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Abstract. Three-dimensional supergravity in the Batalin–
Vilkovisky formalism is constructed by showing that the theory
including the Rarita–Schwinger term is equivalent to an AKSZ
theory.
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1. Introduction

In this paper we construct the BV action [BV81] for supergravity in
three dimensions (see, e.g. [AT86; RN96; CCG16; And+19] and refer-
ences therein).
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Our strategy is to start considering the minimal coupling of spin 3
2

fermions to BF theory (with Lie algebra so(2, 1)), where the BV action
is easy to construct, since we realise this as an AKSZ theory [Ale+97].

Three-dimensional BF theory is on-shell equivalent to gravity in
the Palatini–Cartan formalism [Wit88], and the off-shell equivalence
in the BV formalism has been constructed in [CSS18]. Similarly, a
super version of three-dimensional BF theory is on-shell equivalent to
supergravity in the Palatini–Cartan formalism [AT86].

The novel contribution of this paper is the extension of the BV trans-
formation of [CSS18] in the presence of spin 3

2
fermions, see Theo-

rem 4.11. The advantage is that the rather involved BV structure of
three-dimensional supergravity (for which we found no explicit expres-
sion in the literature) is obtained from the straightforward BV structure
of super BF theory via the AKSZ formulation. The main point of the
transformation is that the AKSZ symmetries are expressed as covari-
ant derivatives of ghosts which are Lie algebra valued 0-forms, whereas
in (super)gravity we want to see ghosts for (super)diffeomorphisms ex-
plicitly.

One can also observe that in our approach supergravity is “discov-
ered,” in the sense that the resulting BV operator turns out to contain
the local supersymmetry transformations. More precisely, switching to
zero all the ghosts but for the fermionic ghost ε, we get

Qe = ψ ρε,

Qψ = Dε,

where e denotes the dreibein, ψ the spin 3
2
field, ρ the spin representa-

tion, and D the covariant derivative (note that the spin connection is
not affected by this transformation). Moreover, the ghost for diffeomor-
phisms accordingly transforms with a term 1

2
ε e−1(ρ)ε, which encodes

the fact that two supersymmetry transformations yield a translation.
The BV structure we obtain for supergravity in three dimensions

is considerably simpler than in four, where the BV action is known
to require non-linear terms in the antifields (see [Bau+90] for the half-
shell formulation and [CF25]for the Palatini–Cartan formulation). One
reason for this may be that three-dimensional gravity is topological and
remains so when adding spin 3

2
fermions.

In this note we focus on the Minkowski signature and on the spin 3
2

Majorana representation. However, these results are readily generalised
to the Euclidean case (or to alternative signatures) and to other real
representations of spin(2, 1) or spin(3), respectively.
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1.1. Motivation. The Palatini–Cartan–Holst (PCH) formalism was
conceived in order to bring Einstein’s general relativity closer to the
language of gauge theories,(i) and based on the work in [CS19a] it was
proven in [CSS18] that in three dimensions Palatini–Cartan (PC) grav-
ity is strongly equivalent to a BF theory, result that serves as a basis
for the current paper. Here we will show that this strong equivalence
persists even when we incorporate the Rarita–Schwinger term to the
action,(ii) which further allows us to define a Batalin–Vilkovisky (BV)
extension of 3D supergravity where both the invariance under space-
time diffeomorphisms and the supersymmetry are explicitly encoded in
their corresponding ghost fields.

Such result might serve as the starting point for the analysis of
the boundary structure of this theory through the BV–BFV formal-
ism [CMR14] developed by Cattaneo, Mnev and Reshetikhin, hence
joining a broader effort to better understand how gravity coupled to
different kinds of matter fields should be described, as well as how to
quantize such theories, even in the presence of non-trivial boundaries.
Recent papers in this line include [CS19b; Cat+24; CMS24; CCF22;
Can+24], to name a few. A further development of the results of this
paper would be its extension to all lower-dimensional strata, as was
done for PC theory in [CS22], and the construction of its space of
quantum states, which for Einstein–Hilbert theory was done in [CS24],
leveraging the relation with PC theory.

Concerning the structure of the document, the second section con-
sists of a short summary of the BV formalism [BV81] and of the AKSZ
procedure [Ale+97]. The third section, in turn, presents BV and BF
gravity, and leads to the fourth and last section, where we present
supergravity and build its BV extension. Besides these sections, the
reader can find an appendix where we will compile a series of results of
graded geometry that we shall use in the rest of the article. Sources re-
viewing graded geometry are the review [CM20] or the books [Keß19;
DeW92]. For an approach to three-dimensional supergravity in the con-
text of graded geometry, see also [CCG16; CCG20]. Lastly, we let the
reader know that this article is an improved adaptation of the content
in the master thesis of the third author [Sma24].

1.2. Notation.

(i) A general review of the Palatini formalism is found in [Rom93], one of the
PCH formalism in [CS18], and Holst’s original work is [Hol96].

(ii) For an introduction to supersymmetry, see [Con10], and see [Nas12] for an
introduction to supergravity, while the reader is referred to [WB92] for a thorough
exposition of both.
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• ℕ denotes the set of natural numbers including 0.
• [[m,n]] = {k ∈ ℤ | m ≤ k ≤ n} denotes a range of integers.
• Given a Lie group G, its associated Lie algebra is denoted by g.
• All forms of products are left implicit and deduced from the
context, unless some ambiguity is present, e.g. λ · u⊗ v =: λuv.

• In the absence of parentheses, a derivation D acts only on the
element directly adjacent to it: aDbc := aD(b)c.

• Einstein’s summation convention for pairs of upper and lower
indices is generally assumed: xiyi ̸= xiyi :=

∑
i=j x

iyj.

• Indices with a bar on them are not summed over: xı̄yı̄ ̸= xiyi.
• δij denotes Kronecker’s delta: δij = 1 for i = j, δij = 0 otherwise.
• In the context of gravity or special relativity, Greek letters des-
ignate spacetime indices while Latin indices designate Lorentz
bundle indices.

• The equivalence sign “≡” is used to designate equality on shell.
• There are multiple fields associated to a field ψ:

– ψ∗ is it complex conjugate,
– ψ† is its Hermitian conjugate,
– ψ is its Dirac conjugate,
– ψ+ is its associated antifield.

Acknowledgements. We thank G. Canepa, P. Grassi and M. Schiav-
ina for their useful comments. We also thank the anonymous referees
for helpful comments.

2. Classical BV formalism

The path integral formalism for quantum field theory relies on the pos-
sibility of integrating out the quadratic terms in the Lagrangian den-
sity defining the action, which is achieved through a generalisation to
field theory of the saddle point method—known as Feynman–Laplace
method—requiring the critical points of the action to form a finite sub-
set of its support. However, precisely because of the “continuity”—as
opposed to “discreteness”—of topological groups, in theories described
by a Lagrangian with gauge freedom one can smoothly deform a crit-
ical point into another critical point, resulting in critical loci that are
themselves submanifolds. This spoils the applicability of the aforemen-
tioned method, making manifest the need for machinery that selects
discrete subsets of the critical locus of an action. This is precisely the
issue that both the BRST and the BV formalisms address.

We choose to employ the latter because it has a greater range of
applicability than the former, and also because of its relation to the
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Batalin–Fradkin–Vilkovisky (BFV) formalism, which allows for a per-
turbative quantisation of field theories on the possible boundary of a
manifold. Despite all this, though, we will not be concerned with any
quantisation in this document, so our treatment of the theory will be
minimal; an exhaustive approach is found e.g. in [Mne19], and a re-
view of the BFV formalism is e.g. in [CM20]. Let us then summarise
the BV formalism.

Definition 2.1. Given a graded manifold M, a cohomological vector
field Q is an element Q ∈ X(M) such that

Q2 = 0, |Q| = 1, ghQ = 1,(2.1)

where one understands Q2 as Q◦Q, being a map C∞ (M) → C∞ (M).
A manifold endowed with such a vector field is a dg manifold.(iii)

Remark 2.2. Given that Q is odd, saying that Q2 = 0 is equivalent to
saying that [Q,Q] = 0.

Example 2.3. A paradigmatic example of dg manifold is given by the
odd tangent bundle T [1]M of any non-graded manifold M . If (xi) are
coordinates on M and (θi) the coordinates of ghost number 1 on its
fibre, then a dg structure is given by

(2.2) Q = θi
∂

∂xi
.

Definition 2.4. Given a vector field X ∈ X(M) and a form
ω ∈ Ω(M), we say that ω is X-invariant if

(2.3) LXω = 0.

Definition 2.5. A dg-symplectic manifold is a graded symplectic man-
ifold with a cohomological vector field Q under which the symplectic
form ω is invariant. That is,

(2.4) LQω = 0.

Definition 2.6. Given a graded symplectic manifoldM and a function
f ∈ C∞ (M), the Hamiltonian vector field associated to f is the field
→
f ∈ X(M) such that

(2.5)
→
f = (−1)|f |+1{f, •}.

Definition 2.7. A dg-Hamiltonian manifold of degree k (M, H,Q, ω)
is a dg-symplectic manifold M where the symplectic form ω has ghost

(iii) Here dg stands for differential graded.
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number k and the cohomological vector fieldQ is given as the Hamilton-
ian vector field of some degree k+1 function H, called its Hamiltonian
function:

(2.6) Q = (−1)k{H, •}.

Definition 2.8. A classical BV theory is a dg-Hamiltonian manifold
of degree −1, that is, a tuple (F , S,Q, ω) such that

1. F is a graded symplectic manifold, called the field space.
2. S is an even function over F of degree 0, called the BV action.
3. Q is the cohomological, Hamiltonian vector field of S.
4. ω is a Q-invariant, odd symplectic form over F of degree −1.

Given that F is odd symplectic, we can locally associate each field ϕ ∈
F to another field ϕ+ ∈ F , known as its antifield, that by construction
satisfies

degΩ ϕ
+ = n− degΩ ϕ, gh ϕ+ = −gh ϕ− 1.(2.7)

Definition 2.9. A BV theory (F , S,Q, ω) is a BV extension of a clas-
sical theory described by a space of fields Fcl and an action Scl, if the
ghost number zero part of F and of S correspond to Fcl and to Scl,
and if the restriction Q|Fcl

yields the gauge symmetries.

Definition 2.10. Two BV theories are weakly equivalent if both of
them are BV extensions of a same classical theory.

These theories will be strongly equivalent if there is a graded sym-
plectomorphism Φ : F → F ′ between their respective field spaces that
pulls the action of one theory back to the action of the other:

(2.8) ϕ∗S ′ = S.

Such a symplectomorphism is known as a canonical transformation.

Definition 2.11. Let (q, p) and (q′, p′) be the respective even-odd coor-
dinates of two different BV field spaces F and F ′. A graded generating
function of type j, for j ∈ [[1, 4]], is a graded function Gj that we use to
define two coordinates among q, p, q′, p′ as a function of the remaining
two, in one of the four following ways:
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p = (−1)|q|+1∂G1(q, q
′)

∂q
, p′ = (−1)|q

′|∂G1(q, q
′)

∂q′
,(2.9a)

p = (−1)|q|+1∂G2(q, p
′)

∂q
, q′ = (−1)|p

′|∂G2(q, p
′)

∂p′
,(2.9b)

q = (−1)|p|+1∂G3(p, q
′)

∂p
, p′ = (−1)|q

′|∂G3(p, q
′)

∂q′
,(2.9c)

q = (−1)|p|+1∂G4(p, p
′)

∂p
, q′ = (−1)|p

′|∂G4(p, p
′)

∂p′
.(2.9d)

Remark 2.12. By design, generating functions have top cohomological
degree and ghost number −1.

Definition 2.13. Given two graded manifolds M, N , and letting
Mor(M,N ) be the manifold of grade-preserving morphisms M → N
in the category of graded manifolds, the mapping space Map(M,N )
is the extension of Mor(M,N ) that includes grade-shifting maps.

Remark 2.14. If N is a graded vector space then

(2.10) Map(M,N ) = C∞ (M)⊗N ,

so locally the mapping space will have the form of such a tensor product
of graded spaces. Details of this definition can be found in [CMR14].

Definition 2.15. An AKSZ theory(iv) in n dimensions (M,N , H,Q, α)
is the combination of two things:

1. A source consisting of a closed and oriented n-manifold M .
2. A target consisting of a dg-Hamiltonian manifold (N , H,Q, ω)

of degree n− 1 whose symplectic form ω is exact:

(2.11) ω = dNα

for dN the exterior derivative on N .

Definition 2.16. Given an AKSZ theory (M,N , HN , QN , αN ) in n
dimensions, we define the AKSZ fields space

(2.12) F = Map(T [1]M,N ).

Employing the notation in Remark 2.17, we take the evaluation map
ev : T [1]M × F → N and define, for all k ∈ ℕ and for coordinates ξ
on N and X on F , its pullback as

(2.13) ev∗ : Ωk(N ) → Ω(M)⊗ Ωk(F) : β(ξ) 7→ β̂(X),

(iv) Here we focus on this special case of the more general AKSZ method.
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and we define the pushed forward projection

(2.14)

π∗ : Ω(M)⊗ Ωk(F) → Ωk(F),

φ⊗ Φ 7→
∫
M

φtop ⊗ Φ ∀ φ ∈ Ω(M), Φ ∈ Ωk(F).

We construct coordinates (X i) on F—the so called AKSZ superfields—
associated to the coordinates (xi) on N as

(2.15) X i = ev∗xi,

and compose π∗ with ev∗ to produce the transgression map

(2.16) T = π∗ev
∗.

Letting dM be the exterior derivative on M , and further letting

d̃M , Q̃N ∈ X(F) be the respective lifts to F of dM and of QN , we
finally define the AKSZ construction associated to this theory as the
tuple (F , S,Q, ω) for

1. the AKSZ action

(2.17) S = ιd̃MT αN + T HN ,

2. the AKSZ vector field

(2.18) Q = d̃M + Q̃N ,

3. and the AKSZ symplectic form

(2.19) ω = T ωN .

Remark 2.17. Given a form β ∈ Ω(N ), and coordinates x over N and

X over F , by β̂(X) one understands the coordinates expression for
β(x), but symbolically replacing x by X.

Given any manifold M and form φ ∈ Ω(M), φtop denotes the com-
ponents of φ with top cohomological degree, that is, those components
such that degΩ(M) φ

top = dimM .

Remark 2.18. The maps π∗ and T are graded:

(2.20) |π∗| = |T | = − dimM.

Remark 2.19. By Definition 2.13, locally

(2.21) F ∼= Ω(M)⊗N ,
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so in practice we can write S, Q and ω explicitly:

S =

∫
M

(
(α̂N )i(X) dMX

i + ĤN (X)
)
,(2.22)

Q =

∫
M

(
dMX

i + Q̂i
N (X)

) ∂

∂X i
,(2.23)

ω = (−1)n
∫
M

(ω̂N )ij(X) dNX
i ∧ dNXj.(2.24)

Given this, together with the fact that each superfield X i can be
decomposed over summands {X i

(j)}j of definite cohomological degree

j ∈ [[0, n]], at the end of the day the AKSZ action is the action that we
would obtain by

1. symbolically replacing the original fields with their associated
superfields,

2. expanding those in components of definite cohomological degree,
3. keeping only the terms which have top cohomological degree.

An example of such construction is given in the next section, so let us
proceed without further ado.

3. 3D gravity in vacuum and BF theory

Definition 3.1. An n-dimensional spacetime is a closed n-manifold
with a mostly positive metric, that is, of signature (p = n− 1, n = 1).

Definition 3.2. Given a principal SO(n − 1, 1)-bundle P over an n-
dimensional manifold, its Minkowski bundle is the associated vector
bundle (V , η) with typical fibre ℝn, endowed with the Minkowski metric

(3.1) η := (−𝕀1)⊕ 𝕀(n−1),

for 𝕀k the identity matrix in k dimensions.

Remark 3.3. Here we will focus on the case where n = 3, so

(3.2) η = diag(−1, 1, 1).

Definition 3.4. Given a Minkowski bundle (V , η), a cotriad or coframe
field over a 3-spacetime M is a non-degenerate 1-form e over M valued
in V∧1. Associated to it there is a triad or frame field e−1, which is its
inverse in the following sense:

e ∈ Ω1(M,V∧1), e−1 ∈ Ω1(M,V∧1)∗, e−1(e) = 1.(3.3)

Remark 3.5. We talk of V∧1 and not simply of V because we associate
to the (co-)triads a multivector degree

(3.4) degV e = − degV e
−1 = 1.
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From now on, we will always conceive V as V∧1.

Definition 3.6. The Palatini–Cartan formalism in three dimensions,
or simply 3D gravity, consists of

1. an oriented spacetime M , assumed to have no boundary,
2. a principal SO(2, 1)-bundle P →M , with Minkowski bundle V ,
3. a possibly non-zero cosmological constant Λ ∈ ℝ,

together with a field content given by

4. a cotriad e ∈ Ω1(M,V) over M ,
5. a connection 1-form Γ ∈ Conn(P ) ∼= Ω1(M,V∧2) over P .

With these we define the classical field space

(3.5) F0
GR = Ω1

nd(M,V)× Conn(P ) (v)

and the classical action

(3.6) S0
GR(Λ) =

∫
M

〈
e ∧ FΓ +

Λ

6
e∧3

〉
,

where the angle brackets ⟨•⟩ designate the appropriate contraction of
any indices other than those over Ω(M).(vi)

Remark 3.7. The reason why we can say that connections take values
in V∧2 follows from the fact that, since we work in three dimensions,
V ∧2 ∼= so(2, 1) as a Lie algebra.

Remark 3.8. For convenience and when it is possible, we often express
a particular action Si as the integral of a top form ⟨Li⟩:

(3.7) Si =

∫
M

〈
Li

〉
.

Remark 3.9. By appropriate contractions one understands that ulti-
mately S0

GR must be a scalar, so any internal index must be contracted.
This is to say that we must correctly “trace over” the multivector in-
dices that both e and FΓ have over V , leading specifically to〈

e ∧ FΓ

〉
= ϵabc e

a ∧ F bc
Γ ,

〈
e∧3

〉
= ϵabc e

a ∧ eb ∧ ec,(3.8)

for the 3-dimensional Levi–Civita symbol ϵabc and leaving implicit the
decomposition over the generators of Ω(M).

(v) Where “nd” stands for non-degenerate.
(vi) The expression within the brackets actually defines a density, which could be

integrated over a non-orientable manifold, yet for simplicity we assume orientability.
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Definition 3.10. Given a connection 1-form Γ and its associated co-
variant derivative DΓ, the Lie covariant derivative LΓ

ξ with respect to
a vector field ξ is defined as

(3.9) LΓ
ξ = [ιξ, DΓ].

Construction 3.11 (BV extension of 3D gravity). Based on the data
from 3D gravity, let FGR be the field space

(3.10) FGR = T ∗[−1]
(
F0

GR × X(M)[1]× Ω0(M, ad(P )[1])
)
,

where X(M)[1] is the space of vector fields over M with shifted degree
and ad(P )[1] stands for the degree-shifted adjoint bundle of P . On the
base of this shifted cotangent bundle we denote the fields as

(3.11)
(
(e,Γ), ξ, χ

)
∈ F0

GR × X(M)[1]× Ω0
(
M, ad(P )[1]

)
,

where ξ encodes the diffeomorphism invariance of general relativity and
χ is the ghost field required for the internal gauge transformations. In
turn, the fibre includes their associated antifields, and the fact that
FGR is a shifted cotangent bundle allows us to define the canonical
symplectic form

(3.12) ωGR =

∫
M

(
δeδe+ + δΓδΓ+ + δξδξ+ + δχδχ+

)
Finally, we can define the action SGR(Λ) := S0

GR(Λ) + S1
GR with

(3.13) S1
GR =

∫
M

〈
e+

(
LΓ

ξ e+ [χ, e]
)
+ Γ+

(
DΓχ+ ιξFΓ

)
+

1

2
ι[ξ,ξ]ξ

+ +
1

2
χ+

(
[χ, χ]− ι2ξFΓ

)〉
,

and its associated cohomological vector field QGR, which acts as

QGR(e) = LΓ
ξ e+ [χ, e],(3.14a)

QGR(Γ) = DΓχ+ ιξFΓ,(3.14b)

QGR(ξ) =
1

2
[ξ, ξ](3.14c)

QGR(χ) =
1

2

(
[χ, χ]− ι2ξFΓ

)
.(3.14d)

We then write TGR := (FGR, SGR, QGR, ωGR) to refer to this theory.

Proposition 3.12. The tuple TGR is a BV extension of 3D gravity,
which we shall call 3-dimensional BV gravity.

Definition 3.13. A BF theory in n ≥ 2 dimensions is defined as a
pair (F , S) where, given

1. an n-dimensional oriented manifold M ,
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2. a finite dimensional Lie group G and a G-bundle P over M ,
3. a form B ∈ Ωn−2(M, ad∗(P )) valued in the coadjoint bundle,
4. a connection form A ∈ Conn(P ),

one sets the field space to be

(3.15) F = ad∗(P )× Conn(P )

and the action to be

(3.16) S =

∫
M

⟨B,FA⟩,

where FA is the curvature of A and ⟨•, •⟩ is the pairing of dual maps.

Definition 3.14. We define BF gravity as the BF theory (F0
BF , S

0
BF )

where n = 3, and where P is the SO(2, 1)-bundle over M with associ-
ated Minkowsky bundle V for some reference Lorentzian metric.

Moreover, for some reference connection A′ we interpret B and A−
A′ as 1-forms valued in V∗ and V∧2 respectively, and further use the
internal Minkowski metric to identify V∗ with V , hence seeing B as
taking values in the latter. Thus the field space becomes

(3.17) F0
BF

∼= Ω1(M,V)× Ω1(M,V∧2).

Finally, we incorporate a cosmological term in the action, resulting in

(3.18) S0
BF (Λ) =

∫
M

〈
BFA +

Λ

6
B∧3〉,

where ⟨•⟩ denotes again the trace over the internal indices.

Proposition 3.15 ([CSS18]). BF gravity is an AKSZ theory and its
AKSZ extension TBF := (FBF , SBF , QBF , ωBF ) is strongly equivalent to
3-dimensional BV gravity. A canonical transformation ΦBF : SGR →
SBF is provided by the following type 2 generating function:

(3.19) G(q, p′)BF = −B+(e− ιξΓ
+ − 1

2
ι2ξχ

+)− AΓ+

− τ+(−ιξe+
1

2
ι2ξΓ

+ − 1

3
ι3ξχ

+)− cχ+

for q := (e,Γ+, ξ, χ+) and p′ := (B+, A, τ+, c).
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Remark 3.16. We recall the decomposition of the fields that results from
this proposition, keeping τ+ implicit to avoid cramping the equations:

B = e− ιξΓ
+ − 1

2
ι2ξχ

+, B+ = e+ − ιξτ
+,(3.20a)

A = Γ− ιξe
+ +

1

2
ι2ξτ

+, A+ = Γ+,(3.20b)

τ = −ιξe+
1

2
ι2ξΓ

+ +
1

3
ι3ξχ

+, τ+ = e−1(ξ+ − e+Γ+ + ιξe
+χ+),(3.20c)

c = χ+
1

2
ι2ξe

+ − 1

6
ι3ξτ

+, c+ = χ+.(3.20d)

4. BV supergravity

Definition 4.1. We define 3D supergravity and BF supergravity by
extending respectively F0

GR and F0
BF to

F0
GRΦ = F0

GR × ΠS(P ) and F0
BFΦ = F0

BF × ΠS(P ),(4.1)

for S(P ) the space of 1-forms taking values in the spinor bundle asso-
ciated to the principal bundle P , and then extending their actions by
a Rarita–Schwinger action term

(4.2)

S0
GRΦ(Λ) = S0

GR(Λ) +

∫
M

1

2
ψDΓψ,

S0
BFΦ(Λ) = S0

BF (Λ) +

∫
M

1

2
φDAφ.

Here the fields ψ, φ ∈ ΠS(P ) are spin 3
2
Majorana spinors.

Remark 4.2. The connection forms will act on the spinor fields through
the spin 3

2
real (Majorana) representation of the algebra spin(2, 1). This

representation will be denoted by ρ and, for the Pauli matrices {σa}3a=1,
we will use the shorthand notation ρa := ρ(σa). Letting {va} be a basis
of the sections of the Minkowski bundle V , we write

(4.3) ρ := ρava,

with which the equations of motion that follow from S0
BFΦ take the

following form:

FA +
Λ

2
B ∧B = 0,(4.4a)

DAφ = 0,(4.4b)

DAB +
1

2
φρφ = 0.(4.4c)
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Meanwhile, the equations of motion issued from S0
GRΦ are analogous,

after replacing

(4.5) (B,A, φ) ↔ (e,Γ, ψ).

Proposition 4.3. BF supergravity is an AKSZ theory.

Proof. We take the spacetime M as the source manifold, let V be the
Minkowski space that is the typical fibre of the Minkowvski bundle V ,
and S(P ) be the vector space associated to the spinor representation
ρ. We hence define (b, a, f) as coordinates on the target

(4.6) N ∼= V [1]⊕ V ∧2[1]⊕ ΠS(P )[1].

We see from this that N is endowed with the symplectic form

ωN = dNαN ,(4.7)

Ω1(N ) ∋ αN = b dNa+
1

2
f dNf,(4.8)

the Hamiltonian function

(4.9) HN =
〈1
2
b[a, a] +

Λ

6
b3
〉
+

1

2
f af,

and the cohomological vector field QN = −{HN , •} associated to HN
through the Poisson bracket induced by ωN . □

Construction 4.4 (AKSZ extension of BF supergravity). Given the
target established in the proof of Proposition 4.3, the field space is

(4.10) FBFΦ
∼= Ω

(
M,V

)
[1]⊕ Ω

(
M,V∧2)[1]⊕ Ω

(
M,ΠS(P )

)
[1].

On it, the coordinates are given by the superfields

b̃ = τ +B + A+ + c+,(4.11a)

ã = c+ A+B+ + τ+,(4.11b)

f̃ = γ + φ+ φ+ + γ+,(4.11c)

where summands are ordered in increasing cohomological degree, from
0 to 3, and decreasing ghost number, from 1 to −2. Besides, note that
the parity of a field differs by 1 from the parity of its corresponding
antifield. Now, replacing the classical fields in S0

BFΦ by their associated
superfield, keeping only those terms of cohomological degree 3 and
rearranging them, we find the BV action for BF supergravity:

(4.12a) SBFΦ(Λ) =

∫
M

〈
L0

BFΦ(Λ) +L1
BFΦ(Λ) +L2

BFΦ,
〉
,
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where

L0
BFΦ(Λ) = BFA +

Λ

6
B∧3 +

1

2
φDAφ,(4.12b)

L1
BFΦ(Λ) = B+

(
[c, B] +DAτ

)
+ A+

(
DAc+ ΛBτ

)
(4.12c)

+
1

2
c+

(
[c, c] + Λττ

)
+ τ+[c, τ ],

L2
BFΦ = γ B+φ+

1

2
γ τ+γ + φ+

(
DAγ + cφ

)
+ γ+ cγ.(4.12d)

The symplectic form is given by (4.7) when we replace the coordinates
by their corresponding superfields and keep only the terms of ghost
number −1, resulting in

(4.13) ωN =

∫
M

〈
dNB dNB

+ + dNA dNA
+ + dNφ dNφ

+

+ dN τ dN τ
+ + dN c dN c

+ + dNγ dNγ
+
〉
.

In turn, we can read off the action (4.12) the way in which the coho-
mological vector field acts on the coordinate fields:

QBFΦ(B) = [c, B] +DAτ + γ ρφ, QBFΦ(τ) = [c, τ ] +
1

2
γ ργ,(4.14a)

QBFΦ(A) = DAc+ ΛBτ, QBFΦ(c) =
1

2
[c, c] +

1

2
Λττ,(4.14b)

QBFΦ(φ) = DAγ + cφ, QBFΦ(γ) = cγ.(4.14c)

Thus we conclude the construction collecting everything in a tuple

(4.15) TBFΦ := (FBFΦ, SBFΦ, QBFΦ, ωBFΦ).

Lemma 4.5. For any degree 1 vector field ξ ∈ X(M)[1], principal
connection 1-form Γ ∈ Conn(P ) and field φ ∈ Ω(M,V) valued in an
associated vector bundle V , the following identity holds:

(4.16)
[
LΓ

ξ , ιξ
]
φ = ι[ξ,ξ]φ.

This is proven in [CS19a, Lemma 9].

Proposition 4.6. There is a ghost fermion ε such that on shell

(4.17) QGRΦ(ξ) ≡ QGR(ξ) +
1

2
ε e−1(ρ)ε.

Proof. Let us call Q′ := QGRΦ − QGR the on-shell extension of QGR.
Now, on shell all antifields are set to zero, so (3.20) reduces to

(4.18) (B,A, τ, c) = (e,Γ,−ιξe, χ),



16 A. S. CATTANEO, N. MOSHAYEDI, AND A. SMAILOVIC FUNCASTA

which we extend additionally with (φ, γ) = (ψ, κ), thus being able to
translate on shell the first part of (4.14a) to

(4.19)
QGRΦ(e) ≡ −DΓ(ιξe) + [χ, e] + κ ρψ

= −ιξDΓe+ LΓ
ξ e+ [χ, e] + κ ρψ.

Meanwhile, the fact that |e| = 2, together with (A.3) and the definition
of LΓ

ξ , imply that

(4.20) ιξ
(
LΓ

ξ e
)
=

1

2

(
[ι2ξ , DΓ]− ι[ξ,ξ]

)
e.

Recalling that QGR(ξ) =
1
2
[ξ, ξ], we use all this to further find that

(4.21)

QGRΦ(ιξe) = [QGRΦ, ιξ]e+ ιξ(QGRΦe) = ιQGRΦ(ξ)e+ ιξ(QGRΦe)

≡ ιQGRΦ(ξ)e− ι2ξDΓe+ ιξ
(
LΓ

ξ e
)
+ ιξ[χ, e] + κ ριξψ

= ιQ′(ξ)e+
1

2
ι[ξ,ξ]e− ι2ξDΓe+

1

2
ι2ξDΓe−

1

2
DΓ(ι

2
ξe)

− 1

2
ι[ξ,ξ]e+ ιξ[χ, e] + κ ριξψ

= ιQ′(ξ)e−
1

2
ι2ξDΓe+ ιξ[χ, e] + κ ριξψ.

Moreover, after adapting to on-shell 3D supergravity both the equation
of motion (4.4c) and the second part of (4.14a), from what precedes
we deduce that

(4.22)
QGRΦ(ιξe) ≡ ιQ′(ξ)e+

1

2
ιξψ ριξψ + ιξ[χ, e] + κ ριξψ

≡ −QGRΦ(τ) ≡ ιξ[χ, e]−
1

2
κ ρκ,

which holds if and only if

(4.23) ιQ′(ξ)e ≡ −1

2
(κ+ ιξψ) ρ(κ+ ιξψ).

With this we finally conclude that

(4.24)
QGRΦ(ξ) = QGR(ξ) + e−1

(
e(Q′ξ)

)
= QGR(ξ)− e−1

(
ιQ′(ξ)e

)
≡ QGR(ξ) +

1

2
ε e−1(ρ)ε

for the ghost Majorana fermion ε := κ+ ιξψ. □

Remark 4.7. This property is expected, since the generators of super-
symmetry square to translation generators, and the former are to be
encoded by ghost fermions while the latter are realised through ξ.
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Remark 4.8. Our current goal being to extend (3.19) as to find a BV
theory of 3D supergravity that encodes explicitly both supersymmetry
and diffeomorphism invariance, this last proposition will serve us as
guiding principle. Indeed, we will be searching for a type 2 generating
function GBFΦ that decomposes as

(4.25) GBFΦ = GBF +Gext
BF ,

and evidently we would like Gext
BF to be a minimal extension, that is,

as simple as possible without being ineffective. This without being
ineffective is precisely what Proposition 4.6 addresses: we must ensure
that the extended symplectomorphism ΦBFΦ : FGRΦ → FBFΦ leads to
a cohomological vector field that on shell is equal to (4.17). Fortunately,
finding such extension is eased by the next proposition.

Proposition 4.9. A minimal extension Gext
BF of GBF ensuring that

equation (4.17) holds on shell can only depend on spinorial fields or on
contractions of those with respect to ξ.

Proof. As before, we denote by (φ, γ) the spinorial field and ghost in
FBFΦ and by (ψ, ε) the corresponding pair on FGRΦ. Since the exten-
sion we are looking for aims at being minimal, all its terms must be
spinorial scalars, because if any term in Gext

BF did not include spinors, it
would effectively amount to a modification of GBF spoiling the known
canonical transformation between 3D and BF gravities in the absence
of fermions. Consequently, all terms in Gext

BF should take the form

(4.26) yxy′

where y and y′ are spinors in FBFΦ and in FGRΦ respectively, and x is
any product of non-spinorial fields—possibly including contractions—
in either theory. Of course, not any such combination is valid, given
that every such product must have cohomological degree 3 and ghost
number−1, and every internal index must be contracted. In fact, under
these constraints there will be at most two kinds of valid products
yxy′. The first kind will have x = 1 and an appropriate distribution of
contractions ιξ, only consisting—up to redistribution of the ιξ—of the
following possible pairs (y, y′):

(4.27)
(γ+, ε), (φ+, ψ), (γ+, ιξψ),

(ιξφ
+, ψ+), (ι2ξφ

+, ε+), (ι3ξγ
+, ε+),

or the analogous pairings exchanging the roles of the fields in FGRΦ by
those in FBFΦ and vice versa. Meanwhile, the second kind of product
will have x ̸= 1, yet it is evident that any product of this type, to be
valid, should be obtained from a product of the first kind by replacing
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any number of contractions with a product x of non-spinorial fields that
have the same cohomological degree and ghost number as the power of
ιξ that they are replacing. In other words,

(4.28)

(
degΩ x
gh x

)
=

(
−k
k

)
for some k ∈ ℕ. Now, every non-spinorial field—including the contrac-
tion ιξ—has its pair (degΩ •, gh •) among the following:

(4.29) v1 =

(
0
1

)
, v2 =

(
1
0

)
, v3 =

(
2
−1

)
, v4 =

(
3
−2

)
, v5 =

(
−1
1

)
,

which respectively correspond to the degree pairs of c, A, B+, c+ and
ιξ, in that order. The question, then, reduces to solving the simple
equation

(4.30) kivi = 0 for {ki}4i=1 ⊂ ℕ, k5 ∈ ℤ,

which holds if and only if ki = 0 for all i. This is equivalent to saying
that any valid product yxy is of the first kind, that is, a Dirac product
of spinors or of contractions of those with respect to ξ. □

Remark 4.10. Proposition 4.9 facilitates the labour notably by making
Gext

BF include at most four terms, which moreover will show a convenient
property: they will only fix the spinorial fields and, at most, modify
the expression for ξ+ as a function of the fields in FBFΦ. Finding an
appropriate extension, then, is letting

(4.31) Gext
BF =

∑
i

kiyiy
′
i

and determining the (at most) four parameters ki that will lead to a
QGRΦ that on shell satisfies (4.17) and to an action SGRΦ whose classical
spinorial part is 1

2
ψDΓψ.

Theorem 4.11. A BV extension of 3D supergravity is provided by the
tuple TGRΦ := (FGRΦ, SGRΦ, QGRΦ, ωGRΦ) for

FGRΦ = FGR × T ∗[−1]Ω(M,ΠS(P )),(4.32a)

SGRΦ = ΦBFΦ
∗SBFΦ,(4.32b)

ωGRΦ = ΦBFΦ
∗ωBFΦ,(4.32c)

QGRΦ = {•, SGRΦ},(4.32d)

where the Poisson bracket is defined by ωGRΦ and the canonical trans-
formation ΦBFΦ is generated by

(4.33) GBFΦ = GBF +Gext
BF ,
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where GBF is the generating function (3.19) and Gext
BF is given as

(4.34) Gext
BF (q, p

′) = −φ+ ψ − γ+ (ε− ιξψ)

for q := (e,Γ+, ξ, χ+, ψ, ε) and p′ := (B+, A, τ+, c, φ+, γ+).

Proof. This generating function leads to

φ = ψ, φ+ = ψ+ − ιξε
+,(4.35a)

γ = ε− ιξψ, γ+ = ε+,(4.35b)

so following the previous Remark 4.10, we only have to attend some
of the terms in SBFΦ (4.12) to check whether it produces an extension
of classical 3D supergravity. Firstly, since the Definition (3.20b) of A
in terms of fields in FGRΦ remains unchanged, the expansion of the
classical spinorial field gives

(4.36)
1

2
φDAφ =

1

2
ψDΓψ − 1

2
ψ (ιξe

+ − 1

2
ι2ξτ

+)ψ,

so indeed the classical spinorial term is recovered on shell—where, re-
member, antifields are set to zero. Secondly, since the only terms modi-
fying QGR(ξ) are those spinorial terms in SBFΦ that include a factor of
τ+—because only these depend on ξ+, specifically through e−1(ξ+)—
we only verify the following terms in LBFΦ:

(4.37)
1

2
ψAψ + γ B+φ+

1

2
γ τ+γ + φ+Aγ + φ+ cφ+ γ+ cγ.

After expansion—which is rendered explicit in Definition 4.13 below—
one verifies that

(4.38) QGRΦ(ξ) =
1

2
[ξ, ξ] +

1

2
ε e−1(ρ)ε+ · · ·

omitting all terms that contain antifields, so indeed QGRΦ satisfies
(4.17). Finally, (4.34) holds necessarily, since (4.32a) merely accounts
for the incorporation of fermions, while equations (4.32b) to (4.32d)
follow from the definition of a canonical transformation and the fact
that GBFΦ is a generating function. Therefore, we have constructed a
theory TGRΦ that is symplectomorphic to BF supergravity, and more-
over TGRΦ produces classical 3D supergravity on shell; in other words,
TGRΦ is a BV extension of 3D supergravity. □

Remark 4.12. Due to the fact that it only involves spinors and their
contraction, the only equation in (3.20) that the extension Gext

BF modi-
fies is the one corresponding to τ+, giving

(4.39) τ+ = e−1
(
ξ+ − e+Γ+ − γ+ψ + ιξe

+χ+
)
.
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Having established this result, we find ourselves in a position to give
an explicit form for 3D supergravity.

Definition 4.13. We will call 3-dimensional BV supergravity the the-
ory built in Theorem 4.11. Its action is given by

(4.40a) SGRΦ = SGR +

∫
M

〈
L1

GRΦ

〉
,

for the density

(4.40b) L1
GRΦ =

1

2
ψDΓψ + ψ e+ε+

1

2
ε τ+ε+ ψ+QGRΦ(ψ) + ε+QGRΦ(ε),

where τ+—as given in (4.39)—is kept implicit for the sake of readabil-
ity. In turn, the cohomological vector field decomposes as

(4.41a) QGRΦ = QGR +Qext
GR,

for an extension that acts in the following manner:

Qext
GR(Γ) = Qext

GR(χ) = 0,(4.41b)

Qext
GR(e) = ψ ρε− ιξψ+ ρκ− 1

2
ι2ξψ

+ ρψ(4.41c)

−ιξψ+ ριξψ +
1

2
ι2ξε

+ ρ(ε− 2ιξψ),

Qext
GR(ξ) =

1

2
ε ρε+

1

2
ι2ξψ

+ ρε− 1

6
ι3ξε

+ ρ(2ε− 3ιξψ),(4.41d)

QGRΦ(ψ) = χψ +DΓκ− ιξe
+κ+

1

2
ι2ξe

+ψ +
1

2
ι2ξτ

+κ− 1

6
ι3ξτ

+ψ,(4.41e)

QGRΦ(ε) = χε+ ιξDΓκ− 1

2
ι2ξe

+(ε− 2ιξψ) +
1

6
ι3ξτ

+(2ε− 3ιξψ),(4.41f)

writing κ := (ε− ιξψ) and ρ := e−1(ρ).

Appendix A. Selected results in graded geometry

Proposition A.1. As their non-graded counterparts, graded Lie
derivatives satisfy

(A.1) [LX ,LY ] = L[X,Y ] ∀ X, Y ∈ X(M).

Remark A.2. This is a direct consequence of their definition.

Proposition A.3. Cartan’s identity—or Cartan’s magic formula—
relates the graded interior derivative, the exterior derivative, and the
graded Lie derivative:

(A.2) [ιX , d] = LX .
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Remark A.4. The proof is verbatim the one used in conventional dif-
ferential geometry, but keeping track of the gradings.

Proposition A.5. For any graded vector fields X, Y ∈ X(M) and
form ω ∈ Ω(M) over a graded manifold M we have

(A.3a) [LX , ιY ]ω = ι[X,Y ]ω

Proof. The behaviour of the interior and Lie derivatives, as for any
derivation, will be fully determined by their action on an arbitrary
function f ∈ C∞ (M) and on its differential df . Now, on the one hand
it is obvious that

[LX , ιY ]f = ι[X,Y ]f = 0.(A.4)

On the other hand, recalling that |ιY | = |Y | − 1, Cartan’s identity and
d2 = 0 together imply that

(A.5a)
ιY (LXdf) = ιY ([ιX , d]df) = −(−1)|ιX |ιY d(Xf)

= (−1)|X|Y (Xf).

This, jointly with |LX | = |X|, lets us conclude that

(A.5b)

[LX , ιY ]df = LX(ιY df)− (−1)|LX ||ιY |ιY (LXdf)

= X(Y f)− (−1)|X|(|Y |−1)(−1)|X|Y (Xf) = [X, Y ]f

= ι[X,Y ]df,

thus proving the proposition. □
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190 CH-8057 Zürich
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