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Abstract A geometric construction of Z2–graded odd and even orthogo-

nal modular categories is given. Their 0–graded parts coincide with cate-

gories previously obtained by Blanchet and the author from the category

of tangles modulo the Kauffman skein relations. Quantum dimensions and

twist coefficients of 1–graded simple objects (spinors) are calculated. We

show that invariants coming from our odd and even orthogonal modular

categories admit spin and Z2–cohomological refinements, respectively. The

relation with the quantum group approach is discussed.
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Introduction

In 1993, Lickorish gave a simple geometric construction of 3–manifold invariants

based on the Kauffman brackets. The same invariants were obtained earlier by

Reshetikhin and Turaev from the representation category of the quantum group

Uq(sl2). The method of Lickorish was so much easier than the quantum group

theoretical one that it inspired many researchers to work on its generalizations.

Recall that a quantum group Uq(g) for any semi–simple Lie algebra g and some

root of unity q provides 3–manifold invariants. In many cases a representation

category of the quantum group is modular (or modularizable), i.e. a functor

from the category of 3–cobordisms to the representation category can be con-

structed (see [8]). This functor is called a Topological Quantum Field Theory

(TQFT).
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In order to get a geometric construction of 3–manifold invariants or TQFT’s

coming from quantum groups of type A (g = slm ), a replacement of the Kauff-

man bracket in Lickorish’s approach by the HOMFLY polynomial is needed.

This was successfully done in papers of Yokota, Aiston–Morton and Blanchet.

In [4], Blanchet and the author constructed (pre–)modular categories from the

category of tangles modulo the Kauffman skein relations. We recovered the

invariants of symplectic quantum groups (g = spm type C ), but only “half” of

the invariants for orthogonal groups (g = som types B and D). Our approach

did not provide objects corresponding to spin representations.

In this article we give a geometric construction of two series of orthogonal

modular categories which include spinors. We consider the category of framed

tangles where colors from the set {1, 2} are attached to lines. We add the

relations given by the kernel of the (som, V, S) weight system pulled back by the

Vassiliev–Kontsevich invariant. The standard representation V and the spinor

representation S are used for 1–colored and 2–colored lines, respectively. The

resulting category admits a natural Z2–grading. The 0–graded part has the

same set of simple objects as the category studied in [4].

We consider two series of parameter specializations for which this 0–graded part

is pre–modular. Then we give a recursive construction of idempotents for the 1–

graded parts of these pre–modular categories. The key point is the observation

that encircling any 1–graded object with a line colored with a special 0–graded

object, given by a rectangular Young diagram, yields a projector. We calculate

quantum dimensions and twist coefficients of 1–graded simple objects (spinors).

We show that invariants coming from our odd and even orthogonal modular

categories admit spin and Z2–cohomological refinements, respectively.

This paper is organized as follows. In the first section we define the category

we will work in. In the second and third sections we construct odd and even

orthogonal modular categories. Relations with quantum groups are discussed

in the last section.

The author wishes to thank Christian Blanchet for many stimulating discus-

sions.
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Figure 1: Diagram of a two colored tangle

1 Basic category

In this section we define the category which will be studied subsequently. We

also analyze its 0–graded part.

1.1 Category of two colored tangles

Let us fix an oriented 3–dimensional Euclidean space R3 with coordinates

(x, y, t).

Definition 1.1 A two colored tangle T is a 1–dimensional compact smooth

sub–manifold of R3 equipped with a normal vector field and lying between two

horizontal planes {t = a}, {t = b}, a > b, called the top and the bottom

planes. The boundary of T lies on two lines {t = a, y = 0} and {t = b, y = 0}.

The normal vector field has coordinates (0, 1, 0) in boundary points. The map

c from the set of connected components of T to the set of colors {1, 2} is given.

Two colored tangles T and T ′ are equivalent if there is an isotopy sending T

to T ′ which respects horizontal planes and colorings.

Connected components of T will be called lines. We represent T by drawing

its generic position diagram in blackboard framing. Lines of the second color

are drawn bold. An example is given in Figure 1.

An intersection of a two colored tangle with the top and the bottom planes

defines a word in the alphabet {◦, •}, where ◦ and • denote the points of

the first and the second color, respectively. For two such words u and v , let

(T , u, v) be the set of two colored tangles whose intersection with the top and

the bottom planes are given by u and v , respectively.
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Definition 1.2 Let T be the monoidal category whose objects are words in

the alphabet {◦, •}. For u, v ∈ Ob(T ), the set of morphisms Hom(u, v) from u

to v is given by (T , u, v). The composition of (T , u, v) with (T , v, w) is defined

by gluing of horizontal planes identifying points corresponding to v . Moreover,

u⊗ v := uv .

Definition 1.3 Let f be a field. Let Tf be a linearization of T , where formal

f –linear combinations of tangles are allowed as morphisms. The composition

and tensor product are bilinear.

1.2 Kontsevich integral

In [9], the category of q–tangles was considered. The objects of this category

are non–associative words in the alphabet {+,−}. The morphisms are framed

oriented tangles. It was shown that the universal Vassiliev–Kontsevich invariant

extends to a functor from this category to the category of chord diagrams. An

analogous construction applies to colored q–tangles.

Let us orient all lines of two colored tangles from the top to the bottom. Let

us map a word u ∈ Ob(T ) with n letters to the non–associative word of length

n in the alphabet {+, +} beginning with n left brackets, e.g., ◦ • ◦ maps

to ((++)+). This defines a functor from T into the category of two colored

q–tangles. Now the universal Vassiliev–Kontsevich invariant constructed in [9]

defines a functor from this category to the category A of chord diagrams with

two colored support. We denote by Z : T → A the composition.

Let us consider the Lie algebra g = som . Let V be the standard and S the

spin representation of g. Let t ∈ g∗ ⊗ g∗ be its Killing form.

Theorem 1.1 There exists a unique C–linear monoidal functor Fg,V,S (called

weight system) from A to the category Modg of the representations of g such

that it is uniquely characterized by its values on the following elementary mor-

phisms.

Algebraic & Geometric Topology, Volume 3 (2003)
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The first three diagrams correspond to the morphisms g⊗ g → C, V ⊗ V → C

and S ⊗ S → C in Modg given by the Killing form. The next three are their

transposes. The first morphism in the second row is given by the Lie bracket.

The next two correspond to the g–action on V and S . The third row describes

flips x⊗y 7→ y⊗x in g⊗g, g⊗V , g⊗S , V ⊗V , V ⊗S and S⊗S , respectively.

The proof of Bar–Natan [1] can be adapted. An essential point is that the

invariant tensors ̺(t) for any representation ̺ satisfy the classical Yang–Baxter

equation, which corresponds to the 4–term relation in A.

Remark For g = so2n , the construction can be modified by orienting 2–

colored lines and by using the spin representations S± in the weight system,

according to the orientation.

1.3 Category Tq(som)

The central object of our study is the category Th(som) defined as TC modulo

the relations given by the kernel of Fsom,V,S(Z(TC)). The relations are defined

a priori over C[[h]], where h is the formal parameter of the Kontsevich integral.

An explicite description of the relations is not known except if we restrict to

1–colored framed tangles or to 2–colored ones and use Fso7,S weight system.

The first case was considered in [10] and the relations are just the Kauffman

skein relations. The second case was studied in [12], where a set of relations

sufficient to calculate link invariants is given.

Algebraic & Geometric Topology, Volume 3 (2003)
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The proof of Le and Murakami in [9] can be used to show that link invariants

provided by Th(som) and the quantum group Uq(som) coincide for odd m if

q = exph and for even m if q = exp 2h. The invariant associated by Uq(som)

with a colored link is defined over the ring R = Q[q±
1

2D ], where D = 2 if m

is odd and D = 4 for even m.∗ This allows to define Th(som) over R and to

use the notation Tq(som) for Th(som), where q = exph if m = 2n + 1 and

q = exp 2h if m = 2n.

Let us define a Z2–grading in Tq(som) as follows. A grading of u ∈ Ob(Tq(som))

is given by the number of symbols • in u modulo 2. All morphisms in the

category are 0–graded.

1.4 0–graded idempotents

Let u ∈ Ob(Tq(som)). A nonzero morphism T ∈ EndTq(som)(u) is called a

minimal idempotent if T 2 = T and for any X ∈ EndTq(som)(u) there exists a

constant c ∈ R, such that TXT = cT . A standard procedure called idempotent

completion allows to add idempotents as objects into the category. Objects

given by minimal idempotents are called simple. The idempotent completion

of Tq(som) is denoted by the same symbol. Let us equip Tq(som) with a direct

sum of objects in a formal way.

In [5], we gave a geometric construction of minimal idempotents in the category

of (framed non–oriented) tangles modulo the Kauffman skein relations.

= (s− s−1)

( )

= α , = α−1

L ∐ © =

(

α− α−1

s− s−1
+ 1

)

L

Figure 2: Kauffman relations

The idempotents were numbered by integer partitions or Young diagrams λ =

∗The integrality result of T. Le shows that even a smaller ring can be considered.
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(λ1 ≥ λ2 ≥ ... ≥ λk). Their twist coefficients and quantum dimensions were

calculated.

Lemma 1.2 After the substitution α = sm−1 , s = exph, the idempotents

constructed in [5] give the whole set of minimal idempotents of the 0–graded

part of Th(som).

Proof Let us first consider 1–colored tangles. The set of relations in Th(som)

for 1–colored tangles coincides with the Kauffman skein relations, where α =

sm−1 , s = exph (see [10] for the proof, – attention, – Le and Murakami use a

different normalization for the trivial knot). Minimal idempotents for tangles

modulo the Kauffman skein relations are constructed in [5].

From the representation theory of the classical orthogonal Lie algebras (see e.g.

[7] p. 291–296) we know that S ⊗ S decomposes into a direct sum of simple

objects numbered by integer partitions. This implies that the addition of an

even number of 2–colored lines to 1–colored tangles does not create new minimal

idempotents.

In [4], we found seven series of specializations of parameters α and s, such that

the category of tangles modulo the Kauffman skein relations with these specia-

lizations becomes pre–modular (after idempotent completion and quotienting

by negligible morphisms). In all cases, s is a root of unity and α is a power of

s. The specializations α = s2n , s4n+4k = 1 and α = s2n−1 , s4n+4k−4 = 1 lead

to odd and even orthogonal categories Bn,−k and Dn,k , respectively.

In the remainder of the paper we will complete Bn,−k and Dn,k with 1–graded

simple objects. The odd and even orthogonal cases will be treated separately.

2 Odd orthogonal modular categories

This section is devoted to the construction of odd orthogonal modular catego-

ries. We show that these categories lead to spin TQFT’s and calculate spin

Verlinde formulas.

Algebraic & Geometric Topology, Volume 3 (2003)
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2.1 0–graded objects

Let us use the standard notation Bn for so2n+1 . We fix a primitive (4n+4k)th

root of unity q and choose v with v2 = q . In this specialization, the set of

0–graded simple objects of Tq(Bn) (modulo negligible morphisms) is given by

Young diagrams (or integer partitions) from the set

Γ̃ = {λ : λ1 + λ2 ≤ 2k + 1, λ∨1 + λ∨2 ≤ 2n+ 1}

(see [4] p. 487 for the proof, put s = q). Here λ∨i denotes the number of cells

in the ith column of λ.

The set Γ̃ admits an algebra structure with the multiplication given by the

tensor product and the addition given by the direct sum. The empty partition

is the one in this algebra and it will be denoted by 1. (Please not confuse with

the partition V = (1) corresponding to the object ◦.)

The set Γ̃ has two invertible objects of order two. The object J = (2k + 1),

given by the one row Young diagram with 2k + 1 cells in it, and the object

12n+1 given by the one column Young diagram with 2n+1 cells in it. They are

0–transparent, i.e. they have trivial braiding with any other 0–graded object.

The tensor square of each of them is the trivial object. The twist coefficient of

J is minus one and of 12n+1 is one. Let us consider the following set

Γ0 = {λ : λ1 + λ2 ≤ 2k + 1, λ∨1 ≤ n}.

Any λ ∈ Γ̃ is either contained in Γ0 or is isomorphic to 12n+1 ⊗µ with µ ∈ Γ0 ,

where 12n+1 ⊗ µ and µ are both simple with the same quantum dimensions,

braiding and twist coefficients. There exists a standard procedure called mo-

dularization (or modular extension), which allows to path to a new category,

where 12n+1 ⊗ µ and µ are identified. We will denote by Tq(B̃n) this new

category. Its set of simple 0–graded objects is Γ0 . The existence criterion for

such modularization functors was developed by Bruguières. In [4], a geometric

construction of these functors is given.

2.2 Recursive construction of 1–graded idempotents

The rectangular 0–graded object A = kn ∈ Γ0 , consisting of n rows with k

cells in each, plays a key role in our construction of 1–graded idempotents. Let

us define P± = 1
2 (1 ±A).
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Let us enumerate 1–graded simple objects by partitions consisting of n non–

increasing half–integers. The partition S = (1/2, ..., 1/2) is used for the object

•.† The first step in the recursive construction of minimal 1–graded idempotents

is given by the following proposition.

Proposition 2.1 Let λ = (λ1) be a one row Young diagram with 1 ≤ λ1 ≤ 2k .

The tangles

P̃+(λ) = +P

λ
P̃−(λ) = P_

λ

are minimal idempotents projecting into simple objects (λ1 + 1/2, 1/2, ..., 1/2)

and (λ1−1/2, 1/2, ..., 1/2). Here P̃+(λ) projects into the first partition if λ1 = 0

mod 2, otherwise into the second.

Proof Let us decompose the identity of λ⊗ S as follows.

+P P_

λλλ

(1)

From the representation theory of Bn we know that

λ⊗ S = (λ1 + 1/2, 1/2, ..., 1/2) ⊕ (λ1 − 1/2, 1/2, ..., 1/2) .

Therefore, dim EndTq(B̃n)(λ ⊗ S) is maximal two. Note that J ⊗ S is simple,

because J = (2k + 1) is invertible. Using the equality of the colored link

invariants in Tq(B̃n) and Uq(Bn), semi–simplicity of the modular category for

Uq(Bn) and Lemma 5.1 in the Appendix, we see that

P̃±(λ)P̃±(λ) = P̃±(λ) P̃±(λ)P̃∓(λ) = 0

for any λ ∈ Γ0 . Furthermore, these morphisms are non–negligible. The claim

follows.

Remark 2.2 In the proof we use the quantum group formulas for the quantum

dimension and the S–matrix. These formulas can also be obtained by applying

an appropriate weight system to the Kontsevich integral of the unknot and

of the Hopf link, which were calculated recently in [2]. This will make our

approach completely independent from the quantum group theoretical one.
†The relation between such partitions and dominant weights of Bn is explained in

the appendix.

Algebraic & Geometric Topology, Volume 3 (2003)
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Let λ = (λ1, ..., λp) be a Young diagram with λ1 + λ2 ≤ 2k and 2 ≤ p ≤ n.

Let ν be obtained by removing one cell from the last row of λ. Let us assume

per induction that we can construct an idempotent pνS
µ projecting ν ⊗ S into

a simple component µ. We know from the classical theory that the tensor

product λ⊗ S decomposes into simple objects as follows:

λ⊗ S = ⊕(λ1 ± 1/2, λ2 ± 1/2, ..., λp ± 1/2, 1/2, ..., 1/2) (2)

Contributions not corresponding to non–increasing partitions do not appear in

this decomposition. A quasi–idempotent p̃λS
µ projecting to a partition µ from

the set I = {(λ1 ± 1/2, λ2 ± 1/2, ..., λp − 1/2, 1/2, ..., 1/2)} can be obtained as

follows:

(ỹλ ⊗ idS)(id|λ|−1 ⊗ P̃+)pνS
µ (id|λ|−1 ⊗ P̃+)(ỹλ ⊗ idS) .

Here where ỹλ is the 0–graded minimal idempotent defined in [5], P̃+ is the

idempotent pV S
S given by encircling the 2–colored line and the 1–colored line

starting from the last cell in the last row of λ with a line colored by P+ .

Normalizing (if necessary) this quasi–idempotent we get pλS
µ . The projector

onto (λ1 + 1/2, ..., λp + 1/2, 1/2, ..., 1/2) is given by ỹλ ⊗ idS −
∑

µ∈I p
λS
µ . It

remains to show that pλS
µ is not negligible. The trace of the morphism (ỹ(1,1) ⊗

idS)(idV ⊗ P̃+) is nonzero. Here we use that dimS 6= 0 (see next subsection).

Analogously, the trace of (idV ⊗ P̃+)(ỹ(2) ⊗ idS) is nonzero. Therefore, pλS
µ is

a composition of non–negligible morphisms.

As a result, we can construct 1–graded simple objects numbered by partitions

consisting of n non–increasing half–integers from the set

Γ = {λ : λ1 + λ2 ≤ 2k + 1}.

We hope to be able to prove the following statement in the future.

Conjecture 2.3 Let λ = (λ1, ..., λp) be a Young diagram with λ1 + λ2 ≤ 2k ,

p ≤ n. For b = (λ1 + 1/2, ..., λp + 1/2, 1/2, ..., 1/2) we have

pλS
b = (ỹλ ⊗ idS)(P̃1(λ1) ⊗ id)...(id ⊗ P̃p(λp))(ỹλ ⊗ idS) ,

where

P̃i(λi) =

{

P̃+(λi) : λi = 0 mod 2

P̃−(λi) : λi = 1 mod 2

Algebraic & Geometric Topology, Volume 3 (2003)
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An example of such projection onto (7/2, 5/2, 3/2) for λ = (3, 2, 1) is drawn

below.

P

P

P

−

+

−

2.3 Quantum dimensions.

By applying the (Bn, S) weight system to the Kontsevich integral of the 2–

colored unknot we get‡

dimS = (v + v−1)(v3 + v−3)...(v2n−1 + v−2n+1)

Here q = v2 . By closing (1) with λ = (1) we get dimV dimS = dimS+dimX ,

which allows to calculate dimX . We conclude that it is given by formula (7)

in the Appendix with λ = (3/2, 1/2, ..., 1/2).

Proposition 2.4 The quantum dimension of a simple object λ ∈ Γ is given

by formula (7).

Proof For integer partitions, the claim was proved in [4]. In fact, (7) coincides

with the formula given in Proposition 3.3 of [4]. Let us assume per induction

that the quantum dimensions of 1–graded simple objects are given by this for-

mula. We are finished if we can show that for a p row Young diagram λ

dimS dimλ =
∑

s̃∈Z
p
2

dim(λ+ s̃) ,

where Z
p
2 = {(±1/2, ...,±1/2, 1/2, ..., 1/2)}. Note that if λi = λi+1 ,

dim(λ1 ±
1

2
, ..., λi −

1

2
, λi +

1

2
, ..., λn ±

1

2
) = 0 ,

‡This computation will be published elsewhere.
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because terms in (7) corresponding to w and σiw cancel with each other. Here

σi interchanges the ith and (i+ 1)th coordinates. Using

dimS =
∑

s̃∈Zn
2

v2(s̃|ρ)

we get

dimS dimλ =
1

ψ

∑

w∈W,s̃∈Zn
2

sn(w)v2(w−1(λ+ρ)+s̃|ρ)

=
1

ψ

∑

w∈W,w′∈Zn
2

sn(w)v2(w−1(λ+ρ)+w−1w′(S)|ρ)

=
1

ψ

∑

w′∈Zn
2

∑

w∈W

sn(w)v2(λ+ρ+w′(S)|w(ρ))

=
∑

s̃∈Z
p
2

dim(λ+ s̃)

2.4 Twist coefficients

Let us denote by tµ the twist coefficient of the simple object µ. Then by

twisting (2) we have the following identity

tλtS

Sλ

=
∑

s̃∈Z
p
2

tλ+s̃
λ + s~

Sλ

λ S

.

Replacing the positive twist with the negative one we get a similar identity

involving inverse twist coefficients. By closing the λ–colored line in these two

identities we obtain

tλtS
λ

S

=
∑

s̃

tλ+s̃
dim(λ+ s̃)

dim S

S

,

t−1
λ t−1

S

λ

S

=
∑

s̃

t−1
λ+s̃

dim(λ+ s̃)

dim S

S

.
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This implies the following formula:
∑

s̃∈Zn
2

(t−1
S t−1

λ tλ+s̃ − tStλt
−1
λ+s̃) dim(λ+ s̃) = 0 (3)

Using (3) and the formulas for the quantum dimension we can calculate twist

coefficients of simple 1–graded objects recursively. Note that tS = vn2+n/2 is

determined by the action of the Casimir on the spin representation.

Proposition 2.5 The twist coefficient of a simple object µ ∈ Γ is given by

the following formula:

tµ = v(µ+2ρ|µ) (4)

Proof In [4] it was shown that the twist coefficients of 0–graded objects are

given by this formula. Now let us assume per induction that this formula holds

for 1–graded objects. We are finished if we can prove (3) with this induction

hypothesis.

Substituting (4) and quantum dimensions in (3), we get:

v−(4ρ|s)
∑

s̃∈Zn
2

∑

w∈W

sn(w)v2(λ+s̃+ρ|w(ρ))v2(λ+ρ|s̃)

=
∑

s̃∈Zn
2

∑

w∈W

sn(w)v2(λ+s̃+ρ|w(ρ))v−2(λ+ρ|s̃) (5)

Using the fact that the Weyl group W is a semi–direct product of the symmetric

group Sn and Zn
2 (acting on Rn by changing signs of coordinates), we write

w = g′σ and s̃ = g(S) with g, g′ ∈ Zn
2 and σ ∈ Sn . With this notation, (5)

follows from the following two identities:
∑

g,g′∈Zn
2

,σ∈Sn

sn(g′σ)v2(λ+ρ|g′σ(ρ)+g(S))v±2(g′g(S)−S|σ(ρ))

=
∑

g∈Zn
2

,σ∈Sn

sn(gσ)v2(g(λ+ρ)|σ(ρ)+S) (6)

To get the second one we replace s̃ by −s̃. In the rest of the proof we will

show (6). The idea is that terms with g 6= g′ cancel in pairs. Let us first

consider the simplest case, when g′(x) differs from g(x) only by a sign of the

ith coordinate. We write g′ = gig . Let us denote by t the ith half–integer

coordinate of σ(ρ), i.e. (σ(ρ))i = t. Then there are two possibilities: (a) there

Algebraic & Geometric Topology, Volume 3 (2003)
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exists j with (σ(ρ))j = t− 1 or (b) t = 1/2. In the first case, we put σ̃ = σijσ

and g̃ = gigjg , where σij interchange the ith and j th coordinates. Analyzing

the four possibilities g(xi) = ±xi , g(xj) = ±xj , we see that

g′σ(ρ) + g(S) = g′σ̃(ρ) + g̃(S) .

The claim then follows from the fact that sn(g′σ) = −sn(g′σ̃) and (g′g(S) −

S|σ(ρ)) = (g′g̃(S) − S|σ̃(ρ)).

In case (b), we put g̃′ = gig
′ , g̃ = gig and σ̃ = σ . Case by case checking shows

that terms in (6) corresponding to g, g′, σ and g̃, g̃′, σ̃ cancel with each other.

Note that if g′(x) and g(x) are different for all n coordinates, then we can

proceed as in case (b).

Let us assume that g′(x) and g(x) differs in less than n coordinates. Then

there exists j with (σ(ρ))j = 1/2. If g(xj) = −g′(xj), then we finish with (b),

if not, we compare g′(xi) and g(xi) with (σ(ρ))i = 3/2, 5/2, .... Proceeding

in this way we will find a pair of indices i, j , such that (σ(ρ))i − (σ(ρ))j = 1,

g(xj) = g′(xj), but g(xi) = −g′(xi). Then we continue as in case (a).

2.5 Modular category B
k
n

The previous results imply that the category Tq(B̃n) defined on a (4n + 4k)th

root of unity q is pre–modular. Its simple objects are numbered by integer or

half–integer partitions λ = (λ1, ..., λn) with λ1 ≥ ... ≥ λn ≥ 0 from Γ = {λ :

λ1 + λ2 ≤ 2k + 1}. Let us call this category Bk
n .

Theorem 2.6 The category Bk
n is modular.

Proof It remains to prove that Bk
n has no nontrivial transparent objects. Let

b = (b1+1/2, b2+1/2, ..., bn+1/2) be a 1–graded simple object. The object J⊗b

is simple and is given by partition b′ = (2k+1− b1−1/2, b2 +1/2, ..., bn +1/2).

This is because J is invertible and b′ is the only object in Γ with the correct

twist coefficient and quantum dimension. It follows that

tJ tb

bJ

= tb′

b’

.
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Inserting twist coefficients we obtain that the braiding coefficient of J and b

is (−1). This implies that J is not transparent in Bk
n and that no 1–graded

simple object can be transparent. But the 0–graded part of Bk
n has not even a

further nontrivial 0–transparent object.

2.6 Refinements

It was shown by Blanchet in [6] that any modular category with an invertible

object J of order 2 (i.e. J2 = 1), whose twist coefficient is (−1) and quantum

dimension is 1, provides invariants of 3–manifolds equipped with spin structure.

The Z2–grading defined in [6] by means of J coincides with the one used in this

paper. The Kirby color decomposes as Ω = Ω0 + Ω1 according to this grading.

The invariants of closed 3–manifolds equipped with spin structure are defined by

putting the 1–graded Kirby color on the components of a surgery link belonging

to the so–called characteristic sublink (defined by the spin structure) and the 0–

graded Kirby color on the other components. The ordinary 3–manifold invariant

decomposes into a sum of refined invariants over all spin structures. A spin

TQFT can also be constructed (see e.g. [3]). It associates a vector space V (Σg, s)

to a genus g surface Σg with spin structure s.

Proposition 2.7 The category Bk
n provides a spin TQFT. Furthermore,

4g

〈Ω〉g−1
dimV (Σg, s) =

∑

λ∈Γ\Γ1

(dim λ)2−2g

+ (−1)Arf(s) 2g
∑

λ∈Γ1

(dim λ)2−2g

where 〈Ω〉 is the invariant of the Kirby–colored unknot, Arf(s) is the Arf inva-

riant and Γ1 = {λ ∈ Γ : λ1 = k + 1/2}.

Proof A spin Verlinde formula was computed by Blanchet in [6, Theorem 3.3].

It uses the action of J on Γ given by the tensor product. In our case,

J ⊗ (λ1, λ2, ..., λn) = (2k + 1 − λ1, λ2, ..., λn)

(compare [4] and the proof of Theorem 2.6.)

Therefore, there are only two different cases. If λ1 6= k+1/2, then #orb(λ) = 2,

|Stab(λ)| = 1. If λ1 = k + 1/2, then #orb(λ) = 1, |Stab(λ)| = 2. The result

follows by the direct application of the Blanchet formula.
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3 Even orthogonal modular categories

In this section we construct even orthogonal modular categories. We show

that corresponding invariants admit cohomological refinements and calculate

the refined Verlinde formulas.

3.1 0–graded objects

Let us use the standard notation Dn for so2n . We fix a primitive (2k+2n−2)th

root of unity q and v with v2 = q . According to [4], the category Tq(Dn) has

the following set of 0–graded simple objects

Γ̃ = {λ : λ1 + λ2 ≤ 2k, λ∨1 + λ∨2 ≤ 2n} .

This set contains two invertible objects of order two: 12n and 2k . They are

0–transparent, with twist coefficients and quantum dimensions are equal to 1.

This implies that the 0–graded part of Tq(Dn) is modularizable. After modular

extension by the group generated by 12n we get a new category, which will be

denoted by Tq(D̃n). The objects 12n ⊗ ν and ν are isomorphic there for any

ν ∈ Γ̃. The 0–graded objects λ with λ∨1 = n do not remain simple in Tq(D̃n)

and decompose as λ = λ− + λ+ . The objects λ± have the same quantum

dimensions and twist coefficients. We will use the partitions (λ1, ...,±λn) for

λ± . The set of 0–graded simple objects of Tq(D̃n) is

Γ0 = {λ : λ1 + λ2 ≤ 2k, λ∨1 < n} ∪ {λ± : λ1 + λ2 ≤ 2k, λ∨1 = n} .

Let A+ be the simple 0–graded object of Tq(D̃n) obtained after splitting of A =

(k, k, ...k) = kn . Let i = vn+k−1 and P± = 1
2(1± (−i)nA+). Then analogously

to the odd orthogonal case, encircling of a spinor b = (2b1+1
2 , ..., 2bn+1

2 ) by P+

gives the identity morphism if
∑

i bi = 0 mod 2 and is zero otherwise. The

proof is given in the appendix.

3.2 Recursive construction of 1–graded idempotents

The group Dn has two spin representations S± given by the highest weights

(1/2, ...,±1/2). In order to distinguish them we put an orientation on the

2–colored lines.
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Let w ∈ Z
p
2 act on coordinates of Rp by sign changing. We put sn(w) = 1 if it

changes the signs of an even number of coordinates and sn(w) = −1 otherwise.

Let s = (1/2, ..., 1/2) ∈ Rp . For any highest weight λ = (λ1, ..., λp, 0, ..., 0), the

tensor product λ⊗ S± decomposes in Dn as follows:

λ⊗ S± =
⊕

w∈Z
p
2

(λ1 + w(s1), ..., λp + w(sp), 1/2, ...,±sn(w)1/2)

If p = n, we have

λ⊗ S± =
⊕

w∈Z
n−1

2

(λ1 + w(s1), λ2 + w(s2), ..., λn ± sn(w)1/2) .

In particular,

V ⊗ S+ = S− + (3/2, 1/2, ..., 1/2) , V ⊗ S− = S+ + (3/2, 1/2, ...,−1/2) .

The corresponding idempotents are given by P̃±(V ).

Suppose that we can decompose ν ⊗ S± into simple objects if ν is obtained

by removing one cell from the last row of λ. Then the projection p
λS+
µ to

µ ⊂ λ⊗S+ (with µ 6= h = (λ1 +1/2, ..., λk +1/2, 1/2, ..., 1/2)) can be obtained

by normalizing the following morphism

(ỹλ ⊗ idS+
)(id|λ|−1 ⊗ P̃+)pνS−

µ (id|λ|−1 ⊗ P̃+)(ỹλ ⊗ idS+
) ,

where P̃+ is given by encircling the 2–colored line and the 1–colored line starting

from the last cell in the last row of λ with a line colored by P+ . The idempotent

p
λS+

h is given by ỹλ ⊗ idS+
−

∑

µ p
λS+
µ . The case λ⊗ S− is similar.

3.3 Modular category D
k
n

Analogously to the odd orthogonal case, one can show that the quantum di-

mensions of spinors are given by the formula (7) and the twist coefficient of a

simple object µ of Tq(D̃n) is v(µ+2ρ|µ) .

We conclude that the category Tq(D̃n) at a (2n + 2k − 2)th root of unity q is

pre–modular. Its simple objects are given by integer or half–integer partitions

λ = (λ1, ..., λn−1,±λn) with λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 from the set Γ = {λ :

λ1 + λ2 ≤ 2k}. Let us denote this category by Dk
n . Taking into account that

the object 2k has the braiding coefficient (−1) with any spinor, we derive that

Dk
n is modular.
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3.4 Refinements

The category Dk
n has an invertible object J of order 2, whose twist coefficient

and quantum dimension are equal to 1. It was shown in [6] that any such

modular category provides an invariant of a 3–manifold M equipped with a

first Z2–cohomology class. More precisely, the object J defines a grading in

the category, which coincides with the Z2–grading used above. For a closed 3–

manifold M , any h ∈ H1(M,Z2) can be represented by a sublink of a surgery

link for M belonging to the kernel of the linking matrix modulo 2. The inva-

riant of a pair (M,h) is then defined by putting 1–graded Kirby colors on this

sublink and 0–graded ones on the other components. This construction can be

extended to manifolds with boundary (see [3]) and leads to a cohomological

TQFT (compare [11]).

Proposition 3.1 The category Dk
n leads to a cohomological TQFT. The di-

mension of the TQFT module associated with a pair (Σg, h), h ∈ H1(Σg), is

given by the following formulas. For h 6= 0,

dimV (Σg, h) =
〈Ω〉g−1

4g

∑

λ∈Γ\Γ1

(dim λ)2−2g

where Γ1 = {λ ∈ Γ : λ1 = k, λ∨1 < n}. For h = 0,

dimV (Σg, h) =
〈Ω〉g−1

4g





∑

λ∈Γ\Γ1

(dim λ)2−2g + 4g
∑

λ∈Γ1

(dim λ)2−2g





Proof In [6, Theorem 5.1] Blanchet give a refined Verlinde formula for coho-

mological TQFT’s. In our case, J acts on Γ as follows:

J ⊗ (λ1, λ2, ..., λn) = (2k − λ1, λ2, ...,−λn)

This is because, λ⊗ J is simple and it contains the object from the right hand

side of the above formula by classical representation theory.

Therefore, we have only two cases. If λ ∈ Γ\Γ1 , then #orb(λ) = 2, |Stab(λ)| =

1. If λ ∈ Γ1 , then #orb(λ) = 1, |Stab(λ)| = 2. The result follows by the direct

application of the Blanchet formula.
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4 Relation with quantum groups

We show that our orthogonal modular categories are equivalent to the quantum

group theoretical ones. Further, we compare results about refinements and

level–rank duality.

4.1 Equivalence

Let us call two modular categories equivalent if there exists a bijection between

their sets of simple objects providing an equality of the corresponding colored

link invariants. This implies that the associated TQFT’s are isomorphic (see

[13, III, 3.3]).

Theorem 4.1 i) The category Bk
n is equivalent to the modular category

defined for Uq(Bn) at a (4n + 4k)th root of unity q .

ii) The category Dk
n is equivalent to the modular category defined for Uq(Dn)

at a (2n + 2k − 2)th root of unity q .

Proof The construction of modular categories from quantum groups is given

in [8]. Let us recall the main results.

Let g be a finite–dimensional simple Lie algebra over C. Let d be the maximal

absolute value of the non–diagonal entries of its Cartan matrix. Let us denote

by C the set of the dominant weights of g. We normalize the inner product

( | ) on the weight space, such that the square length of any short root is 2.

Finally, we denote by β0 the long root in C .

The quantum group Uq(g) at a primitive root of unity q of order r provides a

modular category if r ≥ dh∨ , where h∨ is the Coxeter number. This modular

category has the following set of simple objects.

CL = {x ∈ C : (x|β0) ≤ dL}

Here L := r/d− h∨ is the level of the category.

i) Let g = Bn . Then we have β0 = (1, 1, 0, ..., 0) in the basis chosen in the

appendix, d = 2 and h∨ = 2n − 1. For r = 4n + 4k , CL is in bijection with

the set Γ = {λ : λ1 + λ2 ≤ 2k + 1} of simple objects of Bk
n . Moreover, this
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bijection induces an equality of the colored link invariants due to the result of

Le–Murakami [9].

iI) Let g = Dn . Then β0 = (1, 1, 0, ..., 0) in the basis chosen in the appendix,

d = 1 and h∨ = 2n − 2. For r = 2n + 2k − 2, CL coincides with the set of

simple objects of Dk
n . The claim follows then as above from [9].

4.2 Refinements

Cohomological refinements in categories obtained from quantum groups were

studied in [11]. For type D , Le and Turaev consider cohomology classes with

coefficients in Z4 or Z2×Z2 . The statements about existence of spin refinements

in modular categories of type B and about Z2–cohomological refinements for

type D seem to be new.

4.3 Level–rank duality

It was shown in [4] that the categories Bn,−k and Dn,k have their level–rank

dual partners. For quantum groups this means the following. Let us denote

by D̃n,k the modular category for Uq(Dn) at a (2n + 2k − 2)th root of unity

quotiented by spinors and the action of the transparent object 2k . Then D̃n,k

is isomorphic to D̃k,n . The isomorphism is given by sending v to −v−1 and

by ‘transposing’ the partitions. (It is helpful to use the geometric approach to

modularization functors in order to construct the isomorphism.) In the odd

orthogonal case this duality does not exist on the quantum group level, because

the corresponding quotients can not be constructed. Transparent objects have

twist coefficients (−1).

Unfortunately, this level–rank duality between 0–graded parts of Bk
n and Dk

n

does not extend to the full categories. Even the cardinalities of the sets of

simple objects in Bk
n and Bn

k as well as in Dk
n and Dn

k are different in general.

This suggests the existence of bigger categories with more symmetric sets of

objects admitting level–rank duality. One possibility to construct them would

be to take the 0–graded part of Bk
n and to add two different spin representations

using the Bn and Bk weight systems. This will be studied in the forthcoming

paper with C. Blanchet.
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5 Appendix

5.1 Odd orthogonal case

Let {ei}i=1,2,...,n be the standard base of Rn with the scalar product (ei|ej) =

2δij . Any weight of Bn has all integer or all half–integer coordinates in this

base. We write λ = (λ1, ..., λn) if λ =
∑n

i=1 λiei . Any weight λ with λ1 ≥

λ2 ≥ ... ≥ λn ≥ 0 is a highest weight of an irreducible representation of Bn

or a dominant weight. The half sum of all positive roots of Bn we denote by

ρ = (n− 1/2, n − 3/2, ..., 1/2).

Let us consider the quantum group Uq(Bn), where q = v2 is a primitive (4n+

4k)th root of unity. The set of simple objects (or dominant weights) of the

corresponding modular category is Γ = {λ : λ1 + λ2 ≤ 2k + 1}, where λ is a

highest weight of Bn [8]. The quantum dimension of a simple object λ ∈ Γ is

given by the following formula:

dim λ =
1

ψ

∑

w∈W

sn(w)v2(λ+ρ|w(ρ)) (7)

ψ =
∑

w∈W

sn(w)v2(ρ|w(ρ)) =
∏

positive roots α

v(ρ|α) − v−(ρ|α)

Here W = Zn
2 ∝ Sn is the Weyl group of Bn generated by reflections on

the hyperplanes orthogonal to the roots ±ei ± ej ,±ei . Furthermore, for the

invariant of the Hopf link, whose components are colored by µ, ν ∈ Γ, we have

Sµν =
1

ψ

∑

w∈W

sn(w)v2(µ+ρ|w(ν+ρ)) . (8)

Lemma 5.1 Let b = (2b1+1
2 , 2b2+1

2 , ..., 2bn+1
2 ) be a dominant weight with half–

integer coordinates and A = (k, k, ..., k), then

b

A = (−1)b1+b2+...+bn

b

.

Proof The coefficient to determine is equal to SbA(dim b)−1 . From (7) and

(8) we have

dim b =
1

ψ

∑

w∈W

sn(w)v2(b+ρ|w(ρ))
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SbA =
1

ψ

∑

w∈W

sn(w)v2(b+ρ|w(A+ρ))

Let us write A+ ρ = (k + n)(1, 1, ..., 1) +w1(ρ), where w1 ∈W and sn(w1) =

(−1)n(n+1)/2 . Then from v4n+4k = −1 we have

v2(k+n)
∑

i(b+ρ|±ei) = (−1)(b1+b2+...+bn+n(n+1)/2)

or

sn(w)v2(b+ρ|w(A+ρ)) = (−1)b1+b2+...+bnsn(ww1)v
2(b+ρ|ww1(ρ)) .

The result follows.

5.2 Even orthogonal case

Let {ei}i=1,2,...,n be the standard base of Rn with the scalar product (ei|ej) =

δij . Any weight of Dn has all integer or all half–integer coordinates in this base.

Any weight λ = (λ1, ...,±λn) with λ1 ≥ λ2... ≥ λn ≥ 0 is a highest weight of

an irreducible representation of Dn . The half sum of all positive roots of Dn

we denote by ρ = (n− 1, n− 2, ..., 1, 0).

Let us consider the quantum group Uq(Dn), where q is a primitive (2n +

2k − 2)th root of unity and v2 = q . The set of simple objects (or dominant

weights) of the corresponding modular category is Γ = {λ : λ1 + λ2 ≤ 2k}.

The formulas (7) and (8) hold for the highest weights from Γ, where the Weyl

group W of Dn is generated by reflections on the hyperplanes orthogonal to

the roots ±ei ± ej . This group contains Sn . The kernel of the projection to Sn

consists of transformations acting by (−1) on an even number of axes.

Lemma 5.2 Let b = (2b1+1
2 , 2b2+1

2 , ..., 2bn+1
2 ) be a dominant weight with half–

integer coordinates, A+ = (k, k, ..., k) and i = vn+k−1 , then

b

A+ = (−1)b1+b2+...+bn in

b

.

Proof As before, the coefficient to determine is equal to SbA+
(dim b)−1 . We

have

SbA+
=

1

ψ

∑

w∈W

sn(w)v2(b+ρ|w(A++ρ)) .
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Let us write A+ + ρ = (k + n − 1)(1, 1, ..., 1) + w1(ρ), where w1 ∈ W and

sn(w1) = (−1)n(n−1)/2 . Then

v2(k+n−1)(b+ρ|w(1,...,1)) = (−1)b1+b2+...+bn+n(n−1)/2 in

for any w ∈W . The result follows as in the odd orthogonal case.

Note that for A− = (k, k, ...,−k) an analogous statement holds:

b

A− = (−1)b1+b2+...+bn(−i)n

b
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