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A CATEGORIFICATION OF THE RIBBON ELEMENT IN QUANTUM sl(2)

ANNA BELIAKOVA AND KAZUO HABIRO

Abstract. We define a bicomplex whose Euler characteristic is the idempotented version of the
ribbon element of quantum sl(2). We show that properties of this bicomplex descend to the centrality,
invertibility and symmetries of the ribbon element after decategorification.

1. Introduction

The program of categorification of quantum groups was initiated by Frenkel and carried out by
Khovanov and Lauda [8], [9], [10] and Rouquier [17]. In [13], [11] the 2-category U̇ was constructed
that categorifies the integral idempotented version of the quantum enveloping algebra of sl2.

The objects of U̇ are natural numbers, interpreted as the integral weight lattice of sl2. The 1-
morphisms of U̇ are generated by E(a)1n〈t〉 and F

(b)1n〈t〉, for all a, b ∈ N, n, t ∈ Z, which are lifts of
the Lusztig divided powers. The 2-morphisms are Z-linear combinations of planar diagrams modulo
local relations. The split Grothendieck group K0(U̇) satisfies

K0(E
(a)1n〈t〉) = qtE(a)1n and K0(F

(a)1n〈t〉) = qtF (a)1n

and coincides with the integral idempotented version of the quantum enveloping algebra Uq(sl2) con-
structed in [1].

On the other hand, there exists a universal knot invariant [14] (see also [7]) which takes values in
the center of quantum sl2 and dominates all colored Jones polynomials. This paper can be considered
as a first step towards a categorification of the universal link invariant.

The most challenging problem of this program is to find a categorical equivalent of the R-matrix,
associated by the universal invariant to a crossing in a link diagram. Here we resolve a simpler problem,
we categorify the ribbon element, which is the universal invariant of a self-crossing. The bicomplex we
construct in this paper is conjecturally an element of the Drinfeld center of Com(U̇) and is related to
a Serre functor on category O associated with the longest braid [16] by Conjecture 3. Here we denote

by Kom(U̇) the category of bicomplexes over the 2-category U̇ and by Com(U̇) its homotopy version.
The ribbon element r is an element of the h-adic version Uh(sl2) of the quantized enveloping algebra

Uq(sl2). It is given by

r = q−
H2

2 −H
∞∑

k=0

(−1)kq−kH−k(q−2; q−2)kF
(k)E(k)

where (qa; qb)k = (1 − qa)(1− qa+b) . . . (1− qa+(k−1)b). Thus, the idempotented version of r is

r1n = q−
n2

2 −n
∞∑

k=0

(−1)kq−kn−k(q−2; q−2)kF
(k)E(k)1n(1.1)

= q−
n2

2 +n
∞∑

k=0

(−1)kqkn−k(q−2; q−2)kE
(k)F (k)1n,(1.2)
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where n ∈ Z.
Recall that the ribbon element is central and invertible in Uq(sl2) with the inverse

r−11n = q
n2

2 +n
∞∑

k=0

(−1)kqkn+k(q2; q2)kF
(k)E(k)1n

The definition of the bicomplex r1n ∈ Kom(U̇) categorifying the ribbon element is outlined as

follows. First, we construct a bicomplex C•,• in Kom(U̇)

(1.3) C00

dV00

C10

dH10

dV10

C11

dV11

C20

dH20

dV20

C21

dH21

dV21

C22

dV22

C30

dH30

dV30

C31

dH31

dV31

C32

dH32

dV32

C33

dV33

. . . . . . . . . . . .

where the 1-morphism Ck,l : n→ n in U̇ (i.e. an object Ck,l in the additive category U̇(n, n)) is defined
by

Ck,l := F
(k)E(k)1n〈−kn− k〉 ⊗ ΛlWk,

where Wk = Span
Z

{w1, . . . , wk} with deg(wj) = −2j. Note that C00 = F (0)E(0)1n〈0〉 ⊗ Λ0W0
∼= 1n.

The differentials dVk,l, d
H
k,l are defined in Section 4. Figure 1 there shows the beginning of this bicomplex.

The Euler characteristic of the bicomplex C•,• is equal to the sum part of (1.1)

∞∑

k=0

(−1)kq−kn−k(q−2; q−2)kF
(k)E(k)1n.

Finally, we shift our bicomplex by 〈−n
2

2 − n〉 in q-degree and by [n/2, n/2] in homological bi-degree
to obtain

r1n := C•,•〈−
n2

2
− n〉[n/2, n/2].

The q-degree shift 〈−n
2

2 − n〉 corresponds to the factor q−
n2

2 −n in (1.1). The homological degree shift

[n/2, n/2] is added to make r1n commute with the 1-morphisms in U̇ up to homotopy equivalence (see
Theorem 1). We use the convention that the Euler characteristic is not affected by a global homological
shift.

The bicomplex r−11n is given by inverting all arrows in (1.3), rotating diagrams representing dif-
ferentials by 180 degree, and replacing Ck,l with

1

CLk,l := F
(k)E(k)1n〈kn+ k〉 ⊗ ΛlW̄k, W̄k = Span

Z

{w̄1, . . . , w̄k}

1The index L stays here for the left adjoint.
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where deg(w̄j) = 2j. Finally, we have

r−11n := CL•,•〈
n2

2
+ n〉[−n/2,−n/2].

It is an easy check that the Euler characteristics of r1n and r−11n in Kom(U̇) coincide with r1n and
r−11n, respectively.

Let us list some properties of these bicomplexes, which follow directly from the definition.

• For each k, the horizontal complex Ck,• = ⊕l∈ZCk,l forms a k-dimensional cube and hence is
bounded.
• The total complex Tot(C•,•) is a well-defined complex in U̇ , i.e., for each integer p,

⊕
k+l=p Ck,l ∈

Ob(U̇) is a finite direct sum.
• The horizontal differentials are given by certain central elements in End(F (k)E(k)1n) defined
in Section 3 and generated by dots.

Recall that U̇ is the Karoubi envelope of the 2-category U defined in [13]. The generators for 1-
morphisms in U are E1n〈t〉 and F1n〈t〉 for n, t ∈ Z. The involutive 2-functors ω, σ and ψ, generating
the symmetry group G = (Z/2Z)3 of U were also introduced in [13]. We recall these definitions and

extend them to U̇ in Section 10. Let us denote by G1 := {1, σω} the subgroup of G.
Throughout this paper we adopt the notation rr−11n for the tensor product of two complexes, i.e.

we omit tensor sign, since on 1-morphisms of U̇ tensor product is just a concatenation.
Our main result is the following:

Theorem 1. (Centrality) For any complex X ∈ Com(U), there are isomorphisms

κX : Xr1n → rX1n ηX : Xr−11n → r−1X1n

of bicomplexes in Com(U̇).

(Invertibility) The bicomplexes rr−11n and r−1r1n in lKom(U̇) are homotopy equivalent to 1n.

(Symmetry) The bicomplexes r1n and r−11n in Kom(U̇) are invariant under the action of G1 ⊂ G.
Moreover, r−11n = σωψ(r1n) is isomorphic to ψ(r1n).

Note that since the bicomplexes r1n and r−11n are bounded from above and below respectively, and
U̇ does not admit infinite direct sums, their tensor product rr−11n does not belong to Kom(U̇). Instead

we are using lKom(U̇) which is the inverse limit of the categories of bounded bicomplexes Komb(U̇N ),

where U̇N is the Schur quotient of U̇ defined by setting 1N+2 = 0 (see Section 12 for more details).
Properties listed in Theorem 1 are natural lifts of the properties of the ribbon element to higher

categorical level. We would also expect the following to hold.

Conjecture 2. (Naturality) The chain maps κX and ηX are natural, i.e. they commute with all

2-morphisms of U̇ .

(Decomposability) For n ≥ 0 the bicomplex r1n is indecomposable in Kom(U̇), and the bicomplex

ω(r1−n) is isomorphic to a direct sum of r1n and a contractible complex. For n ≤ 0 the bicomplex

ω(r1−n) is indecomposable in Kom(U̇), and the bicomplex r1n is isomorphic to a direct sum of ω(r1−n)
and a contractible complex. For n = 0 the bicomplexes r1n and ω(r1−n) are isomorphic.

Observe that we could use σ(r1−n) instead of ω(r1−n), since by Theorem 1 they are isomorphic.
Let us comment on this conjecture. We expect the isomorphisms κX and ηX to be natural, and

hence, to be defined for any X ∈ Com(U̇). This would imply that the bicomplexes r1n and r−11n
belong to the Drinfeld center of Com(U̇) viewed as an additive monoidal category. Here we regard

1-morphisms in Com(U̇) as objects of the monoidal category. The monoidal structure is given by
composition of 1-morphisms and horizontal composition of 2-morphisms. The collection of chain maps
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κX define then an invertible natural transformation κ : −r =⇒ r− between endofunctors of Com(U̇)
given by tensoring on the left and on the right with the complex r1n for an appropriate n.

The first column of our bicomplex C00 → C10 → C20 → . . . is an example of so-called Rickard
complex introduced by Chuang and Rouquier in [5] and intensively studied by Cautis and Kamnitzer
[4], [3]. The Rickard-Rouquier complex 1−nT1n categorifies the action of the Weyl group on the
finite-dimensional representations and satisfies the braid relation. It can be defined as follows:

T1n : . . .→ F (n+s)E(s)〈s〉1n → F
(n+s−1)E(s−1)〈s− 1〉1n → . . .→ F (n)1n for n ≥ 0(1.4)

T1n : . . .→ E(−n+s)F (s)〈s〉1n → E
(−n+s−1)F (s−1)〈s− 1〉1n → . . .→ E(−n)1n for n ≤ 0(1.5)

where the differential are non-zero maps.

Conjecture 3 (Cautis). The total complex of the ribbon bicomplex Tot(r−11n) is homotopy equivalent

to

T
21n〈

n2

2
+ n〉[−n/2,−n/2] .

Note that the decategorified version of this conjecture holds. For n ≥ 0, the Euler characteristic

T 21n = T 1−nT 1n =
∑

l,s≥0

(−q)l+sE(n+s)F (s)F (n+l)E(l)1n

=

∞∑

k=0

(−1)kqkn+k(q2; q2)kF
(k)E(k)1n

coincides with r−11n after multiplying with qn
2/2+n. The case n ≤ 0 can be obtained similarly, after

replacing n by −n and exchanging E’s and F ’s.

1.1. Strategy of the proof of Theorem 1. It is enough to check centrality on the generators. This
is because any “chain group” of X is a composition of E ’s and F ’s and the maps ηE and ηF are adjoint
to κF and κE , respectively.

Lemma 4. There are maps

κE : Er1n → rE1n

κ̄F : rF1n+2 → Fr1n+2

which are homotopy equivalences in Kom(U̇).

Here rE1n is the bicomplex obtained by composing r1n+2 to the left of E1n. The differentials are
those of r1n+2 extended by identity on E1n. The other bicomplexes are defined analogously.

To construct κE we will proceed as follows. We will define an intermediate bicomplex (rE1n)
′ as an

indecomposable summand of rE1n, whose “chain groups” are

C′
k,l = F

(k)E(k+1)1n〈−kn− 2k〉 ⊗ ΛlW ′
k

with W ′
k := Span

Z

{w2, . . . , wk+1}, the total q-degree shift 〈−n
2

2 − 3n − 4〉 and the homological shift
[n/2+1, n/2+1]. Then we show that Er1n and rE1n retract to (rE1n)

′ (Theorems 7.1, 5.3). Composing
the corresponding homotopy equivalences we will get κE . The construction of the chain maps between
Er1n, rE1n and (rE1n)

′, and the proofs of Theorems 7.1 and 5.3 is the most involved technical part
of the paper.

To define κF we use the invariance of r1n under σω. Indeed, we have

σω(κE) : σω(Er1n)→ σω(rE1n) .

However, σω(Er1n) = σω(r)F1n+2 ≃ rF1n+2 and similarly, σω(rE1n) is isomorphic to Fr1n+2.
The proof of invertibility is based on the next theorem computing the action of the ribbon complex

on the category of complexes over FlagN defined in [13] and the main result of [2]. Let us define the
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endofunctors rLN and rRN of Com(FlagN ) by tensoring with ΓN (r1n) on the left and right, respectively,
i.e. rLN (X) = ΓN (r1n)X . Analogously, the endofunctors (r−1)LN and (r−1)RN are defined by tensoring
with ΓN (r−11n).

Theorem 5. For any natural number N , rLN and rRN are the identity endofunctors of Com(FlagN ) up
to degree shift. Their inverses are (r−1)LN and (r−1)RN , respectively.

The main result of [2] says that U̇ is the inverse limit of Flag 2-categories. Hence, we conclude that
tensoring with r±1r∓11n is the inverse limit of the identity functor in FlagN , which is the identity

endofunctor of lCom(U̇).

To prove symmetry, we construct a bicomplex r̃1n which is 1) isomorphic to r1n in Kom(U̇), and
2) invariant under σω. This is done in Section 11. Then, given the isomorphism H : r1n → r̃1n, the
composition σω(H−1) ◦H : r1n → σω(r1n) is the required isomorphism.

The paper is organized as follows. After some preliminaries, we define the central elements cλ
indexed by partitions, r1n, r

−11n and the intermediate bicomplex (rE1n)
′. The next four Sections are

devoted to the definition of the chain maps and homotopies and to the proofs of Theorems 7.1, 5.3 and
Theorem 1 (Centrality). After that we recall the definitions of the symmetry 2-functors and define the
images of r1n under those symmetries. Section 11 is devoted to the construction of r̃1n. In the last
section we prove Theorem 5 and Theorem 1 (Invertibility).

In Appendix we collect identities needed for the proofs.

Acknowledgments. The first author would like to thank Aaron Lauda for helpful discussions and
Krzysztof Putyra for sharing his LaTeX package for drawing diagrams.

2. General facts

2.1. Definitions and conventions. We refer to [13] and [11] for the definitions of the 2-categories

U and its Karoubi envelope U̇ . The 2-morphisms in these 2-categories are given by diagrams modulo
some local relations. The right most region in all our diagrams is labeled by n. For any 1-morphism
x ∈ HomU̇(n,m), we denote by Dot(x) ⊂ EndU̇ (x) the subspace of its 2-endomorphisms generated

by dots. A thick line labeled with a positive integer k denotes the identity 2-morphism of E(k) :=

(Ek, 〉k)〈−
k(k−1)

2 〉 if it is oriented upwards; and the identity 2-morphism of F (k) := (Fk, 〉′k)〈
k(k−1)

2 〉 in

U̇ otherwise, where 〉k is the idempotent defined in [11] and 〉′k is its image under 180-degree rotation.
The case k = 1 will be represented by a thin line without any label for a better visibility.

In this paper, for any 2-category C, we denote by Kom(C) the 2-category of bicomplexes over the
2-category C. The objects of Kom(C) coincide with objects of C, 1-morphisms are bicomplexes of 1-
morphisms in C, and 2-morphisms are chain maps, constructed from 2-morphisms in C. Let Com(C) be
the 2-category with the same objects and 1-morphisms as Kom(C) but whose 2-morphisms are chain

maps up to homotopy. We will denote by Komb(C) and Comb(C) corresponding bounded versions.
The degree of a 2-morphism in U is defined as degree of the target minus degree of the source plus

degree of the diagram.

2.2. Strong deformation retraction. Let us recall the definitions.
A chain complex (C′, d′) is a strong deformation retract of a chain complex (C, d) if there exist

• a chain map f : C → C′, i.e. d′f = fd;
• a chain map g : C′ → C, i.e. dg = gd′;
• a homotopy h : C• → C•−1 satisfying hd+ dh = 1− gf and

fg = 1 h2 = 0
fh = 0 hg = 0
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Remark. From the four equalities including g it is enough to show that fg = 1 and hd+dh = 1−gf .
The other two equalities(dg = gd′, hg = 0) follow from them.

Let (C, dV , dH) and (C′, d′V , d′H) be two bicomplexes. We say that the second bicomplex is a strong
deformation retract of the first one if there exist

• a chain map f : C → C′ with d′Hf = fdH , d′V f = fdV ;
• a chain map g : C′ → C with dHg = gd′H , dV g = gd′V ;
• a homotopy h = hH + hV : C• → C•−1 with hHdH + hV dV + dHhH + dV hV = 1 − gf ,
hHdV + dV hH = 0 and hV dH + dHhV = 0 satisfying

fg = 1 hHhH = 0 hHhV + hV hH = 0 hV hV = 0
fhH = 0 fhV = 0 hHg = 0 hV g = 0

Remark. The equalities dHg = gd′H , dV g = gd′V , hHg = 0 and hV g = 0 follow from the others.

2.3. Symmetric functions. Let us denote by Sk the symmetric group and Ak = Z[x1, . . . , xk]
Sk the

ring of symmetric polynomials. Let A be the ring of symmetric functions, defined as the inverse limit
of the system (Ak)k∈N.

For a partition λ = (λ1, λ2, . . . , λa) with λ1 ≥ λ2 ≥ · · · ≥ λa ≥ 0 let |λ| :=
∑a

i=1 λi. We denote
by P (a) the set of all partitions λ with at most a parts (i.e. with λa+1 = 0). Moreover, the set of all
partitions (i.e. the set P (∞)) we denote simply by P .

The dual (conjugate) partition of λ is the partition λt = (λt1, λ
t
2, . . .) with λ

t
j = ♯{i|λi ≥ j} which is

given by reflecting the Young diagram of λ along the diagonal.
The Schur polynomials {sλ | λ ∈ P (k)} form a basis of Ak, as well as Schur functions {sλ | λ ∈ P}

is a base of A. The multiplication in this basis is given by the following formula

sµsν =
∑

λ∈P

Nλ
µνsλ,

where Nλ
µν are the Littlewood-Richardson coefficients. The elementary symmetric functions {s1d =

ed | d ∈ N} or the complete symmetric functions {sd = hd | d ∈ N} generate A multiplicatively.
The ring A has a natural Hopf algebra structure with comultiplication

∆: A −→ A⊗A

given by

∆(sλ) =
∑

µ,ν∈P

Nλ
µνsµ ⊗ sν ,

counit

ε : A −→ Z, sλ 7→ δλ,0,

and antipode

γ : A −→ A, sλ 7→ (−1)|λ|sλt .

3. The center of the 2-category U̇

After recalling the general definition of a center for any linear category, we construct central elements
in U̇(n,m).
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3.1. Center of a category. For a linear category C, the center Z(C) of C is the ring of endo-natural
transformations on the identity functor 1C : C −→ C. Thus, an element σ of Z(C) is a collection of
endomorphisms σx : x −→ x for objects x in C such that we have

fσx = σyf

for any morphisms f : x −→ y in C. Multiplication of two elements σ and τ in Z(C) is defined by

(τσ)x := τxσx.

It is easily seen that Z(C) is commutative. We call σ a central element of C.
Let C be a linear 2-category. For each pair (x, y) of objects in C, one can consider the center

Z(C(x, y)) of the category C(x, y) whose objects are the 1-morphisms between x and y and morphisms
are 2-morphisms. The center Z(C(x, y)) is a commutative ring.

3.2. Central elements in U̇ . We have natural ring homomorphisms

da : Aa −→ Dot(E(a)1n),

d′a : Aa −→ Dot(F (a)1n).

which lift to

da : A −→ Dot(E(a)1n),

d′a : A −→ Dot(F (a)1n).

In this subsection, we define for each 1-morphism f : n −→ m in U̇ a ring homomorphism

c = cf : A −→ Dot(f).

For f = E(a)1n, we set

cE(a)1n
(x) = da(x).

For f = F (a)1n, we set

cF(a)1n
(x) = d′a(γ(x)).

For f = f1f2 . . . fp, where each fj is E
(aj)1nj

or F (aj)1nj
, aj ≥ 0, nj ∈ Z, we set

cf1f2...fp(x) = horizontal composition
(
(cf1 ⊗ · · · ⊗ cfp)∆

[p](x)
)

=
∑

cf1(x(1)) ◦ · · · ◦ cfp(x(p))

where ∆[p] : A −→ A⊗p is the p-output comultiplication with

∆[p](x) =
∑

x(1) ⊗ · · · ⊗ x(p).

Finally, for a direct sum f = f1 ⊕ · · · ⊕ fp, we set

cf1⊕···⊕fp(x) = diag(cf1(x), . . . , cfp(x)).

We also adopt the notation (cλ)f for cf (sλ) and draw:

(cλ)f =

a1

a2

ap
. . .

. . .
cλ

where f = f1f2 . . . fp, each fj is E
(aj)1nj

or F (aj)1nj
.



8 ANNA BELIAKOVA AND KAZUO HABIRO

Note that, for f = Ea1n and f = Fa1n we have

. . .

. . .
cλ :=

. . .

. . .

∆[a](sλ) , and
. . .

. . .
cλ := (−1)|λ|

. . .

. . .

∆[a](sλt) .

For f = E(a)1n and f = F (a)1n we have

a

cλ =

a

λ ,

a

cλ = (−1)|λ|

a

λt .

The following proposition is the direct consequence of the definitions.

Proposition 3.1. For 1-morphisms f : n −→ l and g : l −→ m in U̇ , we have

(cλ)gf =
∑

µ,ν∈P

Nλ
µ,ν(cµ)g ◦ (cν)f

and

(cλcµ)gf =
∑

ν∈P

Nν
λ,µ(cν)gf .

In particular, for λ ∈ Pd, and f = E(i1)F (j1) . . .E(ip)F (jp)1n we have

(cλ)E(i1)F(j1)...E(ip)F(jp)
1n

=
∑

λ(1),µ(1),...,λ(p),µ(p)∈P

(−1)l1+···+lpNλ
λ(1)µ(1)...λ(p)µ(p)λ

(1) ◦ (µ(1))t ◦ · · · ◦ λ(p) ◦ (µ(p))t

where Nλ
λ(1)µ(1)...λ(p)µ(p) ∈ Z≥0 are the Littlewood–Richardson coefficients.

Examples.

1) (cd)F(b)E(a)1n
=

∑

k,l≥0
k+l=d

d′b(γ(hl)) ◦ da(hk) =
∑

k,l≥0
k+l=d

(−1)l

a

b

hkel ,

2) (cd)E(i1)F(j1)...E(ip)F(jp)
1n

=
∑

k1,l1,...,kp,lp≥0

k1+l1+···+kp+lp=d

di1(hk1) ◦ d
′
j1 (γ(hl1)) ◦ · · · ◦ dip(hkp) ◦ d

′
jp(γ(hlp)) =

=
∑

k1,l1,...,kp,lp≥0

k1+l1+···+kp+lp=d

(−1)l1+···+lp

i1

hk1

j1

el1 . . .

ip

hkp

jp

elp .

Proposition 3.2. For m,n ∈ Z, λ ∈ P we have cλ ∈ Z(U̇(n,m)).

Proof. We need to prove that for every 2-morphism α : f → g in U̇(n,m) we have

α(cλ)f = (cλ)gα .

Splitting the thick lines and moving the dots as follows

. . .

cλ n
a

=

. . .
cλ

n
a

,
. . .

cλ n
a

=

. . .
cλ

n
a

,
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we see that it is enough to prove the proposition for 2-morphisms of U , generated by dots, crossings
and turns. For dots the proposition is clear.

Since elementary functions generate A, it is enough to consider cλ for λ = 1d, d ∈ N in what follows.
Note that (c1d)E21n

6= 0 only for d = 1 or d = 2 and

c(1) = • + • , c(1,1) = • • .

Using the NilHecke relations we can easily check that both upper 2-morphisms commute with the
crossing. The same is true for downward oriented arrows.

Similarly, we have

c1d = •d − •d−1 • .

We see that by multiplying with the turn from below, we get 0, which coincides with (c1d)1n = 0. The
other turns can be proved similarly. �

4. Definitions of r1n, r
−11n and (rE1n)

′

4.1. Ribbon bicomplex. As it was already mentioned in Introduction, the bicomplex r1n categori-
fying the ribbon element has “chain groups”

Ck,l := F
(k)E(k)1n〈−kn− k〉 ⊗ ΛlWk, Wk = Span

Z

{w1, . . . , wk}, deg(wj) = −2j

with the total q-degree shift 〈−n
2

2 −n〉 and homological shift [n/2, n/2]. Here note that for an additive
category C and a free abelian group G of finite rank one can construct a functor −⊗G : C → C.

The horizontal differential dHk,l : Ck,l → Ck,l+1 sends x 7→ c ∧ x where

c :=

k∑

j=1

cj ⊗ wj :=

k∑

j=1




j∑

i=0

(−1)i
kk

hj−iei


⊗ wj ∈ Dot(F (k)E(k)1n)⊗Wk

are our central elements.
To define the vertical differential we proceed as follows. Consider the linear map

αk :Wk → Dot(E(k)1n)⊗Wk+1

αk(wi) = 1⊗ wi − (−1)k+1−i

k

ek+1−i ⊗ wk+1

where 1 denotes the identity 2-morphism of E(k)1n. This map induces an algebra homomorphism

αk : Λ•Wk → Dot(E(k)1n)⊗ Λ•Wk+1 and let αk,l : Λ
lWk → Dot(E(k)1n)⊗ ΛlWk+1

be its degree l part. Then the vertical differential is

dVk,l := (−1)l

k+1 k+1

k k

αk,l
: Ck,l → Ck+1,l where
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αk,l(wi1 ∧ wi2 ∧ · · · ∧ wil) = αk(wi1 ) ∧ αk(wi2 ) ∧ · · · ∧ αk(wil )(4.1)

= 1⊗ wi1 ∧ · · · ∧ wil −

l∑

j=1

(−1)k+1−ij+l−j

k

ek+1−ij ⊗ (wii ∧ · · · ∧ ŵij ∧ · · · ∧ wil) ∧ wk+1

In what follows to simplify the notation we will often omit the tensor sign between the graphical
part and ΛlWk. Also, we will sometimes use a bullet labeled with a symmetric function instead of a
box.

Proposition 4.1. r1n as defined above is a bicomplex, i.e.

dH ◦ dH = 0 dV ◦ dH + dH ◦ dV = 0 dV ◦ dV = 0

Before giving the proof, let us show how the beginning of this bicomplex looks like.

1n

FE1n〈−n−1〉

c1

FE1n〈−n−3〉w1

2 2 2 2 

 −1

−(e1)2





F(2)E(2)
1n〈−2n−2〉

(
F(2)E(2)

1n〈−2n−4〉w1

F(2)E(2)
1n〈−2n−6〉w2

)



 c1

c2





F(2)E(2)
1n〈−2n−4〉w1∧w2

(
−c2 c1

)

3 3 3 3



−1 0

0 −1

(e2)2 −(e1)2




F(3)E(3)
1n〈−3n−3〉




F(3)E(3)
1n〈−3n−5〉w1

F(3)E(3)
1n〈−3n−7〉w2

F(3)E(3)
1n〈−3n−9〉w3








c1

c2

c3



 


F(3)E(3)
1n〈−3n−9〉w1∧w2

F(3)E(3)
1n〈−3n−11〉w1∧w3

F(3)E(3)
1n〈−3n−13〉w2∧w3








−c2 c1 0

−c3 0 c1

0 −c3 c2





3 3



−1

(e1)2

(e2)2




C3,3

C4,0 C4,1 C4,2

Figure 1 The ribbon bicomplex

Proof. The first formula (dH)2 = 0 is immediate from the definition, since c ∧ c = 0.
For the next equation we have to check that the following square anticommutes:

Ck,l
c∧

dVk,l

Ck,l+1

dVk,l+1

Ck+1,l
c∧

Ck+1,l+1
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After moving all cj down, by using their centrality, the anticommutativity reduces to

k+1∑

i0=1

wi0 ∧ d
V
k,l ci0 +

k∑

i0=1

dVk,l+1 ∧ wi0 ci0 = 0

or to the following identity in Dot(F (k)E(k)1n)Λ
lWk

k∑

i0=1

ci0wi0 ∧ wi1 ∧ · · · ∧ wil −

l∑

j=0

(−1)k+1−ij+l−j
k∑

i0=1

ci0(ek+1−ij )2wi0 ∧ . . . ŵij · · · ∧ wil ∧wk+1 =

k+1∑

i0=1

ci0wi0 ∧wi1 ∧ · · · ∧ wil −

l∑

j=1

(−1)k+1−ij+l−j
k∑

i0=1

ci0(ek+1−ij )2wi0 ∧ . . . ŵij · · · ∧ wil ∧ wk+1

where the lower index 2 indicates the stand where this endomorphism acts. This is easily seen to hold
after accomplishing the second summand for j = 0 to zero by means of the formula

(4.2)

k+1∑

i0=1

(−1)k+1−i0ci0(ek+1−i0)2 = 0 ∈ Dot(F (k)E(k)1n)

or pictorially

k+1∑

i=1

(−1)k+1−i

k k

ci

ek+1−i

= 0 .

The formula (4.2) follows from the fact that ek+1 ∈ Dot(E(k)1n) (or ek+1 ∈ Dot(F (k)1n)) is zero
and

(4.3)

d∑

j=0

(−1)d−jcj(ed−j)2 =

d∑

j=0

(−1)j
d−j∑

l=0

(−1)d−j−l(ej)1(ed−j−l)2(hl)2 = (cd)1 ∈ Dot(F (r)E(s)1n)

for any d, r and s, since
∑p

i=0(−1)
ieihp−i = 0 for any p > 0. Here (cd)1 = (cd)F(r) is equal to (−1)ded

sitting on the first strand.
The proof of dVk,l ◦ d

V
k−1,l = 0 is based on the following identities

k+1 k+1

= 0 and

k+1 k+1

•
et+1

•
es

−

k+1 k+1

•
es+1

•
et

= 0 .

Let us explain this in more details. The formula (4.1) contains one summand without dots, let us call
it A, and the other summands called B. Putting A on top of dVk−1,l is zero by the first identity printed

above. Now any square resulting from putting B on top of dVk−1,l gives rise to the second identity with
t = k − ij and s = k − ij′ or s = 0.

The first identity can be proved as follows. By using the associativity of the trivalent vertices in the
thick calculus (Proposition 2.4 in [11]) we can attach the second horizontal line to the first one

k+1 k+1

= 0



12 ANNA BELIAKOVA AND KAZUO HABIRO

and then apply eq. (2.70) in [11]. The proof of the second identity is similar after sliding et+1 and es+1

down by using the comultiplication rule in the ring of symmetric polynomials (or eq. (2.67) in [11]).
�

4.2. The inverse bicomplex. The bicomplex r−11n is defined as a kind of “left adjoint” of r1n. It
has the form

CL00

CL10

(dV00)
L

CL11
(dH10)

L

CL20

(dV10)
L

CL21
(dH20)

L

(dV11)
L

CL22
(dH21)

L

CL30

(dV20)
L

CL31
(dH30)

L

(dV21)
L

CL32
(dH31)

L

(dV22)
L

CL33
(dH32)

L

. . .

(dV30)
L

. . .

(dV31)
L

. . .

(dV32)
L

. . .

(dV33)
L

where

CLk,l = F
(k)E(k)1n〈kn+ k〉 ⊗ ΛlW̄k = CRk,l

with the total q-degree shift 〈n
2

2 +n〉 and the homological shift [−n/2,−n/2]. Here W̄k = Span
Z

{w̄1, . . . , w̄k}
and deg(w̄j) = 2j.

The differentials are obtained by rotating the original differentials by π. We have

(dHk,l)
L : CLk,l+1 → CLk,l

w̄i1 ∧ · · · ∧ w̄il+1
7→

l∑

j=1

(−1)j−1cLj ⊗ w̄i1 ∧ ̂̄wij ∧ w̄il+1

where (cLd )F(k)E(k)1n
=

∑d
j=0(−1)

jhd−j ⊗ ej. The vertical differential is

(dVk,l)
L := (−1)l

k+1 k+1

k k

αk,l

: CLk+1,l → CLk,l

with αk,l defined as before by (4.1).

4.3. Intermediate bicomplex. Recall that rE1n is the bicomplex obtained by composing r1n+2

to the left of E1n. Its “chain groups” are F (k)E(k)E1n〈−kn − 3k〉ΛlWk with the total q-degree shift

〈−n
2

2 −3n−4〉 and homological shift [n/2+1, n/2+1]. We will denote them by Ck,lE . The differentials
are those of r1n+2 extended by identity on E1n. The Euler characteristic of rE1n is

(4.4) rE1n = q−
n2

2 −3n−4
∞∑

k=0

(−1)kq−kn−2k(q−4; q−2)kF
(k)E(k+1)1n .

The intermediate bicomplex

(rE1n)
′ = (⊕k,lC

′
k,l, d

′H
k,l, d

′V
k,l)
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is an indecomposable summand of rE1n defined as follows. The “chain groups” are

C′
k,l = F

(k)E(k+1)1n〈−kn− 2k〉 ⊗ ΛlW ′
k

with W ′
k := Span

Z

{w2, . . . , wk+1} and the same total shifts as for rE1n.
The horizontal differential d′Hk,l sends x to c′ ∧ x where

c′ :=

k+1∑

j=2

cj−1,1wj :=

k+1∑

j=2




∑

λ,µ⊂(j−1,1)

(−1)|λ|N
(j−1,1)
λµ

k+1k

sµsλt


wj ∈ Dot(F (k)E(k+1)1n)W

′
k .

The vertical differential d′Vk,l : C
′
k,l → C′

k+1,l is defined as follows

d′Vk,l := (−1)l

k+1 k+2

k k+1

α′

k,l

where

α′
k,l : Λ

lW ′
k → Dot

(
E(k+1)1n

)
ΛlW ′

k+1

is defined similar to (4.1). For 1 < i1 < i2 < · · · < il ≤ k + 1, we have

(4.5) α′
k,l(wi1 ∧wi2 ∧· · ·∧wil ) = wi1 ∧· · ·∧wil−

l∑

j=1

(−1)k−ij+l−j
k

ek+2−ij wii ∧ . . . ŵij · · ·∧wil ∧wk+2

It can be verified similarly to the previous case that (rE1n)
′ is a bicomplex. The identity which

replaces (4.2) here is
r∑

j=0

(−1)jcr+1−j,1(ej)2 = 0 ∈ Dot(F (r)E(r+1)1n) .

It can be proven by using the comultiplication of Schur functions implying that

∆(ck,1) =

k−1∑

i=0

ci ⊗ ck−i,1 +

k∑

i=1

ci ⊗ ck+1−i +

k+1∑

i=2

ci−1,1 ⊗ ck+1−i .

5. Chain maps between rE1n and (rE1n)
′

In this section we will define the chain maps between rE1n and the intermediate complexes.
The map f = ⊕k,lfk,l : rE1n → (rE1n)

′ is defined by

fk,l :=

k k+1

βk,l

: Ck,lE → C′
k,l

where βk,l : Λ
lWk → Dot(F (k)E(k)E1n)Λ

lW ′
k will be specified below. Recall thatW ′

k = Span
Z

{w2, . . . , wk+1}.
Let us first define a linear map

βk :Wk → Dot(F (k)E(k)E1n)W
′
k

by

βk(wi) = −wi + δi,1

k+1∑

j=2

cj−1wj + (−1)k+1−i

k k

ek+1−i wk+1
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where (cd)F(k)E(k)E1n
=

∑d
i=0

∑d−i
j=0(−1)

iei ◦ hj ◦ hd−i−j and δi,j is the Kronecker delta-function.
In the matrix form, this map can be represented as follows:

M(βk) =




c1 −1 . . . 0 0
c2 0 . . . 0 0
. . . . . . . . . . . . . . .
ck−1 0 . . . 0 −1

ck + (−1)k(ek)2 (−1)k−1(ek−1)2 . . . (e2)2 −(e1)2




where as before (ei)2 means that ei sits on the second strand.
The map βk extends to an algebra homomorphism

βk : Λ•Wk → Dot(F (k)E(k)E1n)Λ
•W ′

k

which in the matrix form can be written as βk = ⊕kl=0βk,l. This defines the matrix βk,l as the matrix
of (l, l)-minors of the matrix βk,1 =M(βk) or, alternatively,

βk,l(wi1 ∧wi2 ∧ · · · ∧ wil) = βk(wi1 ) ∧ βk(wi2 ) ∧ · · · ∧ βk(wil) .

We set βk,0 = 1.
For example, with the same notation as before

β3,2 =




c2 −c1 1
c1(e2)2 + c3 − (e3)2 −c1(e1)2 (e1)2

c2(e2)2 −c2(e1)2 + c3 − (e3)2 (e2)2




where each entry of this matrix is a determinant of the corresponding 2× 2 matrix of β3,1.
One can easily prove that

(5.1) det(βk,1) =

k∑

j=0

(−1)j

ej

ck−j

=

k∑

j=0

(−1)j ej hk−j

The inverse map f̄ = ⊕k,lf̄k,l : (rE1n)
′ → rE1n is defined by

f̄k,l = (−1)k

k k+1

β̄k,l

where

β̄k,l := Adj(βk,l) = det(βk,1)β
−1
k,l

is given by the adjugate matrix, or the transpose of the cofactor matrix for βk,l.
For example,

β3,1 =




c1 −1 0
c2 0 −1

c3 − (e3)2 (e2)2 −(e1)2




and

β̄3,1 = Adj(β3,1) =




(e2)2 −(e1)2 1
c2(e1)2 − c3 + (e3)2 −c1(e1)2 c1

c2(e2)2 −c1(e2)2 − c3 + (e3)2 c2




Proposition 5.1. The map f f̄ : (rE1n)
′ → (rE1n)

′ is equal to identity.
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Proof. We have

fk,lf̄k,l = (−1)k

k

detβk,1

k+1

=

k∑

j=0

(−1)k+j

k

ej hk−j

k+1

=

k k+1

�

Proposition 5.2. The map f : rE1n → (rE1n)
′ is a chain map between bicomplexes.

Proof. Let us first check the commutativity of the horizontal square:

C′
k,l

c′∧
C′
k,l+1

Ck,lE
(c)12∧

fk,l

Ck,l+1E

fk,l+1

We have to show that for any 1 ≤ i1 < i2 < · · · < il ≤ k

k+1∑

i=2

ci−1,1 wi∧βk(wi1)∧· · ·∧βk(wil ) =
k∑

i=1,i6=ij

(ci)12 βk(wi)∧βk(wi1)∧· · ·∧βk(wil ) ∈ Dot(F (k)E(k)E)ΛlWk .

Let us first assume i1 > 1. After the substitution of maps this identity can be rewritten as follows:

(−1)l
k+1∑

i=2

ci−1,1wi ∧wi1 ∧ · · · ∧ wil + (−1)l−1
l∑

j=1

k+1∑

i=2

(−1)k+1−ij (ek+1−ij )2ci−1,1wi ∧ . . . ŵij · · · ∧ wil ∧ wk+1 =

(−1)l+1
k∑

i=1

(ci)12wi ∧wi1 ∧ · · · ∧ wil + (−1)l
k+1∑

i=2

(c1)12ci−1wi ∧ wi1 ∧ · · · ∧wil

+ (−1)l−1
l∑

j=1

k+1∑

i=2

(−1)k+1−ij (c1)12ci−1(ek+1−ij )2wi ∧ wi1 ∧ . . . ŵij · · · ∧ wil

+ (−1)l
l∑

j=0

k∑

i0=1,i0 6=ij

(−1)k+1−ij (ci0)12(ek+1−ij )2wi0 ∧ . . . ŵij · · · ∧ wil ∧ wk+1

After accomplishing the j = 0 summand of the last term to zero by using (4.3) and applying twice

(5.2) ci−1,1 + (ci)12 − (c1)12ci−1 = 0

it is not difficult to verify that it holds. The case i1 = 1 reduces to the same identities and is left to
the reader.

To see that fk+1,l(d
V
k,lE) = d′Vk,lfk,l we need to verify that

k+1 k+2

βk+1

αk

=

βk

k+1 k+2

α′

k

:Wk → Dot(F (k)E(k+1))W ′
k+1
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which can be easily seen after the substitution of maps. Hence, also the induced maps ΛlWk →
Dot(F (k)E(k+1))ΛlW ′

k+1 have to coincide. �

Theorem 5.3. The bicomplex (rE1n)
′ is a strong deformation retract of rE1n in Kom(U̇).

6. Proof of Theorem 5.3

This section is devoted to the proof of Theorem 5.3. After defining the homotopies, Propositions
6.1, 5.1 and 5.2 establish all properties of the strong deformation retract.

6.1. Homotopies. The horizontal homotopy hHk,l : Ck,lE → Ck,l−1E is defined as follows:

kk

qk,l

where qk,l : Λ
lWk → Dot(E(k−1)1n)Λ

l−1Wk

qk,l(wi1 ∧ · · · ∧ wil) =

l∑

j=1

(−1)j−1qk,1(wij )wi1 ∧ . . . ŵij · · · ∧ wil

with qk,1(wi) = (−1)i−1ek−i. The vertical homotopy hVk,l : Ck,lE to Ck−1,lE is set to be zero.
Now Theorem 5.3 reduces to the following proposition.

Proposition 6.1. We have

(1) fk,l−1h
H
k,l = 0;

(2) hHk,l−1h
H
k,l = 0;

(3) hHk+1,l(d
V
k,lE) + (dVk,l−1E)h

H
k,l = 0;

(4) hHk,l+1(d
H
k,lE) + (dHk,l−1E)h

H
k,l = 1− f̄k,lfk,l.

Proof. (1) The proof of the first identity requires to show that for any 1 ≤ i, j ≤ k, we have

•ek−i

k

= 0 and •ek−i

•ek+1−j

k

− •ek−j

•ek+1−i

k

= 0

To prove the first statement we use the associativity of the trivalent vertices.

•ej
= •ej = 0

The second statement works similarly. We first move dots down, then cancel terms that coincide
and finally use the same trick.

(2) Here we need to show that for all 0 ≤ s, u ≤ k − 1

b b
b

b b
bk

es

eu

b b
b

b b
b

b
b

b

b
b

b

−

b b
b

b b
bk

eu

es

b b
b

b b
b

b
b

b

b
b

b

= 0 .
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After sliding the upper ei’s down and using the invariance under the third Reidemeister move, the left
hand side of this identity become

b b
b

b b
bk

y

b b
b

b b
b

b b

b
b b

b

−

b b
b

b b
bk

y

b b
b

b b
b

b b

b
b b

b

with y := es−1eu − eu−1es. Using associativity as in case (1) we can easily see that it is zero.
(3) The third equation follows from the following identity:

bb
b

bb
b

k b b
b

b b
bk

es

eu

b b
b

b b
b

b b

b
b b

b

−

bb
b

bb
b

k b b
b

b b
bk

eu

es
b b

b
b b

b

b b

b
b b

b

=

bb
b

bb
b

k b b
b

b b
bk

es−1

eu

b
b

b

b
b

b

b b
b

b b
b

−

bb
b

bb
b

k b b
b

b b
bk

eu−1

es

b
b

b

b
b

b

b b
b

b b
b

which holds for all 0 ≤ s, u ≤ k (here e−1 are assumed to be zero). This identity is easy to prove by
using the sliding rules from Appendix.

(4) Let us compute all terms of this equation. The “dh”-part contains the diagonal term of the form

(6.1)

k∑

s=1

(−1)s−1

bb
b

bb
b

k b b
b

b b
bk

ek−s

b b
b

b b
b

b b
b

b b
b

cs

= (−1)k−1

bb
b

bb
b

k b b
b

b b
bk

b b
b

b b
b

b b
b

b b
b

(ck)13 =

bb
b

bb
b

k b b
b

b b
bk b b
b

b b
b

+ (−1)k−1

bb
b

bb
b

k b b
b

b b
bk

b b

b
b b

b
b b

b
b b

b

(ck)13

.

The off-diagonal terms of “dh” and “hd” are

bb
b

bb
b

k b b
b

b b
bk

ek−i

b b
b

b b
b

b b
b

b b
b

cs

−

bb
b

bb
b

k b b
b

b b
bk

ek−i

b

b

b
b

b

b

b b
b

b b
b

cs

=

bb
b

bb
b

k b b
b

b b
bk

ek−i

b b
b

b b
b

b b
b

b b
b

cs−1

−

bb
b

bb
b

k b b
b

b b
bk

ek−i

b

b

b
b

b

b

b b
b

b b
b

cs−1

Finally, from the chain maps we get

(6.2)

bb
b

bb
b

k b b
b

b b
bk

b

b

b
b

b

b

b b
b

b b
b

β̄k,l

βk,l

=

bb
b

bb
b

k b b
b

b b
bk

b

b

b
b

b

b

b b
b

b b
b

β̄k,l ◦ βk,l

+

bb
b

bb
b

k b b
b

b b
bk

b

b

b
b

b

b

b b
b

b b
b

β̄k,l

βk,l

−

bb
b

bb
b

k b b
b

b b
bk

b

b

b
b

b

b

b b
b

b b
b

β̄k,l ◦ βk,l

.

Due to (5.1), the first term in (6.2) cancels with the last term in (6.1) and the remaining terms cancel
with the off-diagonal contributions from “dh” and “hd”.

Further details are left to the reader.
�

7. Chain maps between Er1n and (rE1n)
′

Let us denote by ECk,l the “chain groups” of the complex Er1n, obtained by composing E1n with

r1n. These groups are EF (k)E(k)1n ⊗ ΛlWk〈−kn− k〉 with the total degree shift −n
2

2 − 3n− 4. The
differentials are those of r1n extended by identity on E1n. The Euler characteristic of this complex is
given by (4.4).
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Define an algebra homomorphism

γk : Wk → Dot(EF (k−1)E(k−1)1n)⊗W
′
k−1

by γk(w1) = −
∑k
j=2 cj−1wj and γk(wi) = wi for 2 ≤ i ≤ k. This extends to

γk : ΛlWk → Dot(EF (k−1)E(k−1)1n)⊗ ΛlW ′
k−1

defined by γk(wi1 ∧ · · · ∧ wil) = γk(wi1 ) ∧ · · · ∧ γk(wil ). We will also need another map ak : Wk →
Dot(EF (k−1)E(k−1)1n) with

ak(wi) = (−1)k−i(ek−i)3 = (−1)k−i

k−1 k−1

ek−i

Let γk,l : Λ
•Wk → Dot(EF (k−1)E(k−1)1n) ⊗ Λ•−1W ′

k be the derivation along the homomorphism γk
induced by ak, i.e. γk,0(1) = 0 and for l ≥ 0 we have

γk,l(wi1 ∧ · · · ∧ wil) =
l∑

j=1

(−1)j−1ak(wij )⊗ γk(wi1 ∧ . . . ŵij · · · ∧ wil)

Then we define the map

gk,l :=

k−1 k

k k

γk,l
: ECk,l → C′

k−1,l−1

and set g = ⊕k,lgk,l : Er1n → (rE1n)
′. The inverse map p = ⊕k,lpk,l : (rE1n)

′ → Er1n is defined as
follows:

pk,l :=

k k

k−1 k

bk,l
: C′

k−1,l−1 → ECk,l

where bk,l(wi2 ∧ . . . wil) = (−1)k−1
∑k

i=1 ci−1 ⊗ wi ∧ wi2 ∧ · · · ∧ wil .

Theorem 7.1. The bicomplex (rE1n)
′ is a strong deformation retract of the bicomplex Er1n in

Kom(U̇).

8. Proof of Theorem 7.1

We will split the proof of Theorem 7.1 into lemmas and prove them separately.

Lemma 8.1. g : Er1n → (rE1n)
′ is a chain map between bicomplexes, i.e.

d′Hk−1,l−1gk,l = gk,l+1(Ed
H
k,l)

d′Vk−1,l−1gk,l = fk+1,l(Ed
V
k,l) .

Proof. Let us check the commutativity of a general horizontal square:

C′
k−1,l−1

c′∧
C′
k−1,l

ECk,l
(c)23∧

gk,l

ECk,l+1

gk,l+1
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We assume k ≥ 2, otherwise there is nothing to check. We start with

EF (k)E(k)wi1 ∧ · · · ∧ wil ∈ ECk,l

and first apply the map gk,l followed by d′Hk−1,l−1. Then we get

(8.1)

k∑

t=2

l∑

j=1

(−1)j−1+k−ij ct−1,1(ek−ij )3wt ∧ γk(wi1 ∧ . . . ŵij · · · ∧ wil) .

Applying first the differential and then the map, we get

(8.2)

l∑

j=0

k∑

i0=1

(−1)j+k−ij (ci0)23(ek−ij )3γk(wi0 ∧wi1 ∧ . . . ŵij · · · ∧ wil) .

We claim that these expressions are equal in Dot(F (k−1)E(k)1n)Λ
lW ′

k−1. Indeed, assume 1 6= i1 < i2 <
· · · < il and t 6= is for all 1 ≤ s ≤ l. Then collecting the coefficients in front of wt∧wi1 ∧ . . . ŵij · · ·∧wil
with j > 1 in the both formulas we get (−1)j+k−ij (ek−ij )3 times

(8.3) ct−1,1 + (ct)23 − (c1)23ct−1 = 0

where the last term comes from setting i0 = 1 and picking the t-th summand in γk(w1) = −
∑k
j=2 cj−1wj .

Allowing i1 = 1, but ij 6= 1, leads to the same identity.
Let us consider the case ij = 1. Collecting the coefficients of wt ∧ wi2 ∧ · · · ∧ wil in (8.1) we get

(−1)k−1ct−1,1(ek−1)3 +

l∑

j=2

(−1)k−ij+1(ek−ij )3
(
ct−1,1cij−1 − ct−1cij−1,1

)

and in (8.2)

(−1)k(ct)23(ek−1)3 −
l∑

j=2

(−1)k−ij+1(ek−ij )3(ct)23cij−1 −
∑

p6=1,i2,...,il

(−1)k−p(ek−p)3(cp)23ct−1 .

Using (8.3) few times, we can reduce the claim to (4.3).
Let us consider the following vertical square

ECk,l
gk,l

EdVk,l

C′
k−1,l−1

d′Vk−1,l−1

ECk+1,l

gk+1,l

C′
k,l−1

Similar considerations as before lead in all cases to the following true identity:

k k

ej

−

k k

ej

=

k k

ej−1

�

Lemma 8.2. We have gp = 1 ∈ End(C′
k−1,l−1).
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Proof. Putting g on the top of p we get for any 1 < i2 < · · · < il

gp(wi2 ∧ · · · ∧wil ) =

l∑

j=1

k∑

i1=1

(−1)j−ij

k−1 k

ci1−1

ek−ij

γk,l−1(wi1 ∧ wi2 ∧ . . . ŵij · · · ∧wil )

which is equal to

k∑

i=1,i6=i2,...,il

(−1)i−1

k−1 k

ci−1

ek−i

wi2∧· · ·∧wil +

l∑

j=2

k∑

i=2,i6=i2,...,̂ij ,...,il

(−1)ij−j

k−1 k

ci−1

ek−ij

wi∧wi2∧. . . ŵij · · ·∧wil +

+

l∑

j=2

k∑

i=2,i6=i2,...,il

(−1)ij−j−1

k−1 k

ci−1

ek−ij

wi ∧ wi2 ∧ . . . ŵij · · · ∧ wil .

After cancellation we get

gp(wi2 ∧ · · · ∧ wil) =

k∑

i=1

(−1)i−1

k−1 k

ci−1

ek−i

wi2 ∧ · · · ∧ wil

Using the Reidemeister move listed in Appendix we can see that the only non-zero term without bubbles
is the desired identity, and all the bubble terms cancel since

(8.4)
k−1∑

i=0

(−1)i

k−2 k−1

ci

ek−1−i

= 0

where the last identity is equivalent to (4.2). Here we are again using centrality of ci’s. �

8.1. Horizontal homotopy. Let qk,1 : Wk → Dot(E(k−1)1n) be the map defined by qk,1(wi) =

(−1)i−1ek−i. Then let qk,l : Λ
lWk → Dot(E(k−1)1n)⊗ Λl−1Wk be the derivation induced by qk,1, i.e.

qk,l(wi1 ∧ · · · ∧ wil) =
l∑

j=1

(−1)j−1qk,1(wij )wi1 ∧ . . . ŵij · · · ∧ wil .

We set

hHk,l :=

k k

k k

qk,l : ECk,l → ECk,l−1 .
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Lemma 8.3. We have

gk,l−1h
H
k,l = 0(8.5)

hHk,l−1 ◦ h
H
k,l = 0(8.6)

hHk+1,l(Ed
V
k,l) + (EdVk,l−1)h

H
k,l = 0(8.7)

Proof. Equation (8.5) reduces to

• ei

• ej

k−1 k

−
• ej

• ei

k−1 k

= 0

for 1 ≤ i < j ≤ k−1. Indeed, moving the line starting at the lowest left corner up through the 3-valent
vertex (note that the bubble terms cancel) and then moving the ej and ei to the middle of the strand,
we get that the left hand side is equal to

• y

k−1 k

•

− • y
•

k−1 k

where y := ej−1ei − ei−1ej. Now using the associativity and the invariance under the 3. Reidemeister
move with all strands going in the same direction we can see that both summands vanish.

Equation (8.6) reduces to the following identity

k−1 k

• ei

• ej

−

k−1 k

• ej

• ei

= 0

for 1 ≤ i < j ≤ k − 1, which can be proved similarly.
Finally, equation (8.7) follows from

k k

• ej

• ei

−

k k

• ei

• ej

=

k k

• ej

• ei−1

−

k k

• ei

• ej−1

which holds for any 0 ≤ i < j ≤ k. �

8.2. Vertical homotopy. We set

hVk,l :=

k k

dk,l

: ECk,l → ECk−1,l
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where dk,l : Λ
lWk → Dot(EF (k)E(k)1n)⊗ ΛlWk−1 is given by

dk,0(1) = (−1)k−1(ck−1)12 = (−1)k−1 ck−1

dk,1(wi) = (−1)k(ck−1)12 wi + (−1)i−1(ek−i)3 (w1 + c1w2 + · · ·+ ck−2wk−1) for i < k

dk,1(wk) = (−1)k−1(w1 + c1w2 + · · ·+ ck−2wk−1) and

dk,l(wi1 ∧ . . . wil ) = (−1)l−1
(
(−1)k(ck−1)12

)−l+1
dk,1(wi1 ) ∧ · · · ∧ dk,1(wil )

= (−1)l−1


(−1)k(ck−1)12 wi1 ∧ · · · ∧ wil +

l∑

j=1

(−1)ij−1(ek−ij )3 wi1 ∧ . . . (X)j · · · ∧ wil




where X :=
∑k−1

i=1 ci−1wi and (X)j means that we replace wij with X . As before the lower indices
indicate the strands on which the morphism is acting.

Let us illustrate this definition with few examples.

d3,1 =

(
−(c2)12 + (e2)3 −(e1)3 1

(e2)3c1 −(c2)12 − (e1)3c1 c1

)

d3,1∧d3,1 =

(
det

(
−(c2)12 + (e2)3 −(e1)3

(e2)3c1 −(c2)12 − (e1)3c1

)
, det

(
−(c2)12 + (e2)3 1

(e2)3c1 c1

)
,

(
−(e1)3 1

−(c2)12 − (e1)3c1 c1

))

Hence, we get

d3,1 ∧ d3,1 = −(c2)12(−c2, c1,1)

d3,2 = (c2,−c1,1) .

Similarly, dk,k−1 = (ck−1,−ck−2, . . . , (−1)
k−2c1, (−1)

k−11).

Lemma 8.4. We have

gk−1,lh
V
k,l = 0

hVk,lpk,l = 0

hVk−1,l ◦ h
V
k,l = 0

hHk−1,lh
V
k,l + hVk,l−1h

H
k,l = 0

hVk,l+1(Ed
H
k,l) + (EdHk−1,l)h

V
k,l = 0

hHk,l+1(Ed
H
k,l) + hVk+1,l(Ed

V
k,l) + (EdHk,l−1)h

H
k,l + (EdVk−1,l)h

V
k,l = 1− pk,lgk,l

Proof. The proof of the last equality is based on the two identities given in Lemmas 5,6 in Appendix.
The rest is similar to the previous computations and hence left to the reader. �

8.3. Proof of Lemma 4. Thus we proved, that the map

κE : Er1n
g

(rE1n)
′ f̄

rE1n

has a homotopy inverse

κ̄E : Er1n (rE1n)
′

p rE1n
f
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To construct κF we apply the symmetry σω to κE assuming that Theorem 1 (Symmetry) holds. We
get

κ̄F : rF1n+2
σω(g)

(rE1n)
′
σω(f̄)

Fr1n+2

together with its homotopy inverse

κF : rF1n+2 (rE1n)
′

σω(p)
Fr1n+2

σω(f)
.

�

8.4. Proof of Theorem 1 (Centrality). We assume that Theorem 1 (Symmetry) holds.

Since any 1-morphism in U̇ is a direct sum of compositions of E〈t〉 and F〈t′〉 with t, t′ ∈ Z, it is
enough to check the statement for the generators. Lemma 4 defines the maps κE and κF as well as
their homotopy inverses. Applying symmetry, we can define ηF = ψ(κ̄F ) and ηE = ψ(κE). The details
are left to the reader.

�

8.5. Comments on the naturality of maps κX . To prove Conjecture 2 (Naturality) we need to
show that for any chain map f : X → Y the squares below commute up to chain homotopy.

Xr1n rX1n

Y r1n rY 1n

κX

fr

κY

rf

rX1n Xr1n

rY 1n Y r1n

κ̄X

rf

κ̄Y

fr

The commutativity of similar diagrams for ηX will follow then by applying symmetry functors. It is
enough to check the commutativity for short chain complexes f : X → Y , where X , Y are E1n, E

21n,
FE1n or 1n and the differential is one of the generating 2-morphisms: dot, crossing, cup or cap. We
leave this problem for future investigations.

9. Symmetry 2-functors

The 2-category U has the symmetry group G = (Z/2Z)3 generated by the involutive 2-functors
ω, σ, ψ described below.

9.1. 2-functor ω. Consider the operation on the diagrammatic calculus that rescales the crossing

7→ − for all n ∈ Z, inverts the orientation of each strand and sends n 7→ −n.

This gives a strict invertible 2-functor ω : U → U given by

ω : U → U

n 7→ −n

1mE
α1Fβ1Eα2 · · · EαkFβk1n{s} 7→ 1−mF

α1Eβ1Fα2 · · · FαkEβk1−n{s}.(9.1)

This 2-functor extends to a 2-functor

ω : Kom(U) → Kom(U)

n 7→ −n

(X•, d) 7→ · · · ω(X i−1) ω(X i) ω(X i+1) · · ·
ω(di−1) ω(di)

fi : X
• → Y • 7→ ω(fi) : ω(X

•)→ ω(Y •).(9.2)
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Finally, this operation extends to U̇ . The images of the idempotents ea, e
′
a under the 2-functor ω are

new idempotents which are equivalent to the old ones and leave thick calculus invariant.

9.2. 2-functor σ. The operation on diagrams that rescales the crossing 7→ − for all

n ∈ Z, reflects a diagram across the vertical axis, and sends n to −n leaves invariant the relations on
the 2-morphisms of U .

This operation is contravariant for composition of 1-morphisms, covariant for composition of 2-
morphisms, and preserves the degree of a diagram. This symmetry gives an invertible 2-functor

σ : U → Uop

n 7→ −n

1mE
α1Fβ1Eα2 · · · EαkFβk1n{s} 7→ 1−nF

βkEαkFβk−1 · · · Fβ1Eα11−m{s}

that acts on 2-morphisms via the symmetry described above. This 2-functor extends to a 2-functor

σ : Kom(U) → Kom(U)

n 7→ −n

(X•, d) 7→ · · · σ(X i−1) σ(X i) σ(X i+1) · · ·
σ(di−1) σ(di)

fi : X
• → Y • 7→ σ(fi) : σ(X

•)→ σ(Y •).(9.3)

Note that σ acts contravariantly on 1-morphisms in Kom(U).

Furthermore, σ extends to U̇ . The images of the idempotents ea, e
′
a under σ are equivalent idem-

potents, leaving thick calculus invariant.

9.3. 2-functor ψ. This operation reflects across the horizontal axis and invert orientation. This gives
an invertible 2-functor defined by

ψ : U → Uco

n 7→ n

1mE
α1Fβ1Eα2 · · · EαkFβk1n{s} 7→ 1mE

α1Fβ1Eα2 · · · EαkFβk1n{−s}(9.4)

and on 2-morphisms ψ reflects the diagrams representing summands across the x-axis and inverts the
orientation.

Since ψ is contravariant on 2-morphisms in U , this 2-functor extends to a 2-functor

ψ : Kom(U) → Kom(U)

n 7→ n

(X•, d) 7→ · · · ψ(X i+1) ψ(X i) ψ(X i−1) · · ·
ψ(di) ψ(di−1)

fi : X
• → Y • 7→ ψ(fi) : ψ(Y

•)→ ψ(X•).(9.5)

Notice that ψ inverts the homological degree so that ψ acts on a complex (X•1n, ∂) in Kom(U) by
ψ(X i) = (ψX•)−i.

These 2-functors commute with each other ‘on-the-nose’:

(9.6) ωσ = σω, σψ = ψσ, ωψ = ψω.

Again, this 2-functor extends straightforward to the Karoubi envelope U̇ . The images of the idem-
potents ea, e

′
a under symmetry functors are equivalent idempotents with the same properties as before.

10. Symmetries of the ribbon bicomplex

In this section we describe the behavior of the ribbon bicomplex under the symmetry 2-functors.
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10.1. The image under ω. The “chain groups” of the bicomplex ω(r1−n) are

ω(Ck,l) := E
(k)F (k)1n〈kn− k〉 ⊗ ΛlWk, Wk = Span

Z

{w1, . . . , wk}, deg(wj) = −2j

with the total shifts 〈−n
2

2 +n〉 and [n/2, n/2]. The horizontal differential ω(dHk,l) : ω(Ck,l)→ ω(Ck,l+1)

sends x 7→ ω(c) ∧ x where

ω(c) :=

k∑

j=1




j∑

i=0

(−1)i
kk

hj−iei


 ⊗ wj ∈ Dot(E(k)F (k)1n)⊗Wk

Similarly, the vertical differential is

ω(dVk,l) := (−1)l

k+1 k+1

k k

αω
k,l

: ω(Ck,l)→ ω(Ck+1,l) where

αωk,l(wi1 ∧ wi2 ∧ · · · ∧ wil) =

(10.1)

1⊗ wi1 ∧ · · · ∧ wil −

l∑

j=1

(−1)k+1−ij+l−j

k

ek+1−ij ⊗ (wii ∧ · · · ∧ ŵij ∧ · · · ∧ wil) ∧wk+1

Since all the relations in U̇ are invariant under symmetries, ω(r1−n) is a bicomplex.

10.2. The image under σ. The bicomplex σ(r1−n) has the same “chain groups” as ω(r1−n) (i.e.
σ(Ck,l) = ω(Ck,l)) with the differentials defined as follows: The horizontal differential σ(dHk,l) :

σ(Ck,l)→ σ(Ck,l+1) sends x 7→ σ(c) ∧ x where

σ(c) :=

k∑

j=1




j∑

i=0

(−1)i
kk

hj−i ei


⊗ wj ∈ Dot(E(k)F (k)1n)⊗Wk

Similarly, the vertical differential is

σ(dVk,l) := (−1)l

k+1 k+1

k k

αk,l
: σ(Ck,l)→ σ(Ck+1,l) where

where αk,l ∈ Dot(E(k)1n)⊗ ΛlWk+1 is defined by (4.1).

10.3. The image under ψ. The 2-functor ψ is contravariant on the 2-morphisms in U̇ , hence the
bicomplex ψ(r1n) looks as follows:
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CL00

CL10 CL11

CL20 CL21 CL22

CL30 CL31 CL32 CL33

. . . . . . . . . . . .
where the “chain groups” are

CLk,l := ψ(Ck,l) = F
(k)E(k)1n〈kn+ k〉 ⊗ ΛlW̄k

with the total shifts 〈n
2

2 + n〉 and [−n/2,−n/2]. The horizontal differential ψ(dHk,l) : CLk,l+1 → CLk,l
sends

w̄i1 ∧ · · · ∧ w̄il+1
7→

l∑

j=1

(−1)j−1cj ⊗ w̄i1 ∧ ̂̄wij ∧ w̄il+1

where as before (cd)F(k)E(k)1n
=

∑d
j=0(−1)

jej ⊗ hd−j . The vertical differential is

ψ(dVk,l) := (−1)l

k+1 k+1

k k

αk,l

: CLk+1,l → CLk,l

with αk,l defined as before by (4.1).
It is easy to see that σωψ(r1n) = r−11n.

11. Isomorphic bicomplex

This section provides a construction of the bicomplex r̃1n, which is isomorphic to the ribbon bicom-
plex and invariant under σω.

11.1. The isomorphism H. Let W = Span
Z

{w1, w2, . . . } and WA = A⊗W .
Then there exists an isomorphism H :WA →WA with

H(wm) :=
∑

j≥m

hj−mwj .

Its inverse is defined by replacing hi with its antipode (−1)iei, hence we have

H−1(wm) =
∑

j≥m

(−1)j−mej−mwj .

We can use this map to define a non-trivial transformation

Hk,l : Ck,l → Ck,l

of the “chain groups” Ck,l = F
(k)E(k)1n ⊗ ΛlWk of the ribbon bicomplex as follows.
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For l = 1 we set

(11.1) Hk,1 :=




1 0 0 0 . . . 0
(h1)2 1 0 0 . . . 0
(h2)2 (h1)2 1 0 . . . 0
(h3)2 (h2)2 (h1)2 1 . . . 0
. . . . . . . . . . . . . . . 0

(hk−1)2 (hk−2)2 (hk−3)2 (hk−4)2 . . . 1




= ((hi−j)2)1≤i,j≤k

where the matrix is written in the basis w1, w2, . . . , wk and all symmetric polynomials are sitting on
the second strand.

This map obviously extends to ΛlWk by setting

Hk,l(wi1 ∧wi2 ∧ · · · ∧wil) :=
(
ΛlHk,1

)
(wi1 ∧wi2 ∧ · · · ∧wil) = Hk,1(wi1 )∧Hk,1(wi2 )∧ · · · ∧Hk,1(wil ) .

Inserting (11.1), we get

Hk,l(wi1∧wi2∧· · ·∧wil ) :=
∑

1≤j1<j2<···<jl≤k

∑

σ∈Sl

(−1)σ(hj1−iσ(1)
)2(hj2−iσ(2)

)2 . . . (hjl−iσ(l)
)2wi1∧wi2∧· · ·∧wil .

Hence, for 1 ≤ i1 < i2 · · · < il ≤ k and 1 ≤ j1 < j2 · · · < jl ≤ k

(Hk,l)
i1,i2,...,il
j1,j2,...,jl

=
∑

σ∈Sl

(−1)σ(hj1−iσ(1)
)2(hj2−iσ(2)

)2 . . . (hjl−iσ(l)
)2

The inverse map is defined in a similar way by using

(11.2) H−1
k,1 :=




1 0 0 0 . . . 0
−(e1)2 1 0 0 . . . 0
(e2)2 −(e1)2 1 0 . . . 0
−(e3)2 (e2)2 −(e1)2 1 . . . 0

. . . . . . . . . . . . . . . 0
(−1)k−1(ek−1)2 (−1)k−2(ek−2)2 (−1)k−3(ek−3)2 (−1)k−4(ek−4)2 . . . 1




or (
H−1
k,1

)
i,j

=
(
(−1)i−j(ei−j)2

)
1≤i,j≤k

.

For 1 ≤ i1 < i2 · · · < il ≤ k and 1 ≤ j1 < j2 · · · < jl ≤ k we have

(
H−1
k,l

)i1,i2,...,il
j1,j2,...,jl

= (−1)
∑

s
is+js

∑

σ∈Sl

(−1)σ(ej1−iσ(1)
)2(ej2−iσ(2)

)2 . . . (ejl−iσ(l)
)2 .

11.2. The bicomplex r̃1n. Let us denote by r̃1n the image of r1n under applying the isomorphism
Hk,l to each “chain group” Ck,l. The horizontal and vertical differentials of r̃1n are given by

(11.3) d̃Hk,l := H−1
k,l+1d

H
k,lHk,l d̃Vk,l = H−1

k+1,ld
V
k,lHk,l .

Let us compute them.

We start with d̃Hk,0 = H−1
k,1d

H
k,0 = H−1

k,1

∑k
i=1 ciwi. Thus, the ith entry of d̃Hk,0 is

i−1∑

j=0

(−1)i−j(ei−j)2cj = (ci)1 − (−1)i(ei)2 = (−1)i((ei)1 − (ei)2) =: yi ∈ Dot(F (k)E(k)1n) .
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In the general case,

d̃Hk,l(wi1 ∧ · · · ∧ wil) = (Λl+1Hk,1)
−1

(
c ∧ (ΛlHk,1)(wi1 ∧ · · · ∧wil )

)

= (H−1
k,1c) ∧ wi1 ∧ · · · ∧ wil

=
k∑

i=1

yiwi ∧ wi1 ∧ · · · ∧wil

where we used the centrality of c and the previous computation. Observe that d̃Hk,l = σω(d̃Hk,l).
To compute the vertical differential we will need the following notation:

tp := •
p

k+1 k+1

k k

Then it is easy to verify that (ej)2t0 = t0(ej)2 + t1(ej−1)2 or more generally,

(11.4) (em1 . . . eml
)2 t0 =

l∑

a=0

ta
∑

T⊂{1,2,...,l}
|T |=a

(em1−ε1(T ) . . . eml−εl(T ))2

where (xy)2 = (x)2(y)2 and

εp(T ) =

{
1 p ∈ T
0 p /∈ T

.

For instance,

(em1em2em3)2t0 = t0(em1em2em3)2 + t1 ((em1−1em2em3)2 + (em1em2−1em3)2 + (em1em2em3−1)2)

+ t2 ((em1−1em2−1em3)2 + (em1−1em2em3−1)2 + (em1em2−1em3−1)2)

+ t3(em1−1em2−1em3−1)2

For simplicity, we put t0 = t. With this notation, let us first compute the matrix for the vertical
differential in the case when l = 1. Inserting (11.1), (11.2) into (11.3), we get

(dVk,1)i,j =

{
−
∑i−j
p=0(−1)

p(ep)2t(hi−j−p)2 = −tδi−j,0 + t1δi−j,1 i − j ≥ 0

0 otherwise

where δi,j is the Kronecker delta-function. For example, for k = 3 we have

dVk,1 =




1 0 0 0
−(e1)2 1 0 0
(e2)2 −(e1)2 1 0
−(e3)2 (e2)2 −(e1)2 1


 (−t)




1 0 0
0 1 0
0 0 1

(e3)2 −(e2)2 (e1)2







1 0 0
(h1)2 1 0
(h2)2 (h1)2 1




In general, for 1 ≤ i1 < i2 · · · < il ≤ k and 1 ≤ j1 < j2 · · · < jl ≤ k using the computation for l = 1
case we get

(
dVk,l

)i1,...,il
j1,...,jl

= (−1)l
∑

1≤p1<···<pl≤k

∑

1≤s1<···<sl≤k+1

(H−1
k+1,l)

s1,...,sl
j1,...,jl

t (αk,l)
p1,...,pl
s1,...,sl

(Hk,l)
i1,...,il
p1,...,pl

=
∑

1≤p1<···<pl≤k+1

(H−1
k+1,l)

p1,...,pl
j1,...,jl

t (Hk+1,l)
i1,...,il
p1,...,pl
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By (11.4), we obtain

(H−1
k+1,l)

p1,...,pl
j1,...,jl

t =
l∑

a=0

ta (−1)
∑

s
(ps−js)

∑

σ∈Sl

(−1)σ
∑

T⊂{1,2,...,l}
|T |=a

l∏

s=1

ejs−kσ(s)−εs(T )

=

l∑

a=0

(−1)ata
∑

T⊂{1,2,...,l}
|T |=a

(H−1
k+1,l)

p1,...,pl
jT1 ,...,j

T
l

where jTs := js − εs(T ). Hence,

(
dVk,l

)i1,...,il
j1,...,jl

=(−1)l
l∑

a=0

(−1)ata
∑

T⊂{1,2,...,l}
|T |=a

l∏

s=1

δjTs ,is

=

{
(−1)l+ata if (j1, . . . , jl) is obtained from (i1, . . . , il) by shifting a entries by − 1

0 otherwise

Observe that σω(ta) = ta and hence dVk,l = σω(dVk,l).

12. Proof of the invertibility of the ribbon complex

12.1. The 2-functor ΓN . Let us recall the definition of the 2-functor ΓN from [13, Section 7]. On
objects the 2-functor ΓN sends n to the ring Hk;N whenever n and k are compatible:

ΓN : U → FlagN

n 7→

{
Hk;N with n = 2k −N and 0 ≤ k ≤ N ,
0 otherwise.

(12.1)

1-Morphisms of U get mapped by ΓN to graded bimodules

ΓN : U → FlagN(12.2)

1n〈s〉 7→

{
Hk;N 〈s〉 with n = 2k −N and 0 ≤ k ≤ N ,

0 otherwise.

E1n〈s〉 7→

{
Hk+1,k;N 〈s+ 1−N + k〉 with n = 2k −N and 0 ≤ k < N ,

0 otherwise.

F1n〈s〉 7→

{
Hk−1,k;N 〈s+ 1− k〉 with n = 2k −N and 0 < k ≤ N ,

0 otherwise

where the cohomology of the Grassmannian is given by

Hk;N := Z[x1,n, x2,n, . . . , xk,n; y1,n, . . . , yN−k,n]/Ik;N

with Ik;N the homogeneous ideal generated by elements equating powers of t in the equation

(1 + x1,nt+ · · ·+ xk,nt
k)(1 + y1,nt+ · · ·+ yN−k,nt

N−k) = 1.

The cohomology of the ath iterated 1-step flag variety Hk;N with k = (k, k + 1, k + 2, . . . , k + a) is
given by

Hk;N := Z[x1,n, x2,n, . . . , xk,n; ξ1, . . . , ξa; y1,n+2a, . . . , yN−k−a,n+2a]/Ik;N

with Ik;N the homogeneous ideal generated by elements equating powers of t in the equation

(1 + x1,nt+ · · ·+ xk,nt
k)(1 + ξ1t)(1 + ξ2t) . . . (1 + ξat)(1 + y1,n+2at+ · · ·+ yN−k−a,n+2at

N−k−a) = 1.
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We will also use the cohomology of a-step flag variety corresponding to the sequence k = (k, k + a)
given by

Hk,k+a;N := Z[x1,n, x2,n, . . . , xk,n; ε1, . . . , εa; y1,n+2a, . . . , yN−k−a,n+2a]/Ik,k+a;N

with Ik,k+a;N the homogeneous ideal generated by elements equating powers of t in the equation

(1 + x1,nt+ · · ·+ xk,nt
k)(1 + ε1t+ · · ·+ εat

a)(1 + y1,n+2at+ · · ·+ yN−k−a,n+2at
N−k−a) = 1.

It will be convenient in what follows to introduce a simplified notation in FlagN . Corresponding to
a fixed value of N , we set n = 2k −N and write

1

N
n := ΓN (1n)

E1
N
n = 1

N
n+2E = 1

N
n+2E1

N
n := ΓN (E1n)

F1
N
n = 1

N
n−2F = 1

N
n−2F1

N
n := ΓN (F1n)

as a shorthand for the various bimodules. Juxtaposition of these symbols represents the tensor product
of the corresponding bimodules. For example,

FEE1
N
n = Hk+1,k+2;N ⊗Hk+2;N

Hk+2,k+1;N ⊗Hk+1;N
Hk+1,k;N .

Associated to a signed sequence ε is the (Hk+|ε|, Hk)-bimodule

Eε1
N
n := Eε1Eε2 . . .Eεm1

N
n

where E+ := E and E− := F. The 2-functor ΓN maps a composite Eε1n of 1-morphisms in U̇ to the

tensor product Eε1
N
n in FlagN . Note that because tensor product of bimodules is only associative up to

coherent isomorphism our notation is ambiguous unless we choose a parenthesization of the bimodules
in question. We employ the convention that all parenthesis are on the far left. Hence, ΓN preserves
composition of 1-morphisms only up to coherent 2-isomorphism.

It is sometimes convenient to use the following isomorphisms from [2].

ΓN (Ea1n) ∼= Hk+a,k+a−1,...,k;N 〈ra〉, ra =
a∑

i=1

i−N + k

ΓN(F
a1n) ∼= Hk,k+1,...,k+a;N 〈r

′
a〉, r′a =

a∑

i=1

i− k.

We also define bimodules

E
(a)
1

N
n := Hk+a,k;N 〈ra −

a(a− 1)

2
〉,

F
(b)
1

N
n := Hk+a,k;N 〈ra +

a(a− 1)

2
〉.

Let us denote by r1
N
n the image under ΓN of the ribbon complex.

12.2. Proof of Theorem 5. We first prove that tensoring on the left (or on the right) with r1
N
n acts

as a left (resp. right) multiplication with the identity on any left (resp. right) Hk;N -module up to
degree shift.

We will consider the left action only, the right action can be proved similarly. Note that it is enough
to compute the left action of r1Nn on Hk;N . Let us first ignore the homological shift for simplicity.

Set n = N . Then r1
N
N = 1

N
N 〈−N

2/2−N〉 in Kom(FlagN ), simply because E1NN = 0, and the result
holds.

Assume n = N − 2k, then

rF
k
1

N
N ≃ F

k
r1
N
N = F

k
1

N
N 〈−N

2/2−N〉
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where the first homotopy equivalence holds due to centrality of r1Nn . Now observe that

F
k
1

N
N ≃

⊕

[k]!

F
(k)
1

N
N

in FlagN . Hence, r1Nn acts as a left multiplication with 1Nn 〈−N
2/2−N〉 on F

(k)
1

N
N in Com(FlagN ).

But F(k)
1

N
N is isomorphic to Hk;N = 1

N
n as a left module over itself. Hence we have the first statement.

Similarly, tensoring with r
−1
1

N
n on the left and on the right is homotopic to the identity functor

shifted by 〈N2/2+N〉, which is inverse to r1
N
n . Since homological shifts for r1n and r−11n are inverse

to each other, we have the result.

12.3. The inverse limit of Schur quotients. The Schur quotient U̇N of U̇ is defined by setting
1N+2 = 0 (see [15] for a more general definition). Applying sl(2) relations, an easy induction argument

shows that 1n = 0 in U̇N for all n < −N and n > N . Moreover, this quotient is not empty, since the
functor ΓN : U̇ → FlagN factorises through U̇N by its very definition.

For any N ′ > N there is a natural projection

Ψ̃N ′,N : U̇N ′ → U̇N

defined by setting 1N+2 = 0. Taking all together, these maps define an inverse system of 2-categories

whose inverse limit is U̇ (compare [2]).

Now let us consider Comb(U̇N ). The induced functor Comb(U̇) → Comb(FlagN ) factorises again

through Comb(U̇N ). Using the natural projections

ΨN ′,N : Comb(U̇N ′)→ Comb(U̇N )

for all N ′ > N we can construct
lCom(U̇) = lim

←−
Comb(U̇N ) .

Observe that r±1r∓11n belongs to lCom(U̇), since its projections to Comb(U̇N ) are well-defined for all
N and compatible with each other.

12.4. Proof of Theorem 1 (Invertibility). By the universal property of the inverse 2-limit we get a

2-functor Γ̂ : lCom(U̇)→ lim
←−

Comb(Flag), unique up to 2-isomorphism in iBicat, making the diagram

lim
←−

Comb(U̇N )

lim
←−

Comb(FlagN )

Comb(FlagN+2) Comb(FlagN )

πN+2 πN

ΨN+2,N

Γ̂

ΓNΓN

commute up to 2-isomorphism in iBicat. Note that iBicat is a bicategory with objects bicategories,
morphisms (pseudo) 2-functors and 2-morphisms given by icons. Now the arguments in [2] (e.g. proof of

Theorem 3.2) imply that this 2-functor Γ̂ : lCom(U̇)→ lim
←−

Comb(Flag) is an equivalence of 2-categories

in iBicat. Since rr−11n = Γ̂−1(lim
←−

1

N
n ) by Theorem 5, we get the desired result. ✷

13. Appendix

Let us collect the identities we need in the proofs.
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13.1. Sliding rules. Generalizing the NilHecke algebra relations to the thick lines we get:

(13.0)
•hn

k l

=
•
hn

k l

+
∑

i+j+k=n−1

•
hi

•hj • hk

(13.0)
•en

l k

=
•
en

l k

+
•

en−1

In particular, if l = 1 we have

(13.0)
•hn

k

=
•
hn

k

+
∑

i+j=n−1

•hi • hj

(13.0)
•en

k

=
•
en

k

+ •
en−1

In what follows an x labeled bullet on a thick line will mean hx inserted.

13.2. Reidemeister moves. From Corollary 5.8 in [11] (for b = k, a = 1) and the bubble slide rule
(4.11), we get

(13.0)

k

= (−1)k

k

+ (−1)k−1
∑

x+u+s+t=k+n−2

∗ x •
u

• s

• t

Analogously, Theorem 5.6 and (4.12) in [11] imply

k

= (−1)k

k

+ (−1)k−1
∑

x+u+s+t=k+n−2

∗ x •
u

• s

• t

Similar, to the proof of Proposition 5.8 in [13] we can show that for all colors n ∈ Z of the right
most region the following equation holds

(13.0)

k

−

k

=
∑

s+t+x+u+v

=n−k+1

•s

•t
∗ x•u
• v

+ (−1)k−1
∑

s+t+x+u+v

=k−n−3

•v

∗ x •
u

• s

• t

13.3. Further identities.

Lemma 6.
k k

= (−1)k−1

k k

ck−1
+ (−1)k

k k

ck

+
k∑

i=1

(−1)i−1

k k

• ek−i

ci
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Proof. We first simplify the last summand of this identity by using the fact that ci is central and

k∑

i=1

(−1)k−i
• ek−i

k−1k

ci
=

k−1k

ck

Then we apply (13.2) to the second summand on the right hand side. Further we use

k

ck
−

k

ck
=

k

ck−1

−

k

ck−1

to simplify the resulting terms. The last equality follows from (13.1) and (13.1). It is easy to check
that all terms with bubbles sum to zero. �

Lemma 7. For 1 ≤ i, j ≤ k we have

k k

ci−1

• ej−1
−

k k

ci−1

• ej−1
=

k k

• ej−1

ci

−

k k

• ej−1

ci

+

k k
• ej

ci−1

−

k k

• ej

ci−1

Proof. We first apply (13.2) to the first two summands on the right hand side, then all diagrams
without smoothings will look as shown below.

k k

The strategy of the proof will be to move all dots into the position shown by the dashed line. Doing
so for the last two summands we get

ci−1(e1)3(ej−1)4 − ci−1(e1)1(ej−1)4 ∈ Dot(EF (k)EE(k−1))

minus the second term on the left hand side of the identity (obtained after sliding the dot though
the down pointed k-line), and in addition various terms with bubbles. Let us first compare the terms
without smoothings. The second term on the right hand side will contribute

−(ci)234(ej−1)4 ∈ Dot(EF (k)EE(k−1)) .

Finally, in the first term on the right hand side we replace (ci)23 with ci − ci−1(e1)1 and move the dot
down. The contribution of this term to the part without smoothings will be

ci(ej−1)4 − ci−1(e1)3(ej−1)4 ∈ Dot(EF (k)EE(k−1))

and in addition from moving the dot, we get the first term on the left hand side. Collecting all non-
smoothed terms together we get zero. It remains to show that all bubble terms vanish. This easy check
is left to the reader. �
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