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1 Introduction

The goal of these lectures is an introduction to the formal semiclassical quantization
of classical gauge theories.

In high energy physics space time is traditionally treated as a flat Minkowski
manifold without boundary. This is consistent with the fact the characteristic scale
in high energy is so much smaller then any characteristic scale of the Universe.

As one of the main paradigms in quantum field theory, quantum fields are usu-
ally assigned to elementary particles. The corresponding classical field theories are
described by relativistically invariant local action functionals. The locality of interac-
tions between elementary particles is one of the key assumptions of a local quantum
field theories and of the Standard Model itself.

The path integral formulation of quantum field theory makes it mathematically
very similar to statistical mechanics. It also suggests that in order to understand the
mathematical nature of local quantum field theory it is natural to extend this notion
from Minkowski space time to a space time with boundary. It is definitely natural to
do it for the corresponding classical field theories.

The concept of topological and conformal field theories on space time manifolds
with boundary was advocated in [3, 28]. The renormalizability of local quantum field
theory on a space time with boundary was studied earlier in [30]. Here we develop
the gauge fixing approach for space time manifolds with boundary by adjusting the
Faddeev-Popov (FP) framework to this setting. This gauge fixing approach is a par-
ticular case of the more general Batalin-Vilkovisky (BV) formalism for quantization
of gauge theories. The classical Hamiltonian part of the BV quantization on space
time manifolds with boundary, the BV-BFV formalism, is developed in [13]. In a
subsequent publication we will extend it to the quantum level.

The goal of these notes is an overview of the FP framework in the context of space
time manifolds with boundary. As a first step we present the Hamiltonian structure
for such theories. We focus on the Hamiltonian formalism for first order theories.
Other theories can be treated similarly, see for example [14] and references therein. In
a subsequent publication we will connect this approach with the BV-BFV program.

In Sect. 2 we recall the concept of local quantum field theory as a functor from
the category of space time cobordisms to the category of vector spaces. The Sect. 3
contains examples: the scalar field theory, Yang-Mills theory, Chern-Simons and
BF theories. The concept of semiclassical quantization of first order quantum field
theories is explained in Sect. 4 where we present a finite dimensional model for the
gauge fixing for space time manifolds with or without boundary. In Sect.5 we briefly
discuss the example of Abelian Chern-Simons theory. The nonabelian case and the
details of the gluing of partition functions for semiclassical Chern-Simons theories
will be given elsewhere.
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2 First Order Classical Field Theories

2.1 Space Time Categories

In order to define a classical field theory one has to specify a space time category, a
space of fields for each space time and the action functional on the space of fields.

Two space time categorieswhich aremost important for these lectures are the cate-
gory of smooth n-dimensional cobordisms and the category of smooth n-dimensional
Riemannian manifolds.

The d-dimensional smooth category. Objects are smooth, compact, oriented
(d − 1)-dimensional manifolds with smooth d-dimensional collars. A morphism
between Σ1 and Σ2 is a smooth d-dimensional compact oriented manifolds with
∂M = Σ1 " Σ2 and the smooth structure on M agrees with smooth structure on
collars near the boundary. The orientation on M should agree with the orientations
of Σ1 and be opposite to the one on Σ2 in a natural way.

The composition consists of gluing two morphisms along the common boundary
in such a way that collars with smooth structure on them fit.

In this and the subsequent examples of space time categories identity morphisms
have to be adjoined formally. Note also that we are not taking the quotient of cobor-
disms by diffeomorphisms.

The d-dimensional Riemannian category. Objects are (d − 1)-dimensional Rie-
mannian manifolds with d-dimensional collars. Morphisms between two oriented
(d − 1)-dimensional Riemannian manifolds N1 and N2 are oriented d-dimensional
Riemannian manifolds M with collars near the boundary, such that ∂M = N1 " N2.
The orientation on all three manifolds should naturally agree, and the metric on M
agreeswith themetric on N1 and N2 and on collar near the boundary. The composition
is the gluing of such Riemannian cobordisms. For the details see [29].

This category is important formany reasons.One of them is that it is the underlying
structure for statistical quantum field theories.

The d-dimensional pseudo-Riemannian category. The difference between this
category and the Riemannian category is that morphisms are pseudo-Riemannian
with the signature (d −1, 1)while objects remain (d −1)-dimensional Riemannian.
This is the most interesting category for particle physics.

Both objects and morphisms may have an extra structure such as a fiber bundle
(or a sheaf) over it. In this case such structures for objects should agree with the
structures for morphisms.
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2.2 General Structure of First Order Theories

2.2.1 First Order Classical Field Theories

A first order classical field theory1 is defined by the following data:

• A choice of space time category.
• A choice of the space of fields FM for each space time manifold M . This comes
together with the definition of the space of fields F∂M for the boundary of the
space time and the restriction mapping π : FM → F∂M .

• A choice of the action functional on the space FM which is local and first order in
derivatives of fields, i.e.

SM (φ) =
∫

M

L(dφ,φ)

Here L(dφ,φ) is linear in dφ.

These data define:

• The space ELM of solutions of the Euler-Lagrange equations.
• The 1-form α∂M on the space of boundary fields arising as the boundary term of
the variation of the action [14].

• The Cauchy data subspace C∂M of boundary values (at {0}× ∂M) of solutions of
the Euler-Lagrange equations in [0, ϵ) × ∂M .

• The subspace LM ⊂ C∂M of boundary values of solutions of the Euler-Lagrange
equations in M , LM = π(ELM ).

When C∂M ̸= F∂M the Cauchy problem is overdetermined and therefore the
action is degenerate. Typically it is degenerate because of the gauge symmetry.

A natural boundary condition for such system is given by a Lagrangian fibration2

on the space of boundary fields such that the form α∂M vanishes at the fibers. The
last conditions guarantees that solutions of Euler-Lagrange equations which are con-
strained to a leaf of such fibration are critical points of the action functional, i.e. not
only the bulk term vanishes but also the boundary terms.

1 It is not essential that we consider here only first order theories. Higher order theories where
L(dφ,φ) is not necessary a linear function in dφ can also be treated in a similar way, see for
example [14] and references therein. In first order theories the space of boundary fields is the
pull-back of fields in the bulk.
2 In our examples, fibrations are actually fiber bundles. By abuse of terminology, terms “fibration”
and “foliation” will be used interchangeably.
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2.2.2 First Order Classical Field Theory as a Functor

First order classical field theory can be regarded as a functor from the category of
space times to the category which we will call Euler-Lagrange category and will
denote EL . Here is an outline of this category:

An object of EL is a symplectic manifold F with a prequantum line bundle, i.e.
a line bundle with a connection αF , such that the symplectic form is the curvature
of this connection. It should also have a Lagrangian foliation which is αF -exact, i.e.
the pull-back of αF to each fiber vanishes.3

A morphism between F1 and F2 is a manifold F together with two surjective
submersions π1 : F → F1 and π2 : F → F2, with a function SF on F and with the
subspace EL ⊂ F such that dSF |EL is the pull-back of −αF1 + αF2 on F1 × F2.
The image of EL in (F1,−ω1)×(F2,ω2) is automatically an isotropic submanifold.
Here ωi = dαFi . We will focus on theories where these subspaces are Lagrangian.

The composition of morphisms (F, SF ) and (F ′, SF ′) is the fiber product of the
morphism spaces F and F ′ over the intermediate object and SF ′◦F = SF + SF ′ . This
category is the gh = 0 part of the BV-BFV category from [13].

A first order classical field theory defines a functor from the space time category
to the Euler-Lagrange category. An object N of the space time category is mapped
to the space of fields FN , a morphism M is mapped to (FM , SM ), etc. Composition
of morphisms is mapped to the fiber product of spaces of fields4 and because of
the assumption of locality of the action functional, it is additive with respect to the
gluing.

This is just an outline of the Euler-Lagrange category and of the functor. For
our purpose of constructing formal semiclassical quantization we will not need the
precise details of this construction. But it is important to have this more general
picture in mind.

2.3 Symmetries in First Order Classical Field Theories

The theory is relativistically invariant if the action is invariant with respect to geo-
metric automorphisms of the space time. These are diffeomorphisms for the smooth
category, isometries for the Riemannian category etc. In such theory the action is
constructed using geometric operations such as de Rham differential and exterior
multiplication of forms for smooth category. In Riemannian category in addition to
these two operations we have Hodge star (or the metric).

If the space time category has an additional structure such as fiber bundle, the
automorphisms of this additional structure give additional symmetries of the theory.
In Yang-Mills, Chern-Simons and BF theories, gauge symmetry, or automorphisms

3 Here we are assuming for simplicity of the exposition that the prequantum line bundle is trivial
and thus we can identify the connection with its 1-form on F .
4 We are not precise at this point. Rather, the value of the functor on a composition is homotopic
(in the appropriate sense) to the fiber product.
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of the corresponding principal G-bundle, are such a symmetry. A theory with such
space time with the gauge invariant action is called gauge invariant. The Yang-Mills
theory is gauge invariant, the Chern-Simons and the BF theories are gauge invariant
only up to boundary terms.

There are more complicated symmetries when a distribution, not necessary inte-
grable, is given on the space of fields and the action is annihilated by corresponding
vector fields. Nonlinear Poisson σ -model is an example of such field theory [18].

3 Examples

3.1 First Order Lagrangian Mechanics

3.1.1 The Action and Boundary Conditions

In Lagrangian mechanics the main component which determines the dynamics is the
Lagrangian function. This is a function on the tangent bundle to the configuration
space L(ξ, x) where ξ ∈ Tx N . In Newtonian mechanics the Lagrangian function is
quadratic in velocity and the quadratic term is positive definite which turns N into a
Riemannian manifold.

Themost general form of first order Lagrangian is L(ξ, x) =< α(x), ξ > −H(x)
where α is a 1-form on N and H is a function on N . The action of a first order
Lagrangian mechanics is the following functional on parameterized paths F[t1,t2] =
C∞([t1, t2], N )

S[t2,t1][γ ] =
t2∫

t1

(⟨α(γ (t)), γ̇ (t)⟩ − H(γ (t))) dt, (1)

where γ is a parametrized path.
The Euler-Lagrange equations for this action are:

ω(γ̇ (t)) − dH(γ (t)) = 0,

whereω = dα. Naturally, the first order Lagrangian system is called non-degenerate,
if the form ω is non-degenerate. We will focus on non-degenerate theories here.
Denote the space of solutions to Euler-Lagrange equations by EL [t1,t2].

Thus, a non-degenerate first order Lagrangian system defines an exact symplectic
structure ω = dα on a manifold N . The Euler-Lagrange equations for such system
are equations for flow lines of the Hamiltonian on the symplectic manifold (N ,ω)

generated by the Hamiltonian H . It is clear that the action of a non-degenerate first
order system is exactly the action for this Hamiltonian system.

The variation of the action on solutions of the Euler-Lagrange equations is given
by the boundary terms:
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δS[t2,t1][γ ] = ⟨α(γ (t)), δγ (t)⟩ |t2t1 .

If γ (t1) and γ (t2) are constrained to Lagrangian submanifolds in L1,2 ⊂ N with
T L1,2 ⊂ ker(α), these terms vanish.

The restriction to boundary points gives the projection π : F[t1,t2] → N ×N . The
image of the space of solutions of the Euler-Lagrange equations L [t1,t2] ⊂ N × N
for small [t1, t2] is a Lagrangian submanifold with respect to the symplectic form
(dα)1 − (dα)2 on N × N .

Note that solutions of the Euler-Lagrange equation with boundary conditions
in L1 × L2 correspond to the intersections points (L1 × L2) ∩ L [t1,t2] which is
generically a discrete set.

3.1.2 More on Boundary Conditions

The evolution of the system from time t1 to t2 and then to t3 can be regarded as
gluing of space times [t1, t2] × [t2, t3] → [t1, t2] ∪ [t2, t3] = [t1, t3]. If we impose
boundary conditions L1, L2, L3 at times t1, t2, t3 respectively there may be no con-
tinuous solutions of equations of motion for intervals [t1, t2] and [t2, t3]which would
compose into a continuous solution for the interval [t1, t3]. This is why boundary
conditions should come in families of Lagrangian submanifolds, so that by varying
the boundary condition at t2 we could choose L2 in such a way that solutions for
[t1, t2] and [t2, t3] would compose to a continuous solution.

This is why we will say that a boundary condition for a first order theory is a
Lagrangian fibration on the space of boundary values of classical fields. In case
of first order classical mechanics this is a Lagrangian fibration on N , boundary
condition is a Lagrangian fibration of (N ,ω) × (N ,−ω). It is natural to choose
boundary conditions independently for each connected component of the boundary
of the space time. In case of classical mechanics this means a choice of Lagrangian
fibration p : N → B for each endpoint of [t1, t2]. The form α should vanish on
fibers of this fibration.

Remark 1 For semiclassical quantization we will need only classical solutions and
infinitesimal neighborhood of classical solutions. This means that we need in this
case a Lagrangian fibration on the space of boundary fields defined only locally, not
necessary globally.

Let N be a configuration space (such asRn) and T ∗(N )be the corresponding phase
space. Let γ be a parameterized path in T ∗(N ) such that, writing γ (t) = (p(t), q(t))
(where p is momenta and q is position), we have q(ti ) = qi for two fixed points
q1, q2. If γcl is a solution to the Euler-Lagrange equations, then

dSγcl
t1,t2(q1, q2) = π∗(p1 dq1 − p2 dq2) (2)

where p1 = p(t1), p2 = p(t2) are determined by t1, t2, q1, q2. The function Sγcl
t1,t2 is

the Hamilton-Jacobi function.
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3.2 Scalar Field Theory in an n-dimensional Space Time

The space time in this case is a smooth oriented compact Riemannian manifold M
with dim M = n. The space of fields is

FM = Ω0(M) ⊕ Ωn−1(M). (3)

where we write ϕ for an element of Ω0(M) and p for an element of Ωn−1(M). The
action functional is

SM (p,ϕ) =
∫

M

p ∧ dϕ − 1
2

∫

M

p ∧ ∗p −
∫

M

V (ϕ) dx . (4)

with V ∈ C∞(R) a fixed potential; dx stands for the metric volume form.
The first term is topological and analogous to

∫
γ α in (1). The second and third

terms use the metric and together yield an analog of the integral of the Hamiltonian
in (1).

The variation of the action is

∫

M

δp∧(dϕ−∗p)−(−1)n−1
∫

M

dp∧δϕ+(−1)n−1
∫

∂M

p δϕ−
∫

M

V ′(ϕ) δϕ dx . (5)

The Euler-Lagrange equations are therefore

dϕ − ∗p = 0, (−1)n−1dp + V ′(ϕ) dx = 0. (6)

The first equation gives p = (−1)n−1 ∗ dϕ, and substituting this into the second
equation gives

∆ϕ + V ′(ϕ) = 0. (7)

where ∆ = ∗d ∗ d is the Laplacian acting of functions.
Thus the space of all solutions of Euler-Lagrange equations is

ELM = {(p,ϕ)|p = (−1)n−1 ∗ dϕ, ∆ϕ + V ′(ϕ) = 0}

Remark 2 To recover the second-order Lagrangian compute the action at the critical
point in p, i.e. substitute p = (−1)n−1 ∗ dϕ into the action functional:



Semiclassical Quantization of Classical Field Theories 283

SM ((−1)n−1 ∗ dϕ,ϕ) =
∫

M

(−1)n−1 ∗ dϕ ∧ dϕ − 1
2

∫
∗dϕ ∧ ∗ ∗ dϕ

−
∫

M

V (ϕ) dx = 1
2

∫

M

dϕ ∧ ∗dϕ −
∫

M

V (ϕ) dx

=
∫

M

(
1
2
(dϕ, dϕ) − V (ϕ)

)
dx .

The boundary term in the variation gives the 1-form on boundary fields

α∂M =
∫

∂M

p δϕ ∈ Ω1(F∂M ). (8)

Here δ is the de Rham differential on Ω•(F∂M ). The differential of this 1-form gives
the symplectic form ω∂M = δα∂M on F∂M .

Note that we can think of the space F∂M of boundary fields as T ∗(Ω0(∂M)) in
the following manner: if δϕ ∈ Tϕ(Ω

0(∂M)) ∼= Ω0(∂M) is a tangent vector, then
the value of the cotangent vector A ∈ Ωn−1(∂M) is

A(δϕ) =
∫

∂M

A ∧ δϕ. (9)

The symplectic form ω∂M is the natural symplectic form on T ∗Ω0(∂M).
The image of the space ELM of all solutions to the Euler-Lagrange equations with

respect to the restriction map π : FM → F∂M gives a subspace LM = π(ELM ) ⊂
F∂M .

Proposition 1 Suppose there is a unique solution5 to ∆ϕ + V ′(ϕ) = 0 for any
Dirichlet boundary conditionϕ|∂M = η. Thenπ(ELM ) is a Lagrangian submanifold
of F∂M.

Indeed, in this case LM is the graph of a map Ω0(∂M) → F∂M given by η 3→
(p∂ = π((−1)n−1 ∗ dϕ), η) where ϕ is the unique solution to the Dirichlet problem
with boundary conditions η.

The space of boundary fields has a natural Lagrangian fibration π∂ :
T ∗(Ω0(∂M)) → Ω0(∂M). This fibration corresponds to Dirichlet boundary condi-
tions: we fix the value ϕ|∂M = η and impose no conditions on p|∂M , i.e. we impose
boundary condition (p,ϕ)|∂M ∈ π−1

∂ (η).
Another natural family of boundary conditions, Neumann boundary conditions,

correspond to the Larganian fibration of T ∗(Ω0(∂M)) ≃ Ωn−1(∂M) ⊕ Ω0(∂M)

where the base is Ωn−1(∂M). In the case we fix ∗∂ i∗(p) = η ∈ Ω0(∂M). The

5 It is unique if −V (ϕ) is convex.
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intersection of LM and the fiber over η is the set of pairs (∗∂η, ξ) ∈ Ωn−1(∂M) ⊕
Ω0(∂M) where ξ = i∗(φ) and φ is a solution to the Neumann problem

∆φ + V ′(φ) = 0, ∂nφ|∂M = η

where ∂n is the normal derivative of φ at the boundary.

3.3 Classical Yang-Mills Theory

Space time is again a smooth compact oriented Riemannian manifold M . Let G be
a compact semisimple, connected, simply-connected Lie group with Lie algebra g.
We assume that it is a matrix group, i.e. we fix an embedding of G into Aut(V ), and
hence an embedding of g into End(V ) such that the Killing form on g is < a, b >=
tr(ab). The space of fields in the first order Yang-Mills theory is

FM = Ω1(M, g) ⊕ Ωn−2(M, g) (10)

where we think of Ω1(M, g) as the space of connections on a trivial G-bundle over
M . If we use a nontrivial G-bundle over M then the first term should be replaced by
the corresponding space of connections. We denote an element of FM by an ordered
pair (A, B), A ∈ Ω1(M, g) and B ∈ Ωn−2(M, g). The action functional is

SM (A, B) =
∫

M

tr(B ∧ F(A)) − 1
2

∫

M

tr(B ∧ ∗B) (11)

where F(A) = d A + A ∧ A is the curvature of A as a connection.6

After integrating by part we can write the variation of the action as the sum of
bulk and boundary parts:

δSM (A, B) =
∫

M

tr(δB ∧ (F(A) − ∗B)+ δA ∧ dAB) −
∫

∂M

tr(δA ∧ B) (12)

The space ELM of all solution to Euler-Lagrange equations is the space of pairs
(A, B) which satisfy

B = ∗F(A), dAB = 0

6 We will use notations A ∧ B = ∑
{i}{ j} A{i}B{ j}dx {i} ∧ dx { j} for matrix-valued forms A and B.

Here {i} is a multiindex {i1, . . . , ik} and xi are local coordinates on M . We will also write [A ∧ B]
for

∑
{i}{ j}[A{i}, B{ j}]dx {i} ∧ dx { j}.
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3.3.1 Boundary structure

The boundary term of the variation defines the one-form on the space boundary fields
F∂M = Ω1(∂M, g) ⊕ Ωn−2(∂M, g).

α∂M = −tr
∫

∂M

δA ∧ B ∈ Ω1(F∂M ). (13)

Its differential defines the symplectic form ω∂M =
∫

∂M
tr(δA ∧ δB).

Note that, similarly to the scalar field theory, boundary fields can be regarded
as T ∗Ω1(∂M, g) where we identify cotangent spaces with Ωn−2(∂M, g), tangent
spaces with Ω1(∂M, g) with the natural pairing

β(α) = tr
∫

∂M

α ∧ β

The projection map π : FM → F∂M which is the restriction (pull-back) of forms
to the boundary defines the subspace LM = π(ELM ) of the space of boundary
values of solutions to the Euler-Lagrange equations on M .

3.3.2 On Lagrange property of LM

Let us show that this subspace is Lagrangian for Maxwell’s electrodynamics, i.e. for
the Abelian Yang-Mills with G = R. In this case Euler-Lagrange equations are

B = ∗d A, d ∗ d A = 0

Fix Dirichlet boundary condition i∗(A) = a. Let A0 be a solution to this equation
satisfying Laurenz gauge condition d∗A0 = 0. Such solution is a harmonic 1-form,
(dd∗ + d∗d)A0 = 0 with boundary condition i∗(A0) = a. If A′

0 is another such
form, then A0 − A′

0 is a harmonic 1-form with boundary condition i∗(A0 − A′
0) = 0.

The space of such forms is naturally isomorphic to H1(M, ∂M). Each of these
solutions gives the same value for B = ∗d A = ∗d A0 and therefore its boundary
value b = i∗(B) is uniquely determined by a. Therefore the projection of ELM to
the boundary is a graph of the map a → b and thus LM is a Lagrangian submanifold.

The Dirichlet and Neumann boundary value problems for Yang-Mills theory were
studied in [25].

Conjecture 1 The submanifold LM is Lagrangian for non-Abelian Yang-Mills
theory.

It is clear that this is true for small connections, when we can rely on perturbation
theory starting from an Abelian connection. It is also easy to prove that LM is
isotropic.
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3.3.3 The Cauchy subspace

Define the Cauchy subspace

C∂M = πϵ(EL∂Mϵ ) (14)

where ∂Mϵ = [0, ϵ) × ∂M and πϵ : F∂Mϵ → F∂M is the restriction of fields
to {0} × ∂M . In other words C∂M is the space of boundary values of solution to
Euler-Lagrange equations in ∂Mϵ = [0, ϵ) × ∂M . It is easy to see that7

C∂M = {(A, B)|dAB = 0}

We have natural inclusions

LM ⊂ C∂M ⊂ F∂M

3.3.4 Gauge transformations

The automorphism group of the trivial principal G-bundle over M can be naturally
identified with C∞(M,G). Bundle automorphisms act on the space of Yang-Mills
fields. Thinking of a connection A as an element A ∈ Ω1(M, g) we have the fol-
lowing formulae for the action of the bundle automorphism (gauge transformation)
g on fields:

g : A 3→ Ag = g−1Ag + g−1dg, B 3→ Bg = g−1Bg. (15)

Note that the curvature F(A) is a 2-form and it transforms as F(Ag) = g−1F(A)g.
Also, if we have two connections A1 and A2, their difference is a 1-form and Ag

1 −
Ag
2 = g−1(A1 − A2)g.
The Yang-Mills functional is invariant under this symmetry:

SM (Ag, Bg) = SM (A, B) (16)

which is just the consequence of the cyclic property of the trace.
The restriction to the boundary gives the projection map of gauge groups π̃ :

GM → G∂M which is a group homomorphism. This map is surjective, so we obtain
an exact sequence

0 → Ker(π̃) → GM → G∂M → 0 (17)

7 The subspaceC∂M also makes sense also in scalar field theory, where explicitly it consists of pairs
(p,ϕ) ∈ Ωn−1(∂M) ⊕ Ω0(∂M) where p is the pullback of p0 = ∗dϕ0 and ϕ is the boundary
value of ϕ0 which solves the Euler-Lagrange equation ∆ϕ0 − V ′(ϕ0) = 0. Since Cauchy problem
has unique solution in a small neighborhood of the boundary, C∂M = F∂M for the scalar field.
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where Ker(π̃) is the group of gauge transformations acting trivially at the boundary.
It is easy to check that boundary gauge transformations G∂M preserve the sym-

plectic form ω∂M . The action of GM induces an infinitesimal action of the Lie
algebra gM = C∞(M, g) of GM by vector fields on FM . For λ ∈ gM we denote by
(δλA, δλB) the tangent vector to FM at the point (A, B) corresponding to the action
of λ:

δλA = −[λ, A] + dλ = dAλ, δλB = −[λ, B] (18)

where the bracket is the pointwise commutator (we assume that g is a matrix Lie
algebra).Recall that the action of aLie groupon a symplecticmanifold isHamiltonian
if vector fields describing the action of the Lie algebra Lie(G) are Hamiltonian.

We have the following

Theorem 1 The action of G∂M on F∂M is Hamiltonian.

Indeed, let f be a function on F∂M and let λ ∈ g∂M . Let δλ f denote the Lie
derivative of the corresponding infinitesimal gauge transformation. Then

δλ f (A, B) =
∫

∂M

tr
(

δ f
δA

∧ dAλ + δ f
δB

∧ [λ, B]
)
. (19)

Let us show that this is the Poisson bracket {Hλ, f } where

Hλ =
∫

∂M

tr(λdAB). (20)

The Poisson bracket on functions on F∂M is given by

{ f, g} =
∫

∂M

tr
(

δ f
δA

∧ δg

δB
− δg

δA
∧ δ f

δB

)
. (21)

We have

δHλ

δA
= δ

δA

⎛

⎝
∫

∂M

tr(λ dB + λ[A ∧ b])

⎞

⎠ = [λ, B] (22)

and, using integration by parts:

δHλ

δB
= dAB = dB + [A ∧ B]. (23)

This proves the statement.
An important corollary of this fact is that the Hamiltonian action of GM induces

a moment map µ : F∂M → g∗
∂M , and it is clear that
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C∂M = µ−1(0)

This implies that C∂M ⊂ F∂M is a coisotropic submanifold.

Remark 3 Let us show directly that C∂M ⊂ F∂M is a coisotropic subspace of the
symplectic space F∂M when g = R. We need to show that C⊥

∂M ⊂ C∂M where C⊥

is the symplectic orthogonal to C .
The subspace C⊥

∂M consists of all (α,β) ∈ Ω1(∂M) ⊕ Ωn−2(∂M) such that

∫

∂M

a ∧ β +
∫

∂M

α ∧ b = 0 (24)

for all (a, b) ∈ C∂M ⊂ Ω1(∂M) ⊕ Ωn−2(∂M). This condition for all a gives
that β = 0 and requiring this condition for all b gives that α is exact, so we have
C⊥

∂M = Ω1
ex(∂M) ⊂ C∂M as desired.

3.3.5 Reduction by gauge symmetry

The differential δSM of the action functional is the sum of the bulk term defining the
Euler-Lagrange equations and of the boundary term defining the 1-form α∂M on the
space of boundary fields. The bulk term vanishes on solutions of the Euler-Lagrange
equations, so we have

δSM |ELM = π∗(α∂M |LM ) (25)

where π : FM → F∂M is the restriction to the boundary and LM = π(ELM ). This
is analogous to the property of the Hamilton-Jacobi action in classical mechanics.

Because SM is gauge invariant, it defines the functional on gauge classes of fields
and thus, on gauge classes of solutions to Euler-Lagrange equations. Passing to
gauge classes we now replace the chain of inclusions of gauge invariant subspaces
LM ⊂ C∂M ⊂ F∂M with the chain of inclusions of corresponding gauge classes

LM/G∂M ⊂ C∂M/G∂M ⊂ F∂M/G∂M . (26)

The rightmost space is a Poissonmanifold since the action ofG∂M is Hamiltonian.
The middle space is the Hamiltonian reduction ofC∂M and is a symplectic leaf in the
rightmost space. The leftmost space is still Lagrangian by the standard arguments
from symplectic geometry.
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3.3.6 Gauge invariant Lagrangian fibrations on the boundary

A natural Lagrangian fibration p∂ : Ωn−2(∂M, g) ⊕ Ω1(∂M, g) → Ω1(∂M, g)
corresponds to the Dirichlet boundary conditions when we fix the pull-back of A
to the boundary: a = i∗(A). Such boundary conditions are compatible with the
gauge action. Another example of the family of gauge invariant boundary conditions
corresponds to Neumann boundary conditions and is given by the Lagrangian fibra-
tion p∂ : Ωn−2(∂M, g) ⊕ Ω1(∂M, g) → Ωn−2(∂M, g).

3.4 Classical Chern–Simons Theory

3.4.1 Classical theory with boundary

Spacetimes for classical Chern-Simons field theory are smooth, compact, oriented
3-manifolds. Let M be such manifold fields FM on M are connections on the trivial
G-bundle over M with G being compact, semisimple, connected, simply connected
Lie group. We will identify the space of connections with the space of 1-forms
Ω1(M, g). The action functional is

S(A) =
∫

M

tr
(
1
2
A ∧ d A + 1

3
A ∧ A ∧ A

)
(27)

where A is a connection.
The variation is

δSM (A) =
∫

M

tr(F(A) ∧ δA)+ 1
2

∫

∂M

tr(A ∧ δA) (28)

so the space of solutions ELM to the Euler-Lagrange equations is the space of flat
connections:

ELM = {A|F(A) = 0}

The boundary term defines the 1-form on boundary fields (connections on the trivial
G-bundle over the boundary which we will identify with Ω1(∂M)):

α∂M = −1
2

∫

∂M

tr(A ∧ δA). (29)

This 1-form on boundary fields defines the symplectic structure on the space of
boundary fields:
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ω∂M = δα∂M = −1
2
tr

∫

∂M

δA ∧ δA (30)

3.4.2 Gauge symmetry and the boundary cocycle

The gauge groupGM is the group of bundle automorphisms of of the trivial principal
G-bundle over M . It can be naturally be identified with the space of smooth maps
M → G which transform connections as in (15) and we have:

SM (Ag) = SM (A)+ 1
2
tr

∫

∂M

(g−1Ag ∧ g−1 dg)− 1
6
tr

∫

M

g−1 dg ∧ g−1 dg ∧ g−1 dg.

(31)
Assume the integrality of the Maurer-Cartan form on G:

θ = −1
6
tr(dg g−1 ∧ dg g−1 ∧ dg g−1)

i.e. we assume that the normalization of the Killing form is chosen in such a way
that [θ ] ∈ H3(M,Z). Then for a closed manifold M the expression

WM (g) = −1
6
tr

∫

M

dg g−1 ∧ dg g−1 ∧ dg g−1

is an integer and therefore SM mod Z is gauge invariant (for details see for example
[20]).

Proposition 2 When themanifold M has a boundary, the functionalWM (g) mod Z
depends only on the restriction of g to ∂M.

Indeed, let M ′ be another manifold with the boundary ∂M ′ which differs from
∂M only by reversing the orientation, so that the result of the gluing M ∪ M ′ along
the common boundary is smooth. Then

WM (g) − WM ′(g′) = −1
6
tr

∫

M∪M ′

∫

M

d g̃g̃−1 ∧ d g̃g̃−1 ∧ d g̃g̃−1 ∈ Z

Here g̃ is the result of gluing maps g and g′ into a map M ∪ M ′ → G. Therefore,
modulo integers, it does not depend on g and g′.

For a a connection on the trivial principalG-bundle over a 2-dimensionalmanifold
Σ and for g ∈ C∞(Σ,G) define

cΣ (a, g) = exp

⎛

⎝2π i

⎛

⎝1
2

∫

∂M

tr(g−1ag ∧ g−1dg)+WΣ (g)

⎞

⎠

⎞

⎠
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Here we wrote WΣ (g) because WM (g) mod Z depends only on the value of g on
∂M .

The transformation property (31) of the Chern-Simons action implies that the
functional

exp(2π i SM (A))

transforms as

exp(2π i SM (Ag)) = exp(2π i SM (A))c∂M (i∗(A), i∗(g))

where i∗ is the restriction to the boundary (pull-back). For further details on gauge
aspects of Chern-Simons theory see [20, 21].

Now we can define the gauge invariant version of the Chern-Simons action. Con-
sider the trivial circle bundleLM = S1×FM with the natural projectionLM → FM .
Define the action of GM on LM as

g : (λ, A) 3→ (λc∂M (i∗(A), i∗(g)), Ag)

The functional exp(2π i SM (A)) is aGM -invariant section of this bundle. The restric-
tion ofLM to the boundary gives the trivial S1-bundle over F∂M with theG∂M -action

g : (λ, A) 3→ (λc∂M (A, g), Ag)

The 1-form α∂M is a G∂M -invariant connection of L∂M . The curvature of this con-
nection is the G∂M -invariant symplectic form ω∂ .

By definition of α∂M we have the Hamilton-Jacobi property of the action:

δSM |ELM = π∗(α∂M |LM ). (32)

3.4.3 Reduction

Now,when the gauge symmetry of the Chern-Simons theory is clarified, let us pass to
gauge classes. The action of boundary gauge transformations on F∂M is Hamiltonian
with respect to the symplectic form (30). It is easy to check (and it is well known) that
the vector field on F∂M generating infinitesimal gauge transformation A → A+dAλ

is Hamiltonian with the generating function

Hλ(A) =
∫

∂M

tr(F(A)λ). (33)

This induces the moment map µ : F∂M → g∗
∂M given by µ(A)(λ) = Hλ(A).
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Let C∂M be the space of Cauchy data, i.e. boundary values of connections which
are flat in a small neighborhood of the boundary. It can be naturally identified with
the space of flat G-connections on ∂M and thus, C∂M = µ−1(0). Hence C∂M is a
coisotropic submanifold of F∂M . We have a chain of inclusions

LM = π(ELM ) ⊂ C∂M ⊂ F∂M (34)

where LM is the space of flat connections on ∂M which extend to flat connections
on M . Using Poincaré-Lefschetz duality for de Rham cohomology with coefficients
in a local system, one can easily show that LM is Lagrangian.

We have following inclusions of the spaces of gauge classes

LM/G∂M ⊂ C∂M/G∂M ⊂ F∂M/G∂M (35)

where the middle term is the Hamiltonian reduction µ−1(0)/G∂M ∼= C∂M , which
is symplectic. The left term is Lagrangian, and the right term is Poisson. Note that
the middle term is a finite dimensional symplectic leaf of the infinite dimensional
Poisson manifold F∂M/G∂M .

The middle term C∂M/G∂M is the moduli space MG
∂M of flat G-connections on

∂M . It is naturally isomorphic to the representation variety:

MG
∂M

∼= Hom(π1(∂M),G)/G

where G acts on Hom(π1(M),G) by conjugation. We will denote the symplectic
structure on this space by ω∂M .

Similarly, we have ELM/GM = MG
M

∼= Hom(π1(M),G)/G, which is the
moduli space of flat G-connections on M . Unlike in Yang-Mills case, these spaces
are finite-dimensional.

The image of the natural projection π : MG
M → MG

∂M is the reduction of LM
which we will denote by LM = LM/GM .

Reduction of LM and of L∂M gives line bundles LM = LM/GM and L∂M =
L∂M/G∂M overMG

M andMG
∂M respectively. The 1-form α∂M which is also a G∂M -

invariant connection onL∂M becomes a connection onL∂M with the curvature ω∂M .
The Chern-Simons action yields a section cs of the pull-back of the line bundle

L∂M over MG
∂M . Because LM is a Lagrangian submanifold, the symplectic form

ω∂M vanishes on it and the restriction of the connection α∂M to LM results in a flat
connection over L∂M |LM

. The section cs is horizontal with respect to the pull-back
of the connection α∂M . It can be written as

(d − π∗(α∂M |LM ))cs = 0. (36)

This collection of data is the reduced Hamiltonian structure of the Chern-Simons
theory.
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3.4.4 Complex polarization

There are no natural non-singular Lagrangian fibrations on the space of connections
on the boundary which are compatible with the gauge action. However, for formal
semiclassical quantizationweneed suchfibration only to exist locally near a preferred
point in the space of connections. Now we will describe another structure on the
space of boundary fields for the Chern-Simons theory which is used in geometric
quantization [4].

Instead of looking for a real Lagrangian fibration, let us choose a complex polar-
ization of Ω1(M, g)C. Fixing a complex structure on the boundary, gives us the
natural decomposition

Ω1(∂M, g)C = Ω1,0(∂M, g)C ⊕ Ω0,1(∂M, g)C

and we can define boundary fibration as the natural projection to Ω1,0(∂M, g)C.
Here elements of Ω1,0(∂M, g)C are gC-valued forms which locally can be written
as a(z, z) dz and elements ofΩ0,1(∂M, g)C can be written as b(z, z) dz. The decom-
position above locally works as follows:

A = A+A

where A = a(z, z) dz.
In terms of this decomposition the symplectic form is

ω =
∫

∂M

tr δA ∧ δA

It is clear that subspaces A + Ω0,1(∂M) are Lagrangian in the complexification of
Ω(M, g). Thus, we have a Lagrangian fibration Ω(M, g)C → Ω0,1(M, g)C. The
action of the gauge group preserves the fibers.

However, the form α∂M does not vanish of these fibers. To make it vanish we
should modify the action as

S̃M = SM + 1
2

∫

∂M

tr (A ∧ A)

After this modification, the boundary term in the variation of the action gives the
form

α̃∂M = −
∫

∂M

tr (A ∧ δA)

This form vanishes on fibers. It is not gauge invariant as well as the modified action.
The modified action transforms under gauge transformations as
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S̃M (Ag) = S̃M (A)+ 1
2
tr

∫

∂M

(g−1Ag ∧ g−1∂g)+WM (g)

This gives the following cocycle on the boundary gauge group

c̃Σ (A, g) = exp(2π i(
1
2

∫

Σ

tr(g−1Ag ∧ g−1∂g)+WΣ (g)))

Thismodification of the action and this complex polarization of the space of boundary
fields is important for geometric quantization in Chern-Simons theory [4] and is
important for understanding the relation between the Chern-Simons theory and the
WZW theory, see for example [1, 16]. We will not expand this direction here, since
we are interested in formal semiclassical quantization where real polarizations are
needed.

3.5 BF-Theory

Space time M is smooth, oriented8 and compact and is equipped with a trivial
G-bundle where G is connected, simple or abelian compact Lie group. Fields are

FM = Ω1(M, g) ⊕ Ωn−2(M, g) (37)

where Ω1(M, g) describes connections on the trivial G-bundle.
The action functional of the BF theory is the topological term of Yang-Mills

action:

SM (A, B) =
∫

M

tr(B ∧ F(A)). (38)

For the variation of SM we have:

δSM = tr
∫

M

δB ∧ F(A)+ (−1)n−1tr
∫

M

dAB ∧ δA + (−1)n−1tr
∫

∂M

B ∧ δA. (39)

The bulk term gives Euler-Lagrange equations:

ELM = {(A, B) : F(A) = 0, dAB = 0}. (40)

The boundary term gives a 1-form on the space of boundary fields F∂M =
Ω1(∂M, g) ⊕ Ωn−2(∂M, g):

8 The orientability assumption can be dropped, see [15].
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α∂M =
∫

∂M

tr(B ∧ δA). (41)

The corresponding exact symplectic form is

ω∂M = δα∂M =
∫

∂M

tr(δB ∧ δA). (42)

The space of Cauchy data is

C∂M = {(A, B)|FA = 0, dAB = 0}

Boundary values of solutions of the Euler-Lagrange equations on M define the sub-
manifold LM = π(ELM ) ⊂ F∂M . This submanifold is Lagrangian. Thus we have
the embedding:

LM ⊂ C∂M ⊂ F∂M

where F∂M is exact symplectic, C∂M is co-isotropic, and LM is Lagrangian.

3.5.1 Gauge symmetry and reduction

The space of bundle automorphisms GM is the space of smooth maps M → G.
They act on A ∈ Ω1(M, g) by A 3→ g−1Ag + g−1dg and on B ∈ Ωn−2(M, g) by
B 3→ g−1Bg. As in Yang-Mills theory the action is invariant with respect to these
transformations.

In addition, it is almost invariant with respect to transformations A 3→ A, B 3→
B + dAβ where β ∈ Ωn−3(M, g):

SM (A, B + dAβ) = SM (A, B)+
∫

M

tr(dAβ ∧ F(A)). (43)

After integration by parts in the second term we write it as

∫

M

tr(β ∧ dAF(A))+
∫

∂M

tr(β ∧ F(A)). (44)

The bulk term here vanishes because of the Bianchi identity and the only additional
contribution is a boundary term, thus:
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SM (A, B + dAβ) = SM (A, B)+ tr
∫

∂M

(β ∧ F(A))

The additional gauge symmetry B 3→ B + dAβ gives us a larger gauge group

GBF
M = GM × Ωn−3

M . (45)

Its restriction to the boundary gives the boundary gauge group

GBF
∂M = G∂M × Ωn−3

∂M . (46)

The action is invariant up to a boundary term. This means that the 1-form α∂M is
not gauge invariant. Indeed, it is invariant with respect to GM -transformations, but
when (A, B) 3→ (A, B + dAβ) the forms α∂M transforms as

α∂M 3→ α∂M +
∫

∂M

tr dAβ ∧ δA

However, it is clear that the symplectic form ω∂M = δα∂M is gauge invariant. More-
over, we have the following.

Theorem 2 The action of GBF
∂M is Hamiltonian.

Indeed, if α ∈ Ω0(∂M, g) is an element of the Lie algebra of boundary gauge
transformations and β ∈ Ωn−3(∂M, g), then we can take

Hα(A, B) =
∫

∂M

tr(B ∧ dAα) (47)

Hβ(A, B) =
∫

∂M

tr(A ∧ dAβ) (48)

as Hamiltonians generating the action of corresponding infinite dimensional Lie
algebra.

This defines a moment map µ : F∂M → Ω0(∂M, g) ⊕ Ωn−3(∂M, g). It is clear
that Cauchy submanifold is also C∂M = µ−1(0). This proves that it is a co-isotropic
submanifold.

Note also, that the restriction of α∂M toC∂M isGBF
∂M -invariant. Indeed tr

∫

∂M
dAβ∧

δA = −tr
∫

∂M
β∧dAδA, and this expression vanishes when the form is pulled-back to

the space of flat connections where dAδA = 0. Therefore the Hamiltonian reduction
of F∂M which is F∂M = C∂M/GBF

∂M is an exact symplectic manifold.
It is easy to see that the reduced space of fields on the boundary F∂M can be

naturally identified, as a symplectic manifold, with T ∗MG
∂M , the cotangent bundle to
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the moduli space of flat connections MG
∂M = Hom(π1(∂M),G)/G. The canonical

1-form on this cotangent bundle corresponds to the form α∂M restricted to C∂M .
The Lagrangian subspace LM ⊂ F∂M is gauge invariant. It defines the Lagrangian
submanifold

LM/GBF
∂M ⊂ T ∗MG

∂M

The restriction of the action functional to ELM is gauge invariant and defines the
the function SM on ELM/GBF

∂M . The formula for the variation of the action gives
the analog of the Hamilton-Jacobi formula:

dSM = π∗(θ |LM ) (49)

where θ is the canonical 1-form on the cotangent bundle T ∗MG
∂M restricted to

LM/GBF
∂M .

3.5.2 A gauge invariant Lagrangian fibration

One of the natural choices of boundary conditions is the Dirichlet boundary con-
ditions. This is the Lagrangian fibration Ω1(M, g) ⊕ Ωn−2(M, g) → Ω1(M, g).
This fibration is gauge invariant. After the reduction it gives the standard Lagrangian
fibration T ∗MG

∂M → MG
∂M .

4 Semiclassical Quantization of First Order Field Theories

In this section, after reminding briefly the general framework of local quantum field
theory, we will concentrate on a finite-dimensional toy model for the path integral.
In this model partition functions satisfy the gluing axiom by general properties of
measure theoretic integrals (the Fubini theorem). One can also model the gauge
symmetry in this setting, treated by a version of the Faddeev-Popov trick. We will
see that the arising integrals can be evaluated, in the asymptotics h → 0, by the
stationary phase formula. The result of such an evaluation we call a “formal integral”
(alluding to integration over a formal neighborhood of a critical point, as well as the
fact that we forget the measure-theoretic definition of the integral we started with).
We will obtain the gluing formula for such formal integrals which is satisfied a
priori, since the construction comes from measure integrals. In the usual setting of
local quantum field theory, partition functions are the path integrals where a measure
theoretic definition is not accessible, while the “formal integral” can be defined as a
formal power series in h where coefficients are the Feynman diagrams. In this setting
the gluing formulae are not automatic and have to be proven, cf. e.g. [22].
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4.1 The Framework of Local Quantum Field Theory

We will follow the framework of local quantum field theory which was outlined by
Atiyah and Segal for topological and conformal field theories. In a nutshell it is a
functor from an appropriate category of cobordisms to the category of vector spaces
(or, more generally, to some category).

In this sense, a quantum field theory is the assignment of a vector space to the
boundary N = ∂M of a space time manifold M and a vector in this vector space to
the manifold M :

N 3→ H(N ), M 3→ ZM ∈ H(∂M).

The identification of such assignments with linear maps is natural assuming that the
vector space assigned to the boundary is the tensor product of vector spaces assigned
to connected components of the boundary and that changing the orientation replaces
the corresponding vector space by its dual.

The vector space assigned to the boundary is the space of boundary states. It may
depend on the extra structure at the boundary. In this case it is a vector bundle over
the space of admissible geometric data and ZM is a section of this vector bundle.
The vector ZM is called the partition function or the amplitude.

These data should satisfy natural axioms, which can by summarized as follows:

1. The locality properties of boundary states:

H(∅) = C , H(N1 " N2) = H(N1) ⊗ H(N2),

2. The locality property of the partition function

ZM1"M2 = ZM1 ⊗ ZM2 ∈ H(∂M1) ⊗ H(∂M2).

3. For each space N (an object of the space time category) there is a non-degenerate
pairing

⟨., .⟩N : H(N ) ⊗ H(N ) → C

such that ⟨., .⟩N1"N2 = ⟨., .⟩N1 ⊗ ⟨., .⟩N2 .
4. The canonical orientation reversing isomorphism σ : N → N induces a

C-antilinear mapping σ̂N : H(N ) → H(N ) which agrees with locality of N
and σ̂N σ̂N = idN . Together with the pairing ⟨., .⟩N the orientation reversing
mapping induces the Hilbert space structure on H(N ).

5. An orientation preserving isomorphism9 f : N1 → N2 induces a linear isomor-
phism

9 By an isomorphism here we mean a mapping preserving the corresponding geometric structure.
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T f : H(N1) → H(N2).

which is compatible with the pairing and T f "g = T f ⊗ Tg , T f ◦g = T f Tg
(possibly twisted by a cocycle of the group of automorphisms of the boundary).

6. The gluing axiom. This pairing should agree with partition functions in the fol-
lowing sense. Let ∂M = N " N " N ′, then

(⟨., .⟩ ⊗ id)ZM = ZM̃ ∈ H(N ′) (50)

where M̃ is the result of gluing of N with N . The operation is known as the gluing
axiom. For more details see [8].

7. The quantum field theory is (projectively) invariant with respect to transforma-
tions of the space time (diffeomorphisms, gauge transformations etc.) if for such
transformation f : M1 → M2,

T f∂ ZM1 = cM1( f )ZM2

Here cM ( f ) is a cocycle cM ( f g) = cgM ( f )cM (g). When the theory is invariant,
not only projectively invariant, cM ( f ) = 1.

Remark 4 The gluing axiom in particular implies the functoriality of Z :

ZM1◦M2 = ZM1 ◦ ZM2 .

Here M1 ◦ M2 is the composition of cobordisms in the category of space time mani-
folds. In case of cylinders this is the semigroup property of propagators in the operator
formulation of QFT.

Remark 5 This framework is very natural in models of statistical mechanics on cell
complexes with open boundary conditions, also known as lattice models.

Remark 6 The main physical concept behind this framework is the locality of the
interaction. Indeed, we can cut our space timemanifold in small pieces and the result-
ing partition function ZM in such framework is expected to be the composition of
partition functions of small pieces. Thus, the theory is determined by its structure on
‘small’ space time manifolds, or at ‘short distances’. This is the concept of locality.
To fully implement this concept one should consider the field theory on manifolds
with corners where we can glue along parts of the boundary. In the case of topo-
logical theories, a particular realization of the concept of locality is the formalism
of extended/fully extended topological quantum field theories of Baez-Dolan [7] and
Lurie [23].
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4.2 Path Integral and Its Finite Dimensional Model

4.2.1 Quantum Field Theory via Path Integrals

Given afirst order classical field theorywith boundary conditions givenbyLagrangian
fibrations, one can try to construct a quantum field theory by the path integral quanti-
zation. In this framework the space of boundary states H(∂M) is taken as the space of
functionals on the base B∂M of the Lagrangian fibration on boundary fields F∂M . The
vector ZM is the Feynman integral over the fields on the bulk with given boundary
conditions

ZM (b) =
∫

f ∈π−1 p−1
∂ (b)

e
i
h SM ( f )Df (51)

where Df is the integration measure, π : FM → F∂M is the restriction map and
p∂ : F∂M → B∂M is the boundary fibration.

The integral above is difficult to define when the space of fields is infinite dimen-
sional. To clarify the functorial structure of this construction and to define the formal
semiclassical path integral let us start with a model case when the space of fields
is finite dimensional, when the integrals are defined and absolutely convergent. A
“lattice approximation” of a continuous theory is a good example of such a finite
dimensional model.

4.2.2 Finite Dimensional Classical Model

A finite dimensional model of a first order classical field theory on a space time
manifold with boundary consists of the following data. Three finite dimensional
manifolds F, F∂ , B∂ should be complemented by the following structures.

• The manifold F∂ is endowed with an exact symplectic form ω∂ = dα∂ .
• A surjective submersion π : F → F∂ .
• A function S on F , such that the submanifold EL ⊂ F , on which the form
dS − π∗(α∂) vanishes, projects to a Lagrangian submanifold in F∂ .

• A Lagrangian fibration of F∂ given by p∂ : F∂ → B∂ such that α∂ vanishes on
fibers. We also assume that fibers are transversal to L = π(EL) ⊂ F∂ .

We will say that this is a finite dimensional model of a non-degenerate theory if
S has finitely many simple critical points on each fiber π−1 p−1

∂ (b).
Themodel is gauge invariant with the bulk gauge groupG and the boundary gauge

group G∂ if the following holds.

• The group G acts on F , and G∂ acts on F∂ .
• There is a group homomorphism π̃ : G → G∂ such that the restriction map
satisfies π(gx) = π̃(g)π(x).
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• The function S is invariant under the G-action up to boundary terms:

S(gx) = S(x)+ c∂(π(x), π̃(g))

where c∂(x, g) is a cocycle for G∂ acting on F∂ :

c∂(x, gh) = c∂(hx, g)+ c∂(x, h)

• The action of G∂ is compatible with the fibration p∂ , i.e. it maps fibers to fibers.
Assuming that the stabilizer subgroups Stabb ⊂ G∂ coincide for different fibers
π−1

∂ (b), one can introduce a quotient group Γ∂ = G∂/Stabb acting on B∂ . One
has then the quotient homomorphism p̃∂ : G∂ → Γ∂ . We require that the cocycle
c(g, x) is constant on fibers of p∂ , i.e. is a pullback of a cocycle c̃ of Γ∂ acting on
B∂ : c(x, g) = c̃(p∂(x), p̃∂ (g)).

We will say that the theory with gauge invariance is non-degenerate if critical
points of S form finitely many G-orbits and if the corresponding points on F(b)/G
are simple (i.e. isolated) on each fiber F(b) of p∂π .

4.2.3 Finite Dimensional Quantum Model

To define quantum theory assume that F and B∂ are defined together with measures
dx and db respectively. Assume also that there is a measure dx

db on each fiber F(b) =
π−1 p−1

∂ (b) such that dx = dx
db db.

Define the vector space H∂ together with the Hilbert space structure on it as
follows:

H∂ = L2(B∂)

When the function S is only projectively invariant with respect to the gauge group,
the space of boundary states is the space of L2-sections of the corresponding line
bundle.

Remark 7 It is better to consider the space of half-forms on B∂ which are square
integrable but we will not do it here. For details see for example [9].

The partition function ZF is defined as an element of H∂ given by the integral
over the fiber F(b):

ZF (b) =
∫

F(b)

exp(
i
h
S(x))

dx
db

(52)

When there is a gauge group the partition function transforms as
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ZF (γ b) = ZF (b) exp(
i
h
c∂(b, γ ))

In such a finite dimensional model the gluing property follows from Fubini’s
theorem allowing to change the order of integration. Suppose we have two spaces F1
and F2 fibered over B∂ and two functions S1 and S2 defined on F1 and F2 respectively
such that integrals ZF1(b) and ZF2(b) converge absolutely for generic b. For example,
we can assume that all spaces F , F∂ and B∂ are compact. Then changing the order
of integration we have

∫

B∂

ZF1(b)ZF2(b) db = ZF1×B∂
F2 (53)

where

ZF1×B∂
F2 =

∫

F1×B∂
F2

exp(
i
h
(S1(x1)+ S2(x2)))

dx1
db

dx2
db

db

Here F1 ×B∂ F2 = {(x, x ′) ∈ F1 × F2|π1(x) = π2(x ′)} is the fiber product of F1
and F2 over B∂ . The measure dx

db
dx ′
db db is induced by measures on F1(b), F2(b) and

on B∂ .

Remark 8 The quantization is not functorial. We need to make a choice of measure
of integration.

Remark 9 We will not discuss here quantum statistical mechanics where instead of
oscillatory integrals we have integrals of probabilistic type representing Boltzmann
measure. Wiener integral is among the examples of such integrals.

Remark 10 When the gauge group is non-trivial, the important subgroup in the total
gauge group is the bulk gauge group, i.e. the symmetry of the integrand in the formula
for ZF (b). If Γ∂ is the gauge group acting on the base of the boundary Lagrangian
fibration, then the bulk gauge group GB is the kernel in the exact sequence of groups
1 → GB → G → Γ∂ → 1.

An example of such construction is the discrete time quantum mechanics which
is described in AppendixA.

4.2.4 The Semiclassical Limit, Non-degenerate Case

The asymptotical expansion of the integral (52) can be computed by the method of
stationary phase (see for example [19, 26] and references therein).

Here we assume that the function S has finitely many simple critical points on
the fiber F(b) for each b ∈ B∂ . Denote the set of such critical points by C(b).
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Using the stationary phase approximation we obtain the following expression for the
asymptotical expansion of the partition function as h → 0:

Z(b) ≃
∑

c∈C(b)

Zc (54)

where Zc is the contribution to the asymptotical expansion from the critical point c.
To describe Zc let us choose local coordinates xi on F(b) near c, then

Zc = (2πh)
N
2

1√| det(Bc)|
e
iS(c)
h + iπ

4 sign(Bc)(v(c)+
∑

Γ

(ih)−χ(Γ )Fc(Γ )

|Aut(Γ )| ) (55)

Here N = dim F(b) and (Bc)i j = ∂2S(c)
∂xi ∂x j , v(x) is the volume density in local coordi-

nates {xi }Ni=1 on F(b), dxdb = v(x) dx1, . . . , dxN , χ(Γ ) is the Euler characteristic of
the graph Γ , |Aut(Γ )| is the number of automorphisms of the graph and the summa-
tion is taken over finite graphs where each vertex has valency at least 3. The weight
of a graph Fc(Γ ) is given by the “state sum” which is described in the AppendixB.
Note that this formula by the construction is invariant with respect to changes of
local coordinates. This is particularly clear at the level of determinants. Indeed, let
J be the Jacobian of the coordinate change xi 3→ f i (x). Then v 3→ v| det(J )| and
| det(Bc)| 3→ | det(Bc)| det(J )2 and the Jacobians cancel. For higher level contribu-
tions, see [22].

4.2.5 Gluing Formal Semiclassical Partition Functions
in the Non-degenerate Case

The image L = π(EL), according to our assumptions is transversal to generic fibers
of p∂ : F∂ → B∂ . By varying the classical background c we can span the subspace
Tπ(c)L ⊂ Tπ(c)F∂ which is, according to the assumption of transversality, isomorphic
to Tp∂π(c)B∂ .

We will call the partition function Zc the formal semiclassical partition function
on the classical background c. We will also say that it is given by the formal integral
of exp( i Sh ) over the formal neighborhood of c:

Zc =
f ormal∫

TcF(b)

exp(
i S
h
)
dx
db

with b = p∂π(c). The formal integral on the right hand side here is defined to be the
right hand side of (55).
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Passing to the limit h → 0 in (53) we obtain the gluing formula for formal
semiclassical partition functions (under the assumption of non-degeneracy of critical
points):

f ormal∫

Tb0 B∂

Zc1(b)Zc2(b)db = Zc (56)

Here c is a simple critical point of S on F1 ×B∂ F2, b0 = p∂π1π(c) = p∂π2π
′(c)

where π : F1 ×B∂ F2 → F1 and π ′ : F1 ×B∂ F2 → F2 are natural projections and
c1(b) and c2(b) are critical points of S1 and S2 on fibers F1(b) and F2(b) respectively
which are formal deformations of c1(b0) = π1(c) and of c2(b0) = π2(c). The left
hand side of (56) stands for the stationary phase evaluation of the integral (note that
the integrand has the appropriate asymptotics at h → 0). In [22] this formula was
used to prove that formal semiclassical propagator satisfies the composition property.

4.3 Gauge Fixing

4.3.1 Gauge Fixing in the Integral

Here we will outline a version of the Faddeev-Popov trick for gauge fixing in the
finite dimensional model in the presence of boundary. We assume that the action
function S, the choice of boundary conditions, and group action on F satisfy all
properties described in Sect. 4.2.2.

The goal here is to calculate the asymptotics of the partition function

ZF (b) =
∫

F(b)

e
i
h S(x)

dx
db

(57)

when h → 0. Here, as in the previous section F(b) = π−1 p−1
∂ (b) but now a Lie

groupG acts on F and the function S and the integrationmeasure dx areG-invariant.
As in Sect. 4.2.2 we assume that there is an exact sequence 1 → GB → G → Γ∂ →
1, where Γ∂ acts on B∂ in such a way that db is Γ∂ -invariant and the subgroup GB

acts fiberwise so that the measure dx
db is GB-invariant. We will denote the Lie algebra

of GB by gB .
Assume that the function S has finitely many isolated GB-orbits of critical points

on F(b) and that the measure of integration is supported on a neighborhood of
these points.10 We denote by v(x) the density of the measure in local coordinates,
dx
db = v(x) dx1, . . . , dxN with {xi } the local coordinates on Fb.

10 In the asymptotics h → 0, one can replace any invariant GB -invariant measure by one with this
property, since we are working with oscillatory integrals.
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Let O ⊂ F(b) be a critical GB-orbit of the action S. Denote UO ⊂ F(b) the
connected component11 of the support of the density v containing O . The integral
(57) is a sum of contributions of individual critical orbits:

∫

F(b)

e
i
h S(x)

dx
db

=
∑

O

∫

UO

e
i
h S(x)

dx
db

For a fixed critical orbit O , let ϕ : UO → gB be some function with zero a regular
value. Denote 5ϕ = ϕ−1(0) ⊂ UO – the “gauge-fixing surface”. Assume that 5ϕ

intersects O transversally. Note that we do not assume that 5ϕ is a section of the
GB-action (i.e. of the projection UO → UO/GB).

Let c be one of the intersection points of the orbit O with5ϕ . Denote VO,c ⊂ UO
the connected component of c in the intersection UO ∩ 5ϕ and let UO,c ⊂ UO be
an open tubular neighborhood of VO,c inUO (thin enough not to contain zeroes of ϕ

lying outside VO,c). Using Faddeev-Popov construction, the contribution of UO to
the integral (57) can be written as follows:

∫

UO

e
i
h S(x)

dx
db

= |GB |
∫

UO,c

e
i
h S(x) det(Lϕ(x))δ(ϕ(x))

dx
db

(58)

We have a natural isomorphism UO ≃ VO,c × GB given by the action of GB on
points of VO,c, hence VO,c ≃ UO/GB and therefore the integral on the right hand
side of (58) can be thought of as an integral supported on the quotient UO/GB . To
describe Lϕ(x) choose a basis ea in the Lie algebra gB . The action of ea on Fb is
given by the vector field

∑
i l

i
a(x)∂i . Matrix elements of Lϕ(x) are

∑
i l

i
a(x)∂iϕ

b(x).
The factor |GB | in (58) stands for the volume of the group GB (with respect to the
Haar measure compatible with the basis {ea} in gB).

It is convenient to write (58) as a Grassmann integral:

|GB |
(2π i)dimGB

∫

Fc(b)

exp
i
h

(

S(x)+
∑

a

λaϕ
a(x)+

∑

a

ca Lϕ(x)abc
b

)
dx
db

dλ dc dc

(59)
whereFc(b) = UO,c⊕gBodd⊕(gBodd)

∗⊕(gBeven)
∗ andc andc are oddvariables. See for

example [19] for details on Grassman integration. The asymptotical stationary phase
expansion of (58) as h → 0 can be understood12 as a formal integral over the (formal)
neighborhood of c in the supermanifold Fc(b). The functions S(x),ϕa(x), Lϕ(x)ab
should be understood as the Taylor expansions in parameter x−c√

h
, just as in the pre-

vious section. The result is the asymptotical expression given by Feynman diagrams
where two types of edges correspond to the even and odd Gaussian terms in the

11 In the case when the group GB is disconnected, we define UO to be the union of connected
components of Ok in supp(v), where Ok are the connected components of O .
12 The logic is that the formal integral is defined to be stationary phase asymptotics of (58).
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i j

i b

a j

a b

a b

Fig. 1 Bosonic (left) and fermionic (right) edges for Feynman diagrams in (60) with states at their
endpoints

a i i i i i a b i i i i in2 1 2 n 3 n 1 2 n

Fig. 2 Vertices for Feynman diagrams in (60) with states on their stars

integral :

Zc =
f ormal∫

TcF(b)

e
i
h S(x)

dx
db

= |GB |(2πh) dim F(b)−dimGB
2

× 1√| det(B(c))| det(Lϕ(c)) · exp
(
i
h
S(c)+ iπ

4
sign(B(c))

)

×

⎛

⎝v(c)+
∑

Γ ̸=∅

(ih)−χ(Γ )(−1)c(D(Γ ))Fc(D(Γ ))

|Aut(Γ )|

⎞

⎠ , (60)

Here D(Γ ) is the planar projection of Γ , a Feynman diagram. Feynman diagrams
in this formula have bosonic edges and fermionic oriented edges, c(D(Γ )) is the
number of crossings of fermionic edges.13 The structure of Feynman diagrams is the
same as in (55). The propagators corresponding to Bose and Fermi edges are shown
in Fig. 1. The weights of vertices are shown on Fig. 2.

The weight of the fermionic edge on Fig. 1 is (Lϕ(c)−1)ab. Weights of the bosonic
edges from Fig. 1 correspond to matrix elements of B(c)−1 where

13 The sign rule is equivalent to the usual (−1)#fermionic loops which is used in physics literature.
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B(c) =
( ∂2S(c)

∂xi ∂x j
∂ϕa(c)

∂xi
∂ϕb(c)
∂x j 0

)

The weights of vertices with states on their stars from Fig.2 are (from left to right):

∂n−1ϕa(c)
∂xi2 , . . . , ∂xin

,
∂n S(c)

∂xi1 , . . . , ∂xin
,

∂n−2Lϕ(c)ab
∂xi3 , . . . , ∂xin

,
∂nv(c)

∂xi1 , . . . , ∂xin

The last vertex should appear exactly once in each diagram.
This formula, by construction, does not depend on the choice of local coordinates.

It is easy to see this explicitly at the level of determinants. Indeed, when we change
local coordinates, we have

B(c) 3→
( J T 0

0 1

)
B(c)

( J 0
0 1

)
, v 3→ | det(J )|v

where J is the Jacbian of the coordinate transformation. It is clear that the ratio
v/| det(B(c))| is invariant with respect to such transformations.

Note that because we defined the formal integral (60) as the contribution to the
asymptotical expansion of the integral (58) from the critical orbit of S passing through
c, the coefficients in (60) do not depend on the choice of gauge constraint ϕ and

Zc = Z[c]

where [c] = O is the orbit of GB passing through c.

4.3.2 Gluing Formal Integrals for Gauge Theories

Assume that as in Sect. 4.2.3 we have two spaces F1 and F2 fibered over B∂ and
two functions S1 and S2 defined on F1 and F2 respectively such that the integrals
ZF1(b) and ZF2(b) converge absolutely for generic b. For example, we can assume
that spaces F1, F2 and B∂ are compact. Denote by F the fiber product F1×B∂ F2 and
set Ni = dim Fi , N∂ = dim B∂ . Let Lie groups G1, G2 and Γ∂ act as Gi : Fi → Fi
and Γ∂ : B∂ → B∂ and assume that functions Si are Gi -invariant and Γ∂ appears in
exact sequences:

1 → GB
1 → G1 → Γ∂ → 1, 1 → GB

2 → G2 → Γ∂ → 1

where kernels GB
1 and GB

2 are bulk gauge groups for F1 and F2.
Changing the order of integration we obtain (53). As h → 0 the gluing identity

(53) becomes the identity between formal integrals just as in the non-degenerate case
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f ormal∫

Tb0 B∂

Z[c1(b)]Z[c2(b)]db = Z[c]

which should be regarded as the contribution of the critical point c to ZF written
as an iterated integral.14 After a gauge fixing in the integral over b we arrive to the
following formula for the left side:

Z[c] = |GB
1 ||GB

2 ||Γ∂ |(2πh)
N−n
2

det(Lϕ1(c1)) det(Lϕ2 (c2)) det(Lϕ∂ (c∂ ))√| det(B1(c1))| | det(B2(c2))| | det(B∂ (c∂ ))|

× exp
(
i
h
(S1(c1)+ S2(c2))+

iπ
4
(sign(B1(c1))+ sign(B2(c2))+ sign(B∂ (c∂ )))

)

×

⎛

⎝v1(c1)v2(c2)v∂ (c∂ )+
∑

Γ ̸=∅
composite Feynman diagrams

⎞

⎠ , (61)

Here N = N1 + N2 − N∂ = dim F and n = n1 + n2 − n∂ were ni = dimGi and
n∂ = dim Γ∂ . Composite Feynman diagrams consist of Feynman diagrams for F1,
Feynman diagrams for F2 and Feynman diagrams connecting themwhich come from
formal integration over boundary fields in the formal neighborhood of b0. Factors
v1(c1), v2(c2), v∂(c∂) are densities of corresponding measures in local coordinates
which we used in (61).

Comparing this expression with (60) besides the obvious identity S(c) = S(c1)+
S(c2) we obtain identities

det(Lϕ1(c1)) det(Lϕ2(c2)) det(Lϕ∂ (c∂))√| det(B1(c1))| | det(B2(c2))| | det(B∂(c∂))|

· exp
(
iπ
4
(sign(B1(c1))+ sign(B2(c2))+ sign(B∂(c∂)))

)

= det(Lϕ(c))√| det(B(c))| exp
(
iπ
4

sign(B(c))
)

(62)

In addition to this, in each order hm with m > 0 we will have the following
identity: the sum of all composite Feynman diagrams of order m for F1, F2, B∂

equals the sum of all Feynman diagrams of order m for F .

5 Abelian Chern-Simons Theory

In TQFT’s there are no ultraviolet divergencies but there is a gauge symmetry to
deal with. Perhaps the simplest non-trivial example of TQFT is the Abelian Chern-
Simons theory with the Lie group R. Fields in such theory are connections on the

14 Recall that db is a Γ∂ -invariant measure on B∂ such that dx
db db is a G-invariant measure on F .
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trivial R-bundle over a compact, smooth, oriented 3-dimensional manifold M . We
will identify fields with 1-forms on M . The action is

S(A) = 1
2

∫

M

A ∧ d A

Solutions of the Euler-Lagrange equations are closed 1-forms on M . The variation
of this action induces the exact symplectic form on Ω1(∂M) (see Sect. 3.4).

5.1 The Classical Action and Boundary Conditions

A choice of metric on M induces a metric on ∂M and the Hodge decomposition:

Ω(∂M) = dΩ(∂M) ⊕ H(∂M) ⊕ d∗Ω(∂M)

TheLagrangian subspace of boundary values of solutions toEuler-Lagrange equa-
tions is

LM = H1
M (∂M) ⊕ dΩ0(∂M)

where HM (∂M) is the space of harmonic representatives of cohomology classes on
the boundary coming from cohomology classes H1(M) of the bulk by pull-back with
respect to inclusion of the boundary.

Choose a decomposition of H(∂M) into a direct sum of two Lagrangian sub-
spaces:

H(∂M) = H+(∂M) ⊕ H−(∂M)

This induces a decomposition of forms Ω(∂M) = Ω+(∂M) ⊕ Ω−(∂M) where

Ω+(∂M) = H+(∂M) ⊕ dΩ(∂M), Ω−(∂M) = H−(∂M) ⊕ d∗Ω(∂M)

Choose the boundary Lagrangian fibration as

p∂ : Ω(∂M) → B(∂M) = Ω+(∂M)

with fibers
p−1
∂ (b) = b + Ω−(∂M) ≃ H−(∂M) ⊕ d∗Ω(∂M).

This fibration is not α∂M -exact, i.e. the restriction of α∂M to fibers is zero. Let us
modify the action, by adding a boundary term such that the form α∂M will vanish on
fibers of p. Define the new action as
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S̃(A) = S(A)+ 1
2

∫

∂M

A+ ∧ A−

where A± are Ω±-components of i∗(A).
The new form on boundary connections is

α̃∂M (a) = α∂M (a)+ 1
2
δ

∫

∂M

a+ ∧ a− = −
∫

∂M

a− ∧ δa+

and it vanishes on the fibers of p∂ because on each fiber δa+ = 0.
Note that themodified action is gauge invariant. Indeed, on components A± gauge

transformations act as A+ 3→ A+ + dθ and A− 3→ A−, i.e. gauge transformations
act trivially on fibers.

5.2 Formal Semiclassical Partition Function

5.2.1 More on Boundary Conditions

For this choice of Lagrangian fibration the bulk gauge group GB is Ω0(M, ∂M).
The boundary gauge group acts trivially on fibers. Indeed, the boundary gauge group
Ω0(∂M) acts naturally on the base B(∂M) = H1(∂M)+⊕dΩ0(∂M), α 3→ α+dλ.
It acts on the base shifting the fibers: p(β + dλ) = p(β)+ dλ.

According to the general scheme outlined in Sect. 4.3, in order to define the formal
semiclassical partition function we have to fix a background flat connection a and
“integrate” over the fluctuations

√
hα with boundary condition i∗(α)+ = 0.We have

S̃(a + α) = S̃(α)+ 1
2

∫

∂M

a+ ∧ a−

Note that da = 0 which means that a restricted to the boundary is a closed form
which we can write as i∗(a) = [a]++[a]−+dθ where [a]± ∈ H±(∂M). Therefore,
for the action we have:

S̃(a + α) = S̃(α)+ 1
2
< [a]+, [a]− >∂M

where ⟨., .⟩ is the symplectic pairing in H(∂M).
For semiclassical quantization we should choose the gauge fixing submanifold

5 ⊂ Ω(M), such that (TaFM )+ = TaEL ⊕ Ta5. Here (TaFM )+ is the space of
1-forms (α-fields)with boundary condition i∗(α)+ = 0.As it is shown inAppendixD
the action functional restricted to fieldswith boundary values in an isotropic subspace
I ⊂ Ω1(∂M) is non-degenerate on
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Ta5I = d∗Ω2
N (M, I⊥) ∩ Ω1

D(M, I )

For our choice of boundary conditions I = Ω1
−(∂M).

5.2.2 Closed Space Time

First, assume the space time has no boundary. Then the formal semiclassical partition
function is defined as the product of determinants which arise from gauge fixing and
from the Gaussian integration as in (60). In the case of Abelian Chern-Simons the
gauge condition is d∗A = 0 and the action of the gauge Lie algebra Ω0(M) on
the space of fields Ω1(M) is given by the map d : Ω0(M) → Ω1(M) (here we
identified Ω1(M) with its tangent space at any point). Thus, the FP action (59) in
our case is

S(A, c, c, λ) = 1
2

∫

M

A ∧ d A +
∫

M

c ∆c d3x +
∫

M

λ d∗A d3x

where c, c are ghost fermion fields, and λ is the Lagrangemultiplier for the constraint
d∗A = 0.

By definition the corresponding Gaussian integral is

Za = C
|det′(∆0)|√
|det′(∗̂d )|

exp(
iπ
4
(2sign(∆0)+ sign(∗̂d)))

Here det′ is a regularized determinant and sign(A) is the signature of the differential
operator A. The constant depends of the choice of regularization. The usual choice
is the ζ -regularization. The signature is up to a normalization the eta invariant [31].
The operator ∗̂d acts on Ω1(M) ⊕ Ω0(M) as

(∗d d
d∗ 0

)
(63)

Its square is the direct sum of Laplacians:

∗̂d2 =
(
d∗d + dd∗ 0

0 d∗d

)

Thus the regularized determinant of ∗̂d is the product of determinants acting on
1-forms and on 0-forms:

|det′(∗̂d)|2 = |det′(∆1)||det′(∆0)|
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This gives the following formula for the determinant contribution to the partition
function:

|det′(∆0)|√
|det′(∗̂d)|

= |det′(∆0)|
3
4

|det′(∆1)|
1
4

(64)

Taking into account that ∗Ω i (M) = Ω3−i (M) we can write this as

T 1/2 = |det′(∆1)|
1
4 |det′(∆2)|

2
4 |det′(∆3)|

3
4

where T is the Ray-Singer torsion. This gives well-known formula for the absolute
value of the partition function of the Abelian Chern-Simons theory on a closed
manifold.

|Z | = CT 1/2 (65)

We will not discuss here the η-invariant part.

Remark 11 The operator ∗̂d is easy to identify with L− = ∗d + d∗, acting on
Ω1(M)⊕ Ω3(M) from [31]. Indeed, using Hodge star we can identify Ω0(M) and
Ω3(M). After this the operators are related as

L− =
(
1 0
0 ∗

)
∗̂d

(
1 0
0 ∗

)−1

Remark 12 There is onemore formula in the literature for gauge fixing. Assume that
a Lie group G has an invariant inner product, the space of fields F is a Riemannian
manifold and G acts by isometries on F . In this case there is a natural gauge fixing
which leads to the following formula for an integral of a G-invariant function [27]:

∫

F

h(x)dx = |G|
∫

F/G

h(x)(det′(τ ∗
x τx ))

1
2 [dx]

Here we assume that the G-action does not have stabilizers. The linear mapping
τx : g → Tx F is given by the G-action, the Hermitian conjugate is taken with
respect to the metric structure on F and on G, dx is the Riemannian volume on F
and [dx] is the Riemannian volume on F/G with respect to the natural Riemannian
structure on the quotient space.

For theAbelianChern-Simons a choice ofmetric on the space time inducesmetrics
on G = Ω0(M) and on F = Ω1(M). The gauge group G acts on F by isometries
and τx = d, the de Rham differential. This gives another expression for the absolute
value of the partition function

|Z | = C
|det′(∆0)|

1
2

|det′(∗d)| 12
(66)
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Here ∗d : 5 → 5, and 5 = d∗Ω2(M) is the submanifold on which the action
functional is non-degenerate. It is clear that this formula coincides with (65).

5.2.3 Space Time with Boundary

Now let us consider the casewhen ∂M is non-empty. In this case the bulk gauge group
GB is ΩD(M, {0}) which we will denote just ΩD(M). The space of fluctuations is
Ω1

D(M,Ω−(∂M)). The bilinear from in the Faddeev-Popov action is

1
2

∫

M

α ∧ dα +
∫

M

λ d∗α d3x − i
∫

M

c ∆c d3x

The even part of this form is symmetric if we impose the boundary condition i∗(λ) =
0. Similarly to the case of closed space time we can define the partition function as

Za,M = C |det′(∗̂d)|−1/2|det′(∆D,{0}
0 )| exp( iπ

4
(2 sign(∆0)+ sign(∗̂d)))

exp(
i
h
< [a]+, [a]− >∂M ) (67)

Here ∆
D,{0}
0 is the Laplace operator action on ΩD(M, {0}) and [a]± are the ± com-

ponents of the cohomology class of the boundary value i∗(a) of a. The operator ∗̂d
acts onΩ1

D(M,Ω−(∂M))⊕Ω0
D(M, {0}) and is given by (63). This ratio of determi-

nants is expected to give a version of the Ray-Singer torsion for appropriate boundary
conditions. The signature contributions are expected to be the η-invariant with the
appropriate boundary conditions. For the usual choices of boundary conditions, such
as tangent, absolute, or APS boundary conditions at least some of these relations are
known, for more general boundary conditions it is a work in progress.

5.2.4 Gluing

According to thefinite dimensional gluing formulaweexpect a similar gluing formula
for the partition function. A consequence of this formula is the multiplicativity of
the version of the Ray-Singer torsion with boundary conditions described above. To
illustrate this, let us take a closer look at the exponential part of (67).

Recall that LM ⊂ Ω1(∂M) is the space of closed 1-formswhich are boundary val-
ues of closed 1-forms on M . To fix boundary conditions we fixed the decomposition
Ω1(∂M) = Ω1(∂M)+ ⊕ Ω1(∂M)− (see above).

Let β be a tangent vector to LM at the point i∗(a) ∈ LM . We have natural
identifications

Ti∗(a)Ω
1(∂M)− = H1(∂M)− ⊕d∗Ω2(∂M), Ti∗(a)Ω

1(∂M)+ = H1(∂M)+ ⊕dΩ0(∂M)
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Denote by β± the components of β in Ti∗(a)L± respectively. Since dβ = 0 we
have β+ = [β]+ + dθ , and β− = [β]−, where [β]± are components of the coho-
mology [β]± in H1(∂M)±. If the reduced tangent spaces [Ti∗(a)LM ] = H1

±(∂M)

and [Ti∗(a)Ω1(∂M)±] = H1
M (∂M) are transversal, which is what we assume here,

projections to [Ti∗(a)Ω1(∂M)±] give linear isomorphisms A(±)
M : H1

M (∂M) →
H1
±(∂M). This defines the linear isomorphism

BM = A(−)
M (A(+)

M )−1 : H1(∂M)+ → H1(∂M)−

acting as BM ([β]+) = [β]− for each [β] ∈ H1
M (∂M). This is the analog of the

Dirichlet-to-Neumann operator.
Now considering small variations around a have

Z[a+
√
hβ] = Z[a] exp(

i√
h
(< [i∗(a)]+, BM ([i∗(β)]+) >∂M

+ < [i∗(β)]+, [i∗(a)]− >∂M )+ i < [i∗(β)]+, BM ([i∗(β)]+) >∂M )

(68)

The gluing formula for this semiclassical partition function at the level of
exponents gives the gluing formula for Hamilton-Jacobi actions. At the level of
pre-exponents it also gives the gluing formula for torsions and for the η-invariant for
appropriate boundary conditions. Changing boundary conditions results in a bound-
ary contribution to the partition function and to the gluing identity. One should also
expect the gluing formula for correlation functions. The details of these statements
require longer discussion and substantial analysis and will be done elsewhere.

There are many papers on Abelian Chern-Simons theory. The appearance of tor-
sions and η-invariants in the semiclassical asymptotics of the path integral for the
Chern-Simons action was first pointed out in [31]. For a geometric approach to com-
pact Abelian Chern-Simons theory and a discussion of gauge fixing and the appear-
ance of torsions in the semiclassical analysis see [24]. For the geometric quantization
approach to the Chern-Simons theory with compact Abelian Lie groups see [2].
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Appendix

A Discrete Time Quantum Mechanics

An example of a finite dimensional version of a classical field theory is a discrete
time approximation to the Hamiltonian classical mechanics of a free particle on R.
We denote coordinates on this space (p, q) where p represents the momentum and
q represents the coordinate of the system.

In this case the space time is an ordered collection of n points which represent
the discrete time interval. If we enumerate these points {1, . . . , n} the points 1, n
represent the boundary of the space time. The space of fields is Rn−1 × Rn with
coordinates pi where i = 1, . . . , n−1 represents the “time interval” between points
i and i+1 and qi where i = 1, . . . , n. The coordinates p1, pn−1, q1, qn are boundary
fields.15 The action is

S =
n−1∑

i=1

pi (qi+1 − qi ) −
n−1∑

i=1

p2i
2

We have

dS =
n−2∑

i=1

(qi+1 − qi − pi ) dpi +
n−1∑

i=2

(pi−1 − pi ) dqi + pn−1dqn − p1dq1

From here we derive the Euler-Lagrange equations

qi+1 − qi = pi , i = 1, . . . n − 1,

pi−1 − pi = 0, i = 2, . . . , n − 1

and the boundary 1-form
α = pn−1dqn − p1dq1

This gives the symplectic structure on the space of boundary fields with

ω∂ = dpn−1 ∧ dqn − dp1 ∧ dq1

Theboundaryvalues of solutions of theEuler-Lagrange equations define the subspace

L = π(EL) = {(p1, q1, pn−1, qn)|p1 = pn−1, qn = q1 + (n − 1)p1}

15 In other words the space time is a 1-dimensional cell complex. Fields assign coordinate function
qi to the vertex i and pi to the edge [i, i + 1].
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It is clear that this a Lagrangian subspace.

B Feynman Diagrams

Let Γ be a graph with vertices of valency ≥3 with one special vertex which may
also have valency 0, 1, 2. We define the weight Fc(Γ ) as follows.

A state on Γ is a map from the set of half-edges of Γ to the set 1, . . . , n, for an
example see Fig. 3. The weight of Γ is defined as

Fc(Γ ) =
∑

states

⎛

⎝ ∂ lv

∂x j1 , . . . , ∂x jl
(c)

∏

vertices

∂k S
∂xi1 , . . . , ∂xik

(c)
∏

edges

(B−1
c )i j

⎞

⎠

Here the sum is taken over all states on Γ , and i1, . . . , ik are states on the half-edges
incident to a vertex. The first factor is the weight of the special vertex where v is the
density of the integrationmeasure in local coordinates dx

db = v(x)dx1, . . . , dxN . The
pair (i, j) is the pair of states at the half-edges comprising an edge. Note that weights
of vertices and the matrix Bc are symmetric. This makes the definition meaningful.

C Gauge Fixing in Maxwell’s Electromagnetism

In the special case of electromagnetism (G = R, g = R), the space of fields is
FM = Ω1(M)⊕Ωn−2(M) and similarly for the boundary. IfM has no boundary, the
gauge groupGM = Ω0(M) acts on fields as follows: A 3→ A+dα, B 3→ B. We can
construct a global section of the corresponding quotient using Hodge decomposition:
we know that

Ω•(M) ∼= Ω•
exact(M) ⊕ H•(M) ⊕ Ω•

coexact(M) (69)

where the middle term consists of harmonic forms. In particular,

a

b

c

a’

b’

c’

Fig. 3 The “theta” diagram
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Ω1(M) = dΩ0(M) ⊕ H1(M) ⊕ d∗Ω2(M) (70)

where the last two terms give a global section. In physics, choosing a global section
is called gauge fixing, and this particular choice of gauge is called the Lorentz gauge,
where d∗A = 0.

DHodge Decomposition for Riemannian Manifolds With Boundary

D.1 Hodge Decomposition With Dirichlet and Neumann Boundary Conditions

Let M be a smooth oriented Riemannian manifold with boundary ∂M . Recall some
basic facts about the Hodge decomposition of differential forms on M . Choose local
coordinates near the boundary in which the metric has the product structure with t
being the coordinate in the normal direction. Near the boundary any smooth form
can be written as

ω = ωtan + ωnorm ∧ dt

whereωtan is the tangent component ofω near the boundary andωnorm is the normal
component.

We will denote by ΩD(M) the space of forms satisfying the Dirichlet boundary
conditions ι∗(ω) = 0 where ι∗ is the pull-back of the form ω to the boundary. This
condition can be also written as ωtan = 0.

We will denote by ΩN (M) the space of forms satisfying the Neumann boundary
conditions ι∗(∗ω) = 0. Here ∗ : Ω i (M) → Ωn−i (M) is the Hodge star operation,
recall that ∗2 = (−1)i(n−i)id on Ω i (M). Because ωnorm = ∗′ι∗(∗ω) the Neumann
boundary condition can be written as ωnorm = 0.

Denote by d∗ = (−1)i∗−1d∗ the formal adjoint of d, and by ∆ = dd∗ + d∗d
the Laplacian on M . Denote by Ωcl(M) closed forms on M , Ωex (M) exact forms
on, Ωcocl(M) the space of coclosed forms, i.e. closed with respect to d∗ and by
Ωcoex (M) the space of coexact forms.

Define subspaces:

Ωcl,cocl(M) = Ωcl(M) ∩ Ωcocl(M), Ωcl,coex (M) = Ωcl(M) ∩ Ωcoex (M)

and similarly Ωex,cocl(M), Ωcl,cocl,N (M) and Ωcl,cocl,D(M).

Theorem 3 (1) The space of forms decomposes as

Ω(M) = d∗ΩN (M) ⊕ Ωcl,cocl(M) ⊕ dΩD(M)

(2) The space of closed, coclosed forms decomposes as
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Ωcl,cocl(M) = Ωcl,cocl,N (M) ⊕ Ωex,cocl(M)

Ωcl,cocl(M) = Ωcl,cocl,D(M) ⊕ Ωcl,coex (M)

Wewill only outline the proof of this theorem. For more details and references on
the Hodge decomposition for manifolds with boundary and Dirichlet and Neumann
boundary conditions see [17]. Riemannian structure on M induces the scalar product
on forms

(ω,ω′) =
∫

M

ω ∧ ∗ω′ (71)

For two forms of the same degree we haveω(x)∧∗ω′(x) = ⟨ω(x),ω′(x)⟩ dx where
dx is the Riemannian volume form and ⟨., .⟩ is the scalar product on∧kT ∗

x M induced
by the metric. This is why (71) is positive definite.

Lemma 1 With respect to the scalar product (71)

(dΩD(M))⊥ = Ωcocl

Proof By the Stokes theorem for any form θ ∈ Ω i−1
D (M) we have

(ω, dθ) =
∫

M

ω ∧ ∗dθ = (−1)(i+1)(n−i)(

∫

∂M

ι∗(∗ω) ∧ ι∗(θ)+
∫

M

d ∗ ω ∧ θ)

The boundary integral is zero because θ ∈ ΩD(M). Thus (ω, dθ) = 0 for all θ if
and only if d ∗ ω = 0 which is equivalent to ω ∈ Ωcocl(M).

Corollary 1 Because dΩD(M) ⊂ Ωcl(M), we have Ωcl(M) = Ωcl(M) ∩
(dΩD(M))⊥ ⊕ dΩD(M). i.e.

Ωcl(M) = Ωcl,cocl(M) ⊕ dΩD(M)

Here we are sketchy on the analytical side of the story. If U ⊂ V is a subspace
in an inner product space, in the infinite dimensional setting more analysis might be
required to prove that V = U ⊕ U⊥. Here and below we just assume that this does
not create problems. Similarly to Lemma 1 we obtain

(d∗ΩN (M))⊥ = Ωcl(M)

This completes the sketch of the proof of the first part. The proof of the second part
is similar.

Note that the spaces in the second part of the theorem are harmonic forms repre-
senting cohomology classes:
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Ωcl,cocl,N (M) = H(M), Ωcl,cocl,D(M) = H(M, ∂M)

D.2 More General Boundary Conditions

D.2.1 General setup

Assume thatM is a smooth compact Riemannianmanifold, possibly with non-empty
boundary ∂M . Let π : Ω i (M) → Ω i (∂M), i = 0, . . . , n − 1 be the restriction map
(the pull-back of a form to the boundary) and π(Ωn(M)) = 0.

TheRiemannian structure onM induces themetric on ∂M . Denote by ∗ theHodge
star forM , and by∗∂ theHodge star for the boundary∗∂ : Ω i (∂M) → Ωn−1−i (∂M).
Define the map π̃ : Ω(M) → Ω(∂M), i = 1, . . . , n as the composition π̃(α) =
∗∂π(∗α). Note that π̃(Ω0(M)) = 0.

Denote by ΩD(M, L) and ΩN (M, L) the following subspaces:

ΩD(M, L) = π−1(L), ΩN (M, L) = π̃−1(L)

where L ⊂ Ω(∂M) is a subspace.
Denote by L⊥ the orthogonal complement to L with respect to the Hodge inner

product on the boundary. The following is clear:

Lemma 2
(∗L(i))⊥ = ∗(L(i))⊥, ∗(L⊥) = Lsort

Here Lsort is the space which is symplectic orthogonal to L.

Proposition 3 (d∗ΩN (M, L))⊥ = ΩD(M, L⊥)cl

Proof Let ω be an i-form on M such that

∫

M

ω ∧ d ∗ α = 0

for any α. Applying Stocks theorem we obtain

∫

M

ω ∧ d ∗ α = (−1)i
∫

∂M

π(ω) ∧ ∗∂ π̃(α)+ (−1)i+1
∫

M

dω ∧ ∗α

The boundary integral is zero for any α if and only ifπ(ω) ∈ L⊥ and the bulk integral
is zero for any α if and only if dω = 0.

As a corollary of this we have the orthogonal decomposition

Ω(M) = ΩD(M, L⊥)cl ⊕ d∗ΩN (M, L)
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Similarly, for each subspace L ⊂ Ω(∂M) we have the decomposition

Ω(M) = ΩN (M, L⊥)cocl ⊕ dΩD(M, L)

Now, assume that we have two subspaces L , L1 ⊂ Ω(∂M) such that

d∂(L⊥
1 ) ⊂ L⊥, (72)

Note that this implies d∗
∂ L ⊂ L1. Indeed, fix α ∈ L , then (72) implies that for any

β ∈ L⊥
1 we have

∫

∂M

α ∧ ∗d∂β = 0

This is possible if and only if

∫

∂M

∗d∂ ∗ α ∧ ∗β = 0

Thus, d∗
∂ α ∈ L1. Here we assumed that (L⊥

1 )
⊥ = L1.

Because πd = d∂π and π̃d∗ = d∗
∂ π̃ we also have

dΩD(M, L⊥
1 ) ⊂ ΩD(M, L⊥)cl , d∗ΩN (M, L) ⊂ ΩN (M, L1)cocl

Theorem 4 Under assumption (72) we have

Ω(M) = d∗ΩN (M, L) ⊕ ΩD(M, L⊥)cl ∩ ΩN (M, L1)cocl ⊕ dΩD(M, L⊥
1 ) (73)

Indeed, if V,W ⊂ Ω are liner subspaces in the scalar product space Ω such that
W ⊂ V⊥ and V ⊂ W⊥ then Ω = V ⊕ V⊥ = W ⊕ W⊥ and

Ω = V ⊕ W⊥ ∩ V⊥ ⊕ W

Wewill call the identity (73) the Hodge decomposition with boundary conditions.
The following is clear:

Theorem 5 The decomposition (73) agrees with the Hodge star operation if and
only if

∗L⊥
1 = L

Remark 13 In the particular case L = {0} and L⊥
1 = {0} we obtain the decomposi-

tion from the previous section:

Ω(M) = d∗ΩN (M) ⊕ Ωcl,cocl(M) ⊕ dΩD(M)
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Lemma 3 If L ⊂ Ω(∂M) is an isotropic subspace then ∗L ⊂ Ω(∂M) is also an
isotropic subspace.

Indeed, if L is isotropic then for any α,β ∈ L we have
∫

∂M
α ∧ ∗β = 0, but

∫

∂M

∗α ∧ ∗2β = ±
∫

∂M

α ∧ ∗β

therefore ∗L is also isotropic.

Remark 14 We have

∗ΩN (M) = ΩD(M), ∗H(M) = H(M, ∂M)

In the second formula H(M) is the space of closed-coclosed forms with Neu-
mann boundary conditions and H(M, ∂M) is the space of closed-coclosed forms
with Dirichlet boundary conditions. They are naturally isomorphic to correspond-
ing cohomology spaces. Note that as a consequence of the first identity we have
∗d∗ΩN (M) = dΩD(M). We also have more general identity

∗ΩN (M, L) = ΩD(M, ∗∂ L)

and consequently ∗ΩD(M, L) = ΩN (M, ∗∂ L).

Letπ and π̃ bemaps defined at the beginning of this section. Becauseπ commutes
with deRhamdifferential and π̃ commuteswith itsHodgedual,wehave the following
proposition

Proposition 4 Let HM (∂M) be the space of harmonic forms on ∂M extendable to
closed forms on M, then

π(Ωcl(M)) = HM (∂M) ⊕ dΩ(∂M), π̃(Ωcocl(M)) = HM (∂M)⊥ ⊕ d∗Ω(∂M)

Here is an outline of the proof. Indeed, let θ ∈ Ωcl(M) and σ ∈ Ωcocl(M). Then

∫

∂M

π(θ) ∧ ∗∂ π̃(σ ) =
∫

∂M

π(θ) ∧ π(∗σ ) =
∫

M

d(θ ∧ ∗σ )

The last expression is zero because by the assumption θ and ∗σ are closed. The
proposition follows now from the Hodge decomposition for forms on the boundary
and from π(Ωcl(M)) ⊂ Ωcl(∂M), π̃(Ωcocl(M)) ⊂ Ωcocl(∂M).

D.2.2 dim M = 3

Let us look in details at the 3-dimensional case. In order to have the Hodge
decomposition with boundary conditions we required
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dL⊥
1 ⊂ L⊥

If we want it to be invariant with respect to the Hodge star we should also have
∗L⊥

1 = L . Together these two conditions imply that L should satisfy d ∗ L ⊂ L⊥ or

∫

∂M

d ∗ α ∧ ∗β = 0

for any α,β ∈ L . This condition is equivalent to

∫

∂M

d∗α ∧ β = 0

for any α ∈ L(1) and any β ∈ L(2).
Note that if L(2) = {0} we have no conditions on the subspace L(1). In this case

for any choice of L(0) and L(1) the ∗-invariant Hodge decomposition is:

Ω0(M) = d∗Ω1
N (M, L(0)) ⊕ Ω0

D(M, L(0)⊥)cl

Ω1(M) = d∗Ω2
N (M, L(1)) ⊕ Ω1

D(M, L(1)⊥)cl ∩ Ω1
N (M, L(0))cocl ⊕ dΩ0

D(M)

HereweusedΩ i
N (M, L1) = Ω i

N (M, L(i−1)
1 ) = Ω i

N (M, (∗L(3−i))⊥). The condition
L(2) = {0} implies that Ω1

N (M, (∗L(2))⊥) = Ω1(M). We also used Ω0
D(M, L⊥

1 ) =
Ω0(M, ∗L(2)) = Ω0

D(M).
The decomposition of 2- and 3-forms is the result of application of Hodge star to

these formulae.

D.2.3 The gauge-fixing subspace

Consider the bilinear form
B(α,β) =

∫

M

β ∧ dα (74)

on the space Ω•(M).
Let I ⊂ Ω•(∂M) be an isotropic subspace.

Proposition 5 The form B is symmetric on the space ΩD(M, I ).

Indeed
∫

M

(β ∧ dα) = (−1)|β|+1
∫

∂M

π(β)∧ π(α)+
∫

M

dβ ∧ α = (−1)(|α|+1)(|β|+1)B(α,β)
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The boundary term vanishes because boundary values of α and β are in an isotropic
subspace I .

Proposition 6 Let I ⊂ Ω(∂M) be an isotropic subspace, then B is nondegenerate
on d∗ΩN (M, I⊥) ∩ ΩD(M, I ).

Proof If I is isotropic, β ∈ ΩD(M, I ) and B(β,α) = 0 for any α ∈ ΩD(M, I ), we
have:

B(β,α) = B(α,β) =
∫

M

α ∧ dβ

and therefore dβ = 0. Therefore ΩD(M, I )cl is the kernel of the form B on
ΩD(M, I ). But we have the decomposition

Ω(M) = ΩD(M, I )cl ⊕ d∗ΩN (M, I⊥)

This implies

ΩD(M, I ) = ΩD(M, I )cl ⊕ d∗ΩN (M, I⊥) ∩ ΩD(M, I )

This proves the statement.

In particular, the restriction of the bilinear form B is nondegenerate on 5I =
d∗Ω2

N (M, I (1)
⊥
) ∩ Ω1

D(M, I (1)). For the space of all 1-forms with boundary values
in I (1) we have:

Ω1
D(M, I (1)) = Ω1

D(M, I (1))cl ⊕ d∗Ω2
N (M, I (1)

⊥
) ∩ Ω1

D(M, I (1))

The first part is the space of solutions to the Euler-Lagrange equations with boundary
values in I (1).
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