) € MCor, the diagonal map X —
X x X does not induce a map (X,D) — (X,D) ® (X, D) in
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MCor but only induces a map (X,2D) — (X,D) ® (X, D),
where 2D — X is the thickening of D — X defined by the
square of the ideal sheaf. This is the main reason why we need
work with CI™*" instead of CI” employing much more intricate
arguments than those in [15] and [16, Section 2.7], for which we
need the technical results in §1 and §2.

e In section 5 we deduce Theorem 0.2 from Theorem 0.4.

e In section 6 we deduce Corollary 0.3 from Theorem 0.2.
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Conventions. In the whole paper we fix a perfect base field k. Let

Sm be the category of k-schemes X which are essentially smooth over
k,ie. X is a limit @ie] X, over a filtered set I, where X; is smooth

over k and all transition maps are étale. Note Spec K € Sm for a
function field K over k thanks to the assumption that k is perfect.
We frequently allow F' € PST to take values on objects of Sm by
F(X):= lim, _, F(X;) for X as above.

1. RECOLLECTION ON MODULUS SHEAVES WITH TRANSFERS

In this section we recall the definitions and basic properties of mod-
ulus sheaves with transfers from [3] and [13] (see also [6] for a more
detailed summary).

(1) Denote by Sch the category of separated schemes of finite type
over k and by Sm the full subcategory of smooth schemes. For
X,Y € Sm, an integral closed subscheme of X x Y that is
finite and surjective over a connected component of X is called
a prime correspondence from X to Y. The category Cor of
finite correspondences has the same objects as Sm, and for
X,Y € Sm, Cor(X,Y) is the free abelian group on the set of
all prime correspondences from X to Y (see [7]). We consider
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(2)

(3)

(4)

(5)
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Sm as a subcategory of Cor by regarding a morphism in Sm
as its graph in Cor.

Let PST = Fun(Cor, Ab) be the category of additive presheaves

of abelian groups on Cor whose objects are called presheaves
with transfers. Let NST C PST be the category of Nisnevich
sheaves with transfers and let

ays. : PST — NST

be Voevodsky’s Nisnevich sheafification functor, which is an ex-
act left adjoint to the inclusion NST — PST. Let HI C PST
be the category of Al-invariant presheaves and put Hly;s =
HINNST C NST. The product x on Sm yields a sym-
metric monoidal structure on Cor, which induces a symmetric
monoidal structure on PST in the usual way.

We recall the definition of the category MCor from [3, Defi-
nition 1.3.1]. A pair X = (X, D) of X € Sch and an effec-
tive Cartier divisor D on X is called a modulus pair if M —
M| € Sm. Let X = (X,Dx), Y = (Y,Dy) be modu-
lus pairs and I' € Cor(X — Dy,Y — Dy) be a prime cor-
respondence. Let I' € X x Y be the closure of I', and let
T — X xY be the normalization. We say I' is admissible (resp.
left proper) if (Dx)zv > (Dy )z~ (resp. if T is proper over X).
Let MCor(X,Y) be the subgroup of Cor(X —Dx,Y —Dy ) gen-
erated by all admissible left proper prime correspondences. The
category M Cor has modulus pairs as objects and MCor(X,))
as the group of morphisms from X to ).

Let MCor,, C MCor be the full subcategory of (X,D) €
MCor with X € Sm and |D| a simple normal crossing divisor
on X. As observed in [13, Remark 1.14], after assuming reso-
lution of singularities, we can assume MCor = MCor,,, as for
every object (X, D) € MCor there exists a proper birational
map p: X’ — X that is an isomorphism on X — |D| and such
that |[p*D] is a simple normal crossing divisor. Hence the mod-
ulus correspondence (X', D’) — (X, D) induced by the graph
of p is invertible in M Cor.

There is a canonical pair of adjoint functors A 4 w:

A:Cor - MCor X — (X,0),

w:MCor — Cor (X,D)— X —|D|,

There is a full subcategory M Cor C MCor consisting of proper
modulus pairs, where a modulus pair (X, D) is proper if X is
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proper. Let 7 : MCor — MCor be the inclusion functor and
W= wr.

(6) For all n > 0 there is an endofunctor ()™ on MCor preserving
MCor, such that (X, D)™ = (X,nD) where nD is the n-th
thickening of D.

(7) We have two categories of modulus presheaves with trasnfers:

MPST = Fun(MCor, Ab) and MPST = Fun(MCor, Ab).

Let Z(X) = MCor(—,X) € MPST be the representable
presheaf for X € MCor. In this paper we frequently write X
for Z,(X) for simplicity.

(8) The adjunction A 4 w induce a string of 4 adjoint functors

N = M =w, A\ = whw,) (cf. [3, Pr. 2.3.1]):

Q!
—

MPST — PST

<_
W
—

where w,, w, are localisations and w' and w* are fully faithful.
(9) The functor w yields a string of 3 adjoint functors (w;, w*, wy)
(cf. [3, Pr. 2.2.1]):

w)
—

MPST & PST

Wi
—

where w, w, are localisations and w* are fully faithful.
(10) The functor 7 yields a string of 3 adjoint functors (7, 7%, 7.):

I
—

MPST 7~ MPST

Tx
—

where 7, 7, are fully faithful and 7* is a localisation; 7y has a pro-
left adjoint 7', hence is exact (cf. [3, Pr. 2.4.1]). We will denote
by MPST" the essential image of 77 in MPST. Moreover, we
have (cf. [3, Lem. 2.4.2])

*

(1.2) w =wn, w=T1w nw=w".

(11) For FF € MPST and X = (X, D) € MCor, write Fy for the
presheaf on the small étale site X over X given by U — F(A&y)
for U = X étale, where Xy = (U, Djy) € MCor. We say F is
a Nisnevich sheaf if so is Fy for all X € MCor (see [3, Section
3]). We write MNST C MPST for the full subcategory of
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Nisnevich sheaves. Let MINST C MPST be the full subcate-
gory of such objects F' that nF' € MNST. By [3, Prop. 3.5.3]
and [4, Theorem 2|, the inclusion functors

ixie : MNST — MPST  and  iy; : MNST — MPST

admit exact left adjoints ay;, and anis respectively and there
are natural isomorphisms

*
(1.3) TiaNis = AnisTt and  aNisT' 2 Tidyiss

and the adjunction from (10) induces an adjunction

MNST - MPST

‘—
The functor ay;, has the following description: For F' € MPST
and Y € MCor, let Fy s be the usual Nisnevich sheafification
of Fy. Then, for (X, D) € MCor we have
(1.4) aniF'(X, D) = lim - Fiy, =y nis(Y),
Y SX

where the colimit is taken over all proper maps f : Y — X that
induce isomorphisms Y — | f*D| = X — |D|.

(12) For X € Sch, let Sh(Xyis, Ab) be the abelian category of ad-

ditive sheaves on Xyis. By definition of MNST, we have an
additive functor for X = (X, D) € MCor,

MNST — Sh(Xyis, Ab) ; F — Fl.

The functor is not exact in general but it is left exact by (1.4).
(13) By [4, Pr. 6.2.1], the functors w* and w, respect MNST and
NST, and induce a pair of adjoint functors

MNST —» NST,

—
which are both exact. Moreover, we have

Vv * _  x V
Wiy = ANy and  ayw' = whay.

(14) We say that ' € MPST (resp. MPST) is semi-pure if the
unit map
u: F— w'wF (resp. u: F — w'wF)

is injective. For F' € MPST (resp. F' € MPST), let F*F ¢
MPST (resp. F*? € MPST) be the image of F' — w*w F
(resp. F' — w*w F) (called the semi-purification of F'). One
easily sees that the association F' — F*P give a left adjoint to



10

(1.5)

(1.6)

(15)

(16)

A. MERICI AND S. SAITO

the inclusion of the full subcategories of semipure objects into
MPST and MPST. For F' € MPST we have

7(F*P) ~ (nF)™.
This follows from the fact that 7 is exact and commutes with
w*w and w*w, since mw* = w* and wyn = 7 (cf. (10)). In

particular /' € MPST is semiupre if and only if so is nF €
MPST. For FF € MPST we have

anis(FF) = (a; )™
This follows from the fact that ay,, is exact and commutes with
w*wy and w*w, (cf. (13)).
Let [ := (P!, 00) € MCor. We say F' € MPST is O-invariant
if p* : F(X) — F(X®O) is an isomorphism for any X € MCor,
where p : X ® 0 — X is the projection. Let CI be the full

subcategory of MPST consisting of all C-invariant objects.
Recall from [6, Theorem 2.1.8] that CI is a Serre subcategory

of MPST, and that the inclusion functor i” : CI — MPST has
a left adjoint h§ and a right adjoint h% given for F € MPST
and X € MCor by

hS(F)(X) = Coker(iy — it : F(X @ 0) — F(X)),

h(F)(X) = Hom(hg (), F),
where for a € k the section i, : X — X ® O is induced by the
map k[t] — k[t]/(t —a) = k. B

For X € MCor, we write hy(X) = h5(Z (X)) € CL
Let CI" = 77 CI € MPST be the essential image of CI under
71. In this paper, for F' € CI, we let F' denote also nF' € CI"

by abuse of notation. Let CI*” C CI (resp. CI™* C CI") be
the full subcategory of semipure objects. By (1.5), we have

F°? € CI" for F € CI',
and 7y and 7* induce an equivalence of categories
7 : CI?? ~ CI™*P . 7*

with natural isomorphisms 7*7 ~ id and n7* ~ id.
We also consider the full subcategories

CI¥, = CI** "MNST C MNST,
CI},, = CI'"MNST C MNST.
CIZ? = CI™” N MNST C MNST.
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By [13, Th. 0.4], we have

(1.9) a;(CT™7) C CLY
By [4, Th. 2 (1)], 7 and 7" induce an equivalence of categories
(1.10) CLY, ~ CIZY : 7

with natural isomorphlsms 71 ~id and 77" ~ id.

(17) We write RSC C PST for the essential image of CI under
wy (which is the same as the essential image of CI™*” under w,
since wy = wyn and w, F' = w, F*P). Put RSCy;s = RSCNNST.
The objects of RSC (resp. RSCyjs) are called reciprocity
presheaves (resp. sheaves). We have HI C RSC and it contains
also smooth commutative group schemes (which may have non-
trivial unipotent part), and the sheaf Q' of Kahler differentials,
and the de Rham-Witt sheaves WQ' (see [5] and [6]).

(18) By [6, Prop. 2.3.7] we have a pair of adjoint functors:

wCI

(1.11) CI — RSC,

-,

where w® = hlw* and it is fully faithful. It induces a pair of
adjoint functors:

UJCI
(1.12) Cr £~ RSC,
BN
where w€T = 7 hlw* and it is fully faithful. Indeed, let F' = nk

for F € CI and G € RSC. In view of (15) and the exactness
and full faithfulness of 7, we have

Homgyr (F, T;h%w*G) ~ HomCI(F, h%w*G) ~
HomMPST(ﬁ’, W*G) ~ HOHIMPST(T!F,Q*G) ~ HomRsc(g!F, G)

(1.12) induce pair of adjoint functors:
wCI

(1.13) CIL” <~ RSCyy,

Wy
—

If FF € CI", the adjunction induces a canonical map
F — W F

which is injective if F' € CI™*".
(19) MCor is equipped with a symmetric monoidal structure given
by

(XaDX) ® (Y>DY) = (X X Y>DX XY + X x DY)>
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and MCor is clearly a ®-subcategory. Notice that the prod-
uct is not a categorical product since the diagonal map is not
admissible. It is admissible as a correspondence

(X,Dx)™ = (X,Dx)® (X,Dx)  forn>2

The symmetric monoidal structure ® on MCor (resp. MCor)
induces a symmetric monoidal structure on MPST (resp. MPST)
in the usual way, and 7y, wy and w, from (10), (9) and (8) are all
monoidal (see [10, §3]).

We end this section with some lemmas that will be needed in the
rest of the paper.

The proof of the following Lemma is due to Kay Riilling. We thank
him for letting us include it in our paper.

Lemma 1.1. Let p be the exponential characteristic of the base field
k. Let F € PST such that
(1) for all dominant étale maps U — X in Sm the pullback F/(X) —
F(U) is injective,
(2) F has no p-torsion.
Then, for any G € PST, the natural map

Hompgr (G, F) — Hompg(G, F)
18 an isomorphism.

Proof. (Kay Riilling) First we prove Hompgr (G, F') = Hompg(G, F),
i.e. for any morphism ¢ : G — F of presheaves on Sm is also a
morphism in PST. We have to show ¢(f*a) = f*¢(a) in F(X), for
a € G(Y)and f € Cor(X,Y) a prime correspondence. By (1) we can
reduce to the case X = Spec K, with K a function field over k. In this
case we can write f* = h,g*, where h : Spec L — Spec K is induced by
a finite field extension L/K and g : Spec L — Y is a morphism. Since
 is a morphism of presheaves on Sm, we are reduced to show

(x)  hpla) = p(hia), a€G(L)
It suffices to consider the following two cases:
st case: L/K is finite separable. Let E/K be a finite Galois exten-
sion containing L/K and denote by j : Spec E — Spec K the induced

morphism and by o; : Spec E — Spec L the morphism induced by all
K-embeddings of L into E. Since G € PST we obtain in G(F)

j*hea = (h' o j)*a = Zaf(a).
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Thus
j p(hea) = ¢(j h.a) ZU = oipla) = j*h.p(a).

Since j* : F(L) — F(F) is injective by (1) this shows (%) in this case.
2nd case: L/K is purely inseparable of degree p. In this case we
have h*h, = (h' o h) : G(L) — G(L) is multiplication by p as well as
h.h* : G(K) — G(K). Thus
h*¢o(ha) = o(h*h.a) = pp(a) = h*h.p(a);
applying h, yields

pp(h.a) = ph.p(a);
thus (%) follows from (2).

Next we prove the analogous statement for internal hom’s. Indeed,
note that for X € Sm, Hompgr(Z,(X), F) € PST also satisfies (1)
and (2) above and that we have

() Hompgy (Zy:(X), F) = F(X x —) = Hompg(hx, F) in PS,
where hx = Homgp,(—, X). Thus for G € PST
Hompgr (G, F))(X) = Hompsr(Zy (X), Hompgr (G, )
= Hompgr (G @5 Z(X), F)
= Hompst (G, Hompgr (Zi:(X), F))
= Homps (G, Hompgp(Ze(X), F)), by ()
= Hompg (G, Hompg(hy, F)), by ()
— Homps (G ®@FS hy, F)
= Hompg(hx, Hompg(G, F))
= Hompg (G, F)(X).
This completes the proof of Lemma 1.1. O

Lemma 1.2. For F' € PST and X € Sm, we have a natural isomor-
phism

w* HO_mPsT(Ztr(X)a F) =~ HO_mMPsT(Ztr(Xa (Z))u Q*F)-

Proof. For Y = (Y, FE) € MCor with V =Y — |E|, we have natural
isomorphisms

w" Hompgy (Zy(X), F)(Y) =~ Hompgy (Ze: (X), F)(V) ~ Hompsr (X XV, F)
~ Hommpst((X,0) @ Y, w'F) ~ Hompypgr(Zu (X, 0), w" F)(Y).

This proves the lemma. U
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Lemma 1.3. For FF € MPST and X € Sm, we have a natural iso-
morphism

wy Homypgp (Zir (X, 0), ') ~ Hompgry (Zi (X), w, F).

Proof. For Y € Sm, we have natural isomorphisms

Wy HO_mMPST(Ztr(Xa 0), F)(Y) ~ HO—mMPST(Ztr(Xa 0), F)(Y,0)
~ HomMPST(Ztr(X X Y, @), F) ~ HomPST(X X Y, g;F)
~ Hompgr (Zi (X), w F)(Y).

This proves the lemma. 0

Lemma 1.4. A complex in C* in NST such that C" € RSC for all
n € Z is exact if and only if C*(K) is exact as a complex of abelian
groups for any function field K .

Proof. The cohomology sheaves H,.(C*) are in RSCy;s by [13, Th.0.1].
Hence for all X € Sm, by [13, Th. 0.2] there is an injective map
(H3.C*)(X) — (HE.C*)(k(X)), where H, C® denote cohomology
sheaves of C'*. Hence the lemma follows from (H,,C*®)(k(X)) = H*(C*(k(X)))
since k(X)) is henselian local. O

Lemma 1.5. For G € RSC and F' € PST such that I is a quotient
of a finite sum of representable sheaves, Hompgr(F,G) € RSC.

Proof. First assume F' = Z(X) with X € S~m. Put G = wCIG € CI
(cf. (18)). The adjunction (1.12) implies w,G ~ G. Lemma 1.3 implies
a natural isomorphism

Hompgy(Zy(X), G) ~ w, HO_mMPST(Ztr(Xa 0), é)
Thus it suffices to show

Homyrpgr(Zi: (X, 0), é) e CI'.

The O-invariance follows directly from the one for G. The fact that it
is in MPST" follows from [13, Lemma 1.27(2)].

Now assume there is a surjection @,_| Zy(X;) — F in PST, where
X; € Sm. It induces an injection

Hompgr(F, ) = | | Hompgr (20 (X0), G).
i=1
Since Hompgr(Zi:(X;), G) € RSC as shown above and RSC ¢ PST

is closed under finite products and subobjects, we get Hompgr (F, G) €
RSC as desired. This completes the proof. U
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Lemma 1.6. Let F € MNST be such that F*? € CI{;, (c¢f (16)).
For any function field K over k, we have
H' (P, Fp1_o40)) = 0 for i>0.
Proof. If F' is semi-pure, the assertion follows from [13, Th. 9.1]. In
general we use the exact sequence in MINST:
0=C—=F—=F?—=0
to reduce to the above case noting H*(Pk, Cp1 04o0)) = 0 for i >0
since C(p1_0400) 18 supported on {0, c0}. O
Lemma 1.7. For F' € CI" and a function field K over k, we have
anisF'(K) — QNisF(i ® K).
Proof. We consider the exact sequence in MPST:
0—>C—F—F?—0 with w,C=0.
Since ayg, is exact, from this we get an exact sequence in MINST:
0 = an;C = ani ' — ani P — 0.
Since Cp1_o1o0) 18 supported on {0k, o0k }, we have by (1.4)
(QNisC)(P}(,O-‘roo) = C(P}(,O—i-oo)'

Hence the diagram gives rise to a commutative diagram

0— O(K) F(K) Fr(K)

P .

0—CO®K) — an (R K) — a3 (0 K)

0

The left (resp. right ) vertical map is an isomorphism since C' € CI”
(resp. thanks to [13, Th. 10.1]). This completes the proof. O

Let A} = Spec k[t] be the affine line with the coordinate ¢. Consider
the map in PST:

Aan t Zu(Ap = {0}) = Gy,
given by t € G,,,(A} — {0}) = k[t,t"'], and the map in PST:
g, : Ztr(A%) — Gy,
given by t € G,(A}) = k[t]. Note that Ag,, and g, factor through
Coker(Z —5 Zy (Al — {0})) and  Coker(Z % Z(AD),

with 4; and 4o induced by the points 1 € A} — {0} and 0 € A} respec-
tively.
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Lemma 1.8. (1) The composite map

wZus(P1,0 4 00) = Zur(Af — {0}) **3 G

induces an isomorphism
(1.14) alowhl (a,) — G,

where Og,, = Coker(Z — Z,(P',0 + 00)) € MPST.

(2) The composite map
W Z (P, 200) =~ Z (AD) 2% @,

induces an isomorphism
(1.15) a¥whl (Og,) = G,

where Og, = Coker(Z — Z, (P!, 200)) € MPST.
Proof. We prove only (2). The proof of (1) is similar. By [13, Lem. 1.36
and Th. 0.1], we have alwh5(Oa,) € RSCyis. Hence, by Lemma

1.4, it suffices to show that the map Z (A')(K) Aen G.(K) =K for a
function field K over k, induces an isomorphism wh5 (Og, )(K) ~ K.
We know that Zi(A})(K) is identified with the group of 0-cycles on
Al = A'®, K. Then, by [6, Th. 3.2.1], the kernel of Z(A')(K) —
why(Og,)(K) is generated by the class of 0 € AL and divay (f) for
f € K(t)* such that f € 14+m2 Opy_,, where m, is the maximal ideal
of the local ring Op1_, of Pl at co. Now (2) follows by an elementary
computation. ]

Lemma 1.9. We have
Homypsr(G, F) € MNST for G € MPST, F € MNST.
Proof. Put H = Homp;pgy (G, F). Let X € MCor and

W——V
U—m=x

be a MV™-square as defined in [3, Def. 3.2.1]. By [3, Def. 4.5.2 and
Lem. 4.2.3], it suffices to show the exactness of

0= HWX)—=HU)®d H(V) = HW).
By the adjunction, we have

H(X) = Homypsr (G, FY) with FY = Homypgr (Zie(X), F)).
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Hence it suffices to show the exactness of the following sequence in
MPST:

0= F* > F'eoFY — .
Taking Y € MCor, this is reduced to showing the exactness of

0> FXR)Y) > FURY)@FVRY) = FWRY).

This follows from the fact that MV™-squares are preserved by the
product ® in MCor. O

Proposition 1.10. (i) For F,G € MPST, we have a natural iso-
morphism

anis(F @mpst G) = anis(ani F @mpst aniG)

induced by the natural maps F' — an; F' and G — ay; G-
(ii) For F,G € MPST, we have a natural isomorphism

anis(F' @mpst G) >~ anis(anisF @mpst anisG)
induced by the natural maps F — anis F' and G — ayisG.

Proof. For H € MINST, we have isomorphisms

HommnsT (QNis(F @MPST G), H) ~ HOIHMPST(F @MPST G, H)
~ Hommpst (F, Homypgr (G, H))

(x1)
~ Hommps (ay;sF, HO_mMPST(Ga H))

~ Hommpst (aniF @mpst G, H)
= HomMPST(Gu @MPST (QNist H))

(x2)
~ Hommpst(an:sG, MMPST(QNEF? H))

~ Hommpst (anis I @mpst ani G, H)

~ HommnsT (@nis (anis P @mpst aniG), H)

where (¥1) and (*2) follow from the fact Homypgr (A4, H) € MNST
for A € MPST by Lemma 1.9. This proves (i).
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For F,G € MPST, we have isomorphisms

(x1)
nanis(F @mpst G) ~ ani T (F @mpst G)

(x2)
~ anis(MF @mpst 1G)

(x3)
>~ ayis(anisT B @mpsT i1 G)

(x4)
' ayis(TianisF' @mpsT TianisG)

(x5)
~ anisT (anis F @mpsT anisG)

(x6)
=~ Tianis(anisEF @mpsT anisG)

where (x1), (¥4) and (x6) (resp. (*2) and (x5), resp. (*3)) follow from
(resp. the monoidality of 7 ([10, §3.8]), resp. (i)). Since 7 is fully
faithful, this implies (ii). This completes the proof of the lemma. [

Lemma 1.11. There are natural isomorphisms for F,G € MPST

(1.16) (F ®mpst G)7 =~ (F* @mpst G)* >~ (F*P @mpsT GF)*F.

Proof. We have an exact sequence in MPST:
0—-C—F — F?—0 with w(C =0.

Since (—) @mpst G : MPST — MPST is right exact, we get an exact
sequence

C dmpst G — F Qmpest G — F*2 Qmpst G — 0.

We have w(C @mpst G) = 0 since w, : MPST — PST is monoidal by
[10, §3.6]. Hence we get an isomorphism (F @mpst G)*? ~ (F* QmpsT

G)*P. This implies (1.16). O
Lemma 1.12. There are natural isomorphisms for F,G, H € MPST
(1.17) hg (F*7)* = hg(F)*,

(1.18) WS (F @mpst G) =~ WS (hS(F) @mpst h5(G)).

Proof. We have an exact sequence in MPST:
0—-C—F— F? -0 with w(C =0.
From this we get an exact sequence in MPST:
he/(C) = B (F) — h§(F**) — 0
since h : MPST — MPST is right exact. We have whg (C') = 0 since

w : MPST — PST is exact and hE(C’) is a quotient of C'. Hence we
get an isomorphism wihg (F) =~ whg (F*P). This implies (1.17).
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For H € CI, we have isomorphisms
Homer (hY (F @mpst G), H) ~ Homypst(F @mpst G, H)
~ Homypst (F, Homypsr (G, H))
(;) HOmMPST(h(]i(F)u Homypgr (G, H))
~ HompmpsT hoﬁ F) @mpst G, H))
~ HomCI(hOi hJ F) @mpst G), H))

0
where (x) follows from the fact that Homypgr (G, H) € CI for H € CI,
which follows easily from the definition. This shows

hoi(F ®mpst G) = hoﬁ(hoﬁ(F) mpst G),
which implies (1.18). O
From (1.9), we have ay;(CI™*?) C CIg:?, which implies
anis(CI*?) C CIZ. .

Indeed, for F' € CI’’, we have nanisF' ~ aynF € CIGP by (1.3)
which implies anisF' € CI{, by definition (cf. (11) and [4, Def. 3])
Thus we get an induced functor

(1.19) ans : CI®? — CI, .

(ho (
(o (

Y

By definition we have

(1.20) aSL(F) = anisj(F) for  F € CI*,

where j : CI*’ — MPST is the inclusion.

Lemma 1.13. aSL is a left adjoint to the inclusion CI%, — CI*.

Proof. This follows easily from the fact that ayis is a left adjoint to
the inclusion MINST — MPST and the inclusions CIy” — CI? —
MPST and CI{;” - MNST — MPST are fully faithful. O

Lemma 1.14. Consider the functors
K5 . MPST — CI” : F — hi(F)*,
G : MPST — CLL, : F — aSLhy ™ (F).

(i) The functor h?’Sp (resp. hgﬁfs) is a left adjoint to the inclusion
CI’’ — MPST (resp. CIJ,, — MPST). For F € MPST,

we have natural isomorphisms

hg P (F) o hg"Phg™(F)  and  hgel (F) =~ i hohl (F).
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(ii) For F € MPST, the natural map F — ani F' induces isomor-
phisms

ho S (F) = ho S (nss )
(iii) For '€ MPST, we have natural isomorphisms

ho"(F @mpst G) = hy"P(h5"(F) @mpst hy P (G)),

ho st (F @mpst G) = hoRb (hxk (F) @mpst hy b (G)).

Proof. The first statement of (i) follows from the left-adjointness of Ay,
(=) and ayjs. The second statement of (i) is a formal consequence of
the first since the inclusions are fully faithful.

To show (ii), consider the commutative diagram

CcIy, . 1

)

MNST —~ MPST

where the functors are inclusions. For F' € MPST and G € CIY,, we
have isomorphisms

T,sp - (f\{)
HomCIlinis (h'()’Nisza'NisFa G) ~

(%2) . ..
~ Hommpst (tanisF, jiciG)

O,sp - .
HOHICISP (hO ZaNiSF, ZCIG)

~ Hommpst (tanisF, ijnisG)

(*3) .
~ Hommnst(anisF, jnisG)

~ Hompgpst (F, ijnisG)
~ Hommpst (F, jiciG)

(x4) O.s .
~ HOHIMPST(}LE’ pF, ZCIG)

*5 =
(2) HomMPST(agiIShOD’SpF, G)

where (x1) and (%5) (resp. (*2) and (x4), resp. (x3)) follow from
Lemma 1.13 (resp. (i), resp. the full faithfulness of 7). This proves (ii).
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For F,G € MPST, we have natural isomorphisms

hDS (F @mpst G) vy hoi((F mpsT G)7)™

UL 1D ((F @mps GF)P)

"L BD(FP @pps GF))
"L KDB(F*?) @mpse HI(GP))”
UL BD((WS(F*) @apst hS(GPP)))
UL D (WS (F*7Y” @mpst hI(GP))7)”

el o ((hg"P(F) @mpst hyP(G))*)*
"L W5 (F) @aps hEP(G))

= hg"(hg""(F) @mpst hy (G))

This proves the first isomorphism of (iii). From this we get natural
isomorphisms

hoi,iifs(F @mpst G) ~ homlffs(hm P(F) @mpst hy (G))
( S ] S

hENf’s Nis(hy P (F) @mpst hy P (G))

- h(?lff?s le(h(‘?i\slll)s(F) ®MPST hoﬁi\sﬁs(G))

( 3 S S S
h’(?NI;s(hODNI:s(F) ®MPST hODNlljs(G»

where (x1) and (*3) follow from (ii) and (%2) follows from Proposition
1.10 in view of (1.20). This completes the proof of the lemma. O
2. SOME LEMMAS ON CONTRACTIONS
For an integer a > 1 put o = (P',a(0 + >)) € MCor and
0%, = Ker (Zy (@) — Z = Zu(Spec k, 0)).

The inclusion A" — {0} — A! induces a map 0 — O in MCor for
all a. Note that the composite map

(2.1) o

red

G o N Og,,

is an isomorphism, where Og,, is from (1.14).
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For FF € MPST, we write
+vF = Coker (Homygpgr(T, F) = Homypgr (0", F)) € MPST,
where the map is induced by 0" — Tin MCor. If F e CI'", the
projection [J — Spec k induces an isomorphism
F = Homypgy(Spec k, F)) ~ Homypgr (O, F).

Thus we get an isomorphism
(2.2)

—(1) (%) g,
YF ~ Homypgr (U, eg, ) = Homyspgr(hg (O

red’ red

), ) for F e CI",

where the equality () follows from the adjunction from (15). We also
define

MisF = anisvF € MNST.
By (2.2), we have

st = vF for F e CI}.
We write for an integer n > 1 (cf, §1(19))

n times
n A =(1) n ~ ——
(23) Y F= —HomMPST((DT’ed)@MPST ) F) =Y F.

The proof of the following Lemma is due to Kay Riilling. We thank
him for letting us include it in our paper.

Lemma 2.1. The unit map
(24)  aghl @) S wwahF@Y) 2w (G, @ Z)

is an isomorphism, where the second isomorphism in (2.4) holds by
Lemma 1.8 and (2.1).

Proof. (Kay Riilling) The unit map is injective by semipurity. It re-
mains to show the surjectivity. By definition of the sheafification func-
tor, it suffices to show the surjectivity on (Spec R, (f)), where R is
an integral local k-algebra and f € R\ {0}, such that Ry is regular.
Denote by
U1 Ly (P10 4+ o0)(R. f) > R} &2

the precomposition of (2.4) evaluated at (R, f) with the quotient map
Zur(P1, 0+ 00)(R, f) = ax, b (E).

We show that v is surjective. To this end, observe that for a € ij
we find N > 0 and b € R such that

(2.5) ab=fY, and af" €R.
Set W := V(¢ — a) C Spec R;[t,1/t] and K := Frac(R).
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The map Cor(K,A' — {0}) — Pic(P},0 + oco) & K* & Z which
induces the second isomorphism of (2.4) sends a prime correspondence
V(ap + ait +...a,t") to ((—1)"aop/ar, ), hence we have:

(2.6) v(V(ag+arit +...a,t")) = ((=1)"ao/ay, )

provided that V(ap + a1t + . ..a,t") € MCor((R, f), (P',0 + c0)).
For any a € R}, consider h = t" —a and let h = []; h; be the
decomposition into monic irreducible factors in K[t,1/t] and denote
by W; C Spec Ry[t, 1/t] the closure of V'(h;). (Note that W; = W; for
i # 7 is allowed.)
The W; correspond to the components of W which are dominant over
Ry; since W is finite and surjective over Ry, so are the W;. We claim

(2.7) W; € MCor((R, f), (P',0 + 00))
Indeed, let I; (resp. J;) be the ideal of the closure of W; in Spec R[t]
(resp. Spec R[z] with z = 1/t). By (2.5)
wh — N e, and fN — NV € J;.
Hence (f/t)Y € R[t]/I; and (f/2)" € R|[z]/J;. Tt follows that f/t

(resp. f/z) is integral over R[t]/I; (resp. R[z]/J;); thus (2.7) holds.
We claim

W) = (=) e, ).

Indeed, it suffices to show this after restriction to the generic point of
R, in which case it follows directly from the definition of the W; and
(2.6). Since Y(V(t £ 1)) = (—(=£1), 1), this implies the surjectivity of
1 and proves the lemma.

O

Corollary 2.2. (1) There is a natural isomorphism

ayihy) (Trea)” = "G
(2) For F € CIyY, we have a natural isomorphism

(2.8) ~EF ~ Ho_mMPST(g*Gm, F).

Proof. (1) is a direct consequence of Lemma 2.1. In view of (2.2), (2)

follows from (1) and the adjunctin of ay;, and that from §1(14). O

Lemma 2.3. Consider an exact sequence 0 - A - B — C — 0 in
MNST.
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(1) Assume A, B,C € CI,. Then the following sequence in NST
0—=wyA = wyB = wyC —0

s exact.
(2) Assume wyA = 0 and C is semi-pure. Then the following se-
quence

0— vA(K) = vB(K) —» vC(K) — 0
s exact for any function field K over k.

Proof. First assume A, B,C € CIg,. Then all terms of the sequence

in (1) are in RSCyjs. By Lemma 1.4, it suffices to show the exactness
of

0 — vyA(K) - yB(K) = vC(K) — 0
for a function field K over k. .
By (2.2), we have yF(K) = Hom(ﬁfne)dﬂ, F) for all F' € CI" where

ifi’i K= Dﬁi)cl®8pec K. Since iﬁﬁt x is adirect summand of Z, (P}, 0+
00), it is enough to show that

Extyst (Zi (P, 0+ 00), A) = 0.
By using [3, Th.1(2)] we can compute
EXtIMNST(Ztr(P}O 0+ 00),A) ~ Hlilis(P}{’ A(P}(7O+oo))>

where we used the fact that any proper birational map X — P}, is an
isomorphism. Thus the vanishing follows from Lemma 1.6. This proves

(1)
Next we assume wyA = 0 and C' is semi-pure. For a function field K
over k, we have a commutative diagram

l | |

0 —= A(PL.,0 + 00) —= B(P, 0+ 00) —= C(Pk, 0+ 00) —= 0

where the sequences are exact since for every effective Cartier divisor
D on Pk,

EthMNST(Ztr(P}O D)> A) = Hlilis(P}{a A(P}<7D)) = Oa
by [3, Th.1(2)] and the fact that Ap1_py is supported on the zero-
dimensional scheme |D| by the assumption. Finally, Ker(c) = 0 by the

semi-purity of C'. Hence the snake lemma gives the exact sequence of
(2). O
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Proposition 2.4. (1) Take F € CIYY (cf. §1(16)). For M =
(M, M>) € MCor,, (cf. §1(3)), there exists a map functorial
(2.9) YE(M) — HY(P' x M, Fpiga).
Moreover, if M is henselian local, it is an isomorphism.

(2) Let F € MINST be such that F*? € CI{;Y. For X € Sm, there
exists a map functorial in X :

(2.10) YE(X) — HY(P' x X, Fpi.x).

Moreover, it is an isomorphism either if F' € CIy;, and X 1is
henselian local, or if X = K is a function field over k and the
natural map F(K) — F(O® K) is an isomorphism.

Proof. Let L = (P',0). We prove (1). By (2.2) and [13, Lem. 7.1],
there exists an exact sequence of sheaves on (P! x M)y

(211) 0—>Fp1®M—>FL®M—>'é*’7FM—>0,

where i : M — P! x M is induced by 0 € P!. Taking cohomology, we
get the map (2.9). If M is henselian local, we have

(2.12) H'P' x M, Frgy) ~ H' (M, Fy) =0

thanks to [13, Th. 9.3]. Note that the map F'(M) — F(L®M) induced
by the projection L ® M — M is an isomorphism by the C-invariance
of F. Since the projection factors as L ® M — P'® M — M, this
implies the map F(P'® M) — F(L ® M) is surjective. This implies
that the map (2.9) is an isomorphism.

Next we prove (2). Consider the exact sequence of sheaves on (P
X)nist

L

(2.13) 0— Fpixx — Frox — i AxF — 0,
where Ax F' = i*(Frgx/Fpixx). The injectivity of the first map follows

from [13, Th. 3.1] noting Fpi,x = Fpi, ' and F** € CI{;? by the

assumption. Taking cohomology over an étale U — X, we get a map
natural in U:

)\XF(U) — }Il(].:)1 X U, FP1><U>-
To define the map (2.10), it suffices to show the following.

Claim 2.5. There exists a natural map of sheaves on Xys:

orx : (WisF)x = AxF.

IThe point is that X has the empty modulus.
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It is an isomorphism if F' € CIj;,. If FF € MNST and F*? € CI{,,
then op i (Ynisk)xk = (V) k — Ak F is an isomorphism for a function
field K over k.

By definition, Ax F' is the sheaf on Xy;s associated to the presheaf
(2.14) Ao F U — lim F(V,00)/F(V.0),
%

where V ranges over étale neighborhoods of 0y = i(U) C P! x U. On
the other hand, we have

(YF)x(U) = F(P' x U,0 + 00)/F(P' x U, 00).

Since the colimit in (2.14) does not change when taken over étale neigh-
borhood of 0y € A! x U, there is a natural map

(YF)x(U) — F(A' x U,0)/F(A! x U,0) — A\ F(U),

which induces the desired map ¢pp x.

Next we show ¢p x is an isomorphism if ' € CIy,, or if ' € MINST
with F*? € CI(? and X = K is a function field over k. If F' is semi-
pure, the assertion follows from [13, Lem. 7.1]. In general we consider
the exact sequence in MINST:

(2.15) 0—-C—F— F?—0 with w(C=0.
It gives rise to a commutative diagram of sheaves on (P x X )i

O%CPIXX%FplxX%F;Z;XXﬁO

o

sp
0 ——=Crox — Frax — Fix

where the upper (resp. lower) sequence is exact by the exactness of
w, : MNST — NST from §1(13) (resp. by (12)). The right vertical
map is injective by [13, Th. 3.1]. This implies the exactness of the
lower sequence of the following commutative diagram in MINST:

0—(10)x —= (vF)x —= (7F*")x —=0

\LSDC,X lSDF,X l@pw,x

0 —— AxC ——= Ay FF ——= \x F*?

The upper sequence is exact by Lemma 2.3. Since we know that pps» x
is an isomorphism, it suffices to show that p¢ x is an isomorphism.
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Indeed, for an étale U — X, we have
(YO)x(U) = C(P* x U,0 + 00) /C(P' x U, 00)
~ liy C(V, 01)/C(V, 0) = AxC(U),
%

where V' are as in (2.14) and the isomorphism comes from the excision
noting that Cp1xy,0400) (resp. Cpixu,ec)) is supported on {0y, ooy}
(resp. ooy). This proves that ¢ x is an isomorphism and completes
the proof of the claim.

To show the second assertion of (2), we look at the cohomology exact
sequence arising from (2.13). Note that F(P!' x X) — F(L ® X) is
surjective since F(X) — F(L ® X) by the assumption. Hence it
suffices to show H'(P! x X, Frox) = 0. If F' is semi-pure, this follows
from (2.12). In general it is reduced to the above case using (2.15) and
noting H'(P* x X, Crex) = 0 since Crgx is supported on 0 x X. This
completes the proof of the lemma. O
Corollary 2.6. Let G € CI" and K be a function field K over k.

(1) There is a natural isomorphism
vaxiG(K) = H' (P, ayi G).-
(2) The natural map
YanisG(K) = vay; G (K)
18 an isomorphism.
Proof. Letting F = ay; G, we have F* = a,,G*? € CI;” by §1(1.9).
By Lemma 1.7, F satisfies the second assumption of Proposition 2.4(2).

Hence (1) follows from Proposition 2.4(2). (2) follows from isomor-
phisms

Y G(K) ~ H' (P, ay; G) ~ H' (P, wiani,G) ~ H' (P, ay;uwG)
~ H'(Pl, aw G*) = H' (P, ay;,GF) =~ 7ay;, G (K),
where the third (resp. last) isomorphism follows from §1(13) (resp.
Proposition 2.4). O
Lemma 2.7. Let F € CI'.
(1) The natural map
VF(K) = vayF(K)
is an isomorphism for any function field K over k.
(2) The natural map an Y F*P — yan F*P is injective.
(3) The natural map wyan;YEP — wiyanF*P is an isomorphism.
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Proof. Consider the exact sequence in MPST:
(2.16) 0—-C—F— F?—=0 with wC=0.

By §1(1.7), we have C, F*? € CI". It gives rise to an exact sequence in
MNST:

0 — anisC — aniF — ani FP — 0

and a commutative diagram

0 ——1C(K) VF(K) VP (K) ——0

| | l

0 — yayn;C(K) — van; F(K) — vay F*P(K) —0

The upper sequence is exact thanks to (2.2). The lower sequence is
exact by Lemma 2.3(2) noting w,ay;.C = akw,C = 0 (cf. §1(13)).
Since C(p1_ 0400y 18 supported on {0k, ook}, we have by §1(1.4)

(QNisC)(P}(,O-‘roo) = C(P}(,O—i-oo)u

where we used the fact that any proper birational map X — Pl is an

isomorphism. Hence the left vertical map is an isomorphism. Hence we
T?'Sp

may assume that F' is semi-pure. By §1(1.9), we have ay; F' € CIGY.
By [13, Lem. 5.9], we have natural isomorphisms

VF(K) = F(Ak,0)/F(Ak.0),

’}/QNisF(K) = QNisF(A}{? O)/QNisF(A.lKa ®)

Hence (1) follows from [13, Th. 4.1].

To show (2) and (3), first note that F*? € CI™*” by the assumption
and §1(1.7) and hence yF*P € CI™*P. By §1(1.9), apnisvF*P and yay;F*P
are in CI{”, and hence w,an7F* and w,yay;F* are in RSCyis.
Hence (2) (resp. (3)) follows from (1) for F' = F*? and [13, Cor. 3.4]
(resp. Lemma 1.4).

U

Lemma 2.8. Consider a sequence A — B — C in CI" such that
WA = Wiy B = Wit ¢ — 0
is exact in NST. Then the following sequence
YanisAK) = yan; B(K) = yax;C(K) = 0

1s exact for any function field K over k.
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Proof. The lemma follows from Corollary 2.6(1) and the right exactness
of the functor

H'(Pg,w,(—)) : MNST — Ab.
O

Corollary 2.9. Let F' € CIg". Then for any function field K we have
an isomorphism yF(K) = ywChw F(K)

Proof. Let q : y(F)(K) — v(w®%wF)(K) be the map induced by the
unit map F < wCw F for the adjunction (1.13), which is injective

since w©! is fully faithful. Notice that g is injective by (2.2) and the fact

that Homypst (Efnle)d x+ -) Dreserves injective maps, hence it is enough

to show that it is surjective. Let ) be the presheaf cokernel of F' —
W F, hence Q € CI” and w,@ = 0. By Lemma 2.8 we have an exact
sequence

VF(E) % 1w F(K) = yay,Q(K) — 0.
By Corollary 2.6(2) we have that
YanisQ(K) = yay; Q7 (K) = 0,
hence ¢ is surjective. O
Proposition 2.10. For F € CI{.?, there is a natural isomorphism
wyF >~ w HO_mMPST(Q*Gma F) ~ Hompgy (G, w F).

Proof. The first isomorphism follows from (2.2) and Corollary 2.2. For
F e MPST and X € Sm, put

FX = HO_mMPST(Ztr(Xa 0)), F).

Note that F' € CIg,” implies F'X € CIg;”. We compute

—(1
wyF(X) = Homypgr (T, F)(X, 0)
~ Homppsr (O', FX) = vFX (),

red»

Hompgr (G, w, F)(X) = Hompsr (G, Hompgp (X, w, F))
= HO_mPST(Gm,%FX)(k)v

where the last isomorphism comes from Lemma 1.3. Hence it suffices

to show that there exists a natural isomorphism for any F' € CI{.”:

vF (k) ~ Hompgt (G, w, F).
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We have isomorphisms

(x1)

Hompgt (G, w ) o~ Hommpst (W' Gy, ww) F)
(*A_%) HomppsT (w” G,,, w° w.F)
(*A_%) HomppsT (Egd, wCIg,F)
= Ol (k) 2 A k),

where (x1) follows from the fact that w* is fully faithful (cf. §1(8)),
and (%2) from the adjunction from §1(15) (see also (1.12)) in view of
the fact w*G,, € CI" by Lemma 2.1, (x¥3) from Lemma 2.1, (x4) by
(2.2) and (%5) by Corollary 2.9,

O

3. WEAK CANCELLATION THEOREM
For F,G € MPST we write (cf. §1(16), (19) and Lemma 1.14)
F ®c1 G = hoi(F ®mpst G) € CI,
F &% G = h}*"(F @ppst G) € CI,
F @38 G = il (F @mpst G) € CLE, .

Proposition 3.1. The product ®cr (resp. @&, resp. @gp™) defines
a symmetric monoidal structure on CI (resp. CI*?, resp. CI{, ).

Proof. The assertion follows immediately from the fact that @npst
defines a symmetric monoidal structure on MPST except the associa-
tivity. We prove it only for @gy*” (other cases are similar). We need
to show a natural 1somorph1sm for F,G,H € CI¥.:

(F ®le ,SP G) 1s ,SP H~F ®le ,SP (G ®Cls ,Sp H)

For simplicity we write A = holjl(?fs For F,G,H € CI¥,, we have

isomorphisms

(x1)

)\()\(F QMPST G) XMPST H) ~ )\()\2(F QMPST G) QMPST )\H)
(x2)

~ AMA(F @mpst G) @mpst AH)

(*3)
~ M(F @mpsT G) @mpsT H)

where (x1) (resp. (*2), resp. (x3)) follows from Lemma 1.14 (ii7) (resp.
(1), resp. (i4i)). The lemma follows from this and the associativity of

QMPST- ]
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For F,G € CI" we write
F ®c1 G = nhi(r*F @upst 7°G) € CT7,
F®% G =nhl*?(*F @ypst 7°G) € CI*,
F @™ G = nhk (7" F @mpst 7°G) € CIZY.
By §1(1.3), we have a natural isomorphism
(3.1) anio(F @8 G) ~ Feg™ G.
In view of the equivalences (1.8) and (1.10), Proposition 3.1 implies
Proposition 3.2. The product @cr (resp. @&y, resp. ®le ) defines

a symmetric monoidal structure on CI™ (resp. CI™, resp. CIY).
There is a natural isomorphism for F,G, H € CI§
(32) (F ®le 8P G) le,sp H~F ®N15 8P (G ®1€I}ils,sp H)

For F' € CI};, and an integer d > 0, we put
(3.3) F(d) =@

red

Note F(d) = F(m)(n) with d =m + n by (3.2).

For ' € CI" and f € F(X) with X € MCor, consider the composite
map

Nis,spd NiS,S
)Per ot F

—) 50 &) —)
g @MmpsT Zie(X)  —= Uy @mpst F — U,y ®c1 F.

By the adjunction (ﬁ,(nle)d ®mpsT —) MMPST(ESe)da

to a natural map

—) this gives rise

(3.4) tr i F = 7Oy ®c1 F),
which induces
(3.5) PP s (O ©8 F),

noting the adjunction from §1(14) and the fact that v : MPST —
MPST preserves semipure objects.
If F' e CIy,, this induces a natural map

(3.6) tp o F°P — ~F(1).

which generalizes to a natural map for n € Z>, (cf. (3))
(3.7) Up o F°P — ~"F(n),

noting

V' = HO—mMPST((D(l)

red

thanks to the adjunction from (15).

yeer ) for F e CI”
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Question 3.3. For F' € CI{;?, is the map (3.6) an isomorphism?
We will prove the following variant.
Theorem 3.4. For ' € CI", the map (3.5) is an isomorphism.
Before going into its proof, we give some consequences.
Corollary 3.5. For F' € CI" the map (3.5) gives an isomorphism
Wi : Wi F S wia (O 9% F).
For ' € CI{, the map (3.7) induces an isomorphism
wp Wl = wy"F(n).
Proof. The functors w, and ay;, are exact and w,ayn; G = wyay; G for
all G € MPST. Hence Theorem 3.4 gives a natural isomorphism
Wit Wi, P w1 (O @ F).
This proves the first assertion since Lemma 2.7(3) implies
Q!QNis’Y(igd ®er F) ~ wyyanss (ﬁile)d ®er F).
The second assertion for the case n = 1 follows directly from the first.
For n > 1, we proceed by the induction on n to assume

(3.8) Wit w P S wy " F(n - 1).
Then we have isomorphisms

(+1) B (+2) .
wY"F(n) ~ wyy" 'F(n) ~ Hompgy (G, wy" " F(n)) =
B (+3)
Hompgp (G, wy" ' F(1)(n — 1)) ~ Hompgy (G, w F(1))

*4 *H
Y orrn) @,

where (x1) (resp. (x2), resp, (x3), resp. (x4), resp, (x5)) follows from
(2.3) (resp. Proposition 2.10 noting y""'F(n) € CI?, resp. (3.8),
resp. Proposition 2.10, resp. the case n = 1). This completes the
proof. O
Corollary 3.6. For F' € RSCy; and F = w°'F € CIY,, (cf. (1.13)),
the map (3.7) v : F' — 7" F(n) is an isomorphism.

Proof. We have a commutative diagram

s

S " F(n)

SN

<_
R

-
!

CI

IS
Q
3
SR
(S
Q
[S
2
3
=
=
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where the vertical arrows come from the adjunction (1.13). The left
(resp. right) vertical arrow is an isomorphism (resp. injective) since
wwCr ~ id (resp. by the semipurity of 4" F(n)). Since ww s an
isomorphism by Corollary 3.5, this implies U is an isomorphism by
Snake Lemma. O

Corollary 3.7. For F € CI{.?, there is a natural injective map
pr V" F(n) = ww F

whose composite with the map (3.7) % : F — " F(n) coincides with
the unit map u : F — wCY F for the adjunction (1.13). In particular
(3.7) is injective.

Proof. Define pr as the composite

n —1
(LECIw!F)

Y'E(n) =5 y"ww F(n) “—  wwF,

ZCIW!F :
wCt F = 47wl F(n) from Corollary 3.6. Clearly we have pp o} =
u. We easily see that pp coincides with the composite

where the second map is the inverse of the isomorphism ¢

wCT (w, )1
Y F(n) 5 wwy Fn) < 2 WOy

where the first map is injective by the semipurity of v"F(n) and the
second map is induced by the inverse of the isomorphism wt : w ' =
wy"F(n) from Corollary 3.5. This completes the proof. O

In the rest of this section we prove the following.
Proposition 3.8. For F' € CI", the map (3.5) «}¥ is split injective.

For the proof of Proposition 3.8 we first recall the construction of
[15]. Take X,Y € Sm. For an integer n > 0 consider the rational
function on A} x Al :

it -1
gn = .
x?—l—l — Iy

Let Dxy(gn) be the divisor of the pullback of g, to (A} —0) x X x
(Al, —0) x Y. Take an elementary correspondence

(3.9) 7 € Cor((AL, —0) x X, (AL, —0) x V).

Let Z C PL x X x PL x Y be the closure of Z and Z" be its nor-
malization.
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Lemma 3.9. (1) Let N > 0 be an integer such that

(310) N(01 + 001) —N > (02 + 002>

|Z |7N

Then, for any integer n > N, Z intersects transversally with

|Dxvy(gn)| and any component of the intersection Z - Dxy(gy)
is finite and surjective over X. Thus we get

pn(Z) € Cor(X,Y)
as the image of Z - Dxy(g,) in X X Y.
2) If Z = Idigi_gy @ W for W € Cor(X,Y), then one can take
( )
N =11in (1) and p,(Z) =W.
(3) For any Z as in (3.9) such that p,(Z) is defined and for any
f € Cor(X"Y") with X', Y" € Sm, p,(Z ® f) for
Z® f € Cor((A}, —0) x (X x X'), (AL, —0) x (Y xY"))
1s defined and we have
pn(Z @ f)=pu(Z)® f € Cor(X x X'V xY').
(4) For an integer N > 0 let
Cor™((AL —0)x X, (AL —0)xY)

be the subgroup of Cor((Al —0) x X, (AL, —0) xY)) gener-
ated by elementary correspondences satisfying the condition of
Lemma 3.9(1). Then the presheaf on Sm given by

X — Cor™((AL, —0) x X, (AL, —0) x Y)
s a Nisnevich sheaf.

Proof. The assertions are proved in [15, Lem. 4.1, 4.3 and 4.5] except
that (4) follows from the fact that the condition (3.10) is Nisnevich
local on X. U

For an integer a > 1 put o = (P a(0 + o0)) € MCor. Take
X = (X,X.),Y = (V,Ys) € MCor with X = X — |X.o| and Y =
Y — |Y,|. For a > 1 take an elementary correspondence

Z e MCor([@“ & x, 0" @ ).
By definition Z € Cor(X,Y) satisfying

(311) (02 + OOQ) ZN + (YOO) =N S a(01 + OOl)

\Z Z Vadas (XOO)@N’

|Z

where Z' is the normalization of the closure Z of Z in Pl xXxP. xY.
For integers n,m > N > a, we consider the rational function on
Al x A} x AL
h=1tg, + (1 —t)gm.
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Let Dy a1y (h) be the divisor of the pullback of & to (Al —0)x X x A} x
(AL, —0)xY. By [15, Rem. 4.2], Z x A} intersects transversally with
|Dxary (h)| and any component of the intersection (Z x A})- Dy a1y (h)
is finite and surjective over X x A}. Thus we get

pn(Z x A}) € Cor(X x A}Y).
It is easy to see
(3.12)  igpn(Z x A}) = pn(Z) and  ipn(Z x Ay) = pu(2).
Lemma 3.10. Forn,m > N > a, p,(Z x A}) € MCor(X @0, )).

Proof. Let V be any component of (Z x A})- Dxa1y(h) and V be its
closure in

T

Let W C X x A} x Y be the image of V and W be its closure in
X x P} x Y. Then we have W = 7(V), where

T:P, x X xP;xP, xY -5 X xP/ xY

P, xXxP, xP. xY.

is the projection. We want to show

(Yoo)‘WN < (7 X OO) N + (Xoo X P%)‘WN.

%
. —N N . . . .
Since 7w : V' — W is proper and surjective, this is reduced to showing

(Vo) v < (X x 00) v + (X0 x P})

by [9, Lem. 2.2]. By (3.11) and the containment lemma [9, Pr. 2.4]
(see also [1, Lem. 2.1]), we have

(YOO)|VN + (02 + 002)‘VN S a(01 —+ 001)

v

vy -+ (XOO X Pi)WN.

Thus it suffices to show

a(0; + 001)|VN < (05 + 002)‘VN + 00w
Using [9, Pr. 2.4] again, this follows from
(3.13) a(01 + 001)|T < (02 + OOQ)‘T + o1y

where T C P. x P} x P is any component of the closure of the
divisor of h on (A} —0) x A} x (A}, —0). By an easy computation, T
is contained in one of the closures D(H), D(J,), D(J,,,) of the divisors
of

H = t((:)sg”rl — 2P (1 — 29) — :ngTH) + 2T (@ — 1) + 2y,

m+1

_ ntl _
Jp =217 — 29, Sy =127 To
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respectively. Letting P, — 0 = Speck[r;] with 7; = x;t fori = 1,2,
D(H), D(J,), D(J,,) are defined in (P}, —0) x A} x (P} —0) by the
ideals generated by

H = t(( m+1 7_1n+1)(7_2 _ 1) _ 7_1n+1) 4 7_2(1 _ 7_m+1) 4 7_ln—l—m+2’

!/ n+1 VA m+1
Jy=To—1"", J,=m—1""".

Hence, D(H), D(J,), D(J,) do not intersect with ooy x Py x AL .
By the assumption n,m > N > a, the ideals (J,,z}), (Jm,x§) C
k[x1, x5] contains xq and the ideals (J), 7), (J) , () C k[, T2] contains
T, which implies (3.13) (without the last term) if T is contained in
D(J,,) or D(J,).
On the other hand, the ideal (H,z{) C k[z1,xs,1] contains x5 and

the ideal (H’, 7'1) [7‘1,7'2, ] contains 7. Over P} — 0 = Spec k[u]
with u =7, D(H) N (AL —0) x Al)) is the zero divisor of
H = (a7 — erl)(1 — x9) — 2o T (2 = 1) 4 uas,

D(H) N ((P}

—0) x (P} —0) x (P, —0)) is the zero divisor of
( m+1 n+1)(7_2 _ 1) _ T1n+1) + uty (1 _ 7_m+1) 4 u7_1n+m+2.

The ideal (H,z¢) C k[xy, 22, u] contains ux, and the ideal (H',7%) C
k[T1, T2, u] contains ury. This show (3.13) if ' C D(H) and completes
the proof of the claim. O

Lemma 3.11. Forn > a we have p,(Z) € MCor(X,)).
Proof. This follows from Lemma 3.10 and (3.12). O
For an integer N > a let
MCor™ (T © X, Oy, @ ) € MCor(01, @ X, 0, © V)
be the subgroup generated by elementary correspondences lying
Cor™((A'—0) x X, (A= 0) x V).
By Lemma 3.11, we get a map forn > N > a
(3.14) P MCor™(@", @ x,0, ® ¥) — MCor(X, ).

The map (3.14) induces a map of cubical complexes

(3.15) p@*: MCor™ (@@ xed" . O,Y) — MCor(XaD", ).
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By the construction the following diagram is commutative if n > N >
b > a:
(3.16)

(a)o
MCor™ (@, 2 x T, 0", ® ¥) 2~ MCor(X 0", ))

red
MCor™) (iffd RxXe0, iﬁ’d ®Y)
(b)

red

=(a)

red*

where 3* is induced by the natural map 3 : O, , — O

Corollary 3.12. For m,n > N > a, p;, , and p; ,, are homotopic.

Proof. By Lemma 3.10, we get a map
(3.17)
Smn = pu(—x A1) : MCor™(@"

such that 0 - s, = P2 — ol where

8 =i} —i*: MCor(X ®0,Y) — MCor(X,)).

L ox,T"0Y) » MCor(X¥®0,Y)

red

Let
s MCor™M (@ e xoT,0% ©Y) - MCor(x o T, )

be the map (3.17) defined replacing X by X ® . Then it is easy to
check that these give the desired homotopy. U

We now consider
Lo(¥)™ = Homp\ipr (0,0 Ty © Zus(V)
= MCor™ (ﬁiﬁl ® (—),iﬁ’d ®Y).
It is a subobject of
Lo(Y) = Homygpsr (09, Ty @ Zu (V) € MPST,

red»

and we have

(3.18) Lao(Y) = lim Ly (V)™

N>0

The above construction gives a map of complexes in MPST:

W CuLa )™ = G,
where C*(—) is the Suslin complex. Let

PN Hy(CoLy(V)™) — Hy(Cu(Y))
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be the map in MPST induced on cohomology presheaves. Thanks to
Corollary 3.12, the diagram

(@)
Hy(CuLo(Y)™) 2 hF (D)

|
Hi(CoLo(Y)™M)) v
commutes for integers N’ > N. Hence, by (3.18) we get maps
P HiCaLa(Y)) = h7(Y).
Putting ® = ﬁilezi ® Y, we have

Co(La(Y)) = Homypgr ('), Homyypgr (3, ).

Recall that for I € MPST and X € MCor, we have by the Hom-
tensor adjunction an isomorphism:

hOEHO—mMPST(Ztr(X)v F) = Homypgy (Zi(X), hE(F))-

Hence, we get an isomorphism

=) ;0
HO(C'La(y)) = I—IO—mMPST(Dred’ h%l(q)))’
where hP(®) = H;(C,(®)) and we have an isomorphism

W) ~ h5@EY, 2 ¥) =0, ®c1 ¥ € CI.

e

Hence we get a natural map

(3.19) 25 @y ®c1 V) — B5(D).
where

Ya(F) := Hompgpgr (T, F) for  F € MPST,

red»

and by abuse of notation, for C' € CI, we let C' denote also nC' € CI"
(cf. §1(16)). In view of (3.16), the following diagram is commutative:

(@)
=) .3 P O
HO—mMPST(Drecb hoD(‘I))) - hg(y)

lﬁ * /y7
Homnpsr (T, 15(®))
Now take any F' € CI" and consider a resolution in MPST:
A—B—F =0,
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where A, B are the direct sum of hoﬁ(y) for varying ) € MCor. We
then get a commutative diagram

—(1 —(1 1
1a[@%) @cr A) = 72T @ct B) = a0y ®c1 F) — 0

| |

A B F 0,

where the vertical maps are induced by (3.19). The upper sequence is

exact by the right-exactness of ®cr and the fact that ﬁffz)d is a projective

object of MPST. Thus we get the induced map in MPST:

(3.20) P+ (O @cx F) — F.

Write pr = p%l).

Claim 3.13. The map pp splits ¢tp.

Proof. By the construction of pg, this is reduced to the case F = h5())
for Y € MCor, which follows from Lemma 3.9(2). O

The following result concludes the proof of Proposition 3.8:

Lemma 3.14. For F € CI", pr factors through
Sp . ﬁ(l) Sp F Fsp
Pr - 7( red ®CI ) - :

Moreover it splits the map (¥ from (3.5).

Proof. Take X € MCor and let ¢ be in the kernel of

Hommpst ([T © X, Doy @cr F) — Homypsr (T @ X, Ty @ F).

r red

Note that the map is surjective since Eﬁiﬂi ® X is a projective object of
MPST by Yoneda’s lemma. By the definition of semi-purification (cf.
§1(14)), there exists an integer m > 0 such that

B =0 in Homypgr (ﬁ(m) ® X(m),ﬁf«?d ®cr F),

red
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where 3, Died) ® XM — Eﬁ?d ® X (cf. §1(6)). Then the maps from
(3.20) induce a commutative diagram

HomMPST(Dfne)d X X Dfne)d ®CI F)

F(X)

. oW (m) Pr (m)
B HomMPST(Dred ® X s Dred XciI F) —_— F(X )

/

) P

Hompypst(0'7) ® X, T, ®c1 F)

where 0% is induced by 6, : X™ — X and the triangle commutes by
(3.16). We have

Orapr(0) = P Bruli0) = 0.
Hence pr(p) lies in the kernel of 87, which is contained in the kernel
of the map

spx - F(X) — F°P(X)
by the definition of semi-purification. Hence the composite map

Spx © pF HomMPST(Die)d © X, Oy ©cr F) = FP(X)
factors through HomMPST(DT,ed ®X Dred ®gp F) inducing the desired
map p7. Finally, to show the last assertion, consider the commutative
diagram

F "% (O ®c1 F) 22 F

P

For —e (O €% F) 2 Fr
where ppip = idp by Claim 3.13. This implies pi¥t}¥ = idps» since
' — F*P is surjective. This completes the proof of Lemma 3.14. U

4. COMPLETION OF THE PROOF OF THE MAIN THEOREM

In this section we prove the following result:

Proposition 4.1. For ¢ € HomMPST(Dfne)deX Dred®y) with X, Y €

MCeor, there exists f € MCor(X,Y) such that ¢ and idsa) ® f have

red
the same image in HomMPST(Die)d ® X Dred R V).
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First we deduce Theorem 3.4 follows from Proposition 4.1. By
Proposition 3.8 it suffices to show the surjectivity of the map (3.5)
7. Proposition 4.1 implies that the following composition

u] =) (
h’g](y)_)fy(mred(gCIy)_)fy( red® y)—fY( T’ed® h’O(y))
is surjective. Since the last object is semi-pure, it factors through
h§' (Y)*F, proving the desired surjectivity for F' = hg()).
For a general F' € CI" consider a surjection

q: @ hoi(y) — F
YV—F

which gives a commutative diagram

D) 2 @@, o V)

q°? l

S ¢ _(1) S
PP s (O, @& F)

red

where the top arrow is surjective and the vertical arrows are surjec-
tive since representable presheaves are projective objects of MPST by

Yoneda’s lemma and the functors (_)*” and D( o @cr - commute with
direct sums and preserves surjective maps. ThlS proves the desired
surjectivity of ¢p.

The proof of Proposition 4.1 requires a construction analogous to the
one in [16]. For a variable 1" over k and for ¢ > 1, we put
07 = (P (0 + o))
where P1. is the compactification of G, = Spec k[T, T~']. We also
put (cf. (2.1)):

Oy ., = Ker (Zo(3y) 2 Z = Z.(Speck, 0)) € MPST,
where pr : PL — Speck is the projection. Let e is the composite of pr
and iy : Z — Ztr(ﬁ(Tl )) induced by 1 € PL. Then e is an idempotent
of EndMPST(D(T)) and id — e € EndMPST(D(T)) with ¢d denoting the
identity on DT , is a splitting of DT red — DT Thus, we get a direct
sum decomposition in MPST (cf. (2.1)):

Oy =0y ez with Oy, = (id— )T
For FF € F € MPST and integers iy,...,%, > 1, let

I I‘IOIIll\/IPST(Ij(21 &- - ®|:|(2n ,F) — HomMPST(Dglred(g ®D§27;ed7 F)
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be the projection induced by the above decomposition.

For X € Sm and a € T'(X,0%), let [a] € Cor(X, A" — {0}) be the
map given by z — a, where A! = Spec k|z].

Lemma 4.2. (1) The correspondences
(71,101, [TU], [1] € Cor((Ar — {0}) x (Ay — {0}), (A" - {0}))
lie in MCor(E(Tl) ® ES),E(U). Moreover we have
[T)+[U) = [7U] = [1] = 0 € Homes (T’ © Oy, K@),
(2) The correspondences
(=11, [-U], [-TU], [-1] € Cor((A7 — {0}) x (Ay; — {0}), (A" —{0}))
lie in MCor(ﬁgpl) ® ES)E(”). Moreover we have
[=1] + [~U) = [<TU] = [~1] = 0 € Homnpsr (@ @ T 15@™)).
Proof. The first assertion of (1) follows from the fact
[Tl =plide 1)),  [Ul=ptde[l]), [TU=pn
where 1 : (AL —{0}) x (A}, —{0}) — (A}, — {0}) is the multiplication
W =TU, which lies in MCor(ﬁgpl) ® ES),ES,)) by [13, Claim 1.21].

To show the second assertion of (1), consider as in [17, p.142] the
finite correspondence Z given by the following algebraic subset:

(41) {(V*=(W({T+U)+(1-W)TU+1))V+TU =0}
€ Cor((A7 — {0}) x (Ay —{0}) x Ay, Ay — {0})

Let
i0, 1 (A3 —0)x (A;—0)x (A}, —0) = (AL—0)x (A} —0)xAj, x (A}, —0)
be the maps induced by the inclusion of Oy, and 1y in A%,V. It is clear
that (i§ —i1)(Z) = ([T] + [U]) — ([TU] + [1]) since

VZ—(TU+1)V+TU = (V-TU)(V — 1),

V2P (T+U)WV+TU =V -T)(V-0)
We need check that Z lies in 1VICor(ﬁ§p1 ) @ES’ ® Ow, ﬁg)). Consider

the compactification (P')** of AL x A}, x A}, x A}, given coordinates
with the usual convention [0: 1] = oo and [1: 0] = 0:

([To, Two], [Uo : Usol, [Wo : Wae], [Vo = Vo).
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Then the closure of Z is the hypersurface given by the following poly-
homogeneous polynomial:

ToUoWo V2 — (Weo (ToUse + TocUp) + (Wo — Weo) (TosUse + ToUp) ) Veo Vi
+ T Ul Wo V.
We have to check that it satisfies the modulus condition: letting
0: Z — (P
be the inclusion and letting
Dy = ({0}+{00}) xP{x Py, xPy+Prx ({0} +{oc}) x Py, x Pl + P x Py, x {oo} x Py,
Dy =P x Pl x Py, x ({0} + {o0}),
we have to check the following inequality:
(4.2) @ (D1) = " (D).
Consider the Zariski cover of (P)** given by:

{Z/{a,ﬁ,%é = (Pl_a> X (P1_5> X (Pl_fy) X (P1_5)7 o 57 Y5 o€ {07 OO}}

Define t, = 1o /T if @ = oo and t, = 1/ if o = 0 and ug, w,, vs
similarly. Then

U g5 = Spec(klty, ug, wy, vs]).

On this cover, the Cartier divisors Dy and D, are given by the following
system of local equations:

Dy = {(Ua,ﬁ,o,csa tattgwo), (Ua,p,00,6: tauﬁ)} D, = {(Uaﬂ,%5v Ua)}

A straightforward computation on all the charts shows (4.2).

(2) is proved by the same argument using the following correspon-
dence instead of (4.1):

(V2+ (W(T+U)+ (1—W)(TU+1))V+TU =0}
€ Cor((Ar — {0}) x (Ay —{0}) x Ay, Ay, — {0}).
O
Corollary 4.3. 7([TU]) = 0 € Hommpst (Treq © Oy g, hFEY)).

red

Proof. This follows from Lemma 4.2 since
[TU]o((id—e)®(id—e)) = [TU]—[TU]o(1®e)—[TU]o(e®1)+[TU]o(exe)
= [TU] - [T] - [U] + [1] in Hommpsr (@Y @ T, M),
O
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For X € Sm and a,b € T'(X, 0%), let
[a,0] € Cor(X, (A" - {0}) ® (A" — {0}))

be the map given by z — a, w — b, where z (resp. w) is the standard
coordinate of the first (resp. second) Al

Corollary 4.4. In MCor(ﬁ(Tl) ®ES) ®E§,1), hoi(ﬁ(l) ®ﬁ(1))), we have:
Proof. This follows from Lemma 4.2 noting the end functor - ® g
on MPST is additive and hg(ﬁ(l) ® ﬁ(l)) is a quotient of hj (ﬁ(l)) ®
=(1)

. O

Proposition 4.5. The correspondences

U, T], [T, U] € Cor((Ar—{0})x (A;;—{0}), (A"—{0}) x (A"—{0}))
lie in MCor(D(l) ® D(l) g ®ﬁ(l)) Moreover, the element

n([U. 7)) = ([T, U)) € Hommpsr(Teq ® T year 13 @0

lies in the kernel of the map

—(1
HommpsT (DEF,)red

@00 WY TY)) »
—(2 - ,=(1 —(1
Homupst (Torreq @ T, WP (@ 0 TY))

Proof. (see [16, Corollary 9]) The first assertion is easily checked. To
show the second, consider the map in MCor:

i(;) %E(Tl) ®i§}) T =S, U— S
Composing this with the correspondences of Lemma 4.2(1), we get
1)
[5]
Noting 7 ([1]

+ 157 = 2[1] = 0 € Hommpsr ([T g, B @Y)).
)=

(id —e) o [1] = 0, we get
m([S] + [$71]) = 0 € Homypsr (T s, h([O")).
This implies
(4.3)
7([S, V] + 87, V) = 0 € Homnpsm (06 ® Oy, b0 2 0V)).

again noting that the endofunctor - ® ES) on MCor is additive and

hD( 'om" )) is a quotient of hoﬁ(ﬁ(l)) o0,
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On the other hand, by tensoring the correspondence of Corollary 4.3
with another copy of itself we get

(4.4) ©([TU,VW]) =0

in HOmMPST((D(Tlred ® DUred ® Dwed ® DWT@d? hD(E(l) ® E(l)))-
There is a map in MCor:
09 o0 -0y o0y T o O ;
TS, U—=S8:,V—=-=5,W-=S5,,
which induces an element of
HomMPST(Dg) red ® D(s2) red D(Tl)red ® Dé)red ® D%/lz«ed ® ng?md)-

Composing this with (4.4) and changing variables (S}, S2) to (T, U),
we get

(45) 7T([T‘[]a _TU]) =0e HOmMpST(Egled@)ﬁgled’ hﬁ(ﬁ(l) ®E(l)))

Claim 4.6. Tn Hommpst (T ey @ Ty)g h5(EY @ TY)), we have
m([TU, =TU]) = =([T, =TU]) + =([U, =TU]),
([T, =TU]) == ([T, U]),
m([U, =TU]) = =([U, T]).

Indeed, composing the first correspondence of Corollary 4.4 with the
map in MCor:

(4.6) oY ed) TV o0 T
given by V' — —TU which is admissible by [13, Claim 1.21], we get
[TU,~TU] + [1,—TU] — [T, ~TU] — [U, ~TU] = 0
in HomMPST(E(Tl) ® ES), hoi(ﬁ(l) ® E(l))).
Then the first equality follows from the equality:
7([1, =TU] = 0 € Hompps (T rey ® T4 heg, 5@ @ TY)).
Indeed, we have
[1,=TU]o ((id—e)® (id —e)) =
[1,—TU] —[1,-TU] o (id®e) — [1,~TU] o (e ®id) + [1,—~TU] o (e @ €)
=[1,-TU]—-[1,-T)—-[1,-U]+[1,-1] =0
in Hommesr (O 00, 0% o T").
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where the last equality follows from Corollary 4.4. The second and
third equalities follow from Corollary 4.4 by an analogous argument
considering the maps (4.6) given by V. — T, T — —T and V — U, U —
—U respectively. The last equality holds since

[T, —T)o((id—e)® (id —e)) =
[T, —T]—[T,—T]o(id®e)—[T,-T]o(e®id)+ [T, —T] o (e®e)
=[T,-T|-[T,-T)-[1,-1]+[1,-1] = 0.

This completes the proof of the claim.
By the above claim, (4.5) implies
(4.7)
7T, U] + 7[U, T] = 0 in Homupst(Trey ® Do, by @0 @ TY)).
Putting (4.3) and (4.7) together we conclude that

[T U] — 7T[U T] =01in HomMPST(DT red © DUrecb hD(E(l) ®E(1)))
This completes the proof of Proposition 4.5. 0

Take X', ) € MCor and
ZlS HomMPST(DT’ed ® X Df“ed ® y)

It induces
¢5 € Homupsr (O, © X, 00, @cr ).
Let
" € Homypsr(X © Olhy, Y © Oir)
be obtained from ¢ by the obvious permutation. It induces

1)
o5 € Homppst (X ® Dred7 Y ®@ct Died)
We then put

€ Hommpsr([y © X @ T, 0w @ ¥ @ OL),

red

¢ @ Ids

red

Idqn @ ¢ € Homupsr (T © X © 0,0, Oy © ¥ @ D),

red

which induce

1 1
g ® Idi(l)d € HomMPST(D( 21 RX® Die)d? D( 21 ®ct Y ®cr U E«e)d)>

1
[d‘:,(l) ® Sp[] € HomMPST(Dv("ezi XX ® Die)d? Df«ezi Xcr y ®CI E*e)d)‘

red
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We have
¢ @ ldgo = (0@ Idy) o (Idgm © ¢7) o (0 @ Idx),

red
where
=(1) =(1)
Dred ® Dred Dred ® U

red
is the permutation of the two copies of Dmd Let

=)

red

D(l)

red

— U
be the map given by T — T~! for a standard coordinate 7" on A'! and

o’ —O'—]d—(l) X t.

red

We can write

p ®idso) = Idoo @ @™+ (0’ @ Idy) op+qo (o' ® Idy),

red

oo, =

for some

p,q € Homypsr(@y © X T, T 0 Y @ TL).

Put
—(1 —(1 —(1 —(1
Iy = Df«e)d ®c1 X ®cr Df«e)d I'y = Die)cz ®crt Y Qcr Df*e)d‘
Hence we can write

(4.8) 5 @idge = Idso) @ ¢f+ oGy 0p+qgo oy,

where
oy Oy @Y ©OL - Iy

O'/E’X : iffe)d ® X ®E£16)d — Iy
qm - FX — Fy
are induced by ¢’ ® Idy, 0’ ® Idy and q respectively. For an integer
n>0let X™ := (X,nD) if ¥ = (X, D). Then we consider the map

1 1 Br n
o e ) 2 Homupse (Tt © X @07, Ty)

O O~ Do x el

red’

HOHIMPST (ﬁ (%9 X ® ﬁ

induced by the natural map 5, : XM O

Claim 4.7. The maps a’ﬁ yop and ¢ o a— lie in the kernel of

=(1)

red

) =(2)

/B*
Hompypst (0 @ X ® oY, Ty) 2 HomMPST(Died X 0, Ty)
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Proof. By Proposition 4.5, the composite map

Dred ® Dfid = Df“ed ® Dred a Dred ® Dred — h’O (Dre)d) ®cr h’O (Dg’le)d)
is zero. This immediately implies the claim for g5 ocfi »- We now show

the claim for af op. For M, N € MCor, write
1 1
Ay = Homppsr(T, © M @ Ty, T4 ®cr N ®cr D),
n 1
Ay = Hommpsr (T @ M™ @ T, Tty ®ct N ©cr Deey)-

(1)

For p € HomMPST(ﬁ(l) ®X® ﬁred,ﬁ:@d ®Y® Dfnle)d) there is a com-

red
mutative diagram

(4.9) Ayy = Ary

=
@ @) (2
Ay A

X?y’

where p@ € HomMPST(Dﬁed 2x®x0% 0% @y o) is induced
by p. The claim for a yop follows from this.

O

We now complete the proof of Proposition 4.1. We consider the
commutative diagram

Hommpst (Tl @ X © Ty, Ty © ¥ @ Oty —2> Hommpst(X @ Ty, Y @c1 Ty)

P 5

HomMPST(ﬁfZ; ® x™ Diﬁiyﬁfﬁd ER ) 22 Hommpst (X ™ @ Drecb Y oot O )

red red

where the horizontal maps come from (3.19) replacing ) with Y ®
0. By Lemma 3.9(3) and (2) we have

red-

prlp @idgo ) = plp) @ Idyo - and  pi(Idgo) ® ¢7) = ¢f, where
red

—(1 =1 g
(4.10)  p: Hommpsr(Ty @ &, 01y ® V) — Hommpsr(X, 4§ (V)
is the map from (3.19). In view of the diagram, (4.8) and Claim 4.7
imply 3} (9% — pleg) ® Idi“)d) = 0 so that
(4.11)
Bales = Tdqm @ pleg)) =0 € Homypsr (T © X, 0, ®cr V).
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Consider the commutative diagram

Hommpst ([T ® X, Ty @c1 V)

| iﬁ;
HomMPST(Died X X n) i "

The two horizontal maps are surjective smce representable presheaves

are projective objects of MPST and Dred ®ct Y — Dred R YV is

surjective. The map 3 on the right hand side is injective since D£GL®CI

Y is semi-pure. Hence Proposition 4.1 follows from (4.11).

5. IMPLICATIONS ON RECIPROCITY SHEAVES

Let RSCyis be the category of reciprocity sheaves (see §1 (17)).
Recall that for simplicity, we denote for all F' € RSCyys (cf. §1 (18))

F:=wC®F e CI?.

By [10] there is a laz monoidal structure on RSCyis given by (cf.
Proposition 3.1)

Nis,s
(F, G)RSCle g(F@ @G,
Following [10, 5.21], we define
(5.1)  F(0) :=F, = (F(n—1),Gpn)gge. forn>1
By Corollary 2.2(1), we have ( (3.3))
(5.2) F(n) = w(F(n—1)(1)).
By recursiveness of the definition we have
(5.3) (F(n))(m) = F(n+m).

By [10, Prop. 5.6 and Cor. 5.22], we have isomorphisms
(54)  w(GET T =7y =M Guln) = Q" it ch(k) =0,

where the second isomorphism is defined as follows: for an affine X =
Spec A € Sm, the composite map
(5.5)

Ga(A) Kz Gm(A)®Z" — (Ga QNST G%NSTN)(A) N Ga<n>(A) (5_.4g QZ

sends a® f1®---® f, witha € Aand f; € A* to adlogfi A---Adlogf,.
By [10, 5.21 (4)], there is a natural surjective map for F' € RSCyjs

(5.6) F ®nst K,)' = F(n).

Hommpst (T ® X, Ty @

)

red Oc1 V) — HomMPST(Died ® XM red ®ér V)
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Lemma 5.1. The map (5.6) factors through a natural surjective map
(5.7) w (F @M ("G, )2 ™) = F(n).

Proof. By [10, (5.21.1)], there is a natural surjective map

(5.8) W anihS (F Qppst (WG ) PMPST) 5 (1),

By Lemma 1.14 (ii) and (iii), we have a natural isomorphism

Nis sp

wiayishg (F ©mpsr (@ Gon) M7T") = w,(F @gr™ (w'Gm) “e).
Hence (5.8) induces (5.7). We have a surjective map

Nis sp

) *
F @pst K : w,F Dpsr (W Gp)For ™))
w,(F @mpst (WG )P "1Y) o (F QNS (W G )Ee T,

where the second isomorphism comes from the monoidality of w, (cf.
§1(19)). By the adjunction from (1.1), this induces a surjective map

Nis 1SP

(5.9) Fonst KM = afy (F @pst KM) = w,(F @8 (0 G, )Per ™).

By the construction of (5.8), it is straightforward to check that (5.6) is
the composite (5.7) and (5.9). This completes the proof of the lemma.
U

We have a map natural in X € Sm:

(5.10)

—®id,
F(X) = Hompsr (Z(X), F) e, Hompgr(Z: (X)@nstKY | FOnsTKM)

— Hompgr(Z(X) @nst KM, F(n)),
where the last map is induced by (5.6). Thus we get a map
(5.11) Xp: F = Hompgr (KM, F(n)).
Theorem 5.2. For F' € RSCyis, the map \j is an isomorphism.
The proof will be given later. First we prove the following.
Proposition 5.3. The map A% is an isomorphism for n = 1.

Proof. Note KM = G,,, and that for I, Gy, 5, G5 € MPST and maps
f:Fy— Iy, g: Gy — G, the diagram

W [Ow,g

w F1 @pgt w,Gq w Fy @pgt w Gy

l w (f®g) l

w(F1 @MmpsT Gl) —— w,(F> @mpsT G2),
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commutes, where the vertical isomorphisms follow from the monoidal-
ity of w, and the isomorphism w,w®! ~ id from (1.13). Thus, by Lemma
5.1, (5.10) with n = 1 coincides with the composite map:

(5.12)

id X
F(X) w, (-@idy* G, )(X)

w F(X) = » wy Homygpgr (W Gy F @8 w* G ) (X)
~ Hommpst(w* G, Homygpgr (Ze (X, 0), F Qus? ,*G,y,))

—

*1)

~ HommpsT (w” G, ww, Homypsr(Ze: (X, 1), F®le P W Gn))

(*2) is,s
~' Hompgr (G, w, Homygpgp (Zi (X, 0), F @5y w*Gin))

*3
2 Hompsr(Grn, Hom(Zer (X), wi(F @5 4 G,)

" Hompgr(Gon, F(1))(X)

where (x1) is induced by the injective unit map G — w®w,G (G €
CI.?) for the adjunction (1.13) and it is an isomorphism by Proposi-
tion 2.10, (x2) is given by the fully faithfulness of w®! and w°'G,, =
w*G,, by [6, Lem .2.3.1], (x3) follows from Lemma 1.3, and (x4) holds
by the definition (5.1).

This gives a commutative diagram

AR

(5.13) F MPST(GW>F<1>) )

» |

w F %w. Homypgr(w* G, F S Df*e)d)

where L}; = (- ® idy+q,,) is an isomorphism from Corollary 3.6 (using

Corollary 2.2). This proves the proposition.
O

For F,G € RSCyjs let
(514) lrG - HOHIPST(F, G) — HOHIPST(F<1>, G<1>)
be the composite map

~ee G
-

HomPST(F G) —) HOHIMPST(F G)
Homypst (F OXF w0 G, G 9N w*G,,) — Hompgr (F(1), G(1)).

Theorem 5.4. For F,G € RSCxyis, tpq s an isomorphism.
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Proof. We have isomorphisms (cf. §1 (18))
(5.15) Hompgr(F(1),G(1))
= HomPST(wl(F ®le o Df«ed) W!(G ®le * Dilezi)

)
= HomMPST<F ®le P Dred7 (G ®le P Dred))
)

= HomMPST(F ®Cls sP *Gm, w w.(G ®NIS sP Died))

= HomMPST<F @mpst W Gy wC w,(G ®le P Diled))

= HOmMPST(F HomMPST(W G, w w® W'(G ®NIS o Die)d)))

where the first (resp. second, resp. third) isomorphism follows from

(1.12) (resp. Corollary 2.2, resp. the fact wChw,n(G @ Died)
CIy?). Note that for H € CI™*, the natural map H — w®w H is
injective.

Hence we get injective maps

(5.16) HomMPST(F HomMPST(w Gm,G®NIS sP Df,e)d))

— HomMPST(F HomMPST(w G, w® w.(G ®NIS sP Dred)))

— HomMPST(F W€ Tw, Homypgr(w” G,,,w° w'(G ®le P Dilezi)))

(*1) is,s
~ Homppsr (F, w® Hompgp (G, wy(G @87 T))))

(x2)
~ HOHIMPST(F w HOmPST(GmaG< >))

where the isomorphism (*1) comes from Proposition 2.10 and ww®! ~

id (cf. §1 (18)) and (%2) follows from (5.2). These maps fit into a
commutative diagram

HomMPST(ﬁa é)

o ~ | Lot
HomMPST(F Homypgr(w* Gm,G®NIS P Dred)) Hompgr (F, G)
oy LF,G
s is,s 1
Homyres(F, Homrpr (& G, 7w (G @05 D)) 75 Homese(F(1), G(1)) =)o
(—)
/B ~ ~

HomMPST(ﬁa W Hompgy (G, G(1)))

HOHIMPST(F, G)
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The two right vertical isomorphisms follow from the full faithfulness of
w®". The isomorphism « (resp. 3) comes from ¢ from Corollaries 3.6
and 2.2 (resp. A from Proposition 5.3). The squares are commutative
by (5.13) noting that the left vertical maps are viewed as inclusions
under the identifications

* ~ is,sp =(1
Wy HO_mMPST(Q G, G ®217 ! Dg’e)d) ~ Hompgy (G, G(1)))
~ w, Hompypgr (W G, &CIQ!(é ®1§:ils’sp Ef«?d)))

coming from Proposition 2.10. This proves that the map ¢y is an
isomorphism as desired.
O

Corollary 5.5. For F,G € RSCyis, there exists a natural injective
map i NST for internal hom:

(5.17) Hompgy(F (1), G(1)) = Hompgy(F, G),
which coincides with the inverse of (5.14) on the k-valued points.

Proof. The surjective map F ®@nst G,y — F(1) in NST from (5.6)
induces an injective map

Hompgr(F(1),G(1)) — Hompgr (F @nst G, G(1))
~ Hompgy (F, Hompgr (G, G(1))

and the latter is isomorphic to Hompgr(F, G) by Proposition 5.3. This
completes the proof. O

We now prove Theorem 5.2. Consider the map induced by (5.6):
¢ : Hompgy (K, F @nst K ) — Hompgr (K, F(n)).
The map (5.11) is then the composition of ¢ and the map
(5.18) F — Hompgp (KM, F @nst K))'); 5 s @ idgen.

On the other hand, we have isomorphisms KM, (1) = KM for all i > 1
by (5.4). Hence the map (5.17) for F' = KM, gives an injective map

(5.19) Hompgr (K}, F(i)) = Hompgr (KL, F(i — 1)).
Composing (5.19) for all i < n, we get an injective map
(5.20) Hompgy (K, F(n)) — F

which by definition sends q(s ® idn) to s for a section s of F'. Hence
the composition

. 5.20
P C0 Hompey (K1 F(n) =5 F
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is the identity, so (5.11) is an isomorphism, which completes the proof
of Theorem 5.2.

Let G € RSCyis and X € Sm. By Lemma 1.3 we have a natural
isomorphism

Wy HO—mMPST((Xa Q)),QCIG) ~ Hompgr (X, F).
Hence, the unit map id — w%w, from (1.13) induces a natural map
(5.21) HO—mMPST((Xa Q),QCIG) - QCI Hompgy (X, G).

It is injective by the semipurity of Homypgr(Z (X, 0),w®"F), and be-
comes an isomorphism after taking w,. Moreover the following diagram
Is commutative:

(5.21

(5.22) HO—mMPST((Xu 0), &CIG) —)> W Hompgr(X, G)

. l_)

X7 Q))’Q*G) ; ﬂ* HO—mPST(Xv G)

—~ <

HO_mMPST(
where the isomorphism comes from Lemma 1.2.
For G € RSCyjis and X € Sm, we define the following condition:
(d)x The maps (5.21) is an isomorphism.

Theorem 5.6. Let F,G € RSCyys. Assume one of the following:

(a) G satisfies (&) x for any X € Sm.
(b) G satisfies (®)spec(i) for any function field K over k and F' is
the quotient of a direct sum of representable objects.

Then (5.17) is an isomorphism.

Proof. Assume the condition (a). Letting G = w®IG, we have isomor-
phisms for X € Sm

(5.23) Hompgr(F,G)(X) = Hompgt(F, Hompgr (X, G))

(%I) HomMPST(f’gcl Hompgr (X, G)) (%;) HomMPST(ﬁ’>HO_mMPST((X, 0),q)),

where the isomorphism (1) (resp. (*2)) comes from the full faithfull-
ness of wC! (resp. (&)x). Moreover, we have isomorphisms
(5.24)

HO—mMPST«Xv 0), é) (i) HO—mMPST((Xv 0), HO_mMPST(Q*Gma é(l)))

= I—IO—mMPST<Q*Gm7 MMPST((Xv (Z))u é(l)))v
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where the isomorphism (*3) comes from Corollaries 3.6 and 2.2. We
also have isomorphisms

(5.25)
Hompgy (F(1), G(1))(X) = Hompgr (F(1), Hompgp (X, G(1)))

(—4) Hompgr (w,(F @ w*G,), w, Hompypgr((X, 0),G(1)))

(—5) HOHIMPST(F ®MPSTW Gm,w W) HomMPST((X @) ( )))

=~ Hommpst(F, Homypgr(w G, w'w, Homygpgr (X, 0), G(1))),

where (%4) (resp. (%5)) comes from Lemma 1.3 (resp. the adjunction
(1.12)). These maps fit into a commutative diagram

Homypst(F, Hompypsr((X, 1), G))

(5.24) l: (i23)
HomMPST(ﬁ Hompipgt (WG, HO_mMPST((Xa 0), é(l)))) Hompgr(F.
(T)l‘—> «—>T(5 17)
HomMPST(FVv@MFST(Q*GWL,QCIQ! Homprpsr ((X,0), G(1)))) = Hompgy(F(1),G

(5.25)
where the injective map () comes from the counit map id — wCw,
from the adjunction (1.12). The diagram commutes since the map

(5.24) is induced by the map

HO—mMPST«Xv 0),G ~) - HomMPST(W*GmaHomMPST((X 0), é(l)))
~ Homypgr ((X,0) @ WGy, G ®le P wGn)

given by f — f ®id,q,,, and the map (5.17) is induced by the sur-

jection F' @nst G, — F(1) from (5.6) and the isomorphism inverse of
(5.11):

Hompgy (F @ G, G(1)) — Hompgr(F,G)

given by f ® idg,, — f, and the maps (5.23) and (}) are inclusions
under the identifications

W HomMPST<W*Gm=H0mMPST<X 0), é(l)) ~ Hompgr (G, ®X,G(1)))
~ w, Homypgr(w* G, w®lw, Homypgsr((X,0), G®le P Dv(“le)d))

coming from Lemma 1.3 and Proposition 2.10. This proves that (5.17)
is an isomorphism.
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Next assume the condition (b). In view of Lemma 1.5, we have
Hompgr(F,G) and Hompgr(F(1),G(1)) are in RSCy;s. Hence, by
Lemma 1.4, it is enough to prove that (5.17) induces an isomorphism

Hompgy (F(1), G(1))(K) = Hompgy (F, G)(K)

for any function field K over k. This follows from the same computa-
tions as above. U

Lemma 5.7. F € Hly;, satisfies (&) x for all X € Sm.
Proof. We have

I—IO—mMPST((X> ®)> QCIF) = I—IO—mMPST((X? @), Q*F) (%lJ) Q* I_IO—mPST(X> F)

(

where the isomorphism (x1) follows from Lemma 1.2 and (%2) from the
fact that Hompgr (X, F') € HI so that w* Hompgr (X, F')) € CI" by [6,
Lem. 2.3.1]. This completes the proof. U

Lemma 5.8. If ch(k) = 0, Q satisfies (&)x for all X € Sm.
Proof. Put T' = Hompgrp(Zi:(X), Q) and
G = HO_mMPST (Z(X, (Z))u &CIQi)a G" = QCI Hompgr(Zi:(X), QZ)

Note that I' € RSCyjs by Lemma 1.5. By [11, Cor. 6.8], for ) =
(Y, D) € MCor where Y € Sm and D,.q is a simple normal crossing
divisor, we have

(5.26)  G(Y)=T(Y x X, 9/ (10g Dyeq X X)((D — Dyeq) x X)).

Hence the conductor ¢ associated to G in the sense of [11, Def. 4.14]
is given as follows (note that Lemma 1.3 implies G € CI(I') under the
notation of loc. cite.): Let ® be as [11, Def. 4.1]. For

a€G(L)=H'(X®,L,Q) with L € @,
put ¢¥(a) = 0if a € H'(X ®;, O, Q). Otherwise, put

1 .
c%(a) = min {n >1|ac H (X ®, Oy, e QfX®kOL(log))} ,

where ¢ is a local paramter of O and Q% ¢, (log) is the differential
graded subalgebra of Q% ; generated by Q% », and dlog ¢ (cf. [11,
§6.1 6.3]). Moreover, one easily sees that for Y = (Y, D) € MCor as
(5.26),

G(V)={a € G —D)|cf(a) <vr(D) for any L € &}
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(see [11, Notation 4.2] for vy (D)). Hence, by [11, Th. 4.15(4)], it
suffices to show @ = c¥. We know c¢% < ¢“ by loc. cite so that it
suffices to show the following: Let L € ® and a € G(L). For r € Z>y,
we have

& (a) <r=cS(a) <.

We prove it by the descending induction on r. By [11, Cor. 4.44]
this is reduced to showing the following: Choose a ring homomorphism
K — Op such that K — O, — Op/(t) is an identity and extend
it in the canonical way to o : K(z) — Op,, where x is a variable
and L, = Frac((’)L[x]@)). Assume c%(a) < r+ 1. Then the following
implication holds

(5.27) (a,1—at"), ., =0€ G(K(x)) = §(a) <,

where (—, =)z, » is the local symbol for I' = Hompgp(Z, (X), Q) from
[11, §4.3 4.41]. Since the local symbol is uniquely determined by the
properties (LS1) - (LS4) from [11, §4.3 4.38], we see that it is given by

(a,1 —at"), » = Res(a dlog(1 — xt")),
where
Res; : I'(L,) = H*(X @ L., Q™) = T(K(2)) = H (X @, K(z),Q")

is induced by the residue map Q' — Q%(m), which is defined using the
isomorphism L, ~ K(z)((t)) induced by ¢ : K(z) < Op,. To prove
the implication (5.27), we may assume after replacing a by a — b for
some b € I'(L) with c¢%(b) <,

1 dt
- t_ra + ﬁtr—i—l

Then we compute in H°(X ®, K(z), Q)
Res;(a dlog(1 — xt")) = —rza + fdx.

a for o € HO(X @4 K, ), B € H(X @ K, Q).

This shows (5.27) and completes the proof.

6. INTERNAL HOM’S FOR )"

In this section, we assume ch(k) = 0. Note that a section of Hompg (2", Q™)
over X € Sm is given by a collection of maps

oy : H(Y, Q") — HY(X xY,Q™) for Y € Sm,
which are natural in Y € Cor. For

(,8) € H'(X, Q™ ™) @ HO(X, Q™" 1),
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we define
SOQZB : HO(Ya ) — HO(X XY, Q") w— pyaApyw+ pi S A pydw,

where px : X XY — X and py : X XY — Y are the projections.
The naturalness of oy 5 in Y € Cor follows from [2]. Thus we get a
natural map in NST:

(6.1) " @& Q™" = Hompgr (", ") 1 (@, 8) = {¢y0 5} vesm:

where ¢ = 0 for ¢ < 0 by convention. Taking the sections over Spec k,
we get a natural map

(6.2) O Q" — Hompgr (Q", Q™).
We also consider the composite map in NST:
(63) " C8 Hompgr (27, 0) ™5 Homper (K7, 27),

where the second map is induced by the map dlog : KM — Q. Taking
the sections over Spec k, we get a natural map

(6.4) g Q= — Hompsr (KM, Q™).
The main result of this subsection is the following.
Theorem 6.1. The maps (6.1) and (6.3) are isomorphisms.
First we prove the following.
Proposition 6.2. The maps (6.2) and (6.4) are isomorphisms.

This follows from Lemmas 6.3, 6.4 and 6.5 below. For ¢ > 0, let us
fix the isomorphisms

~

(6.5) ol TN = Qe (1) = kM
coming from (5.3) and (5.4)
Lemma 6.3. (1) The following diagram is commutative:

Hnm

Q@ Q! Hompgr (2", Q™)

l@nl,ml T

Hompsr ("1, 1) T Homper(Qr1(1), Qm-1(1))

where the right vertical map is induced by o™ and (c™)~' of
(6.5).
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(2) The following diagram is commutative:

Qe e Hompgr (KM, Q™)

lanl,ml T

(5.14)

HomPST(ICM Qm_l) —_— HOIHPST(IC7]¥[_1<1>, Qm_l<1>)

n—1»

where the right vertical map is induced by o™ and (¢")~* of
(6.5).

Proof. By [10, Cor. 5.22], for an affine X = Spec A € Sm and i > 0,
the composite map

0 - QT @y A 5 (7 @nst Go)(A) E4 011y (4) 2

sends w ® f with w € Q'[! and f € A* to w A dlogf. Moreover, for
¢ € Hompgr (271, Q™ 1) and ¢’ = 0™ o (1) o (¢™)~!, the diagram

O @y AT

l‘ﬁ@id,qx lgp’

O @y A SO
is commutative. Hence (1) follows from the equation
aN(wAdlogf)+ S AdwAdlogf) =(aAw+ 5 Adw) A dlogf,

where o € Q""" and 8 € Q"1
(2) follows from (1) and the commutativity of the diagram

dlog(1)

KM (1) 2 g

which can be verified using (5.5).

Lemma 6.4. For an integer n > 1, we have

(66) HOHIPST(Q”, Ga) = HomPST(’Ci\L/[a Ga) =0.
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Proof. We have isomorphisms

Hompgt (2", G,) ~ HomPST(g!((Z;—/l ®c1w Gn), Ga)
~ I‘IOHIMPST((TTT_/1 ®CI Q*Gma QCIGa)
~ I‘IOIHMPST((TTT_/1 ®MPST Q*Gma QCIGCJ

P

~ Homumpst (27!, Homypgr (w* G, w'G) ).

where the first isomorphism is induced by (6™)~!, inverse of (6.5), and
the second from (1.12). Similarly we have an isomorphism using (¢") ™
instead of (¢")~!

HomPST(/CiY, Ga) = HOIHMPST(/QV[_DHO_mMPST(Q*GmQCIGa))-

We compute
red’ gCIC"G)
~ Coker (WG, (k) = w'G,(P",0 4 00))
~ Coker (k — H°(P',0)) =0

I—IO—IHMPST (g* Gma QCIGa) ~ HomMPST (ﬁ(l)

where the first (resp. last) isomorphism follows from Corollary 2.2(1)
(resp. [11, Cor. 6.8]). This completes the proof of Lemma 6.4. O

Lemma 6.5. The maps (6.2) and (6.4) are isomorphisms for n = 0.

Proof. The assertion for (6.4) is obvious since KM = 7Z for n = 0. We
prove it for (6.2). We have isomorphisms

(67) HomPST(Ga, Ql) ~ HomPST(aKisw!hoi(ﬁGa), QZ)
~ HOHIMPST(}LOE(EGG), WCIQi)
~ HomMPST (EGM WCIQi)

~ Ker (H(P", i, (log 00)(00)) —2 Q).

where the first (resp. last) isomorphism follows from (1.15) (resp. [11,
Cor. 6.8]). The standard exact sequence

0— Opl ®kQ]1€ —>Qi31 _>Q]1?1/k —0
induces an exat sequence

0= Op1 @ @ = Qp1 = O, R Q1 =0
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noting Qéf’l/k =0 for i > 1. Here Q' = 0 if i = 0 by convention. It
induces an exat sequence

0 — Op1(00) @, Q2 — Qpy (log 0o)(00) — Q%,l/k(Qoo) ® Q1 =0,
since Opi(logoo) = Op1 and Qp, 4, (log 00) = O, , (00). Letting ¢ be
the standard coordinate of A’ C P!, we have

H(P!,Opi(c0)) =k-1@k-t, H'(P',Qp,(200)) = k - dt,

and dt lifts canonically to a section dt € HO(P', Qg (logoo)(00)).
Hence we get an isomorphism

(6.8)
H(P', Qpi(log oo)(00)) = (k- 1@ k- 1) @5 Q) @ (k- dt) @ Q1

Thus the last group of (6.7) is isomorphic to

kot @pQ @k -dt @, Q' ~ Qe
Hence, from (6.7), we get a natural isomorphism
(6.9) Q' @ QF — Hompgr(Ga, Q7).

Next we claim that the map (6.9) coincides with (6.2) for n = 0. By
Lemma 1.8(2), we have a commutative diagram

Aa,

(6.10) Zir(Af) G,

l: T(ms)

W Z (P, 200) — w;hoi(ﬁga)

where \g, is given by t € G,(A}) = k[t]. The standard isomorphism
Q'(A}) =~ (2 @y, k[t]) @ (7" @y, k[t)dt)

induces a natural isomorphism

(6.11)  Hompsr(Zu(A;), Q) = Q'(Ay) = Qft] & O [t Adt,

where

Gl = @ Q- Q' adi= @ ot At

mELsg mELso

The map Ag, induces the inclusion

N, : Hompsr (G, Q') < Hompst(Zi:(A}), ) = Q/(A})
such that
(6.12) G.(¢) = pai(t) for ¢ € Hompsr (G, Y,



62 A. MERICI AND S. SAITO

where @1+ Go(A}) = k[t] — Q'(A}) is induced by ¢. The following
claim follows from (6.7), (6.8) and (6.10).

Claim 6.6. The image of Ay, is identified under (6.11) with
Qi -t QU Adt C QL @ Q] A dt,

and the composite map
. . A .
0L @ Q' N Hompgr(Ga, ) 255 Q1 -t & Qi1 Adt
is given by the obvious identifications Q = Qi -t and Q) ' = Qi Adt.
Let
(6.13) Homg, (G,, Q') C Hompgt(G,, Q)

be the subgroup of G,-linear morphisms. There is a natural isomor-
phism

€: QL 2 Homg,(Ga, Q) ; w— {A—= 2w} (A€ G,).

(6.13) is a direct summand since we have a splitting given by
Hompgr(Gq, Q) — Homg, (Gq, ) 5 @ — {\ = dp(1)}.
The other summand is
Hompgr(Ga, )" := {p] (1) = 0}.

There is a natural map

¢ Q1 = Hompsr(G,, )5 w— {a— wAda}.
By (6.12), under the identification (6.11), we have

Ao, (EW) =w-t, Mg, () =nAdt (we, neQ).

Hence the composite map

Q0 Hompgr(Ga, ) 255 Q1 -t @ QI A dt
is given by the obvious identifications Qf = Qi -t and Qi ' = Qi~' Adt.

By Claim 6.6 this proves the desired claim and completes the proof of
Lemma 6.5. U

To deduce Theorem 6.1 from Proposition 6.2, we need some prelim-
inaries.

Let K be the function field of S € Sm and define Corg, PSTg,
MCor,, MPST ., etc. defined as Cor, PST, MCor, MPST, etc.
where the base field k is replaced by K. We have then a map
(6.14)

ri : Hompsr, (2", Q") — Hompgr (2", Q") (K) ; ¢ = {¢y}yesm,
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where 1)y for Y € Sm is the composite map
HY(Y, Q") — H°(Y x, K, Q") — H°(Y %, K,Q™),

where the second map is gy, x (note Y x; K € Smy) and the first
is the pullback by the projection py : Y x; K — Y. Similarly we can
define a map

(6.15) ri : Hompgy, (KM, Q™) — Hompgp (KM, Q™)(K).
By definitions, the following diagrams are commutative.

6.2
Q= @ 0t 2 Hompgr, (7, Q)

\ l’f‘}{
(6.1)

Hompgp (927, Q0™)(K)

—— (6.4) m
QK ——— HomPSTK (ICT]:/[, Q )

m lTK
HO—mPST(ICf% Qm)(K)

In view of Lemma 1.4, Theorem 6.1 follows from Proposition 6.2 and
the following.

Lemma 6.7. The maps (6.14) and (6.15) are isomorphisms.
For the proof we need the following.

Lemma 6.8. For X = (X,D) € MCor and Xx = (Xk,Dg) with
Xk =X X, K and D = D X, K, we have a natural isomorphism

Hommpst, (Zi (X ), w Q") =2 Homypsr(Ze (X)), Hompypgp (K, wTQ™)).

Proof. By [3, Pr. 1.9.2 ¢)] we may assume X € Sm and D,.q is a simple
normal crossing divisor. From the explicit computation of wC ™ in
[11, Cor. 6.8],

(W™ ( Xk, D) = H (X, Q% (log(Dk))(Dg — D pea))

= (W™)(Xk, Di) = lim (w'Q™)(X x, U, D % U),
ucs

where U ranges over the open subsets of S. This proves the lemma. [

We now prove Lemma 6.7. We only prove the assertion for (6.14).
The proof for (6.15) is similar. Put

Uon = Ug, ®mpsT g,
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where g, and Og,, are from Lemma 1.8. By (1.14) and (1.15) and
(5.4), we have an isomorphism in PST:

(6.16) a¥wnhf (Oon) = Q"

Let Ok = (P, 00) € MCorg and Ogn x € MPSTg be defined as
Oqgn. We have isomorphisms

(6.17) Hompgr, (", Q™) ~ Hompsr, (w5 (Dar k), Q™) ~
Hommpst, (Oor, ik, w“* Q™) =~ Hommpst (Can, Homypgr (K, 010Q™)),

where the last isomorphism comes from Lemma 6.8. On the other
hand, we have isomorphisms

(6.18)  Hompgy (2", Q2")(K) = Hompsr (2", Hompgy (K, ™)) ~
Hompgr (wihg (Oon), Hompgr (K, Q™)) ~ Homppgt (Oon, w©! Hompgr (K, Q™).
Hence Lemma 6.7 follows from Lemma 5.8 and the following.

Claim 6.9. The following diagram is commutative.
(6.19)

(6.17) _
Hompgr, (2", Q™) — Homppst(Oon, Homyrpgy (K, w'Q™))

| |

(6.18) —
Hompgy (2", Q™)(K) —— Hommpst (Do, w! Hompgp (K, Q™))

where the right vertical map is induced by the map (5.21).

To show the above claim, write Agn = A'x (A'—{0})" and Agn x =
Agn @y, K. Take the standard coordinates y on A! and (z4,...,z,) on
(A — {0})" so that

Agn = Speckly,xy, ..., ][z, ...
By the definition of Cgn, we have natural maps in MPST
(6.20) Zir(Aqn, 0) — (P!, 200) @ (P, 0 + 00)®" — g,
which induces a map in PST:
(6.21) Aon ¢ Zip(Agn) — wilgn — Q7
where the last map is induced by (6.16). Let

(622) )\Qn7K . Ztr(AQ”,K) — Qn
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be defined as (6.21) replacing k by K. By the definition of A\g,, and
Ag, (cf. Lemma 1.8) and (5.5), Aqn corresponds to

(6.23) wo :i=y— N A — € Q"(Agn).
x

The map (6.20) induces an injective maps

(6.24) Hommpst(Oon, Homypgr (K, wO™)) — HO(Agn g, ™),

(625) HomMPST (Eﬂn 5 QCI HomPST(K, Qm>> — HO (AQn’K, Qm),

which are compatible with the right vertical map in (6.19) since apply-
ing w, the map (5.21) is identified with the identity on Hompg (K, 2™)
via the isomorphism in Lemma 1.3. Hence it suffices to show the com-
mutativity of the diagram

(626) HOIHPSTK(QTL, Qm) s HO(AQ”,Ka Qm)

l”{ /

HO—mPST(Qna Qm)(K)

where « (resp. () is the composite of (6.17) and (6.24) (resp. (6.18)
and (6.25)). By the definition, « is induced by the map Agn x from
(6.22). As Agn i is given by the image wp r of wy from (6.23) under
the pullback map p* : Q"(Aqn) = Q"(Aqn i), we have

(@) = Pagn x (wWox) for ¢ € Hompgr, (2", Q™),

where ©a,, . 1 Q' (Agn k) — Q"(Aqn k) is induced by . On the
other hand, by the definition of 3, we have a commutative diagram

~

HO(AQnJ(, Qm) HOIIlPST (AQn, HOHIPST(K, Qm))

] E

Hompgy (", 2")(K) —— Hompsr (2", Hompgy (K, ™))

where A&, is induced by Agn» from (6.21). Hence we have

B() = Yag. (wo) for ¢ € Hompgy (2", Q™)(K),

where ¥a,, : Q"(Aqgn) = Hompgp (K, Q™) (Agn) = Q™(Agn k) is in-
duced by . Then, for ¢ € Hompgr, (2", Q2™), we get

B(TK(()O)) = TK(SO>AQR (WO) = SOAQR,K(p*W(]) = PAgn (wO,K) = Oé(QO),
which proves the commutativity of (6.26).
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