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ON THE INTEGRALITY OF THE WITTEN–RESHETIKHIN–TURAEV

3–MANIFOLD INVARIANTS

ANNA BELIAKOVA, QI CHEN, AND THANG LE

Abstract. We prove that the SU(2) and SO(3) Witten–Reshetikhin–Turaev invariants
of any 3–manifold with any colored link inside at any root of unity are algebraic integers.

0. Introduction

In the late 80s, Witten [Wi] and Reshetikhin-Turaev [RT] associated with any closed
oriented 3-manifold M (possibly with a colored link inside), any root of unity ξ and any
compact Lie group G a complex number τGM(ξ), called the quantum or WRT invariant of
M .

For more than 20 years, the problem of integrality of the WRT invariants has been
intensively studied. The interest to this problem was drawn by the theory of perturbative
3-manifold invariants generalizing those of Casson and Walker [O], by the construction of
Integral Topological Quantum Field Theories [G, GM] and their topological applications
and more recently, by attempts to categorify the WRT invariants [Kho].

In the case G = SU(2), there is a projective version τ
SO(3)
M (ξ), introduced by Kirby and

Melvin [KM] and defined at roots of unity of odd order. This projective version, when
defined, determines the SU(2) version.

In this paper we completely solve the integrality problem for both SO(3) and SU(2)
versions of the WRT invariant for all 3-manifolds with arbitrary links inside. Before
stating our results, let us give a brief introduction into the history of this subject.

In 1995 Murakami [Mu] established the integrality of the WRT SO(3)-invariant for
rational homology 3-spheres at roots of unity of prime orders. This result was extended
to all 3-manifolds by Masbaum and Roberts [MR]. Masbaum and Wenzl [MW], and
independently Takata and Yokota [TY], proved the integrality of the projective WRT
SU(n)-invariant for all 3-manifolds, always under the assumption that the orders of the
roots of unity are prime. Finally the third author [Le2] established the integrality of the
projective WRT invariant associated with any compact simple Lie group, again at roots
of unity of prime orders.

The case for the roots of unity of non-prime orders is more complicated. The first inte-
grality result for all roots of unity was obtained by Habiro [Ha2] in the case of SU(2) and
integral homology 3-spheres. Habiro’s proof relies on the existence of the unified invariant
for integral homology 3-spheres as an element of Habiro’s ring, a certain cyclotomic com-
pletion of the polynomial ring Z[q]. This unified invariant is a kind of generating function
for the set of WRT SU(2) invariants at all roots of unity. The integrality in this approach
follows directly from the general properties of Habiro’s ring.

Habiro and the third author [HL] subsequently defined the unified WRT invariant for all
simple Lie groups and integral homology 3-spheres, thus proving that the WRT invariant
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of any integral homology 3-sphere associated to any simple Lie group and any root of
unity is always an algebraic integer. However, the case of manifolds other than homology
spheres was unknown, even with G = SU(2).

In this paper we give a complete solution for the integrality problem for all 3-manifolds
with arbitrary link inside at all roots of unity for the case of the group SU(2). Our
invariants are normalized as in [KM] and we show that integrality in that case implies
integrality for all other normalizations used in the literature.

Theorem 1. The WRT SU(2)-invariant of any 3-manifold M with any colored link inside
at any root of unity is an algebraic integer.

Theorem 2. The WRT SO(3)-invariant of any 3-manifold M with any colored link inside
at any root of unity of odd order is an algebraic integer.

Theorem 2 is a generalization of a result in [BL] to manifolds which contain a link
inside. However, we give here a new independent proof along the same lines as in the
SU(2) case. Theorem 1 is the main result of the paper. The key new ideas used in the
proofs are the following.

One of the main tools is a significant generalization of some divisibility result (Theorem
2.2) which was originally obtained in [Le3] using a number-theoretical identity of Andrews’
[A], whose special cases are the classical Rogers-Ramanujan identities.

Further, to include the case of even colored links in 3-manifolds, we had to introduce a
new basis for the Grothendieck ring of the quantum sl(2), which is orthogonal to the odd
part of the center with respect to the Rosso form. This led to an important new result
(Theorem 1.1) generalizing that of Habiro, which states that the colored Jones polynomial
can be presented as a sum of integral “blocks”. This result is proved in the Appendix,
and it is of independent interest in the quantum link invariant theory.

For manifolds obtained by surgery along links with diagonal linking matrix we show
that the contribution of each integral block to the WRT invariant is integral by using
our main tool (Theorem 2.2). The general case can be reduced to the diagonal one by
using some classification results for linking pairings. However, it is more demanding in
the SU(2) case than in the SO(3) one, since the linking pairings on abelian groups of
even order are more complicated [KK].

As a byproduct, we generalize the relationship between SU(2) and SO(3) invariants at
odd roots of unity to the case when a 3-manifold contains an arbitrary colored link inside.
For empty links and links colored by the fundamental representation, this relationship
was established in [KM] and [MR], respectively.

At the moment of this writing, our proof cannot be generalized to higher-ranked Lie
groups because we do not have an analog of Theorem 1.1 (splitting into integral blocks) in
those cases. The paper is as self-contained as possible. The only two results used without
proofs here are [Le3, Theorem 7] and [BBlL, Theorem 2].

We organize this paper as follows. In Section 1 we fix notations, recall the definition
of the WRT invariant and state a generalization of Habiro’s result. The main strategy of
our proofs is explained in Section 1.6. In Section 2 we prove some divisibility results for
generic values of the quantum parameter. Formulas related to roots of unity are proved
in Section 3. Section 4 deals with the symmetry principle and the splitting of the SU(2)
invariant at odd roots of unity into the product of the SO(3) and Deloup’s invariants.
Section 5 discusses how to construct 3-manifolds that can be obtained by surgery along
links with diagonal linking matrices. The last two sections are devoted to the proofs of
Theorem 2 and Theorem 1, respectively.
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1. The colored Jones polynomial and the WRT invariant

1.1. Notations. Let q1/4 be a formal parameter. Set

{n} := qn/2 − q−n/2, {n}! :=
n
∏

i=1

{i}, [n] :=
{n}
{1} ,

[

n

k

]

:=
{n}!

{k}!{n− k}! ,

and

(z; q)m =

m−1
∏

i=0

(1− qiz),

(

m

n

)

q

:=
(qm−n+1; q)n

(q; q)n
= q(m−n)n/2

[

m

n

]

.

Throughout this paper, let ξ be a primitive root of unity of order r and ξ1/4 be a complex
number such that (ξ1/4)4 = ξ. There are 4 possible choices for ξ1/4, and we will make
some restrictions later.

When working in the SO(3) case, we will always assume that r ≥ 3 is odd. In the
SU(2) case, r ≥ 2 will be an arbitrary positive integer.

For f ∈ Q[q±1/4], we define the following evaluation map

evξ(f) := f |q1/4=ξ1/4.

It should be noted that although we write evξ(f), this quantity depends on the choice of
a 4-th root ξ1/4 of ξ.

If f is a function on positive integers n1, . . . , nk with values in Q[q±1/4], we define

∑

n1,...,nk

ξ,SO(3)
f :=

1

4k

4r−1
∑

nj=0
nj odd

evξ(f) ,
∑

n1,...,nk

ξ,SU(2)
f :=

1

4k

4r−1
∑

nj=0

evξ(f) .

All 3-manifolds in this paper are supposed to be closed and oriented. Every link in a
3-manifold is framed, oriented and has ordered components.

1.2. The colored Jones polynomial. Suppose L is a framed oriented link in S3 with
m ordered components. For an m-tuple of positive integers n = (n1, . . . , nm), one has the

colored Jones polynomial JL(n) ∈ Z[q±
1
4 ], see e.g. [Tu, MM]. The number ni is usually

called the color of the i-th component, and stands for the ni-dimensional irreducible sl2-
representation in the theory of quantum link invariants. We use the normalization so that
JU(n) = [n] where U is the unknot with 0 framing. It is well known that if L̃ is obtained
from L by increasing the framing on the i-th component by 1 then

JL̃(n) = q
n2
i−1

4 JL(n) . (1)

Although there are fractional powers q±1/4, there exists an integer a = a(L,n) such
that JL(n) ∈ qa/4 Z[q±1]. For a precise formula of a see [Le1]. This formula implies that
if all the colors nj ’s are odd, then JL(n) ∈ Z[q±1].

1.3. Habiro’s expansion and its generalization. Assume that L⊔L′ is a framed link
in S3 with disjoint sublinks L and L′. Suppose L has m ordered components and L′ has l
ordered components. Fix an l-tuple of positive integers s = (s1, . . . , sl), and let’s consider
JL⊔L′(n, s) as a function on m-tuples n = (n1, . . . , nm). Since s is fixed, we will remove
it from the notation for simplicity. The function JL⊔L′(n) can be rearranged into another
function cL⊔L′(k) generalizing an important result of Habiro [Ha2, Theorem 8.2].
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To state the result we need to introduce a few notations. Let ℓ̃ij be the linking number
between the i-th component of L and the j-th component of L′. For any i = 1, . . . , m, we
define

εi ∈ {0, 1} by εi :=

l
∑

j=1

ℓ̃ij(sj − 1) (mod 2) . (2)

Theorem 1.1. Assume that L ⊔ L′ ⊂ S3 is as described above. Suppose that L has 0
linking matrix. Then for every m-tuple k = (k1, . . . , km) of non-negative integers with
k = max(k1, . . . , km) there exists

cL⊔L′(k) ∈ (qk+1; q)k+1

1− q
Z[q±1/4] (3)

such that for every m-tuple n = (n1, . . . , nm) of non-negative integers,

JL⊔L′(n) =
∑

ki≥0

cL⊔L′(k)

m
∏

i=1

[

ni + ki
2ki + 1

]

{ki}!
λεi
ni

λεi
ki+1

(4)

where λn = qn/2 + q−n/2.

For the case when all εi = 0, or, in particular, when all si’s are odd, the statement is
equivalent to [BBuL, Theorem 3]. A proof of Theorem 1.1 is given in Appendix A. Note
that for a fixed n the right hand side of (4) is a finite sum because

[

n+k
2k+1

]

= 0 if n ≤ k.
This is the presentation of the colored Jones polynomial as a sum of integral blocks

mentioned in Introduction. The existence of cL⊔L′(k) ∈ Q(q1/4) that satisfies (4) is easy
to prove. The real content of Theorem 1.1 is the integrality (3).

1.4. The WRT invariant. We review here the definition of the WRT SU(2) invariant
of a 3-manifold M with a colored link L′ inside [RT] and its SO(3) version [KM].

We use the convention that the pair (M,L′) is obtained from (S3, L′) by surgery along
L. Here L′ is an s-colored framed link. For G = SU(2) or G = SO(3) set

FG
L⊔L′(ξ) :=

∑

n1,...,nm

ξ,G

{

JL⊔L′(n)
m
∏

i=1

[ni]

}

. (5)

For simplicity, we assume here that all entries of s are odd if G = SO(3). In general for
G = SO(3), we have to multiply (5) by a power of ξ, depending on the linking matrix of
L′ and the parity of colors. This is done in Section 4.2. Since the additional factor is a
unit, it does not affect integrality.

We want to emphasize that although it is not explicit from the notation, (5) depends
on a choice of a 4-th root ξ1/4 of ξ.

It is known that FG
L⊔L′(ξ) is invariant under the handle slide move and if normalized

appropriately, is an invariant of the pair (M,L′).
Let U± be the unknot with ±1 framing. It is easy to see that FG

U−(ξ) is the complex
conjugate of FG

U+(ξ). Let

DG := |FG
U+(ξ)| =

√

FG
U+(ξ)FG

U−(ξ) .

This number is called the rank of a TQFT in [Tu]. We normalize by dividing (5) by
certain powers of FG

U±(ξ) 6= 0. Hence, we want to know when FG
U±(ξ) 6= 0. The following

is probably known. For completeness we include a proof in Section 3.3.
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Lemma 1.2. One has FG
U±(ξ) = 0 if and only if

G = SU(2) and ξ1/4 has order 2 ord(ξ) = 2r. (⋆)

In [KM, RT] and [Lic] it is assumed that ord(ξ1/4) = 4 ord(ξ). However, there are other
cases when FG

U±(ξ) 6= 0. Here we consider all of them.
In the entire paper we will assume that condition (⋆) is not satisfied, so that FG

U±(ξ) 6= 0.
Then the WRT invariant of the pair (M,L′) is defined by

τGM,L′(ξ) =
FG
L⊔L′(ξ)

(FG
U+(ξ))β+(FG

U−(ξ))β− (DG)β
, (6)

where β+, β− and β are respectively the number of positive, negative, and 0 eigenvalues
of the linking matrix of L.

The invariant τGM,L′(ξ) is multiplicative with respect to connected sum. If −M isM with

the reverse orientation, then τG−M(ξ) is the complex conjugate of τGM(ξ), and τGS3(ξ) = 1.

Remark 1.3. We will prove later that DG ∈ Z[ξ1/4, e8], where e8 = exp(π
√
−1/4). Note

that Z[ξ1/4, e8] = Z[exp(2π
√
−1/t)], where t = 8r if r is odd and t = 4r if r is even. In

the last case, e8 ∈ Z[ξ1/4].
Hence a priori, τGM,L′(ξ) ∈ Q(ξ1/4, e8). Since the ring of integers of Q(ξ1/4, e8) is

Z[ξ1/4, e8], our invariant is algebraically integral if it belongs to Z[ξ1/4, e8].
Further, if G = SO(3), M is a rational homology 3-sphere, and all the si’s are odd, then

τ
SO(3)
M,L′ (ξ) ∈ Q(ξ) by definition. So, in that case integrality means that τ

SO(3)
M,L′ (ξ) ∈ Z[ξ]

for any root of unity ξ of odd order.

Relations with other invariants. If we put ξ1/4 := exp(π
√
−1/2r), then our invariant

τ
SU(2)
M (ξ) and τ

SO(3)
M (ξ) are respectively τr(M) and τ ′r(M) in [KM]. In that case, our DSU(2)

equals to b−1 in the notation of [KM].
Again, if ξ1/4 = exp(π

√
−1/2r), the original Reshetikhin-Turaev invariant [RT] dif-

fers from τr(M) by a multiplication with a certain root of unity, so this does not affect
integrality.

The set of invariants considered in [MR] coincides with ours assuming r is an odd prime.
More precisely, the invariants I2r(M) and Ir(M), defined in [MR] as functions of a variable

A, coincide with ours τ
SU(2)
M (ξ) and τ

SO(3)
M (ξ) after setting A = −ξ1/4 and A = −ξ(r+1)2/4,

respectively. At these roots of unity, the SO(3) invariants determines those for SU(2).

In [Lic], Lickorish chose a different normalization and worked with τ
SU(2)
M (ξ)(DSU(2))β

in our notation. Clearly, integrality of this invariant will follow from the integrality of
τGM,L′(ξ).

1.5. Diagonal case. Of particular importance is the case when the linking matrix of
L is a diagonal matrix diag(b1, . . . , bm), bi ∈ Z for any i. Let L0 be the framed link
obtained from L by switching all the framings to 0. Recall from (2) that for 1 ≤ i ≤ m,

εi :=
∑l

k=1 ℓ̃ik(sk − 1) (mod 2). Using (1) and (4), we can rewrite FG
L⊔L′(ξ) as follows:

FG
L⊔L′(ξ) =

∑

ki≥0

evξ(cL0⊔L′(k)/{1}m)
m
∏

i=1

HG(ki, bi, εi) (7)

where

HG(k, b, ε) :=
∑

n

ξ,G
qb

n2−1
4

[

n+ k

2k + 1

]

λε
n

λε
k+1

{k}!{n} . (8)
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By (5) and (8) we also have

FG
U±(ξ) =

HG(0,±1, 0)

evξ({1})
. (9)

From (7) and (9) we get the following.

Proposition 1.4. Suppose the linking matrix of L is a diagonal matrix diag(b1, . . . , bm)
with exactly t non-zero elements b1, . . . , bt. Assume the entries of s are odd when G =
SO(3). Then

τGM,L′(ξ) =

⌊ r−2
2

⌋
∑

ki=0

evξ(cL0⊔L′(k))
t
∏

i=1

HG(ki, bi, εi)

HG(0, sn(bi), 0)

m
∏

i=t+1

HG(ki, 0, εi)

evξ({1})DG
, (10)

where sn(bi) is the sign of bi.

Note that in the above sum the index ki is from 0 to ⌊ r−2
2
⌋. This is because (ξk+1; ξ)k+1 =

0 when k > (r − 2)/2, so evξ(cL0⊔L′(k)) = 0 when k = max{ki} > (r − 2)/2 according to
Proposition 1.1.

To allow an arbitrary coloring s of L′ for G = SO(3), we have to multiply the right
hand side of (10) by a unit, defined in Section 4.2.

We say that M is diagonal of prime type, when M can be obtained by surgery along a
link with diagonal linking matrix whose entries are (up to a sign) 0, 1 or prime powers.

1.6. Strategy for the proof of Theorems 1 and 2. We first prove the integrality of
τGM,L′(ξ) for the case when M is diagonal of prime type. By (10), in this case it suffices
to show that

HG(k, b, ε)

HG(0, sn(b), 0)
and

HG(k, 0, ε)

(1− ξ)DG

are algebraic integers when 0 ≤ k ≤ ⌊ r−2
2
⌋. This is proved in Proposition 6.1 for G =

SO(3) and in Proposition 7.1 for G = SU(2), under assumptions r is odd and even,
respectively.

The general case can be reduced to the diagonal one of prime type by applying some
standard results on diagonalization, presented in Section 5. Roughly speaking, M#M
becomes diagonal of prime type after adding a diagonalizing manifold N , which is a
connected sum of some simple lens spaces. In the SO(3) case, this already solves the
problem, since the WRT invariant of N is invertible. In the SU(2) case, the WRT
invariants of N might be 0. We show that there is an odd colored link L ⊂ N such

that τ
SU(2)
N,L is integral and non-zero. However, another difficulty arises since τ

SU(2)
N,L is not

invertible. To overcome this difficulty we will look at the connected sum of many copies
of M#M with (N,L), which we will show to be diagonal of prime type. Further, we make
substantial use of the fact that in any Dedekind domain, every ideal has a unique prime
factorization.

The case G = SU(2) and r odd is solved in Section 4. There we generalize the splitting
formula of Kirby and Melvin [KM] by showing that the SU(2) invariant of any 3-manifold
with a colored link inside at a root of unity of odd order is a product of the SO(3) invariant
and another integer invariant, previously defined by Deloup.

2. Basic divisibility: the case of generic q

In this section we establish a divisibility result for generic q which will help us to prove
that each factor of (10) is integral.
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2.1. The ideal Ik. Let Ik be the ideal of Z[z±1, q±1] generated by (qaz; q)k for all a ∈ Z.
This ideal plays an important role in the theory of quantum invariants, see [Ha2, Le3, HL].

We will use the following characterization of Ik, which is Proposition 4.3 of [Le3].

Proposition 2.1. The ideal Ik is the set of all f ∈ Z[z±1, q±1] such that f(qb, q) is divisible
by (q; q)k for every b ∈ Z.

We will often use the following q-binomial formula

(qaz; q)k =
k
∑

j=0

(−1)j
(

k

j

)

q

q(
j
2)+aj zj . (11)

2.2. Divisibility for generic q. For a positive integer k let

Xk :=
(q; q)k

(q; q)⌊k/2⌋
=

k
∏

j=⌊k/2⌋+1

(1− qj) . (12)

A map Q : Z → Z is said to be an integral quadratic form if

Q(n) = a2n
2 + a1n + a0

for some integers a2, a1, a0.
For a quadratic form Q let LQ : Z[z±1, q±1] → Z[q±1] be the Z[q±1]-linear map defined

by

LQ(z
j) = qQ(j) .

Note that this map is not an algebra homomorphism if a2 or a0 6= 0.
Let σ be the Z[q±1]-algebra automorphism of Z[z±1, q±1] defined by σ(z) = z−1. An

important observation is that if a1 = 0, then LQσ = LQ.

Theorem 2.2. For an arbitrary integral quadratic form Q and any f(z, q) ∈ Ik, the
element LQ(f) is divisible by Xk, i.e.

LQ(f) ∈ Xk Z[q
±1] .

Remark 2.3. This theorem will be used substantially. It is a generalization of [Le3,
Theorem 7], which was proved with the help of Andrews’ identity. The case Q(n) = n2

of Theorem 2.2 appeared in [HL] for the construction of the unified WRT invariant.

Proof. By the definition of Ik, it is enough to consider the case when f = zm(qaz; q)k.
Suppose

Q(n) = a2n
2 + a1n+ a0 .

Let Q0(n) = a2n
2. Rewriting f as a sum with help of (11), one can show

LQ(q
−a1mzm(qa−a1z; q)k) = qa0LQ0(z

m(qaz; q)k).

Hence, the substitution of q−a1z for z transforms LQ into LQ0. Without loss of generality,
we can further assume Q = Q0.

The rest of the proof is by induction on k.
The case k = 1 is trivial. Suppose that the statement holds true for k − 1.
Since

zm(qa+1z; q)k − zm(qaz; q)k = qa(1− qk)zm+1(qa+1z; q)k−1 ,

we see that, by the induction hypothesis, LQ0(z
m(qa+1z; q)k) is divisible by Xk if and only

if LQ0(z
m(qaz; q)k) is. Therefore we only need to show the statement for a single value of

a. We will take a = −⌊k/2⌋. The cases of odd and even k will be considered separately.
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Suppose k = 2l + 1. Then a = −l and LQ0(z
m(q−lz; q)2l+1) is divisible by Xk =

(ql+1; q)l+1 by Lemma 2.4 (b) below.
Now suppose k = 2l. Then a = −l and we need to show that for every integer m, Xk

divides LQ0(B(m, l)) where

B(m, l) := zm(q−lz; q)2l .

Since
B(m, l)− qlB(m+ 1, l) = zm(q−lz; q)2l+1

and Xk = (ql+1; q)l divides LQ0(z
m(q−lz; q)2l+1) by Lemma 2.4 (b) below, it is enough to

show that Xk divides LQ0(B(m, l)) for only a single value of m. We choose m = −l, and
we will show that Xk = (ql+1; q)l divides LQ0(B(−l, l)).

Using that σ is the algebra automorphism of Z[z±1, q±1] sending z to z−1, we get

(id+σ)B(−l, l) = z−l(q−lz; q)2l + zl(q−lz−1; q)2l

= z−l(q−lz; q)2l + z−lq−l(q1−lz; q)2l

= z−l(q1−lz; q)2l−1(1− q−lz + q−l(1− qlz))

= z−l(q1−lz; q)2l−1(1− z)(1 + q−l)

= −q−l(1 + ql) yl−1 ,

where

yl := z−l(1− z−1)(q−lz; q)2l+1 = (−1)lq−
l(l+1)

2

l
∏

j=0

(z − qj)(z−1 − qj) .

From LQ0σ = LQ0 it follows that

2LQ0(B(−l, l)) = LQ0((id+σ)B(−l, l)) = −q−l(1 + ql)LQ0(yl−1) ,

which is divisible by 2(1+ql)(ql; q)l = 2(ql+1; q)l thanks to Lemma 2.4 (a). This completes
the induction, whence the proof. �

Lemma 2.4. With the same notations as above we have

(a) if f ∈ Z[z±1, q±1] is invariant under σ, then 2(ql+1; q)l+1 divides LQ0(fyl);
(b) for any f ∈ Z[z±1, q±1], LQ0

(

(q−lz; q)2l+1 f
)

is divisible by (ql+1; q)l+1.

Proof. (a) First we prove the case f = 1. We will show that this case follows from [Le3,
Theorem 7], which was proved by using the Andrews identity. In fact we have

yl = z−l(1− z−1)(q−lz; q)2l+1

= z−l(q−lz; q)2l+1 − z−l−1(q−lz; q)2l+1 . (13)

It is easy to see that the two terms of the right hand side of (13) are related by

σ
(

z−l(q−lz; q)2l+1

)

= −z−l−1(q−lz; q)2l+1 . (14)

Hence

LQ0(yl) = 2LQ0(z
−l(q−lz; q)2l+1)

= 2
2l+1
∑

j=0

(−1)j
[

2l + 1

j

]

qa2(j−l)2 ,

which, according to [Le3, Theorem 7], is divisible by

2
{2l + 1}!

{l}! = 2(−1)l+1q−(l+1)(3l+2)/4(ql+1; q)l+1
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in Z[q±1/2]. Since LQ0(yl) and 2(ql+1; q)l+1 are both in Z[q±1], (a) is true when f = 1.
Consider the general case. Since σ(f) = f , f is a polynomial in (z + z−1). It is enough

to prove (a) for f = (z + z−1)m. Since

(z + z−1)yl = yl+1 + (ql+1 + q−l−1)yl ,

(z + z−1)myl is a Z[q±1]-linear combination of yl, yl+1, . . . , yl+m. Because (ql+i; q)l+i is
divisible by (ql+1; q)l+1 for every positive integer i, the case f = (z + z−1)m follows from
the case f = 1.

(b) For non-negative integer m, using

σ
(

zm(q−lz; q)2l+1

)

= −z−m−2l−1(q−lz; q)2l+1 ,

we get

2LQ0(z
m(q−lz; q)2l+1) = LQ0

(

(id+σ)zm(q−lz; q)2l+1

)

= LQ0(yl

m+l
∑

j=−m−l

zj) ,

which is divisible by 2(ql+1; q)l+1 according to (a). Similar argument works for negative
m. �

The following corollary is sometimes more convenient than Theorem 2.2.

Corollary 2.5. For every positive integer k and every integral quadratic form Q, Xk

divides
k
∑

j=0

(−1)j
(

k

j

)

q

qQ(j)+(j2) .

Proof. From (11) we have

LQ

(

(z; q)k
)

=
k
∑

j=0

(−1)j
(

k

j

)

q

qQ(j)+(j2) .

By Theorem 2.2, the left hand side is divisible by Xk, and so is the right hand side. �

2.3. Polynomials with q-integer values. We also need a generalization of the follow-
ing classical result in the theory of polynomials with integer values: If f(z1, . . . , zn) ∈
Q[z1, . . . , zn] takes integer values whenever z1, . . . , zn are integers, then f is a Z-linear
combination of

∏n
i=1

(

zi
ki

)

, ki ∈ Z≥0.
Let us formulate a q-analog of this fact.

Proposition 2.6. If f(z1, . . . , zn) ∈ Q(q)[z1, . . . , zn] satisfies f(qm1 , . . . , qmn) ∈ Z[q±1]
for every m1, . . . , mn ∈ Z, then f is a Z[q±1]-linear combination of

n
∏

i=1

(zi; q)ki
(q; q)ki

with ki ∈ Z≥0 .

Proof. The elements zk :=
∏n

i=1(zi; q)ki/(q; q)ki, with k = (k1, . . . , kn) ∈ Zn
≥0, form a

Q(q)-basis of Q(q)[x1, . . . , xn]. Hence there are ck ∈ Q(q) such that f =
∑

k∈Zn
≥0

ck zk.

Only a finite number of ck’s are non-zero. We will show that ck ∈ Z[q±1] by induction on
|k| := k1 + · · ·+ kn.

Suppose k = 0. Let z1 = z2 = · · · = zn = 1, then zk = 0 unless k = 0. Hence
c0 = f(1, 1, . . . , 1) ∈ Z[q±1].
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Suppose ck ∈ Z[q±1] for |k| < l. The zk’s with |k| < l will be called terms of lower
orders. Consider a k = (k1, . . . , kn) with |k| = l. Note that when zi = q−ki, z(a1,...,an) = 0
if for some i one has ai > ki, and zk = ±1. Hence

f(q−k1, . . . , q−kn) = ±ck + terms of lower orders.

By induction, the terms of lower orders are in Z[q±1]. Since the left hand side is in Z[q±1],
we conclude that ck ∈ Z[q±1]. �

Corollary 2.7. For any integer a, the element (qaz1z2; q)k is a Z[q±1]–linear combination
of terms

(q; q)k
(q; q)k1(q; q)k2

(z1; q)k1 (z2; q)k2

with k1, k2 ≤ k.

Proof. The evaluation of

(qaz1z2; q)k
(q; q)k

∈ Q(q)[z1, z2]

at zi = qmi belongs to Z[q±1] for any mi. Applying Proposition 2.6 we get the result.
Note that k1 and k2 should be less than or equal to k by degree reason. �

3. Basic results: the case of roots of unity

In this section we prove a basic divisibility result for the case when q is a root of unity
ξ of order r. In Subsection 3.4 we reduce the integrality of HG(k, b, ε)/HG(0,±1, 0) to
that of a simpler quotient.

For x, y ∈ Q(ξ1/4, e8) we write x ∼ y if x/y is an invertible element in Z[ξ1/4, e8].
We use the notation k̄ = r − 1− k, and

(

m

n

)

ξ

:= evξ

(

m

n

)

q

, Oξ := (ξ; ξ)⌊ r−1
2

⌋, xk :=

k
∏

j=⌊k/2⌋+1

(1− ξj) = evξ(Xk),

where Xk is defined in (12).

3.1. Divisibility. The main divisibility result at roots of unity is formulated below.

Proposition 3.1. For every integral quadratic form Q and f(z, q) ∈ Ik with 0 ≤ k < r
we have

r−1
∑

n=0

ξQ(n) f(ξn, ξ) ∈ xkOξ · Z[ξ] .

We need the following lemma for the proof of Proposition 3.1.

Lemma 3.2. For any integers a, k, with 0 ≤ k < r, and integral quadratic form Q, the
element

y =

r−1
∑

n=0

ξQ(n)

(

n+ a

k

)

ξ

is divisible by xk̄.



ON THE INTEGRALITY OF THE WRT INVARIANTS 11

Proof. Using 1− ξm = −ξm(1− ξr−m) we have
(

n+ k

n

)

ξ

=
(ξk+1; ξ)n
(ξ; ξ)n

= (−1)nξkn+n(n+1)/2 (ξ
r−k−n; ξ)n
(ξ; ξ)n

= (−1)nξnk+n+(n2)
(

k̄

n

)

ξ

. (15)

Set n′ = n+ a− k. One has

y =
r−1
∑

n=0

ξQ(n)

(

n′ + k

k

)

ξ

=
r−1
∑

n′=0

(−1)n
′

ξQ
′(n′)+(n

′

2 )
(

k̄

n′

)

ξ

(16)

by (15), where Q′(n′) = Q(n′ − a+ k)+n′k+n′. In the right hand side of (16), the index

n′ actually runs from 0 to k̄ − 1, since
(

k̄
n′

)

ξ
= 0 if n′ ≥ k̄. The right hand side of (16) is

divisible by xk̄ by Corollary 2.5. �

Proof of Proposition 3.1. Since the set {zd(zqa; q)k : d, a ∈ Z} spans Ik over Z[q±1], we
can assume that f = zd(zqa; q)k. Then

∑r−1
n=0 ξ

Q(n) f(ξn, ξ)

xkOξ
=

(ξ; ξ)⌊k/2⌋
Oξ

r−1
∑

n=0

ξQ(n)+dn

(

n+ a− 1

k

)

ξ

∈ (ξ; ξ)⌊k/2⌋
Oξ

xk̄ Z[ξ] (by Lemma 3.2),

which is in Z[ξ] by Lemma 3.3 (f) below.
�

3.2. The ring Z[ξ]. It is known that Z[ξ] is a Dedekind domain with field of fractions
Q[ξ].

Lemma 3.3. a) If (a, r) = (b, r) then (1− ξa) ∼ (1− ξb) in Z[ξ].
b) One has (ξ; ξ)r−1 = r.
c) Suppose y ∈ Q[ξ] and ys ∈ Z[ξ] for some positive integer s. Then y ∈ Z[ξ].
d) Suppose y, z ∈ Q[ξ] with z 6= 0. If as := ysz ∈ Z[ξ] for infinitely many positive s,

then y ∈ Z[ξ].
e) One has

O2
ξ ∼

{

r if r is odd,

r/2 if r is even.

f) For every integer 0 ≤ k < r , Oξ divides (ξ; ξ)⌊k/2⌋ xk̄ .

Proof. a) Let c = (a, r) = (b, r). Since 1 − ξc divides 1 − ξa, and also 1 − ξa divides
1−ξc = 1−ξaa

∗

where aa∗ ≡ c (mod r), we have 1−ξa ∼ 1−ξc. Similarly 1−ξb ∼ 1−ξc.
Part b) is obtained by substituting X = 1 into the following identity.

1 +X + · · ·+Xr−1 =
1−Xr

1−X
=

r−1
∏

i=1

(X − ξi) .

Part c) follows from the fact that every Dedekind domain is integrally closed.
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d) Let y = y1/y2 and z = z1/z2 with y1, y2, z1, z2 ∈ Z[ξ] and zi 6= 0. Then for infinitely
many s > 0, z1y

s
1 = asz2y

s
2, and hence

(z1)(y1)
s = (as)(z2)(y2)

s, (17)

where (x) denotes the principal ideal in Z[ξ] generated by x. In any Dedekind domain,
every ideal decomposes uniquely into a product of prime ideals:

(x) =
∏

i

p
ei
i

and this decomposition respects the multiplication. From the uniqueness of prime ideal
decomposition and (17), we see easily that y2 | y1, or y = y1/y2 ∈ Z[ξ].

e) First suppose r is odd. Then Oξ = (ξ; ξ) r−1
2
. Since (1− ξk) ∼ (1− ξr−k) by part (a),

we have

O2
ξ ∼ (ξ; ξ)r−1 = r.

Now suppose r is even. Then Oξ = (ξ; ξ) r−2
2
. Using (1− ξk) ∼ (1− ξr−k), we have

O2
ξ ∼ (ξ; ξ)r−1/(1− ξr/2) = r/2

since ξr/2 = −1.
f) First suppose r is odd. Note that for odd r, (1− ξj) ∼ (1− ξ2j) by part (a). One has

xk̄ = xr−k−1 =

∏r−k−1
j=1 (1− ξj)

∏⌊ r−k−1
2

⌋

j=1 (1− ξj)

∼
∏r−k−1

j=1 (1− ξj)
∏⌊ r−k−1

2
⌋

j=1 (1− ξ2j)
since (1− ξj) ∼ (1− ξ2j)

∼ (1− ξ)(1− ξ3) · · · (1− ξr−2−2⌊k
2
⌋) . (18)

Using (1− ξj) ∼ (1− ξ2j) ∼ (1− ξr−2j), we have

(ξ; ξ)⌊k
2
⌋ =

⌊k
2
⌋

∏

j=1

(1− ξj) ∼
⌊k
2
⌋

∏

j=1

(1− ξr−2j). (19)

Multiplying (18) and (19), we get

(ξ; ξ)⌊k
2
⌋ xk̄ ∼

(r−1)/2
∏

j=1

(1− ξ2j−1) ∼ Oξ , (20)

where the second ∼ follows from the fact that 1− ξr−a ∼ 1− ξa for any integer a.
Now suppose r is even.

Oξ

(ξ; ξ)⌊k
2
⌋

= (1− ξr/2−1)(1− ξr/2−2) · · · (1− ξ⌊
k
2
⌋+1)

= (1 + ξ)(1 + ξ2) · · · (1 + ξ
r
2
−1−⌊k

2
⌋). (21)
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On the other hand there exists f ∈ Z[ξ] such that

xk̄ = xr−k−1 =

∏r−k−1
j=1 (1− ξj)

∏⌊ r−k−1
2

⌋

j=1 (1− ξj)

= f

∏⌊ r−k−1
2

⌋

j=1 (1− ξ2j)
∏⌊ r−k−1

2
⌋

j=1 (1− ξj)

= f (1 + ξ)(1 + ξ2) · · · (1 + ξ⌊
r−k−1

2
⌋). (22)

Note that ⌊ r−k−1
2

⌋ = r
2
− 1 − ⌊k

2
⌋ for even r. Compare (21) and (22), we see that Oξ

divides (ξ; ξ)⌊k
2
⌋ xk̄. �

3.3. Quadratic Gauss sums. For arbitrary integers b and d, the quadratic Gauss sum
is defined as

G(b, d, ξ) :=

ord(ξ)−1
∑

n=0

ξbn
2+dn .

The following is well-known.

Proposition 3.4. a) Let r = ord(ξ) and c = gcd(b, r). Then

G(b, d, ξ) =

{

cG(b/c, d/c, ξc) if c | d ;

0 otherwise .

b) Suppose b and r are co-prime. Then

G(b, 0, ξ)2 ∼











r if r is odd ;

0 if r ≡ 2 (mod 4) ;

2r if r ≡ 0 (mod 4) .

Furthermore G(b, b, ξ)2 = 2r if r ≡ 2 (mod 4).
c) Suppose d is odd and r ≡ 0 (mod 4). Then G(b, d, ξ) = 0.
d) Suppose r1 and r2 are co-prime and r = r1r2. Then

G(b, d, ξ) = G(br1, d, ξ
r1)G(br2, d, ξ

r2). (23)

Proof. Part (a) is clear from the definition when c | d. Now suppose that c ∤ d. We have

G(b, d, ξ) =

r/c−1
∑

t=0

c−1
∑

s=0

ξb(sr/c+t)2+d(sr/c+t)

=

r/c−1
∑

t=0

ξbt
2+dt

c−1
∑

s=0

ξsdr/c = 0 ,

where the last equality follows from the fact that ξdr/c 6= 1 and its order divides c.
b) After a Galois transformation of the form ξ → ξa, with a co-prime to r, one can

assume that b = 1 and ξ = exp(2πi/r). The result now follows e.g. from [D, Chapter 2].
c) One has

b
(

n+
r

2

)2

+ d
(

n+
r

2

)

= bn2 + bnr + br
r

4
+ dn+ d

r

2

≡ bn2 + dn +
r

2
(mod r).
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Hence

G(b, d, ξ) =

r−1
∑

n=0

ξbn
2+dn =

r−1
∑

n=0

ξb(n+r/2)2+d(n+r/2) = ξr/2
r−1
∑

n=0

ξbn
2+dn = −G(b, d, ξ).

It follows that G(b, d, ξ) = 0.
d) The proof follows easily from the fact that the map Z/r1×Z/r2 → Z/(r1r2), defined

by (n1, n2) → r2n1 + r1n2, is an isomorphism. �

Proof of Lemma 1.2. Now we are in position to see that FG
U+(ξ) = 0 if and only if

G = SU(2) and ξ1/4 has order 2r.
By completing the squares we have

(1− ξ)FG
U+ ∼ 2

1− ξ

∑

n

ξ,G
q

n2−1
4 (1− qn) ∼ 2

1− ξ

(

∑

n

ξ,G
q

n2−1
4 − ξ−1

∑

n

ξ,G
q

(n+2)2−1
4

)

∼



















G(4∗, 0, ξ) if G = SO(3) ;
1
2
G(1, 0, ξ1/4) if G = SU(2) and ord(ξ1/4) = 4r ;

G(1, 0, ξ1/4) if G = SU(2) and ord(ξ1/4) = 2r ;

2G(1, 0, ξ1/4) if G = SU(2) and ord(ξ1/4) = r .

Note that for G = SO(3), the sum is over odd n’s, so n2 − 1 is always divisible by 4.

Hence, for any choice of ξ1/4, we have ξ(n
2−1)/4 = ξ4

∗(n2−1) with 4∗4 = 1 (mod r).
If r is even, then ord(ξ1/4) is always 4r. Now Proposition 3.4 (b) implies the claim. �

3.4. Simplification of HG(k, b, ε).

Lemma 3.5. a) For integers k, b, and ε ∈ {0, 1}, there is fε(z, q) ∈ I2k+1+ε such that

HG(k, b, ε) ∼ 2

x2k+1+ε

∑

n

ξ,G
q

b(n2−1)
4

− 3εn
2 fε(q

n, q) .

More precisely, one can choose fε = z−k (q−kz; q)2k+1+ε.
b) One has

√
2,
√
r ∈ Z[ξ1/4, e8] and

HG(0,±1, 0) ∼











√
r if G = SO(3) ;√
2r if G = SU(2) and ord(ξ1/4) = 4r ;

2
√
r if G = SU(2) and ord(ξ1/4) = r .

c) One has DG ∈ Z[ξ1/4, e8] and (1− ξ)DG ∼ HG(0,±1, 0).
d) Suppose b and r are even. Then HSU(2)(k, b, 1) = 0.

Proof. a) We will use the following simple observation: For g(z, q) ∈ Q[z±1/2, q±1/4], we
have

∑

n

ξ,G
q

b(n2−1)
4 g(qn/2, q) =

∑

n

ξ,G
q

b(n2−1)
4 g(q−n/2, q). (24)

To prove it, one only needs to consider g(z, q) = za/2, a ∈ Z. Then

LHS =
∑

n

ξ,G
q

b(n2−1)
4

+ an
2 =

∑

n→−n

ξ,G
q

b(n2−1)
4

− an
2 = RHS .
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One can check that {n}
∏k

j=−k{n+ j} = (q−kn−n − q−kn)(qn−k; q)2k+1. Then we get

evξ

({2k + 1}!
{k}!

)

HG(k, b, 0) =
∑

n

ξ,G
q

b(n2−1)
4 {n}

k
∏

j=−k

{n+ j}

= −2
∑

n

ξ,G
q

b(n2−1)
4 q−nk(qn−k; q)2k+1 ,

where the last equality follows from (14), (24) and the fact that

q−kn−n(qn−k; q)2k+1 = −q−kn(qn−k; q)2k+1 |n→−n .

Analogously, we have

evξ

({2k + 1}!
{k}! λk+1

)

HG(k, b, 1) =
∑

n

ξ,G
q

b(n2−1)
4 {n} λn

k
∏

j=−k

{n+ j}

= −2
∑

n

ξ,G
q

b(n2−1)
4 q−n(k+3/2)(qn−k; q)2k+2 .

This proves a).
b) Let us first show that

√
r,
√
2 ∈ Z[ξ1/4, e8]. Observe that

√
2 ∈ Z[e8]. Further,

(r−1)/2
∏

j=1

|1− ξj| =
{√

r if r is odd;
√

r/2 if r is even.

Since |1− ξj| = ±
√
−1 (ξj/2 − ξ−j/2), we have

√
r ∈ Z[ξ1/4, e4].

Part (b) follows now from (9), Proposition 3.4 (b) and the proof of Lemma 1.2.
c) Since DG := |FG

U+|, from the proof of Lemma 1.2, we get

|1− ξ|DG =











√
r if G = SO(3) ;√
2r if G = SU(2) and ord(ξ1/4) = 4r ;

2
√
r if G = SU(2) and ord(ξ1/4) = r .

Clearly,
√
r is divisible by |1− ξ|, so DG ∈ Z[ξ1/4, e8]. The second statement follows from

(b).
d) By part (a), it is enough to show that

∑

n

ξ,G
q

b(n2−1)
4

− 3n
2 f(qn, q) = 0

for any f ∈ Z[z±1, q±1]. We can assume f = za, a ∈ Z. Assume b = 2b′. Then

4
∑

n

ξ,SU(2)
q

b(n2−1)
4

− 3n
2 qna = 2ξ−b′/2

2r−1
∑

n=0

(

ξ1/2
)b′n2−3n+2na

= 2ξ−b′/2G(b′, 2a− 3, ξ1/2),

which is 0 by Proposition 3.4 (c), since ord(ξ1/2) is always 2r if r is even. �
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3.5. Lens spaces. Suppose L⊔L′ is the Hopf link with framing b 6= 0 on L and framing 0
on L′. Besides, the color of L′ is a fixed number a. By surgery on L from (S3, L′) we get the

pair (L(b, 1), L′), where L(b, 1) is the lens space. It is known that JL⊔L′(n) = qb(n
2−1)/4 [na].

Hence we have

τG
L(b,1),L′(ξ) =

∑

n
ξ,Gqb(n

2−1)/4[na][n]
∑

n
ξ,Gqsn(b)(n2−1)/4[n]2

. (25)

Note that the invariant of L(b,−1) = L(−b, 1) is just a complex conjugate of (25).

Lemma 3.6. a) If b and r are co-prime, then τ
SO(3)
L(b,1) is invertible in Z[ξ].

b) Suppose r is even. For b = 2k, there is a knot K in the lens space M = L(2k,−1)
colored by an odd number such that

τ
SU(2)
M,K (ξ) 6= 0 .

Proof. a) The SO(3) invariant of L(b, 1) can be easily computed. By completing the
square we have

τ
SO(3)
L(b,1) (ξ) = ξ(sn(b)−b)/4 (1− ξ−b∗)

(1− ξ−1)

G(b, 0, ξ)

G(1, 0, ξ)
,

which is a unit in Z[ξ1/4] by Proposition 3.4 (b). Here b∗b ≡ 1 (mod r).
b) Let L⊔L′ be the Hopf link with framing −b = −2k on L and framing 0 on L′. Suppose

L′ is colored by a = 2s+ 1. Surgery on L gives us a pair (M,K) = (L(2k,−1), K).
An easy calculation shows

τ
SU(2)
M,K (ξ) ∼ G(−b, 4s + 4, ξ1/4)−G(−b, 4s, ξ1/4)

(1− ξ)G(−1, 0, ξ1/4)
. (26)

For b = 2, then M = RP 3. Choose s = 0, or a = 1. Then τ
SU(2)
M,K (ξ) = τ

SU(2)
M (ξ) 6= 0.

For b = 4 again choose s = 0. Then one and only one term in the numerator of (26) is
zero, by Proposition 3.4.

Suppose b = 2k > 4. Then c := (b, 4r) > 4. Choose s such that G(−b, 4s, ξ1/4) 6= 0 (see
Proposition 3.4). Then c | 4s, and c does not divide 4s+4. Hence G(−b, 4s+4, ξ1/4) = 0.

We conclude that τ
SU(2)
M,K (ξ) 6= 0. �

4. Symmetry Principle and splitting of the SU(2) invariant

The symmetry principle of the colored Jones polynomial and the splitting of the SU(2)
WRT invariant were discovered by Kirby and Melvin in [KM]. In [Le1, Le3], the third
author generalized these to all higher ranked Lie groups. Here we extend the symmetry
principle and splitting to the case of pairs of a 3-manifold and a colored link inside. We
show that the symmetry principle for a link in an arbitrary 3-manifold holds only for
SO(3) invariant, but does not hold for the SU(2) invariant.

4.1. Symmetry Principle for links in S3. Suppose ξ is a root of unity of order r.
Then the colored Jones polynomial at ξ is periodic with period 2r, i.e.

evξ
(

JL(n1, . . . , ni + 2r, . . . , nm)
)

= evξ
(

JL(n1, . . . , ni, . . . , nm)
)

, (27)

and under the reflection r − n → r + n it behaves as follows:

evξ
(

JL(n1, . . . , r + ni, . . . , nm)
)

= − evξ
(

JL(n1, . . . , r − ni, . . . , nm)
)

(28)

(see [Le1]). This means that one can restrict the colors to the interval [0, r].
The symmetry principle tells us how JL behaves under the transformation n → r − n.

More precisely, let Z/2 = {0, 1} act on Z/rZ by 0 ∗ n = n, 1 ∗ n = r − n. For a =
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(a1, . . . , am) ∈ {0, 1}m and n = (n1, . . . , nm) ∈ (Z/rZ)m, let a∗n = (a1 ∗n1, . . . , am ∗nm).
In addition, we set n̂ := n− 1 for any integer n ∈ Z.

Proposition 4.1. Suppose (ℓij) is the linking matrix of L. With the notations as above
one has

evξ
(

JL(a ∗ n)
)

=
(

−ξr/2
)

∑
i ai ξt evξ

(

JL(n)
)

,

where

t =
r(r − 2)

4

∑

i,j

ℓijaiaj +
r

2

∑

i,j

ℓijain̂j , (29)

and (ℓij) is the linking matrix of L.

Proof. This is the sl2 case of [Le1, Theorem 2.6]. The factor
(

−ξr/2
)

∑
i αi

comes from the
difference between our JL and QL in [Le1], where QL is equal to JL times the quantum
dimensions of the colors on L. �

Remark 4.2. If ord(ξ1/2) = 2r, then −ξr/2 = 1, and this case was considered in [KM].
Proposition 4.1 handles also the case when ord(ξ1/2) 6= 2r, i.e. ord(ξ1/2) = r.

A simple but useful observation is that if all entries of n are odd, then the second term
in (29) is an integer multiple of r, hence can be removed.

4.2. WRT SO(3) invariant for an arbitrary colored link in M . In the literature,
the WRT SO(3) invariant of the pair (M,L′) was defined in the case when all colors of
L′ are odd or all equal to 2 (compare [MR]). Here we extend this definition to arbitrary
colors. Since the colors of L′ will play an important role in this section, we will make the
dependence on them explicit in the notation.

Note that SO(3) invariants of M with evenly colored links inside are not coming from
Topological Quantum Field Theories. The main reason is that fusion preserves odd colors.
However, fusion of an odd and an even color produce an even color. This violates the
invariance of (6) under sliding in the case when some of the si’s are even. We will show
that this defect can easily be taken into account by a simple factor depending on the
linking matrix and parity of the colors only.

Throughout the remaining of this section let r = ord(ξ) be odd and s = (s1, . . . , sl) be
the color on L′. Let (ℓij) and (pij) be the linking matrices of L and L′ respectively. The
linking number between the i-th component of L and the j-th component of L′ will be
denoted by ℓ̃ij .

Let

F
SO(3)
L⊔L′ (ξ; s) := ξµ(L

′,s)
∑

n1,...,nm

ξ,SO(3)
[n] JL⊔L′(n, s) , (30)

where [n] :=
∏m

i=1[ni] and

µ(L′; s) := −r(r − 2)

4

l
∑

i,j=1

pij ŝiŝj .

Observe that, when all si are odd, (30) coincides with (5).

Lemma 4.3. F
SO(3)
L⊔L′ (ξ; s) is invariant under the handle slide of a component of L or L′

over a component of L.
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Proof. The invariance under sliding of one component of L over another component of L
follows by standard arguments (see e.g. [Lic]).

Let L ⊔ L′′ be the link obtained from L ⊔ L′ by sliding a component of L′ over a
component of L. It is enough to show that

F
SO(3)
L⊔L′ (ξ; s) = F

SO(3)
L⊔L′′ (ξ; s) .

Using the fact that ŝ ∗ ŝ ∗ s = s for any s with ŝ ≡ s− 1 (mod 2) and Proposition 4.1, we
have

ξµ(L
′,s) JL⊔L′(n, s) = (−ξr/2)

∑
i ŝi JL⊔L′(n, ŝ ∗ s) . (31)

Here we used the fact ŝ ∗ s is always odd, and hence all summands of
∑

pij ŝî̂sj ∗ sj are
even.

By the invariance of F
SO(3)
L⊔L′ (ξ, s) in the standard case when all colors are odd, we get

∑

n1,...,nm

ξ,SO(3)
[n]JL⊔L′(n, ŝ ∗ s) =

∑

n1,...,nm

ξ,SO(3)
[n]JL⊔L′′(n, ŝ ∗ s) . (32)

Further using Proposition 4.1 again, we obtain

JL⊔L′′(n, ŝ ∗ s) = (−ξr/2)
∑

i ŝi ξµ(L
′′,s)JL⊔L′′(n, s) . (33)

Inserting (31), (33) into (32) we get the result. �

Lemma 4.3 suggests to define τ
SO(3)
M,L′ (ξ; s) for arbitrary s by substituting F

SO(3)
L⊔L′ (ξ) given

by (30) into (6). When all colors of L′ are odd, the only additional factor ξµ(L
′,s) is 1 and

we get back our old invariant.

Corollary 4.4. τ
SO(3)
M,L′ (ξ; s) is an invariant of the pair (M,L′).

Remark 4.5. For a colored link L in the 3-sphere, our invariant equals to

τ
SO(3)
S3,L (ξ; s) = ξ−r(r−2)/4

∑
i,j lij ŝiŝj evξ(JL(s)) .

Hence if some colors of L are even, this invariant might differ from the colored Jones
polynomial by some factor depending on the linking matrix (lij) of L.

4.3. Symmetry Principle for the WRT SO(3) invariant. We use the same notations
as in the previous section.

Proposition 4.6. For a ∈ {0, 1}l and s ∈ (Z/rZ)l one has

τ
SO(3)
M,L′ (ξ; a ∗ s) =

(

−ξr/2
)

∑
i ai τ

SO(3)
M,L′ (ξ; s) .

Proof. By 4.1 we have

∑

n1,...,nm

ξ,SO(3)
[n]JL⊔L′(n, a ∗ s) = (−ξr/2)

∑
i aiξu

∑

n1,...,nm

ξ,SO(3)
[n]JL⊔L′(n, s) ,

where u = r(r−2)
4

∑

i,j pijaiaj +
r
2

∑

i,j pijaiŝj. Here we use the fact that n is odd in the
above sum. On the other hand

w := µ(L′; s)− µ(L′; a ∗ s) = r(r − 2)

4

∑

i,j

pij(âi ∗ siâj ∗ sj − ŝiŝj) .
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Then

u− w ≡ r(r − 2)

4

∑

i

pii(ŝ
2
i − âi ∗ si2 + 2aiŝi + a2i )

+
r

2

∑

i<j

pij(ŝiŝj − âi ∗ siâj ∗ sj + aiŝj + aj ŝi + aiaj) ≡ 0 mod r ,

which can be verified directly. �

Remark 4.7. Proposition 4.6 is not true for the WRT SU(2) invariant. For example,
consider the Hopf link with framing 2 on the first component and framing 0 on the second.
Surgery on the first component produces a pair (RP 3, K). If ord(ξ) = 3 and ord(ξ1/4) = 12

then τ
SU(2)
M,K (1; ξ) = 0 and τ

SU(2)
M,K (1 ∗ 1 = 2; ξ) 6= 0.

4.4. Splitting. In [KM] it was proved that when both the SO(3) and SU(2) WRT in-
variants can be defined, i.e. when r is odd, then one has the splitting

τ
SU(2)
M (ξ) = τ

Z/2
M (ξ) τ

SO(3)
M (ξ) ,

where τ
Z/2
M (ξ) is a simple invariant depending only on the linking pairing of M . Here we

generalize this result for invariants of pairs L′ ⊂ M . We will follow the approach in [Le2],
where the splitting is generalized to all higher ranked simple Lie algebras.

Let s1, . . . , sl be the colors on L′ and set

F
Z/2
L⊔L′(ξ; s) = ξ

r(r−2)
4

∑
pij ŝiŝj

∑

α1,...,αm∈{0,1}

ξ
r(r−2)

4

∑
ℓijαiαj+

r
2

∑
εi αi , (34)

where (ℓij) and (pij) are the linking matrices of L and L′ respectively, and εi is defined
by (2).

For example

F
Z/2
U± (ξ) = 1 + ξ±

r(r−2)
4 . (35)

We will assume that r = ord(ξ) is odd and ξ1/4 is chosen so that ord(ξ1/4) 6= 2r, i.e.

ord(ξ1/4) is either r or 4r. This choice guarantees that F
Z/2
U± (ξ) 6= 0. Define

τ
Z/2
M,L′(ξ; s) =

F
Z/2
L⊔L′(ξ; s)

(

F
Z/2
U+ (ξ)

)β+
(

F
Z/2
U− (ξ)

)β−
∣

∣

∣
F

Z/2
U+ (ξ)

∣

∣

∣

β
. (36)

Then τ
Z/2
M,L′(ξ; s) is an invariant of the pair (M,L′).

Remark 4.8. This type of invariants were studied in [MOO, De1] for 3-manifolds without
links inside, and in [De2] for 3-manifolds with links inside. When the abelian group is
Z/2Z, set the parameters ci in [De2] to be equal to si−1 mod 2, and define the quadratic
form q on Z/2Z as follows: q(0) = 0, q(1) = (r − 2)/4, then the invariant introduced in

[De2] is equal to τ
Z/2
M,L′(ξ; s) after setting ξr/4 =

√
−1.

Proposition 4.9. Suppose r = ord(ξ) is odd, and ord(ξ1/4) is either r or 4r.
(a) One has the splitting

τ
SU(2)
M,L′ (ξ; s) = τ

Z/2
M,L′(ξ; s) τ

SO(3)
M,L′ (ξ; s) .

(b) If ord(ξ1/4) = r, then τ
Z/2
M,L′(ξ; s) = 1 and

τ
SU(2)
M,L′ (ξ; s) = τ

SO(3)
M,L′ (ξ; s) .
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(c) One has the integrality

τ
Z/2
M,L′(ξ; s) ∈ Z[ξ1/4, e8] .

Proof. (a) Recall that ℓ̃ij is the linking number between the i-th component of L and the
j-th component of L′. Also note that ∀a ∈ (Z/2Z)m, a ∗ (a ∗ n) = n. By Proposition 4.1
we have

evξ([n]JL⊔L′(n, s)) = ξt evξ([a ∗ n]JL⊔L′(a ∗ n, s)) ,
where t = r(r−2)

4

∑

ℓijaiaj+
r
2

∑

ℓ̃ijaiŝj . Note that the factor (−ξr/2)
∑

ai is missing because
of the quantum integers. Therefore by (5), (30) and (36) we have

F
SU(2)
L⊔L′ (ξ; s) = ξ

r(r−2)
4

∑
pij ŝiŝj

∑

ai∈{0,1}

ξ
r(r−2)

4

∑
ℓijaiaj+

r
2

∑
ℓ̃ijaiŝj F

SO(3)
L⊔L′ (ξ; s)

= F
Z/2
L⊔L′(ξ; s) F

SO(3)
L⊔L′ (ξ; s) ,

which implies (a).

(b) If ord(ξ1/4) = r, then by (34), F
Z/2
L⊔L′(ξ; s) = 2m. In particular, F

Z/2
U± (ξ; s) = 2. It

follows that τ
Z/2
M,L′(ξ; s) = 1.

(c) The case ord(ξ1/4) = r was covered by (b). Assume that ord(ξ1/4) = 4r. Then from

(35) it follows that F
Z/2
U± (ξ) ∼

√
2. Hence the denominator of (36) is ∼ (

√
2)m.

According to [KM, p. 522], we may assume ℓij ≡ 0 mod 2 if i 6= j. Since ℓijαiαj

appears twice in the exponent in (34) if i 6= j, we can write

F
Z/2
L⊔L′(ξ; s) ∼

m
∏

i=1





∑

αi∈{0,1}

ξ
1
4
r(r−2)ℓiiα2

i+
r
2
εi αi





=
m
∏

i=1

(

1 + ξ
1
4
r(r−2)ℓii+

r
2
εi
)

.

Since ξ
1
4
r(r−2)

∑
ℓii+

r
2

∑
εi is a 4-th root of unity, each factor in the above product is either

2, 0, or ∼
√
2, and hence is divisible by

√
2. This means F

Z/2
L⊔L′(ξ; s), the numerator of

(36), is divisible by (
√
2)m, and the statement follows. �

5. Diagonalization of 3-manifolds

We recall and refine some well-known facts about diagonalization of 3-manifolds. The
first diagonalization result was obtained in [Oh] and was further developed in [Le3, BL,
BBuL].

A 3-manifold is said to be diagonal of prime type if it can be obtained by surgery along
a framed link L ⊂ S3 with diagonal linking matrix diag(b1, . . . , bm) such that bi = ±peii ,
where each pi is a prime, 1, or 0. Denote by L(b, a) the lens space obtained from S3 by
surgery on the unknot with framing b/a. Also M#M ′ is the connected sum of M and M ′

and M#s is the connected sum of s copies of M .

Proposition 5.1. For every 3-manifold M , there exists a 3-manifold N of the form

N = L(2k1,−1)# · · ·#L(2kj ,−1) ,

such that for every positive integer s, M#2s#N is diagonal of prime type.
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To prepare for the proof we recall some well-known facts about linking pairing. A
linking pairing on a finite abelian group G is a non-singular symmetric bilinear map from
G×G to Q/Z. Two linking pairings ν, ν ′ on respectively G,G′ are isomorphic if there is
an isomorphism between G and G′ carrying ν to ν ′. With the obvious block sum, the set
of equivalence classes of linking pairings is a semigroup.

Any non-singular n× n symmetric matrix B with integer entries gives rise to a linking
pairing φB on Zn/BZn by φB(x, x

′) = xtB−1x′ ∈ Q/Z, where x, x′ ∈ Zn and xt is the
transpose of x. A linking pairing is diagonal of type B if it is isomorphic to φB, where B
is a non-singular n× n diagonal matrix with integer entries.

An enhancement of an n × n symmetric matrix B is any matrix of the form B ⊕ D,
where D is a diagonal matrix with entries 0 or ±1 on the diagonal.

For any closed oriented 3-manifold M , there is a linking pairing φ(M) on the torsion
subgroup of H1(M,Z) defined by the Poincare duality, see [KK]. For example, if b 6= 0 is
an integer, then the lens space L(b, 1) has linking pairing φ(b), and L(b,−1) has linking
pairing φ(−b). Here (b) is the 1× 1 matrix with entry b.

It is clear that φ(M#M ′) = φ(M)⊕ φ(M ′). The result of [Le3, Section 3.5] shows the
following.

Proposition 5.2. If the linking pairing φ(M) on the torsion subgroup of H1(M,Z) is
diagonal of type B, then M can be obtained from S3 by surgery along an oriented framed
link whose linking matrix is an enhancement of B.

Proof of Proposition 5.1. In [BL, Section 2.2] it was noticed that φ(M#M) is almost
diagonal. More precisely,

φ(M#M ) = φB ⊕ ν, (37)

where B is a diagonal matrix whose diagonal entries are prime powers and ν has the form

ν =

j
⊕

i=1

Eki
0 .

Here Ek
0 is a certain linking form on Z/2k × Z/2k. We don’t need the exact description

of Ek
0 . For us it is important that (see [KK])

Ek
0 ⊕ φ(−2k) = φ(−2k) ⊕ φ(2k) ⊕ φ(2k). (38)

Note that there is still one φ(−2k) in the right hand side of (38). From (38) and (37),

φ(N#(M#M)#s) = s φB ⊕
j
⊕

i=1

(

φ(−2ki ) ⊕ 2s φ(2ki)

)

= φB′ , (39)

where B′ is a diagonal matrix with diagonal entries of the form ±pm with prime p. By
Proposition 5.2, N#(M#M)#s is diagonal of prime type. This completes the proof of
Proposition 5.1. �

6. Proof of the integrality in the SO(3) case

Throughout this section G = SO(3) and ξ is a root of unity of odd order r.

Proposition 6.1. For integer 0 ≤ k ≤ (r − 3)/2, arbitrary integer b, and ε ∈ {0, 1},
HSO(3)(k, b, ε)

HSO(3)(0,±1, 0)
∈ Z[ξ1/4, e8] , (40)
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and
HSO(3)(k, 0, ε)

(1− ξ)DSO(3)
∈ Z[ξ1/4, e8] . (41)

Proof. First note that by Lemmas 3.3 (e) and 3.5 (b), Oξ ∼ HSO(3)(0,±1, 0). By Lemma
3.5 (a), there is fε(z, q) ∈ I2k+1+ε ⊂ Z[z±1, q±1] such that

HSO(3)(k, b, ε)

HSO(3)(0,±1, 0)
∼ 2

∑

n
ξ,SO(3)q

b(n2−1)
4 q

−3εn
2 fε(q

n, q)

x2k+1+εOξ
. (42)

Since r is odd, (n2 − 1)/4 and (1− n)/2 are integers, and there are integers 2∗, 4∗ such
that 2∗ 2 ≡ 4∗ 4 ≡ 1 (mod r). We then have ξ(n

2−1)/4 = ξ4
∗(n2−1), ξ−3n/2 = ξ−3/2ξ3(1−n) 2∗ .

The numerator of (42) is

2
∑

n

ξ,SO(3)
q

b(n2−1)
4 q

−3εn
2 f(qn, q) = ξ−3ε/2

2r−1
∑

n=0
n odd

ξ4
∗b(n2−1)+3ε2∗(1−n) fε(ξ

n, ξ)

= ξ−3ε/2
r−1
∑

n=0

ξ4
∗b(n2−1)+3ε2∗(1−n) fε(ξ

n, ξ) , (43)

where the second identity follows by replacing odd n ∈ [r, 2r − 1] with n − r, which is
even and in [0, r − 1].

By Proposition 3.1, the right hand side of (43) is divisible by the denominator of the
right hand side of (42), and (40) follows.

Statement (41) follows from (40) with b = 0 and Lemma 3.5(c), which says that
HSO(3)(0,±1, 0) ∼ (1− ξ)DSO(3). �

Proof of Theorem 2. By Proposition 6.1, each factor in the right hand side of (10) is

in Z[ξ1/4, e8], hence τ
SO(3)
M,L′ (ξ) ∈ Z[ξ1/4, e8] if M is diagonal.

Now suppose M is an arbitrary 3-manifold. Let N be the manifold described in Propo-
sition 5.1, for which M#M#N is diagonal. Since the WRT invariant is multiplicative
with respect to connected sum, we get

(

τ
SO(3)
M,L′ (ξ)

)2

τ
SO(3)
N (ξ) ∈ Z[ξ1/4, e8] .

Since 2k is coprime to r, τ
SO(3)

L(2k ,−1)
(ξ) is a unit in Z[ξ1/4] by Lemma 3.6 (a). It follows

that τ
SO(3)
N (ξ) is a unit, hence

(

τ
SO(3)
M,L′ (ξ)

)2

∈ Z[ξ1/4, e8]. By Lemma 3.3 (c), τ
SO(3)
M,L′ (ξ) ∈

Z[ξ1/4, e8]. This completes the proof of the theorem.
�

7. Proof of the integrality in the SU(2) case

If the order of ξ is odd, then by the splitting property (Proposition 4.9),

τ
SU(2)
M,L′ (ξ) = τ

Z/2
M,L′(ξ) τ

SO(3)
M,L′ (ξ) .

Both factors of the right hand side are algebraic integers by Theorem 2 and Proposition

4.9. Hence τ
SU(2)
M,L′ (ξ) is also an algebraic integer.

Therefore throughout the remaining part of this section we will assume that r = ord(ξ)
is even. Note that in this case the order of ξ1/4 is always 4r and e8 ∈ Z[ξ1/4].
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Proposition 7.1. Let r = ord(ξ) be even. Suppose b = ±ps, where p is 0, 1 or a prime,
k an integer, and ε ∈ {0, 1}. Then

HSU(2)(k, b, ε)

HSU(2)(0,±1, 0)
∈ Z[ξ1/4] and

HSU(2)(k, 0, ε)

(1− ξ)DSU(2)
∈ Z[ξ1/4] .

The following lemma will be used in the proof of the above proposition for odd b.

Lemma 7.2. Suppose b is odd, r is even, a ∈ Z, and f ∈ Ik. Then

A :=

∑

n
ξ,SU(2)q

bn2

4
+ an

2 f(qn, q)

xkOξ

belongs to Z(2)[ξ
1/4], where Z(2) is the set of all rational numbers with odd denominators.

Proof. Let r = rero, where ro is odd, and re is a power of 2. Then ord(ξ1/4) = 4r = (4re)ro,
with 4re and ro coprime. By definition,

∑

n

ξ,SU(2)
q

bn2

4
+ an

2 qnj =
1

4
G(b, 4j + 2a, ξ1/4) by Proposition 3.4 (d)

=
1

4
G(b ro, 4j + 2a, ξro/4)G(4b re, 4j + 2a, ξre)

=
1

4
ξda

2/4 G(b ro, 0, ξ
ro/4) ξd(j

2+aj)G(4b re, 4j + 2a, ξre) , (44)

where d is any multiple of ro such that db ≡ −1 (mod 4re).
Let us extend ∆(z) = z ⊗ z to a Z[q±1]-algebra homomorphism

∆ : Z[z±1, q±1] → Z[z±1, q±1]⊗Z[q±1] Z[z
±1, q±1].

Define Q(j) = dj2 + daj. Also define Z[q±1/4]-module homomorphism T : Z[z±1, q±1/4] →
Z[q1/4] by:

T (zj) = G(4b re, 4j + 2a, ξre) .

Using (44) we can rewrite

∑

n

ξ,SU(2)
q

bn2

4
+ an

2 f(qn, q) =
ξda

2/4

4
G(b ro, 0, ξ

ro/4) evξ

{

(LQ ⊗ T )(∆ f)
}

. (45)

It is enough to consider the case f = zm(qlz; q)k. Applying Corollary 2.7 to ∆(zm(qlz; q)k),
using z1 = z ⊗ 1 and z2 = 1 ⊗ z, we see that A is a Z[ξ±1/4]-linear combination of terms
of the form

B =

(

G(b ro, 0, ξ
ro/4)

4Oξ

)(

(ξ; ξ)k evξ {LQ(z
m(z; q)k1)}

xk(ξ; ξ)k1

)(

T (zm(z; q)k2)

(ξ; ξ)k2

)

(46)

with ki ≤ k. There are three factors on the RHS of (46) and we will show that each factor
belongs to Z(2)[ξ

1/4]. The last factor in B is in Z[ξ]. In fact, if zm(z; q)k2 =
∑

j cj(q)z
j

then

T (zm(z; q)k2) =
∑

j

cj(ξ)G(4bre, 4j + 2a, ξre) =
∑

j

cj(ξ)
ro−1
∑

n=0

ξ2re(bren
2+(2j+a)n)

=
∑

n

ξ4br
2
en

2+2rean
∑

j

cj(ξ)ξ
4ren j =

∑

n

ξ4br
2
en

2+2ren(a+2m)(ξ4ren; ξ)k2 ,

which is divisible by (ξ; ξ)k2 in Z[ξ]. This shows that the last factor of (46) is in Z(2)[ξ
1/4].
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By Theorem 2.2, evξ
(

LQ(z
m(z; q)k1)

)

is in xk1 Z[ξ]. Hence the second factor is in

(ξ; ξ)k xk1

xk(ξ; ξ)k1
Z[ξ] =

(ξ; ξ)⌊k/2⌋
(ξ; ξ)⌊k1/2⌋

Z[ξ] ⊂ Z[ξ].

By Proposition 3.4 (b), G2(b ro, 0, ξ
ro/4) ∼ 8re, while O2

ξ ∼ r/2 by Lemma 3.3 (e). It
follows that the square of the first factor, and hence the first factor itself, is in re

r
Z[ξ] =

1
ro
Z[ξ] ⊂ Z(2)[ξ]. Here we use the fact that Z(2)[ξ] is integrally closed.

We can conclude that B, and hence A, is in Z(2)[ξ]. �

Proof of Proposition 7.1. By Lemma 3.5 there is fε(z, q) ∈ I2k+1+ε such that

HSU(2)(k, b, ε)

HSU(2)(0,±1, 0)
∼

1
4

∑4r−1
n=0 ξ

b
4
(n2−1)ξ−3εn/2fε(ξ

n, ξ)

x2k+1+εOξ

. (47)

We split the proof into 3 cases: (1) b ≡ 0 mod 4; (2) b = ±2 and (3) b is odd.
(1) b = 4b′, b′ ∈ Z. Since HSU(2)(k, b, 1) = 0 by Lemma 3.5 (d), we can assume ε = 0. By
(47),

HSU(2)(k, b, 0)

HSU(2)(0,±1, 0)
∼

1
4

∑4r−1
n=0 ξb

′(n2−1)f0(ξ
n, ξ)

x2k+1Oξ

=

∑r−1
n=0 ξ

b′(n2−1)f0(ξ
n, ξ)

x2k+1Oξ

,

which is in Z[ξ] by Proposition 3.1.

(2) b = ±2. Again HSU(2)(k, b, 1) = 0 by Lemma 3.5 (d), and we can assume ε = 0.
This case was studied in [BBlL], where the exact value of HSU(2)(k,±2, 0) was obtained.
By Lemma 5.2 in [BBlL] we have

HSU(2)(k,±2, 0) ∼ 2
√
r

k
∏

i=0

1− ξ(2i+1)/2

1− ξ2i+1
= 2

√
r

k
∏

i=0

1

1 + ξ(2i+1)/2
.

Hence from Lemma 3.5, with k ≤ r/2− 1,

HSU(2)(k,±2, 0)

HSU(2)(0,±1, 0)
∼

√
r/Oξ

∏k
i=0(1 + ξ(2i+1)/2)

∈ z Z[ξ1/4]

where

z =

√
r/Oξ

∏r/2−1
i=0 (1 + ξ(2i+1)/2)

.

The square of the numerator of z is r/O2
ξ ∼ 2, by Lemma 3.3.

Let us calculate the square of the denominator. For any integer j one has

(1 + ξ(2j+1)/2) ∼ (1− ξ(2j+1)/2).

Hence




r/2−1
∏

j=0

(1 + ξ(2j+1)/2)





2

∼
r/2−1
∏

j=0

(1 + ξ(2j+1)/2)(1− ξ(2j+1)/2) =

r/2−1
∏

j=0

(1− ξ(2j+1))

∼
∏r−1

j=1(1− ξj)
∏r/2−1

j=1 (1− ξ2j)
=

r

r/2
= 2.

We can conclude that HSU(2)(k,±2,0)

HSU(2)(0,±1,0)
∈ Z[ξ1/4].
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(3) Assume that b is odd. Splitting the sum in the numerator of the right hand side of
(47) into even and odd n we get

1

4

4r−1
∑

n=0

ξb(n
2−1)/4 ξ−3εn/2fε(ξ

n, ξ)

=
1

4

{

ξ−b/4

2r−1
∑

n=0

ξbn
2−3εn fε(ξ

2n, ξ) + ξ−3ε/2

2r−1
∑

n=0

ξb(n
2+n)−3εn fε(ξ

2n+1, ξ)

}

=
1

2

{

ξ−b/4
r−1
∑

n=0

ξbn
2−3εn fε(ξ

2n, ξ) + ξ−3ε/2
r−1
∑

n=0

ξb(n
2+n)−3εn fε(ξ

2n+1, ξ)

}

(48)

Since fε(z
2, q) and fε(z

2q, q) belong to I2k+1+ε (according to Proposition 2.1), each
summand in the curly brackets of the right hand side of (48) is divisible by x2k+1+εOξ,
by Proposition 3.1. It follows from (47) that

HSU(2)(k, b, ε)

HSU(2)(0,±1, 0)
∈ 1

2
Z[ξ1/4],

which, together with Lemma 7.2, implies

HSU(2)(k, b, ε)

HSU(2)(0,±1, 0)
∈ 1

2
Z[ξ1/4] ∩ Z(2)[ξ

1/4] = Z[ξ1/4].

Finally

HSU(2)(k, 0, ε)

(1− ξ)DSU(2)
∈ Z[ξ1/4]

follows from Lemma 3.5 (c), which says that HSU(2)(0,±1, 0) ∼ (1− ξ)DSU(2). �

Proof of Theorem 1. By Proposition 7.1, each factor in the right hand side of (10) is

in Z[ξ1/4], hence τ
SU(2)
M,L′ (ξ) ∈ Z[ξ1/4] if M is diagonal of prime type.

Now suppose M is an arbitrary 3-manifold. According to Proposition 5.1, there exist
lens spaces L(2k1,−1), . . . ,L(2kj ,−1), such that M#2s#N is diagonal of prime type for
every positive integer s. Here

N := #j
i=1 L(2

ki,−1) .

By Lemma 3.6, there is an odd colored knot Ki ⊂ L(2ki,−1) such that τ
SU(2)

L(2ki ,−1),Ki
6= 0.

The knots Ki together form a link L′′ ⊂ N , and

τ
SU(2)
N,L′′ (ξ) =

∏

i

τ
SU(2)

L(2ki ,−1),Ki
6= 0.

Taking the connected sum of (N,L′′) with 2s copies of (M,L′), we get a diagonal
3-manifold of prime type. Hence,

(

τ
SU(2)
M,L′ (ξ)

)2s

τ
SU(2)
N,L′′ (ξ) ∈ Z[ξ1/4]

for every positive integer s. Applying Lemma 3.3 (c), we get τ
SU(2)
M,L′ (ξ) ∈ Z[ξ1/4].

�
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Appendix A. Proof of Theorem 1.1

A.1. Algebraic preliminaries. We first recall the universal quantized algebra Uh =
Uh(sl2) and some of its properties. For more details see e.g. [Ha2].

The universal quantized algebra Uh = Uh(sl2) is the h-adically complete Q[[h]]-algebra,
topologically generated by the elements H,E, and F , satisfying the relations

HE − EH = 2E, HF − FH = −2F, EF − FE =
K −K−1

v − v−1
,

where K := exp(hH/2), v := exp(h/2), and v2 = q. The algebra Uh has a structure
of Hopf algebra, which makes Uh into a Uh-module via the adjoint representation, and
defines a tensor product on the set of Uh-modules. In particular, the completed tensor

powers U ⊗̂m
h is a Uh-module via the adjoint representation. For a set Y ⊂ U⊗m

h its subset
of invariant elements is defined by

Y inv := {y ∈ Y | a · y = ǫ(y), ∀a ∈ Uh} ,

where ǫ is the antipode of Uh and a · y is the adjoint action. It is known that (Uh)
inv is

exactly the center of Uh.
For each positive integer n there is a unique n-dimensional irreducible Uh-module,

denoted by Vn, we set V := V2. Let

R = SpanZ[v±1]{Vn, n ≥ 1} ,

which is a Z[v±1]-algebra whose multiplication is the tensor product. One has

VnV = Vn+1 + Vn−1 , (A.1)

and as a ring R = Z[v±1][V ], the Z[v±1]-polynomial algebra in V .
For an Uh-module W and x ∈ Uh the quantum trace is defined by

trWq (x) = tr(xK−1,W ) ,

which can be linearly extended to the case when W is a Z[v±1]-linear combination of
Uh-modules.

The quantum trace preserves ad-invariance, which means the following. SupposeW ∈ R

and y ∈
(

U⊗m
h

)inv
, then

(

id⊗(m−1) ⊗ trWq
)

(y) ∈
(

U
⊗(m−1)
h

)inv
.

A.2. New bases for R. In R consider the following elements: P
(0)
0 = P

(1)
0 = 1,

P (0)
n =

n
∏

j=1

(V − λ2j−1) , P (1)
n =

n
∏

j=1

(V − λ2j) ,

where λn = vn + v−n. Note that P
(0)
n is Pn of [Ha2]. Since P

(0)
n is a monic polynomial

of degree n in V with coefficients in Z[v±1], it is clear that the set {P (0)
n , n = 0, 1, 2, . . . }

forms a Z[v±1]-basis of R. Similarly, {P (1)
n , n = 0, 1, 2, . . .} also forms a Z[v±1]-basis of R.

It is not difficult to express Vn through these bases. In fact, (A.1), together with an easy
induction, will give the following identities, the first of which was obtained in [Ha2].

Vn =
n−1
∑

k=0

[

n+ k

2k + 1

]

P
(0)
k , Vn =

n−1
∑

k=0

[

n+ k

2k + 1

]

λn

λk+1

P
(1)
k . (A.2)



ON THE INTEGRALITY OF THE WRT INVARIANTS 27

A.3. Integral subalgebras and their completions. Following [Ha2] let U (0)
q be the

Z[q±1]-subalgebra of Uh generated by F̃ (l), e and K±2, where

F̃ (l) := ql(1−l)/4F lK l/[l]! and e := {1}E .

Let U (1)
q = K U (0)

q and Uq = U (0)
q ⊕ U (1)

q .
Let Fp(U⊗m

q ) ⊂ U⊗m
q be the Z[q±1]-span of elements of the form y1 ⊗ y2 ⊗ · · · ⊗ ym,

where each yj belongs to Uq, and one of them belongs to Uq e
pUq. For a set Y ⊂ U⊗m

q

define its completion

Ỹ :=

{

∞
∑

j=0

zp | zp ∈ Y ∩ Fp(U⊗m
q )

}

.

In particular, when m = 1, on can define Ũq and Ũ (ε)
q for ε ∈ {0, 1}. For e =

(ε1, . . . , εm) ∈ {0, 1}m, let ˜U⊗(e)
q be the completion of U (ε1)

q ⊗ · · ·⊗U (εm)
q defined as above.

The center Z(Uq) = (Uq)
inv is freely generated as an Z[q±1]-algebra by the quantum

Casimir operator

C = (1− q−1)F̃ (1)K−1e+K + q−1K−1 ∈ U (1)
q .

Set

σ(0)
n =

n
∏

i=0

(qC2 − (qi + 2 + q−i)) and σ(1)
n = Cσ(0)

n .

Theorem 1.1 in [Ha1] states that

(Ũ (ε)
q )inv =

{

∑

p≥0

ap σ
(ε)
p | ap ∈ Z[q±1]

}

. (A.3)

We will need the following result.

Proposition A.1. Suppose x ∈ U (ε)
q , ε ∈ {0, 1}. Then for every n, trP

(ε)
n

q (x) belongs to

(q; q)n Z[q±1].

Proof. If ε = 0, this is [Ha2, Lemma 8.5]. The case ε = 1 can be proved similarly. It is

enough to set x = F̃ (l)K2j+1el
′

. It is easy to see that trP
(1)
n

q (F̃ (l)K2j+1el
′

) = 0 if l 6= l′. Set

B(n, l, j) := trP
(1)
n

q (F̃ (l)K2j+1el) .

Then it is clear that B(n, l, j) = 0 when l > n because el vanishes on V1, V2, . . . , Vn+1.
When l ≤ n, by a similar argument as in the proof of [Ha2, lemma 8.8], we have

B(n, l, j) = {j − n}{j + n}B(n− 1, l, j) + qj(1− q−l)B(n− 1, l − 1, j + 1) .

The above recursive relation and a simple induction will show that

B(n, l, j) = q−(j+l)n(q; q)n(q; q)n−l

(

j − 1

n− l

)

q

(

j + n

n− l

)

q

∈ (q; q)n Z[q
±1] .

�

Lemma A.2. For every non-negative integers k, p and ε ∈ {0, 1}, one has

tr
P

(ε)
k

q (σ(ε)
p ) = δk,p

{2k + 1}!
vε{1} λε

k+1 . (A.4)
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Proof. The case ε = 0 is proved in [Ha2, Proposition 6.3]. Hence, we restrict to ε = 1.
As explained in [Ha2, Section 6.3.1], there exists a homomorphism ϕ : R → Z(Uq ⊗

Z[v±1]) sending V to vC. In particular, for

S(1)
n := V

n
∏

j=1

(V 2 − (λj)
2)

we have ϕ(S
(1)
n ) = vσ

(1)
n . Moreover, for any x, y ∈ R,

trxq (ϕ(y)) = JH(x, y) := 〈x, y〉 ,
where 〈x, y〉 is the Rosso pairing defined as the colored Jones polynomial of the 0-framed
Hopf link H, whose two components are colored by x and y. Note that this pairing is

symmetric. Hence, for ε = 1, the left hand side of (A.4) is equal to 〈P (1)
k , v−1S

(1)
p 〉.

Since λn := vn + v−n = 〈Vn, V 〉/[n], for every f(V ) ∈ R we have

〈Vn, f(V )〉 = [n]f(λn) . (A.5)

Hence if m < n, then 〈V2m+2, P
(1)
n 〉 = 0 and 〈S(1)

n , Vm+1〉 = 0.
Using VnV = Vn+1 + Vn−1, we get

P (1)
n = Vn+1 + a Z[v±1]-linear combination of V1, V2 . . . , Vn , (A.6)

and
S(1)
n = V2n+2 + a Z[v±1]-linear combination of V2, V4, . . . , V2n .

Therefore 〈S(1)
m , P

(1)
n 〉 = 0 if m 6= n.

Finally

v trP
(1)
n

q (σ(1)
n ) = 〈S(1)

n , P (1)
n 〉 = 〈S(1)

n , Vn+1〉 = [n+ 1]λn+1

n
∏

j=1

((λn+1)
2 − (λj)

2)

= [n + 1]λn+1

n
∏

j=1

{j}{2n+ 2− j}

�

A.4. Proof of Theorem 1.1. Suppose L⊔L′ is an oriented framed link with fixed colors
s = (s1, . . . , sl) on L′. Here L has m ordered components and εi are defined in (2).

According to [Ha2, Theorem 4.1], there is an element JT ∈
(

U
⊗(m+l)
h

)inv
such that

JL(n) = tr
Vn1⊗···⊗Vnm⊗Vs1⊗···⊗Vsl
q (JT ) .

(In [Ha2], JT is the universal invariant of a bottom tangle whose closure is L ⊔ L′.)

Using (A.2) to express Vni
as a linear combination of P

(εi)
k , we have

JL(n) =

ni−1
∑

ki=0

tr
P

(ε1)
k1

⊗···⊗P
(εm)
km

⊗Vs1⊗···⊗Vsl
q (JT )

m
∏

i=1

[

ni + ki
2ki + 1

]

λεi
ni

λεi
ki+1

=

ni−1
∑

ki=0

tr
P

(ε1)
′

k1
⊗···⊗P

(εm)′

km
⊗Vs1⊗···⊗Vsl

q (JT )
m
∏

i=1

[

ni + ki
2ki + 1

]

{ki}!
λεi
ni

λεi
ki+1

, (A.7)

which is (4) with

cL⊔L′(k) = tr
P

(ε1)
′

k1
⊗···⊗P

(εm)′

km
⊗Vs1⊗···⊗Vsl

q (JT ) .

Here P
(ε)′

k = P
(ε)
k /{k}! .



ON THE INTEGRALITY OF THE WRT INVARIANTS 29

Without loss of generality, we may assume k1 = k = max(k1, . . . , km).

By Theorem A.3 in [BBuL], (id⊗m⊗ tr
Vs1
q ⊗ · · · ⊗ tr

Vsl
q )(JT ) ∈ qa

(˜U⊗(e)
q

)inv
, for some

a ∈ 1
4
Z. Let

y := (id⊗ tr
P

(ε2)
′

k2
q ⊗ · · · ⊗ tr

P
(εm)′

km
q ⊗ tr

Vs1
q ⊗ · · · ⊗ tr

Vsl
q )(JT ) .

Then

cL⊔L′(k) = tr
P

(ε1)
′

k1
q (y) .

Proposition A.1, as well as the fact that quantum trace preserves ad-invariance, gives

us y ∈ qa
(

U (ε1)
q

)inv
. Hence y has a presentation y = qa

∑

p≥0 dpσ
(ε1)
p with dp ∈ Z[q±1]. We

then have

tr
P

(ε1)
′

k1
q (y) = qa

∑

p

dp tr
P

(ε1)
′

k1
q

(

σ(ε1)
p

)

,

which belongs to
(qk+1;q)k+1

1−q
Z[q±

1
4 ] by Lemma A.2. �
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[Ha1] K. Habiro, An integral form of the quantized enveloping algebra of sl2 and its completions, J.

Pure Appl. Algebra 211(1) (2007), 265–292
[Ha2] K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent.

Math. 171(1) (2008), 1–81
[HL] K. Habiro and T. Le, in preparation
[KK] A. Kawauchi and S. Kojima, Algebraic classification of linking pairings on 3–manifolds, Math.

Ann. 253 (1980), 29–42
[Kho] M. Khovanov, Hopfological algebra and categorification at a root of unity: the first steps,

math.QA/0509083
[KM] R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2,C),

Invent. Math. 105 (1991), 473–545
[La] S. Lang, Algebra, 3rd edition, Addison-Wesley 1997
[Le1] T. Le, Integrality and symmetry of quantum link invariants, Duke Math. J., 102 (2000) 273–306
[Le2] T. Le, Quantum invariants of 3-manifolds: integrality, splitting, and perturbative expansion,

Topology Appl. 127 (2003), 125–152
[Le3] T. Le, Strong integrality of quantum invariants of 3-manifolds, Trans. Amer. Math. Soc. 360(6)

(2008), 2941–2963
[Lic] R. Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics 175 1997
[Lu] G. Lusztig, Quantum group at roots of 1, Geom. Dedicata 35 (1990), 89–113.

http://arxiv.org/abs/0801.3893
http://arxiv.org/abs/math/0509083


30 ANNA BELIAKOVA, QI CHEN, AND THANG LE

[MR] G. Masbaum and J. Roberts, A simple proof of integrality of quantum invariants at prime roots
of unity, Math. Proc. Camb. Phil. Soc. 121 (1997), 443–454.

[MW] G. Masbaum and H. Wenzl, Integral modular categories and integrality of quantum invariants at
roots of unity of prime order, J. Reine Angew. Math. 505 (1998), 209–235.

[MM] P. Melvin and H. Morton, The coloured Jones function, Comm. Math. Phys., 169, 1995, 501–520.
[Mu] H. Murakami, Quantum SO(3)-invariants dominate the SU(2)-invariant of Casson and Walker,

Math. Proc. Camb. Phil. Soc. 117 (1995), 237–249.
[MOO] H. Murakami, T. Ohtsuki and M. Okada, Invariants of three-manifolds derived from linking

matrices of framed links, Osaka J. Math. 29 (1992), 545–572.
[Oh] T. Ohtsuki, A polynomial invariant of rational homology 3-spheres, Invent. Math. 123 (1996),

241–257.
[O] T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots

and Everything, 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
[RT] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link polynomials and quantum

groups, Invent. Math. 103 (1991), 547–597.
[TY] T. Takata, Y. Yokota, The PSU(n) invariants of 3-manifolds are polynomials, J. Knot Theory

Ram. 8 (1999), 521–532.
[Tu] V. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics

18, Walter de Gruyter, Berlin New York 1994.
[Wa] C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281–298.
[Wi] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989),

351–399.

I-Math, University of Zurich

Winterthurerstrasse 190

8057 Zurich, Switzerland

E-mail address : anna@math.uzh.ch

Department of Mathematics

Winston-Salem State University

Winston Salem, NC 27110 USA

E-mail address : chenqi@wssu.edu

Department of Mathematics

Georgia Institute of Technology

Atlanta, GA 30332-0160, USA

E-mail address : letu@math.gatech.edu


	0. Introduction
	1. The colored Jones polynomial and the WRT invariant
	1.1. Notations
	1.2. The colored Jones polynomial
	1.3. Habiro's expansion and its generalization
	1.4. The WRT invariant
	Relations with other invariants
	1.5. Diagonal case
	1.6. Strategy for the proof of Theorems 1 and 2

	2. Basic divisibility: the case of generic q
	2.1. The ideal Ik
	2.2. Divisibility for generic q
	2.3. Polynomials with q-integer values

	3. Basic results: the case of roots of unity
	3.1. Divisibility
	3.2. The ring Z[]
	3.3. Quadratic Gauss sums
	Proof of Lemma 1.2
	3.4. Simplification of HG(k,b, )
	3.5. Lens spaces

	4. Symmetry Principle and splitting of the SU(2) invariant
	4.1. Symmetry Principle for links in S3
	4.2. WRT SO(3) invariant for an arbitrary colored link in M
	4.3. Symmetry Principle for the WRT SO(3) invariant
	4.4. Splitting

	5. Diagonalization of 3-manifolds
	6. Proof of the integrality in the SO(3) case
	Proof of Theorem 2

	7. Proof of the integrality in the SU(2) case
	Proof of Theorem 1 

	Appendix A. Proof of Theorem 1.1
	A.1. Algebraic preliminaries
	A.2. New bases for R
	A.3. Integral subalgebras and their completions
	A.4. Proof of Theorem 1.1

	References

