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Abstract. An explicit, geometric description of the first-class constraints and their Poisson

brackets for gravity in the Palatini–Cartan formalism (in space–time dimension greater than

three) is given. The corresponding Batalin–Fradkin–Vilkovisky (BFV) formulation is also
developed.
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1. Introduction

In this article we clarify the geometry of the boundary structure—in particular, the reduced
phase space—of general relativity in the Palatini–Cartan formalism and develop its Batalin–
Fradkin–Vilkovisky (BFV) formulation in any space–time dimension greater than three.

This research was (partly) supported by the NCCR SwissMAP, funded by the Swiss National Science Foun-
dation. G.C. and A.S.C. acknowledge partial support of SNF Grant No. 200020- 172498/1. M.S. acknowledges
partial support from Swiss National Science Foundation grants P2ZHP2 164999 and P300P2 177862.
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The Palatini–Cartan (PC) formalism is classically equivalent to the Einstein–Hilbert formalism
on a closed manifold, in the sense that they have the same space of solutions of the Euler–
Lagrange equations modulo symmetries. However, the PC formalism has several advantages, the
main one for us being that employing differential forms allows for a more natural restriction to
boundaries, whose study is our main motivation.

The Hamiltonian description of a field theory, which is a particular case of the boundary
study when the boundary is a Cauchy surface, has historically been done in terms of Dirac’s
constraint analysis [16]. This procedure is rather involved, leading to the analysis of primary
and secondary constraints, which then are regrouped into first and second class constraints,
to produce eventually the correct space as the symplectic reduction of some submanifold in a
symplectic space of fields near the boundary. The final output of this procedure is called reduced
phase space, and it turns out to be particularly complicated in the case of the Palatini–Cartan
formalism.

Typically, one wishes to implement the second class constraints first, and present the reduced
phase space as the reduction of a submanifold determined by first-class contraints only.1 One
advantage of this is that the associated Hamiltonian vector fields can now be interpreted as
generators of symmetries, so that the reduced phase space can be regarded as the quotient
of a submanifold (fields satisfying the generalised Gauss laws) by gauge transformations. In
some cases—e.g., Yang–Mills theory and three-dimensional gravity—this can be interpreted as
a Marsden–Weinstein [21] reduction.

A second advantage of obtaining the reduced phase space from first-class constraints only
is that it can be cohomologically resolved in terms of the Batalin–Fradkin–Vilkovisky (BFV)
formalism [4, 2, 27, 26]. Namely, one considers some appropriate symplectic supermanifold and
recasts the constraints into an odd functional (the BFV action) that Poisson commutes with itself.
This produces a complex whose degree-zero cohomology is isomorphic, as a Poisson algebra, to the
algebra of functions of the reduced phase space when the latter is smooth. The main advantage,
then, is that one can take this procedure as a definition for the reduced phase space when it is
not smooth. Moreover, one can attempt at quantising the reduced phase space in terms of an
appropriate quantisation of the supersymplectic manifold (which is often geometrically simpler)
and of the BFV action.

The BFV formalism is closely related to the Batalin–Vilkovisky (BV) formalism [4, 3], which
generalises the Faddeev–Popov and BRST constructions, providing a gauge fixing framework for
a field theory in the bulk, in view of its perturbative quantisation. The strict connection between
BV and BFV, related to a quantisation for manifolds with boundary compatible with cutting
and gluing, has been analyzed in [10, 11].

In several instances, the BV formalism in the bulk produces a compatible BFV formalism
on the boundary [10]. Unfortunately, this is not the case for four-dimensional gravity in the
Palatini–Cartan formalism [13], at least in a natural implementation of the BV framework,
which otherwise works for the analogous three-dimensional case2 [7].

This paper is a first step in a plan to overcome the problem encountered in [13]: namely,
reversing the BV-BFV procedure by first studying the BFV formalism for Palatini–Cartan gravity
on the boundary and then inducing a compatible BV formalism in the bulk (this second step is
considered in the follow up work [5]). Another motivation for our study of the BFV structure is
to extend the analysis of General Relativity to corners of higher codimension, as was successfully
done for other BV-BFV theories [10, 22, 7].

1This is called a coisotropic submanifold in symplectic geometry.
2There are examples of theories where one can modify the bulk BV formalism to make it compatible with the

boundary BFV formalism [14]; however this fix currently seems out of reach for PC theory.
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Our solution to the above problem is based on a more geometric alternative to Dirac’s con-
struction of the reduced phase space, as introduced by Kijowski and Tulczijew [18]. This alterna-
tive has several advantages, simplifying many computations and making them more transparent.
Moreover, it also usually produces the reduced phase space as a coisotropic reduction — i.e., only
first class constraints appear — and, finally, it is closely related to the BV-BFV construction
(see [9] for the general framework and [12, 13] for examples in the context of General Relativity).

In 2017 the last two authors successfully applied this construction to four-dimensional gravity
in the Palatini–Cartan formalism [15] for a timelike or spacelike boundary, showing in particular
that only first-class constraints appear. Recently, a presentation in terms of first-class constraints
only in the context of Dirac’s formulation has been obtained in [23], with its extension to higher
dimension discussed in [24].

Some of the expressions presented in [15] were not quite as explicit as one might have liked.
Although this is does not hinder the theorems on the classical (Hamiltonian) structure, a more
explicit description would be desirable when writing down an explicit BFV action for the theory,
or for further explicit computations. In this paper we provide such a description, improving the
understanding of the reduced phase space of Palatini–Cartan theory and extending all the results
to higher dimensions. This allows us to construct the BFV action for PC theory in dimension
N ≥ 3 for a timelike or spacelike boundary. For a lightlike boundary we refer to [6] where the
construction presented here is adapted to the case where the boundary metric is degenerate.
In doing this, we also prove several technical properties of “tetrads,” which may be useful also
elsewhere.

1.1. Structure of the paper. In Section 2 we summarise the basics of PC theory, review the
construction of its reduced phase space (following [15]), and present a new idea that will be used
throughout to simplify the boundary structure.

Section 3 is a collection of necessary (technical) results, which expands on the fundamental
observation that the map eN−k ∧ · might have a nontrivial kernel, with several consequences.

In Section 4 we construct the reduced phase space of PC theory using the clever choice
presented in Section 2.3: we show that the constraints are first class, and compute their Poisson
brackets explicitly.

Section 5 is devoted to the construction of the BFV data for Palatini–Cartan theory in di-
mension 4, while Section 6 generalises all the previous results to N ≥ 5.

Section 6.1 depends on Section 4, but is completely independent of Section 5, which is required
only by 6.2 and can be ignored by a reader who is interested in purely classical (non-BFV)
considerations.

2. A (short) overview

Our geometric construction is based on [15], where the last two authors treated the four-
dimensional case applying the construction of Kijowski and Tulczijew [18]. In this context, the
reduced phase space is obtained as the reduction by first class constraints of an appropriate space
of boundary fields.

The aim of this paper is to supplement the construction of [15] with a more explicit presen-
tation of boundary data.

In this section we will review the generalities of the Palatini–Cartan formalism, summarise
the main results of [15], and present the new idea from which this paper stems.

2.1. General Relativity in the Palatini–Cartan formulation. The dynamical field of gen-
eral relativity in the usual formulation by Einstein and Hilbert is a Lorentzian metric g and the
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action functional is

SEH =

∫
M

(R− Λ)
√
g,

where M is space–time, R the scalar curvature of g, Λ the cosmological constant (a fixed param-
eter) and

√
g the density induced by g.

In this paper we focus on the classically equivalent formulation that goes under the name of
Palatini–Cartan (or also Palatini–Cartan–Holst in the four-dimensional case [17]). It is based
on Palatini’s calculation of the variation of Riemann’s tensor in terms of the Christoffel symbols
(known as Palatini identity [25]), later extended to the idea of treating the connection as an
independent field, and on Cartan’s observation [8] that a metric may be alternatively presented
in terms of a local frame.

Let M be an N -dimensional manifold that admits a Lorentzian structure. In Palatini–Cartan
theory one fixes a vector bundle V isomorphic to TM and endowed with a fibrewise Minkowski
metric η,3 which we also denote by ( , ). Sometimes the vector bundle V is referred as the “fake
tangent bundle”. One may, e.g., take V = TM . In any case we assume that the isomorphism is
orientation preserving.

The theory has two dynamical fields.4 The first is a Cartan coframe, i.e., an orientation
preserving bundle isomorphism covering the identity from the tangent bundle to V

e : TM
∼−→ V.

The coframe field is also known as the tetrad (or vierbein) in four dimensions. A Lorentzian
metric is recovered (relating to Einstein–Hilbert theory) as

g = e∗η; gµν = (eµ, eν). (1)

Note that there is more redundancy in e than in g. As a consequence, the theory is invariant
under additional gauge transformations.

The second dynamical field is an orthogonal connection ω on V. We denote the space of such
connections with A(M). The isomorphism e allows transforming the connection ω into an affine
connection Γ that is automatically compatible with the metric g—a metric connection.

To write down the action functional, it is useful to introduce a piece of notation: by Ωi,j we

denote the space of sections of
∧i

T ∗M⊗
∧j V (i-forms taking values in the jth exterior power of

V). We may then regard the coframe e as an element of Ω1,1 (plus the nondegeneracy condition
that it actually defines an orientation preserving isomorphism). Moreover, using the fibre metric
η one can easily see that the space of orthogonal connections is modelled on Ω1,2 (this is essentially
just the fact that the Lie algebra of orthogonal transformations is isomorphic, via the metric,
to that of skew-symmetric bilinear forms). In particular, we will regard the curvature Fω of ω
as an element of Ω2,2. Furthermore, throughout the article we use the shorthand notation ek to
denote kth wedge power of e and omit the wedge product symbol in the formulas: the wedge
products both in

∧•
T ∗M and in

∧• V will be always tacitly understood.
The action functional for Palatini–Cartan theory reads

S =

∫
M

[
1

(N − 2)!
eN−2Fω −

1

N !
ΛeN

]
.

3We consider throughout the paper only the physical case with Lorentzian signature, although our results
directly extend to the Euclidean case.

4The choice of V and η is immaterial. Different choices will produce equivalent field theories related by linear
redefinitions of the fields.



BOUNDARY BFV ACTION IN PC FORMALISM 5

Note that each term belongs to ΩN,N , which can be canonically identified, via
√
|det η|, with

the space of densities on M .5 For ease of notation, we will omit writing down the factor
√
|det η|

explicitly.6

Remark 1. Note that it is possible to consider other terms in the action, namely eN−2kF kω for
every k ≤ N/2. These other terms will however yield Euler–Lagrange equations involving higher

derivatives of the fields, apart from the term F
N/2
ω , which is topological (it is the Holst term in

four dimensions). We will not consider these extensions in this paper.

The Euler–Lagrange equation obtained by a variation of ω is dω(eN−2) = 0, where dω denotes
the covariant derivative Ω•,• → Ω•+1,• associated to ω.7 By the Leibniz rule this equation may
be rewritten as eN−3dωe = 0, which, by the nondegeneracy condition on e,8 is equivalent to

dωe = 0. (2)

It may be easily shown that this condition is equivalent to the condition that the affine connection
Γ induced by ω be torsion free. Since Γ is also metric, it must then be the Levi-Civita connection,
and this determines a unique ωe solving (2) for a given e.

The Euler–Lagrange equation obtained by a variation of e is

1

(N − 3)!
eN−3Fω −

1

(N − 1)!
ΛeN−1 = 0. (3)

Inserting ωe, this equation turns out to be equivalent to Einstein’s equation for the metric g
defined in (1).

Remark 2. Truly, to obtain Equations (2) one needs injectivity of the map eN−3∧. From the
results of Lemma 8 will show that eN−3 ∧ dωe = 0 is indeed equivalent to (2), while no further
simplifications can be applied to (3). Moreover, this observation will turn out to be true only in
the bulk, and will play a crucial role in the definition of boundary variables and constraints (see
Sections 3 and 4.2).

Although the solution is proposed for a generic dimension N ≥ 4, the remainder of this
overview will focus on the four-dimensional case: N = 4. In this case the Palatini–Cartan action
functional is simply

S =

∫
M

1

2
eeFω +

1

4!
Λe4 (4)

and its Euler–Lagrange equations are (equivalent to)

dωe = 0, eFω +
1

3!
Λe3 = 0. (5)

5An element of ΩN,N is a section of detT ∗M ⊗detV. On the other hand,
√
| det η| is a section of |detV ∗|, so

their product is a section of detT ∗M ⊗ or(V), where or(V) is the orientation bundle of V . Under our assumption
that the isomorphism between TM and V is orientation preserving, we have or(TM) = or(V), so the product of

an element of ΩN,N with
√
| det η| is a section of | detT ∗M |, i.e., a density.

6It is actually possible to choose V in such a way that
√
| det η| is equal to one. Namely, pick a Lorentzian

metric on M and reduce its frame bundle to the orthogonal frame bundle P . Then one can define V as the

associate bundle P ×O(N−1,1) W , where W is the fundamental representation, endowed with the Minkowski
metric. With this choice η is the constant Minkowski metric, and the transitions function of detV are locally

constant and equal to ±1. Moreover, detT ∗N ⊗ detV is directly equal to | detT ∗M |, so that elements of ΩN,N

are canonically the same as densities.
7One gets dω(eN−2) = 0 directly with the choice of constant fibre metric as in footnote 6. In general, the

Euler–Lagrange equation is dω(
√
|det η|eN−2) = 0, but, since ω is an orthogonal connection, we have dωη = 0

and, therefore, dω
√
| det η| = 0. By the Leibniz rule, we may omit the nonzero factor

√
| det η|.

8The nondegeneracy condition is obviously not necessary in case N = 3.
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2.2. Reduced phase space for Palatini–Cartan theory. We apply to this theory the con-
struction due to Kijowski and Tulczijew [18], which allows to investigate its phase space and the
Hamiltonian formulation.

Remark 3. In order to keep the notation simple, we will denote throughout the paper the bound-
ary of a manifold M with Σ := ∂M .

We begin by observing that, when varying the action (4), one gets a boundary term9

α̃∂ =
1

2

∫
Σ

eeδω.

This is the analogue of the pdq term in classical mechanics. We view the restrictions of e and ω
to the boundary as, respectively, a nondegenerate section of T ∗(Σ)⊗ V|Σ — i.e., as an injective
bundle map T (Σ) → V|Σ — and an orthogonal connection associated to V|Σ. Again, we may

view the space of these connections as modeled on T ∗(Σ)⊗
∧2 V|Σ.

We can then regard α̃∂ as a one-form on the space F̃PC of the pre-boundary fields e|Σ and
ω|Σ. Thus, we might think of $̃ = δα̃∂ as a “pre-symplectic form” on the space of pre-boundary
fields. In fact, the two-form $̃ is degenerate: a vector field X in the kernel of $̃ acts as ω → ω+v
with

ev = 0. (6)

Remark 4. We stress that this transformation implicitly depends on e and, under the nondegen-
eracy assumption on e, the vs satisfying (6) and hence the Xs in the kernel of $̃ have exactly
6 local components. If we mod out the space of pre-boundary fields by the kernel of $̃ we get
a space parametrised by e and equivalence classes of ω under the e-dependent transformation
above.10 This defines the map

πPC : F̃PC −→ FPC . (7)

On this quotient space, the two-form $̃ determines a nondegenerate, closed two-form: the man-
ifold (FPC , $PC) is the geometric phase space of the theory.

The symplectic manifold defined by (7) is not yet the “physical” phase space of the theory,
usually called reduced phase space. Indeed, the Euler–Lagrange equations (5) split into evolution
equations, which contain derivatives of the pre-boundary fields in a transversal direction, and
equations where only tangential derivatives appear. The latter equations, called the constraints,
must be imposed on the preboundary fields, but this enlarges the kernel of the presymplectic
form, and the corresponding reduction has to be taken into account. To obtain the reduced
phase space, it is advantageous to reformulate this procedure in terms of the geometric phase
space we have introduced above.

Remark 5. An advantage of the Palatini–Cartan formulation is that it is formulated in terms of
differential forms and, as a consequence, the constraints are readily available as the restriction
to the boundary of Equations (5) 11. One problem is that the constraints are not necessarily
invariant under the transformations generated by X in the kernel of $̃, i.e. translations of ω by
v (and in fact they are not). There are two possible ways out: to select the v-invariant parts of
the constraints and take the quotient by the v’s or to look for a section to the v-translations. As
in [15], we will follow here the second strategy.

9This is precisely so with the choice of constant fibre metric as in footnote 6. In general, in this formula,

as well as in the formulas for the constraints that will appear later, there is a hidden factor
√
| det η|—which

has no effects on the computations and results— but is required to produce densities, which can be canonically

integrated. From now on we will no longer mention this factor.
10Observe that e and the remaining ω both have 12 local components, or degrees of freedom.
11Note that the relevant quantity is the zero locus generated by the constraints and not the actual functional

form of them.
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The first remark is that the constraint eFω + 1
3!Λe

3 = 0 is indeed v-invariant upon using the

first constraint dωe = 0.12 Therefore, it is better to use a v-section that, in conjunction with the
invariant part of dωe = 0, reproduces the whole constraint.

It is easy to check that the induced constraint

edωe = 0 (8)

(6 local components) is indeed v-invariant. We will call it the invariant constraint. It turns out
that Equation (8) determines the whole invariant part— under the condition that e is such that
the boundary metric

g∂ij := (ei, ej) (9)

is nondegenerate,13 where i, j are indices of boundary coordinates. From now on we will assume
this condition.

Since the remaining components of the constraint dωe = 0, which we call the structural
constraint, are also 6, they can now be used to fix the v-translations completely. Note that the
invariant constraints are canonically given, whereas the structural ones require a choice.

A few remarks are now in order (see [15] for their proofs):

(1) Since the structural constraint completely fixes the v-transformations, the space S of
pre-boundary fields satisfying it is symplectomorphic to the space of boundary fields.

(2) On S (12 local degrees of freedom) we still have to impose the 10 local constraints14

edωe = 0, eFω +
1

3!
Λe3 = 0.

These constraints are first class [15], and we are then left with the expected 2 local
physical degrees of freedom of four-dimensonal gravity.

(3) The constraints may be written in terms of Lagrange multipliers c and µ as

Lc =

∫
Σ

cedωe, Jµ =

∫
Σ

µ

(
eFω +

1

3!
Λe3 = 0

)
. (10)

It turns out that “on shell,” i.e., upon the constraints, L generates the internal gauge
transformations and J the diffeomorphisms (including the remnant of the transversal
ones).

(4) One may also reduce by stages. One possibility is to impose edωe = 0 and to mod out
by gauge transformations. The resulting space, with 6 local degrees of freedom, is sym-
plectomorphic to the phase space of the Einstein–Hilbert formulation (the “cotangent
bundle” of the space of boundary metrics). The remaing constraints eFω + 1

3!Λe
3 = 0

produce the energy and momentum constraints. Another possibility is to split the Lie al-
gebra of orthogonal transformations into two 3-dimensional subalgebras. The symplectic
reduction with respect to one of the summands yields Ashtekar’s formulation [1].

Remark 6. Note that the Hamiltonian vector fields of L and J in (10) depend on the actual choice
of the structural constraints and may be not very explicit if the choice is not optimal. This is not
a serious problem for the classical considerations above, and for this reason no attempt to find

12If we denote by δv a variation along v, we get

δv(eFω) = edωv = dω(ev)− dωe v.

The first term vanishes because ev = 0 and the second because we assume dωe = 0.
13This is for example the case when M = B × [0, 1], where [0, 1] is an interval, and e is assumed to produce a

metric for which B × {0} and N × {1} are space-like.
14These constraints look like the restriction to the boundary of the Euler–Lagrange equations, except e∧

cannot be eliminated from either expression. Note also that now part of the components of ω are constrained, so
these constraints are only formally equal to the restriction of the Euler–Lagrange equations.
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an optimal choice was made in [15]; however, a non optimal choice is inconvenient for concrete
computations as well as for further considerations like, e.g., the explicit BFV description of the
theory.

2.3. An optimal choice of structural constraints. The main result in this paper is to present
a choice of structural constraints and how to use it to produce the BFV data associated to the
reduced phase space of Palatini–Cartan theory (see Section 5). A related explicit choice, in the
context of Dirac’s formulation, has been presented in [23], with its extension to higher dimension
discussed in [24] (unrelated to BFV).

First of all we choose a section en of V|Σ that is a completion of the basis e1, e2, e3 (here
1, 2, 3 denote indices of boundary coordinates). Note that in a neighborhood of a given e in the
space of pre-boundary fields we may choose en once and for all independently of the e’s in the
neighborhood. This done, we write the structural constraints as

endωe = eσ (11)

for some unspecified one-form σ taking values in V|Σ. Note that we have 18 equations with 12
unspecified parameters σ, so in total we have indeed 6 constraints.

We will show that this choice of structural constraint fixes the v-translations and that, together
with the invariant constraint edωe = 0, it produces the full constraint dωe = 0, which is necessary
for the v-invariance of eFω + 1

3!Λe
3 = 0. Moreover, we will show that this choice actually makes

the Hamiltonian vector fields of L and J in (10) explicit enough to allow writing down the BFV
action of the theory. Finally, it will allow us to extend the result in the presence of a cosmological
term and to higher dimensions.

Remark 7. Observe that, although not necessary, one may interpret the linearly independent
system (e1, e2, e3, en) as a coframe in a neighborhood of Σ in M and the structural constraint
as one of the remaining Euler–Lagrange equations, with σ interpreted as the transversal compo-
nents of dωe. Viewed this way, the structural constraint (11) also immediately shows that the
transversal Euler–Lagrange equations (the evolution equations) may actually be solved.

3. Technical results

In this section we collect some technical lemmas that will be useful throughout the paper. We
postpone the proofs of lemmas 8, 9 and 10 to Appendix A. Let us fix the notation. From now on
we will use the notation V also for its restriction to the boundary. For dim(M) = N = dim(Vx),
on

Ωi,j := Ωi
(
M,
∧jV) Ωi,j∂ := Ωi

(
Σ,
∧jV)

we define the linear maps:

W
(i,j)
k : Ωi,j −→ Ωi+k,j+k (12)

X 7−→ X ∧ e ∧ · · · ∧ e︸ ︷︷ ︸
k−times

W
∂,(i,j)
k : Ωi,j∂ −→ Ωi+k,j+k∂ (13)

X 7−→ X ∧ e ∧ · · · ∧ e︸ ︷︷ ︸
k−times

.

The properties of these maps will be clarified by the following results. They will turn out to be
crucial in shaping the boundary structure of Palatini–Cartan theory. We will consider elements
in Ωi,j and Ωi,j∂ to have total degree i+ j and the wedge product, which we implicitly use in the
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formulas below, defines a graded commutative associative algebra Ω•,• with respect to the total
degree.15

Lemma 8. Let N = dim(M) ≥ 4. Then

(1) W
(2,1)
N−3 is bijective;

(2) dimKerW
(2,2)
N−3 6= 0.

Lemma 9. The maps W
∂,(i,j)
k have the following properties for N ≥ 4:

(1) W
∂,(2,1)
N−3 is surjective;

(2) W
∂,(1,1)
N−3 is injective;

(3) W
∂,(1,2)
N−3 is surjective;

(4) dim KerW
∂,(1,2)
N−3 = dim KerW

∂,(2,1)
N−3 ;

(5) W
∂,(2,1)
N−4 is injective. (N ≥ 5)

We can also define a map

% : Ω1,2
∂ −→ Ω2,1

∂

X 7−→ [X, e].

It has the following property:

Lemma 10. If g∂ , as defined in (9), is nondegenerate, then %|
KerW

∂,(1,2)
N−3

is injective.

Remark 11. Some of the properties in Lemmas 8, 9 and 10 have already been proven in [15] for
N = 4. In Appendix A we will follow a similar strategy for their proofs, adapting them to the
different dimensions. In [15, Lemma 4.12], a map similar to % was used, denoted by φe, which is

the restriction of % to the kernel KerW
∂,(1,2)
1 , composed with the projection p2,1 to KerW

∂,(2,1)
1 ,

that is to say φe ≡ p(2,1) ◦ %|kerW
∂,(1,2)
1

.

Remark 12. Throughout the paper we will refer to the dimensions (as C∞ modules) of the spaces
Ωi,j as the number of degrees of freedom of the space. Note that this dimension is also the same

as the rank of the typical fibre. Hence for example dim(Ωi,j) := dim
∧i

(T ∗xM)×
∧j Vx =

(
N
i

)(
N
j

)
.

Recalling the definition of en in Section 2.3 as a section of V|Σ that is a completion of the
basis e1, e2, e3, we can state the following:

Lemma 13. Let α ∈ Ω2,1
∂ . Then

α = 0 ⇐⇒

{
eN−3α = 0

ene
N−4α ∈ ImW

∂,(1,1)
N−3

. (14)

Proof. We first note that the second requirement corresponds to the existence of a σ ∈ Ω1,1
∂ such

that ene
N−4α = eN−3σ. Let now I ⊂ R be an interval and let xn be the coordinate along it. We

define M̃ = Σ× I and rewrite (14) as conditions on the pullbacks of e, en, σ and α to M̃ , which

we will keep denoting with the same letters. We now define the following forms on M̃ :

E = eN−3 + ene
N−4dxn, A = α+ σdxn.

Hence the system (14) corresponds to the single equation E ∧ A = 0. Since en has been chosen

to be linearly independent from e as vectors in V, E is an isomorphism TM̃ → V. Hence we can
use Lemma 8.(1) and deduce that

E ∧ · : Ω2(M̃,V)→ ΩN−1(M̃,
∧N−2 V)

15For α ∈ Ωi,j and β ∈ Ωk,l we have α ∧ β = (−1)(i+j)(k+l)β ∧ α. In particular e is an even element of Ω•,•.
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is injective. Hence A = 0, which in turn implies α = 0. X

Corollary 14.

dωe = 0 ⇐⇒

{
eN−3dωe = 0

ene
N−4dωe ∈ ImW

∂,(1,1)
N−3

.

Proof. Trivial application of Lemma 13 to α = dωe. X

Corollary 15. If g∂ is nondegenerate, the map

χ : KerW
∂,(1,2)
N−3 → Ω

(N−2,N−2)
∂

v 7→ ene
N−4[v, e]

is injective and in particular

Imχ ∩ ImW
∂,(1,1)
N−3 = {0}. (15)

Proof. Consider 0 6= v ∈ KerW
∂,(1,2)
N−3 , i.e. such that eN−3v = 0. We get

eN−3[v, e] = [eN−3v, e]− v[eN−3, e] = (N − 3)veN−4[e, e] = 0.

Suppose now by contradiction that ene
N−4[v, e] ∈ ImW

∂,(1,1)
N−3 ; then, applying lemma 13 to

α = [v, e], we get [v, e] = 0. From Lemma 10 we know that if g∂ is nondegenerate, [v, e] 6= 0
which contradicts the previous assertion. X

Lemma 16. Let β ∈ ΩN−2,N−2
∂ . If g∂ is nondegenerate, there exist a unique v ∈ KerW

∂,(1,2)
N−3

and a unique γ ∈ Ω1,1
∂ such that

β = eN−3γ + ene
N−4[v, e].

Proof. From Lemma 9.(2) and Lemma 9.(4) we know that W
∂,(1,1)
N−3 is injective and that the sum

of the dimensions of KerW
∂,(1,2)
N−3 and of ImW

∂,(1,1)
N−3 agrees with dimension of ΩN−2,N−2

∂ . Using

Corollary 15, we deduce that ΩN−2,N−2
∂ is the direct sum of Imχ and ImW

∂,(1,1)
N−3 . Hence every

β ∈ ΩN−2,N−2
∂ can be written as β = eN−3γ+ θ with γ ∈ Ω1,1

∂ and θ = ene
N−4[v, e]. Uniqueness

of v and γ follows from the injectivity of χ and W
∂,(1,1)
N−3 . X

4. Constraint analysis of Palatini–Cartan theory in four dimensions

In this section we analyse the structural and invariant constraints of gravity in the Palatini–
Cartan formulation for N = 4, as discussed in Section 2.2. In Section 6 we will extend this
analysis to N > 4. We will assume henceforth that g∂ , as defined in (9), is nondegenerate. The
degenerate case will be analysed in [6].

4.1. An optimal structural constraint. The starting point of our analysis is the geometric
phase space F ∂PC , described in full detail in [15] and recalled in Section 2.2. The classical fields of

the theory are then e ∈ Ω1
nd(Σ,V) — i.e Ω1,1

∂ plus the nondegeneracy condition that the induced
morphism TΣ → V should be injective— and the equivalence class of a connection ω ∈ A(Σ)
(whereA(Σ) is the restriction ofA(M) to the boundary) under the e-dependent relation ω ∼ ω+v
for v such that e ∧ v = 0. We denote this equivalence class and the quotient space it belongs to
by [ω] ∈ Ared(Σ). The symplectic structure is given by

$ =

∫
Σ

eδeδ[ω]. (16)

In this section we fix a convenient representative for this equivalence class.
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As in Section 2.3 we choose a section of V|Σ completing the image of e : TΣ → V to a basis.
Corollary 14 shows that the constraint dωe = 0 splits into the invariant constraint edωe = 0 and
the constraint

endωe ∈ ImW
∂,(1,1)
1 , (17)

which can then be taken as a choice of structural constraint. We prove that Equation (17) does
not impose any condition on [ω] ∈ Ared(Σ) — but it fixes a unique representative of the class:
In particular we show that given [ω] there exists a unique ω ∈ [ω] satisfying (17). Later on we
will use such representative to define the constraint of the theory.

Theorem 17. Suppose that g∂ , the metric induced on the boundary, is nondegenerate. Given
any ω̃ ∈ Ω1,2, there is a unique decomposition

ω̃ = ω + v (18)

with ω and v satisfying

ev = 0 and endωe ∈ ImW
∂,(1,1)
1 . (19)

Proof. Let ω̃ ∈ Ω1,2
∂ . From Lemma 16 we deduce that there exist unique σ ∈ Ω1,1

∂ and v ∈
KerW

∂,(1,2)
1 such that

endω̃e = eσ + en[v, e].

We define ω := ω̃ − v. Then ω and v satisfy (18) and (19).

For uniqueness, suppose that ω̃ = ω1 + v1 = ω2 + v2 with evi = 0 and endωie ∈ ImW
∂,(1,1)
1

for i = 1, 2. Hence

endω1e− endω2e = en[v2 − v1, e] ∈ ImW
∂,(1,1)
1 .

Hence from Lemma 13 and Lemma 16 (for which we need nondegeneracy of g∂), we deduce

v2 − v1 = 0, since v2 − v1 ∈ KerW ∂,(1,2)
1 . X

Remark 18. A decomposition similar to (18) was used in [15, Remark 4.7], for a generic comple-

ment of KerW
∂,(1,2)
1 . Theorem 17 shows an explicit choice of a complement which will turn out

to be particularly convenient in what follows.

Corollary 19. The field ω in the decomposition (18) depends only on the equivalence class
[ω] ∈ Ared(Σ).

Proof. Let ω̃1, ω̃2 ∈ [ω]. Hence ω̃1 − ω̃2 = ṽ ∈ KerW
∂,(1,2)
1 . Applying Theorem 17 we get ω1, v1,

ω2, v2 such that v1, v2 ∈ KerW
∂,(1,2)
1 and

ω̃1 = ω1 + v1 endω1
e ∈ ImW

∂,(1,1)
1

ω̃2 = ω2 + v2 endω2
e ∈ ImW

∂,(1,1)
1 .

Subtracting these equations we get ω2 − ω1 = v1 − v2 − ṽ ∈ KerW
∂,(1,2)
1 together with en[ω1 −

ω2, e] ∈ ImW
∂,(1,1)
1 . Hence, from Lemma 16, we deduce ω1 = ω2. X

4.2. Poisson brackets of constraints. The restriction of the Euler–Lagrange equations to
the boundary does not produce a well defined set of constraints in the geometric phase space
FPC , as they are not given by basic functions with respect to the pre-symplectic reduction

πPC : F̃PC −→ FPC (see Remarks 4 and 5).
However, fixing a representative of the equivalence class of ω by imposing the structural

constraint (17) in F̃PC (thus constructing a section of the map πPC) allows us to consider the
restrictions of the Euler–Lagrange equations to the boundary and to construct a set of constraints
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on the geometric phase space. Moreover, we will see that these constraints turn out to be of first
class (i.e. they define a coisotropic submanifold with respect to the symplectic form (16)).

Starting from the functions defined in (10), we consider the following functions by splitting
Rµ into two separate constraints Pξ and Hλ by expanding µ = ιξe+ λen. Notice that with this
choice of µ the cosmological term will appear only in the constraint with λ, since ιξe

4 = 0 on the
boundary. We furthermore add to Pξ a term proportional to the invariant constraint edωe with
the help of a reference connection ω0 in order to simplify computations (see Remark 21):16

Lc =

∫
Σ

cedωe (20a)

Pξ =

∫
Σ

ιξeeFω + ιξ(ω − ω0)edωe (20b)

Hλ =

∫
Σ

λen

(
eFω +

1

3!
Λe3

)
(20c)

where c ∈ Ω0,2
∂ [1], ξ ∈ X[1](Σ) and λ ∈ Ω0,0

∂ [1] are (odd) Lagrange multipliers and the notation
[1] denotes that the fields are shifted by 1 and are treated as odd variables.

Remark 20. We use odd Lagrange multipliers c, ξ and λ and we shift their degree by one, to
be consistent with the subsequent construction of the BFV action, where we embed our space
of fields into a graded manifold, but also in order to simplify the proof of Theorem 22 slightly.
However, one could just as well formulate constraints (20) using even Lagrange multipliers, and
the results of the following Theorem 22 would not change, upon antisymmetrisation of brackets:
{Lc, Lc′} = Lc(Lc′) − Lc′(Lc), where L denotes the Hamiltonian vector field of Lc (see [15] for
comparison), and similarly for the other constraints.

Remark 21. The second term in Pξ does not change the constrained set but largely simplifies the
computation of the Hamiltonian vector fields and, consequently, of the Poisson brackets. Indeed,
one could just consider Pξ =

∫
Σ
ιξeeFω and perform a similar analysis to the one presented in

[15], where the variation δω is subject to some constraint. Indeed, in section 5.3 we will show
how to build a covariant expression for the BFV action (36), which does not require the choice
of a reference connection ω0.

We denote with Lωξ the covariant Lie derivative along the odd vector field ξ with respect to a
connection ω:

LωξA = ιξdωA− dωιξA A ∈ Ωi,j∂ .

Theorem 22. Let g∂ be nondegenerate on Σ. Then, the functions Lc, Pξ, Hλ are well defined
on F ∂PC and define a coisotropic submanifold with respect to the symplectic structure $PC . In
particular they satisfy the following relations

{Lc, Lc} = −1

2
L[c,c] {Pξ, Pξ} = 1

2P[ξ,ξ] − 1
2LιξιξFω0

(21a)

{Lc, Pξ} = LL
ω0
ξ c {Lc, Hλ} = −PX(a) + LX(a)(ω−ω0)a −HX(n) (21b)

{Hλ, Hλ} = 0 {Pξ, Hλ} = PY (a) − LY (a)(ω−ω0)a +HY (n) (21c)

where X = [c, λen], Y = Lω0

ξ (λen) and Z(a), Z(n) are the components of Z ∈ {X,Y } with respect

to the frame (ea, en).

16These constraints are a slightly modified but equivalent version of those proposed in [15], defined on the
geometric phase space using the ω ∈ [ω] defined in Theorem 17, hence satisfying (17).
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Remark 23. This result improves on the results of [15, Theorem 4.22], since the constraints are
manifestly independent of representatives of an equivalence class [ω], and because it allows us
to present more explicit expressions for the Poisson brackets of constraints. Theorem 22 holds
verbatim for higher dimensional generalisations of the theory as well (see Section 6).

Proof. The constraints are well defined on F ∂PC because of the definition and properties of ω
coming from Theorem 17.

In order to compute their Poisson brackets, we should first find their Hamiltonian vector fields.
We begin by varying the constraints. The variation of ω is constrained by (17). However, since

(17) imposes a constraint only on the part of ω in the kernel of W
∂,(1,2)
1 , it does not impose

any condition on eδω. In the following computation we can always express the variation of the
constraints in terms of eδω; hence the Hamiltonian vector fields are well defined and no other
restriction has to be taken into account. The variations of Lc, Pξ, Hλ are respectively:

δLc =

∫
Σ

−1

2
c[δω, ee] +

1

2
cdωδ(ee) =

∫
Σ

[c, e]eδω + dωceδe;

δPξ =

∫
Σ

ιξ(eδe)Fω −
1

2
ιξ(ee)dωδω + ιξδωedωe−

1

2
ιξ(ω − ω0)[δω, ee]

+
1

2
ιξ(ω − ω0)dωδ(ee)

=

∫
Σ

−eδeιξFω +
1

2
dωιξ(ee)δω −

1

2
δωιξdω(ee) +

1

2
δω[ιξ(ω − ω0), ee]

+
1

2
dωιξ(ω − ω0)δ(ee)

=

∫
Σ

−eδeιξFω − (Lωξ e)eδω + eδω[ιξ(ω − ω0), e] + dωιξ(ω − ω0)eδe

=

∫
Σ

−eδe(Lω0

ξ (ω − ω0) + ιξFω0)− (Lω0

ξ e)eδω;

δHλ =

∫
Σ

λenδeFω +
1

2
Λλene

2δe− λenedωδω

=

∫
Σ

λenδeFω +
1

2
Λλene

2δe+ dω(λen)eδω + λendωeδω

=

∫
Σ

λenδeFω +
1

2
Λλene

2δe+ dω(λen)eδω + λσeδω.

In the last computation we used (17) with σ := W
∂,(1,1)
1

−1
(endωe). Hence, the components of

the Hamiltonian vector fields of Lc and Pξ are

Le = [c, e] Lω = dωc (22)

Pe = −Lω0

ξ e Pω = −Lω0

ξ (ω − ω0)− ιξFω0 (23)

where, e.g., Le ≡ L(e), with ιL$PC = δLc. The components of the Hamiltonian vector field of
Hλ are described by

He = dω(λen) + λσ eHω = λenFω +
1

2
Λλene

2. (24)

The second equation, together with the requirement that H preserves the structural constraint
(17), uniquely determines Hω. However, we do not need an explicit expression for it, since in the
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computations we will only need eHω. We can now compute the brackets between the constraints:

{Lc, Lc} =

∫
Σ

[c, e]edωc =

∫
Σ

1

2
[c, ee]dωc

=

∫
Σ

1

4
dω[c, c]ee =

∫
Σ

−1

2
[c, c]edωe = −1

2
L[c,c];

{Lc, Pξ} =

∫
Σ

−[c, e]e(Lω0

ξ (ω − ω0) + ιξFω0
)− dωceLω0

ξ e

=

∫
Σ

1

2

(
Lω0

ξ c[ω − ω0, ee] + c[ω − ω0,L
ω0

ξ (ee)]− c[ee, ιξFω0
]− dωLω0

ξ (ee)c
)

=

∫
Σ

1

2
Lω0

ξ c[ω, ee]−
1

2
dcιξd(ee) +

1

2
[ιξω0, d(ee)]c

=

∫
Σ

1

2
Lω0

ξ cdω(ee) =

∫
Σ

Lω0

ξ cedωe = LL
ω0
ξ c;

{Pξ, Pξ} =

∫
Σ

1

2
Lω0

ξ (ee)Lω0

ξ (ω − ω0) +
1

2
Lω0

ξ (ee)ιξFω0

♦♣
=

∫
Σ

1

4
Lω0

[ξ,ξ](ee)(ω − ω0) +
1

4
[ιξιξFω0 , ee](ω − ω0) +

1

2
Lω0

ξ (ee)ιξFω0

=

∫
Σ

1

4
ι[ξ,ξ]dω0

(ee)(ω − ω0) +
1

4
dω0

ι[ξ,ξ](ee)(ω − ω0)

+
1

4
[ιξιξFω0 , ee](ω − ω0) +

1

2
Lω0

ξ (ee)ιξFω0

♦
=

∫
Σ

1

4
ι[ξ,ξ]dω(ee)(ω − ω0)− 1

4
ι[ξ,ξ][ω − ω0, ee](ω − ω0)

+
1

4
ι[ξ,ξ](ee)dω0

(ω − ω0) +
1

4
[ιξιξFω0

, ee](ω − ω0) +
1

2
Lω0

ξ (ee)ιξFω0

♥
=

∫
Σ

1

4
dω(ee)ι[ξ,ξ](ω − ω0)− 1

4
[ω − ω0, ee]ι[ξ,ξ](ω − ω0)− 1

4
ι[ξ,ξ](ee)Fω0

+
1

4
ι[ξ,ξ](ee)Fω −

1

8
ι[ξ,ξ](ee)[ω0 − ω, ω0 − ω]

+
1

4
[ιξιξFω0

, ee](ω − ω0) +
1

2
Lω0

ξ (ee)ιξFω0

♠
=

∫
Σ

1

4
dω(ee)ι[ξ,ξ](ω − ω0) +

1

4
ι[ξ,ξ](ee)Fω +

1

4
dω0

(ee)ιξιξFω0

+
1

2
dω0ιξ(ee)ιξFω0 −

1

4
ιξιξFω0 [ω − ω0, ee]

+
1

2
(ιξdω0(ee)− dω0ιξ(ee)) ιξFω0

=

∫
Σ

1

4
dω(ee)ι[ξ,ξ](ω − ω0) +

1

4
ι[ξ,ξ](ee)Fω −

1

4
dω(ee)ιξιξFω0

=
1

2
P[ξ,ξ] −

1

2
LιξιξFω0

.



BOUNDARY BFV ACTION IN PC FORMALISM 15

In these computations we used integration by parts (♦) and the following identities (for a proof
of the second see [13, Lemma 18]):

(♠)
1

2
ι[ξ,ξ]A = −1

2
ιξιξdω0A+ ιξdω0ιξA−

1

2
dω0ιξιξA ∀A ∈ Ωi,j∂

(♣) Lω0

ξ Lω0

ξ B =
1

2
Lω0

[ξ,ξ]B +
1

2
[ιξιξFω0

, B] ∀B ∈ Ωi,j∂

(♥) dω0
(ω0 − ω) = Fω0

− Fω +
1

2
[ω0 − ω, ω0 − ω].

{Lc, Hλ} =

∫
Σ

[c, e]λenFω +
1

2
[c, e]Λλene

2 + dωce(dω(λen) + λσ)

=

∫
Σ

[c, e]λenFω +
1

3!
[c, e3]Λλen + dωcdω(λene)

=

∫
Σ

−[c, λen]eFω −
1

3!
Λ[c, λen]e3

=

∫
Σ

−[c, λen](a)eaeFω − [c, λen](n)eneFω −
1

3!
Λ[c, λen](n)ene

3

= −P[c,λen](a) + L[c,λen](a)(ω−ω0)a −H[c,λen](n) ;

Finally we have

{Hλ, Hλ} =

∫
Σ

(dω(λen) + λσ)

(
λenFω +

1

2
Λλene

2

)
=

=

∫
Σ

dωλen

(
λenFω +

1

2
Λλene

2

)
− λdωen

(
λenFω +

1

2
Λλene

2

)
= 0,

since λλ = 0 and enen = 0, and

{Pξ, Hλ} =

∫
Σ

−Lω0

ξ eλenFω −
1

2
ΛLω0

ξ eλene
2

−
(

Lω0

ξ (ω − ω0) + ιξFω0

)
e(dω(λen) + λσ)

=

∫
Σ

−Lω0

ξ eλenFω −
1

3!
ΛLω0

ξ e
3λen

−
(

Lω0

ξ (ω − ω0) + ιξFω0

)
dω(eλen)

=

∫
Σ

eLω0

ξ (λen)Fω +
1

3!
Λe3Lω0

ξ (λen) + eλenLω0

ξ Fω

+ (dωιξ(ω − ω0)− ιξFω) dω(eλen)

=

∫
Σ

eLω0

ξ (λen)Fω +
1

3!
Λe3Lω0

ξ (λen) + eλenLω0

ξ Fω

− [Fω, ιξ(ω − ω0)]eλen − Lωξ Fωeλen

=

∫
Σ

Lω0

ξ (λen)eFω +
1

3!
Λe3Lω0

ξ (λen)

= PL
ω0
ξ (λen)(a) +HL

ω0
ξ (λen)(n) − LL

ω0
ξ (λen)(a)(ω−ω0)a

,

where we used that Lω0

ξ Fω − Lωξ Fω = [ιξ(ω0 − ω), Fω]. This shows that the relations (21) hold
and, therefore, that the constraints are first class.

X
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Remark 24. Theorem 22, in particular, shows that on time-like or space-like boundaries the
constraints (20) are first class. Counting the number of components of the Lagrange multipliers
c, ξ and λ we deduce that there are 10 local constraints, while the number of independent
components of the conjugate fields e and ω is 12. Hence we recover the classical result of having
2 local physical degrees of freedom.

Remark 25. From the expressions of the Hamiltonian vector fields of the constraints (22), (23)
and (24) we deduce that the constraint Lc describes the action of the gauge transformations of the
theory, while the constraints Pξ and Hλ describe the action of the diffeomorphisms, respectively
tangent and transversal to the boundary.

5. Palatini–Cartan theory and its BFV data

This section is not required by Section 6.1 and can therefore be skipped by readers that are
not interested in the BFV formalism but only wish to see the higher dimensional generalisation
of the construction of the reduced phase space. It will be however required by Section 6.2, where
we will discuss the higher dimensional version of the BFV formalism.

5.1. From the reduced phase space to BFV. We start with a short overview of the BFV
formalism. The problem we wish to address is the symplectic reduction of a coisotropic sub-
manifold. For simplicity, as this is also the case at hand in this paper, we will consider only the
situation where the submanifold is defined in terms of global constraints17. More precisely, the
starting point are a symplectic manifold (M,$) and a collection {φi} of independent, differen-
tially independent constraints; their common zero locus C = {x ∈ M : φi(x) = 0 ∀i} is then a
submanifold.18 In addition, the constraints are assumed to be of first class: i.e., their Poisson
brackets vanish on C, or, equivalently, they satisfy

{φi, φj} = fkijφk, (25)

where the {fkij}s are functions on M (we assume a sum over repeated indices). The restriction
of $ to C becomes degenerate, but one can easily show that its kernel, called the characteristic
distribution, is spanned by the Hamiltonian vector fields Xi of the constraints φi. As a conse-
quence of (25), the characteristic distribution is involutive. The symplectic reduction C of C is
the quotient, which we temporarily assume to be smooth, of C by its characteristic distribution,
endowed with the unique symplectic form $ whose pullback to C is the restriction of $.

Since C is very often not smooth in applications, it is better to resort to a different, more
flexible description. Algebraically, we have that C∞(C) = C∞(C)inv, where inv means invariant
under the Hamiltonian vector fields Xi. In turn, C∞(C) = C∞(M)/I, where I = spanC∞(M){φi}
is the vanishing ideal of C. Therefore, we have C∞(C) = (C∞(M)/I)inv. One can show that
this algebra inherits a Poisson bracket which, in the smooth case, is also the one induced by $.
The Poisson algebra (C∞(M)/I)inv is defined also if C is not smooth and it may be tempting
to take it as a good replacement for C. The problem is that often this algebra is very poor (for
example, if C is not Hausdorff, this algebra is just R).

A better way to proceed is to look for a cohomological description of the symplectic quotient.
This is what is achieved by the BFV formalism. Namely, one first adds new odd variables ci

of degree (ghost number) +1, called the ghosts, one for each constraint, and their momenta

c†i (a.k.a. the antighosts),which are also odd and have degree −1. One extends the original

17This in general requires an appropriate version of the implicit function theorem, but we will effectively work
within an algebraic setting.

18For notational simplicity, we assume here a discrete family of constraints, even though in the case of field
theory we will need a continuos family. In that case the sums will be replaced by integrals.
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symplectic manifold (M,$) to a graded symplectic manifold M × T ∗W , where W is the odd
vector space whose coordinates are the cis, with symplectic form

$ → $ +

∫
Σ

δc†i δc
i.

Next one introduces the BFV action, an odd function of degree 1,

S =

∫
Σ

ciφi +
1

2
fkijc

†
kc
icj +R,

where R is a function of higher degree in the ghost momenta c†i such that {S, S} = 0 (the BFV
master equation). It has been proved [3, 2, 27] that one can always find such a correction R. The
Hamiltonian vector field Q of S is odd, of degree 1, and satisfies [Q,Q] = 0 (such a vector field
is called cohomological because it acts as a differential on the algebra of functions). We have

Qc†i = φi + · · · ,
Qf = ciXi(f) + · · · ,

where f is a function on M and · · · denotes terms depending on the ghost momenta. From this
we see that, up to these higher terms, the image of Q contains the vanishing ideal I and the
kernel of Q selects the invariant functions. One can actually show [3, 2, 27] that in degree zero
there is not more than this: The cohomology of Q in degree zero is isomorphic to (C∞(M)/I)inv

as a Poisson algebra. The idea of the BFV formalism is then to replace the original, possibly
singular symplectic reduction with the “BFV manifold”

(M × T ∗W,$ +

∫
Σ

δc†i δc
i, S).

The complex (C∞(M × T ∗W ), Q) is the sought for cohomological resolution of the symplectic
reduction of C.19

Note that there is some freedom in the construction of the BFV data, but one can show [27]
that the solution is unique up to symplectomorphisms compatible with the BFV actions. A
particularly good solution is when the correction term R vanishes. This is not always possible,
but it is so in some cases. The most important one is when one can choose the constraints in
such a way that the {fkij}s are constant (this means that the constraints are assembled into an
equivariant momentum map and that the reduction is actually an example of Marsden–Weinstein
reduction). In this case the BFV construction goes often under the name of BRS [19].

It may however happen that the correction R vanishes beyond the BRS case. We will see that
this is actually what occurs in the PC case at hand. A similar phenomenon was observed in the
BFV treatment of Einstein–Hilbert gravity [12].

Remark 26. The BFV formalism was introduced by Batalin and Vilkovisky in [3] and by Batalin
and Fradkin [2]. Stasheff [27] gave a mathematical treatment with formal proofs of existence and
uniqueness, based on homological perturbation theory, and treated a more general case based on
Lie–Rinehart algebras. Schätz [26] extended the result to general coisotropic submanifolds, not
necessarily given in terms of constraints. In [10] the relation between the BV formalism in the
bulk of a field theory with its BFV formalism on the boundary was clarified; in [9] a procedure to
recover the BFV boundary data from the BV bulk data was given; several examples, including
Yang–Mills, Chern–Simons and BF theory were treated. The case of Einstein–Hilbert gravity
was successfully treated in [12]. However, in [13] it was shown that the natural implementation

19Indeed, Q is a deformation of a combination of the Koszul–Tate complex, which gives a cohomological
resolution of C as a submanifold of M , and of the Chevalley–Eilenberg complex of the Lie algebroid naturally
associated to the conormal bundle of C. This deformation is compatible with the symplectic structure.
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of the BV bulk formalism for four-dimensional Palatini–Cartan theory does lead to singular BFV
boundary data.

Remark 27. The BFV formalism is not only introduced to provide a cohomological resolution of
possibly singular symplectic reductions, but also as a way to perform quantisation. The idea is
to quantise the extended graded symplectic space M×T ∗W to some graded Hilbert space (which

may be reasonably easy, since often M is itself a cotangent bundle) and to find an operator Ŝ

that quantises the BFV action S and that satisfies [Ŝ, Ŝ] = 0. The master equation {S, S} = 0
ensures that this is possible at the lowest order in ~. If one can achieve this condition at all
orders, then one can define the Hilbert space that quantises the symplectic reduction as the
cohomology in degree zero of Ŝ. There may be obstructions (anomalies) to achieve this program.

In [11] a procedure was introduced that, when successful, allows constructing the operator Ŝ
from the perturbative quantisation of the bulk BV data and, at the same time, a state for the
bulk theory in the cohomology of such operator.

5.2. BFV Structure of Palatini–Cartan theory. From the constraints and their brackets it
is possible extend the space of fields to a graded symplectic manifold by promoting the Lagrange
multipliers to ghosts and adding ghost momenta. The following Theorem 29 shows that the näıve
guess for a BFV action, containing only the constraints (constant term in the ghost momenta)
and the information on their Poisson brackets (linear term in the ghost momenta) already satisfies
the BFV master equation.

Remark 28. At a physical level, the Lagrange multipliers assume the meaning of symmetry
generators of the system. In particular the field c ∈ Ω0,2

∂ represents the internal gauge symmetry
(recall that we are using the identification so(3, 1) ∼= ∧2V); the vector field ξ ∈ X(Σ) represents
the vector fields parametrising local diffeomorphisms tangent to the boundary; the scalar field λ ∈
C∞[1](Σ) might in turn be thought of as the parameter representing the local diffeomorphisms
in the transversal direction. This becomes evident when considering the classical part of the
cohomological vector field Q (see Equation (31), below).

Theorem 29. Let g∂ be nondegenerate on Σ. Let F be the bundle

F −→ Ω1
nd(Σ,V), (26)

with local trivialisation on an open UΣ ⊂ Ω1
nd(Σ,V)

F ' UΣ ×Ared(Σ)⊕ T ∗
(

Ω0,2
∂ [1]⊕ X[1](Σ)⊕ C∞[1](Σ)

)
, (27)

and fields denoted by e ∈ UΣ and ω ∈ Ared(Σ) in degree zero, c ∈ Ω0,2
∂ [1], ξ ∈ X[1](Σ) and

λ ∈ Ω0,0[1] in degree one, c† ∈ Ω3,2
∂ [−1], λ† ∈ Ω3,4

∂ [−1] and ξ† ∈ Ω1,0
∂ [−1]⊗Ω3,4

∂ in degree minus
one, together with a fixed en ∈ Γ(V), completing the image of elements e ∈ UΣ to a basis of V;
define a symplectic form and an action functional on F respectively by

$ =

∫
Σ

eδeδω + δcδc† + δλδλ† + ιδξδξ
†, (28)

S =

∫
Σ

cedωe+ ιξeeFω + ιξ(ω − ω0)edωe+ λen

(
eFω +

1

3!
Λe3

)
+

1

2
[c, c]c†

− Lω0

ξ cc
† +

1

2
ιξιξFω0

c† + [c, λen](a)(ξ†a − (ω − ω0)ac
†) + [c, λen](n)λ†

− Lω0

ξ (λen)(a)(ξ†a − (ω − ω0)ac
†)− Lω0

ξ (λen)(n)λ† − 1

2
ι[ξ,ξ]ξ

† (29)

where e and ω satisfy the additional requirement endωe ∈ ImW
∂,(1,1)
1 . Then the triple (F , $, S)

defines a BFV structure on Σ.



BOUNDARY BFV ACTION IN PC FORMALISM 19

Proof. We have to prove that the action S satisfies the classical master equation. By definition
we have

{S, S} = ιQιQ$.

where Q is the Hamiltonian vector field of S, defined by ιQ$ = δS.
In order to simplify the computation we can divide the action in two parts:

S = S0 + S1

where S0 is independent of the ghost momenta and S1 is linear in them. In particular S0 is the
sum of the constraints and S1 is everything else. We divide the symplectic form too:

$ = $f +$g

where $f =
∫

Σ
eδeδω is the classical part and ωg =

∫
Σ
δcδc† + δλδλ† + ιδξδξ

† is the ghost part.
Finally, we define Q0 to be the part of Q satisfying ιQ0$ = δS0 and Q1 to be the one satisfying
ιQ1$ = δS1.

We can divide the master equation into the corresponding parts:

{S, S} = {S0, S0}f + 2{S0, S1}f + 2{S0, S1}g + {S1, S1}f + {S1, S1}g

where

{S0, S0}f = ιQ0
ιQ0

$f {S0, S1}f = ιQ0
ιQ1

$f (30a)

{S0, S0}g = ιQ0
ιQ0

$g {S0, S1}g = ιQ0
ιQ1

$g (30b)

{S1, S1}f = ιQ1
ιQ1

$f {S1, S1}g = ιQ1
ιQ1

$g. (30c)

This subdivision is particularly convenient, since we can exploit some properties of the action and
prove the master equation piecewise. We first note that {S0, S0}g = 0 since S0 has no antighost
part. Furthermore, by Theorem 29 we have that

{S0, S0}f + 2{S0, S1}g = 0.

The terms {S0, S1}f and {S1, S1}g are linear in the antighost while {S1, S1}f is quadratic in the
antighost. Hence we should prove separately that 2{S0, S1}f + {S1, S1}g = 0 and {S1, S1}f = 0.
For these last two terms we have to do the computation explicitly. We start by computing δS
in order to get Q from the equation ιQ$ = δS.

Note that for X odd, since δen = 0, we have

δX = δ(X(µ)eµ) = δ(X(µ))eµ +X(a)δ(ea)

δ(X(µ)) = (δX)(µ) −X(a)δ(ea)(µ).

The variation of the action is

δS =

∫
Σ

δcedωe−
1

2
c[δω, ee] + dωceδe+

1

2
ιδξ(ee)Fω + ιδξ(ω − ω0)edωe

− eδe(Lω0

ξ (ω − ω0) + ιξFω0)− (Lω0

ξ e)eδω + δλeneFω + λenδeFω+

1

3!
Λδλene

3 +
1

2
Λλene

2δe+ dω(λen)eδω + λσeδω + [δc, c]c† +
1

2
[c, c]δc†
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− ιδξdω0
cc† + δcdω0

ιξc
† − Lω0

ξ cδc
† + ιδξιξFω0

c† +
1

2
ιξιξFω0

δc†

+
(

[δc, λen](a) − [c, δλen](a) − [c, λen](b)δe
(a)
b

)
(ξ†a − (ω − ω0)ac

†)

+ [c, λen](a)(δξ†a − δ(ω − ω0)ac
† − (ω − ω0)aδc

†) + [δc, λen](n)λ†

− [c, δλen](n)λ† − [c, λen](b)δe
(n)
b λ† + [c, λen](n)δλ†(

−(ιδξdω0
(λen))(a) + Lω0

ξ (δλen)(a) + Lω0

ξ (λen)(b)δe
(a)
b

)
(ξ†a − (ω − ω0)ac

†)

− Lω0

ξ (λen)(a)(δξ†a − δ(ω − ω0)ac
† − (ω − ω0)aδc

†)

− (ιδξdω0(λen))(n)λ† + Lω0

ξ (δλen)(n)λ† + Lω0

ξ (λen)(b)δe
(n)
b λ†

− Lω0

ξ (λen)(n)δλ† − δξa(∂aξ
b)ξ†b − δξ

a∂b(ξ
bξ†a)− ξa(∂aξ

b)δξ†b .

This variation contains all the information necessary to construct the cohomological vector field
Q. However δS contains some variation of δω that are constrained by (17) and some other terms
of difficult explicit inversion. For our purposes it is sufficient to have the explicit expressions of
Q0e, Q0ω, Qc, Qλ, Qξ and some information about Q1e, Q1ω (recall that Q0e, Q0ω are the part of
Qe, Qω not containing antighosts, while Q1e, Q1ω contain everything else.

Let us start from Q1e, Q1ω. They are defined through the equation

ιQ1
(eδeδω) =− [c, λen](b)δe

(a)
b (ξ†a − (ω − ω0)ac

†)− [c, λen](a)δ(ω − ω0)ac
†

− [c, λen](b)δe
(n)
b λ† + Lω0

ξ (λen)(b)δe
(a)
b (ξ†a − (ω − ω0)ac

†)

+ Lω0

ξ (λen)(a)δ(ω − ω0)ac
† + Lω0

ξ (λen)(b)δe
(n)
b λ†

Since λ is a scalar function we have that [c, λen](a) = λ[c, en](a) and Lω0

ξ (λen)(a) = Lω0

ξ (λ)e
(a)
n −

λLω0

ξ (en)(a) = −λLω0

ξ (en)(a), since e
(a)
n = 0. We then deduce that every term in Q1e and Q1ω

must be linear in λ. From (30) we have

{S1, S1}f = ιQ1
ιQ1

(eδeδω) = 2eQ1eQ1ω

which contains only terms proportional to λ2 = 0 since λ is an odd scalar function. This proves
{S1, S1}f = 0.

From the above variation of S we can compute directly Q0e, Q0ω, Qc, Qλ, Qξ :

Q0e = [c, e]− Lω0

ξ e+ dω(λen) + λσ

Q0ω = dωc− Lω0

ξ (ω − ω0)− ιξFω0 +W−1
1 (λenFω) +

1

2
Λλene

(31)

Qc =
1

2
[c, c]− Lω0

ξ c+
1

2
ιξιξFω0

−
(

[c, λen](a) − Lω0

ξ (λen)(a)
)

(ω − ω0)a

Qλ = [c, λen](n) − Lω0

ξ (λen)(n)

Qξ = [c, λen](•) − Lω0

ξ (λen)(•) − 1

2
[ξ, ξ]

(32)

where W−1
1 (λenFω) is defined as in (24). The proof of 2{S0, S1}f + {S1, S1}g = 0 is a lengthy

computation fully detailed in Appendix B. X

Remark 30. By setting λ = 0, we can read the action of Q on c and ξ as (a splitting by ω0) of
the Atiyah algebroid structure on TP/O(N − 1, 1) [20], where P is the orthogonal frame bundle
of M restricted to Σ.
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5.3. Alternative variables. The ξ-dependent part of S in (29) contains, in accordance with
(20), a repetition of the invariant constraint edωe = 0 which we have added to simplify the
computations. This term may actually be removed by using the following symplectomorphism
(cf. with [13]):

c′ = c+ ιξ(ω − ω0) ξ
′†
a = ξ†a − (ω − ω0)ac

†

The resulting expressions of the action and symplectic form are:

S =

∫
Σ

c′edωe+ ιξeeFω + λen

(
eFω +

1

3!
Λe3

)
+

1

2
[c′, c′]c† − Lωξ c′c† +

1

2
ιξιξFωc

†

+ [c′, λen](a)ξ
′†
a + [c′, λen](n)λ† − Lωξ (λen)(a)ξ

′†
a

− Lωξ (λen)(n)λ† − 1

2
ι[ξ,ξ]ξ

′†, (33)

$ =

∫
Σ

eδeδω + δc′δc† + δωδ(ιξc
†) + δλδλ† + ιδξδξ

†′ . (34)

Note that the price for the simplication of the action is that primed chart is no longer a
Darboux chart. We can further transform (33) and (34) in order to avoid using components.

Since λ† and ξ†
′

both take value in ∧4V we can write them in terms of the basis (ea, en):

λ† = λ†
(123n)

e1 ∧ e2 ∧ e3 ∧ en;

ξ†
′

a dx
a = ξ†

′

a

(123n)
dxae1 ∧ e2 ∧ e3 ∧ en, a = 1, 2, 3.

Now define the following fields:

xa†a dx
a := ξ†

′

a

(123n)
dxaeb ∧ ec ∧ en a, b, c ∈ {1, 2, 3}, b, c 6= a

l† := λ†
(123n)

e1 ∧ e2 ∧ e3 y† := l† +

3∑
a=1

(−1)axa†a .

Multiplying y† by ea and en gives back the original fields λ† and ξ†
′
: eny

† = −λ†, eay† = −ξ†′a .
Using these properties it is easy to show that we can express the action S and the symplectic

form $ on the new space of fields given by the bundle

F ′ −→ Ω1
nd(Σ,V), (35)

with local trivialisation on an open UΣ ⊂ Ω1
nd(Σ,V)

F ' UΣ ×Ared(Σ)⊕
(

Ω0,2
4,∂ [1]⊕ X[1](Σ)⊕ C∞[1](Σ)

)
⊕ Ω3,2

∂ [−1]⊕ Ω3,3
∂ [−1],

where all the fields are denoted as in Theorem 29 but y† ∈ Ω3,3
∂ [−1]:

S =

∫
Σ

c′edωe+ ιξeeFω + λen

(
eFω +

1

3!
Λe3

)
+

1

2
[c′, c′]c† − Lωξ c′c† +

1

2
ιξιξFωc

†

− [c′, λen]y† + Lωξ (λen)y† +
1

2
ι[ξ,ξ]ey

†, (36)

$ =

∫
Σ

eδeδω + δc′δc† + δωδ(ιξc
†)− δλenδy† + ιδξδ(ey

†). (37)

It is a simple computation to show that this two form is actually nondegenerate.
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Remark 31. Equation (36) is again a covariant version of the BFV action functional. Moreover,
it has the advantage of not including the implicit terms of (33) and satisfies by construction the
classical master equation. It hence provides a good starting point for the AKSZ construction
performed in [5].

6. Generalisation to dim(M) > 4

In this section we generalise the results of the previous sections to dimensions N = dim(M) >
4. The construction is substantially unchanged while a few details have to be fixed. We recall
the main steps and adapt them to the generalisation.

6.1. Extension of the reduced phase space to higher dimensions. The classical fields
of the theory are as in the N = 4 case: a nondegenerate coframe e ∈ Ω1,1

∂ restricted to the

boundary and an equivalence class of connections [ω] ∈ Ared(Σ) where Ared(Σ) is the quotient
under ω ∼ ω + v for v such that eN−3 ∧ v = 0. The symplectic structure of the geometric phase
space is given by

$ =

∫
Σ

eN−3δeδ[ω]. (38)

Let now en be a fixed section of V completing the image of e : TΣ→ V to a basis of V. The
structural constraint is

ene
N−4dωe ∈ ImW

∂,(1,1)
N−3 . (39)

Theorem 32. Suppose that the boundary metric g∂ is nondegenerate. Given any ω̃ ∈ Ω(Σ,∧2V),
there is a unique decomposition

ω̃ = ω + v (40)

with ω and v satisfying

eN−3v = 0 and ene
N−4dωe ∈ ImW

∂,(1,1)
N−3 . (41)

Proof. Let ω̃ ∈ Ω(Σ,∧2V). From Lemma 16 we deduce that there exist unique σ ∈ Ω(Σ,V) and

v ∈ KerW
∂,(1,2)
N−3 such that

ene
N−4dω̃e = eN−3σ + ene

N−4[v, e].

We define ω := ω̃ − v. Then ω and v satisfy (18) and (19).
To prove uniqueness, suppose that ω̃ = ω1 + v1 = ω2 + v2 with eN−3vi = 0 and ene

N−4dωie ∈
ImW

∂,(1,1)
N−3 for i = 1, 2. Hence

ene
N−4dω1e− eneN−4dω2e = ene

N−4[v2 − v1, e] ∈ ImW
∂,(1,1)
N−3 .

Hence from Lemma 13 and 16, we deduce v2 − v1 = 0, since v2 − v1 ∈ KerW ∂,(1,2)
N−3 . X

Corollary 33. The field ω in the decomposition (18) depends only on the equivalence class
[ω] ∈ Ared(Σ).

Proof. Let ω̃1, ω̃2 ∈ [ω]. Hence ω̃1 − ω̃2 = ṽ ∈ KerW
∂,(1,2)
N−3 . Applying Theorem 32 we get ω1, v1,

ω2, v2 such that v1, v2 ∈ KerW
∂,(1,2)
N−3 and

ω̃1 = ω1 + v1 ene
N−4dω1

e ∈ ImW
∂,(1,1)
N−3

ω̃2 = ω2 + v2 ene
N−4dω2

e ∈ ImW
∂,(1,1)
N−3 .

Subtracting these equations we get ω2−ω1 = v1−v2− ṽ ∈ KerW
∂,(1,2)
N−3 and ene

N−4[ω1−ω2, e] ∈
ImW

∂,(1,1)
N−3 . Hence, from (15), we deduce ω1 = ω2. X
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As for N = 4, we consider the following constraints defined on F∂PC using ω ∈ [ω] defined in
Theorem 32, hence satisfying (39):

Lc =

∫
Σ

ceN−3dωe (42a)

Pξ =

∫
Σ

ιξee
N−3Fω + ιξ(ω − ω0)eN−3dωe (42b)

Hλ =

∫
Σ

λen

(
eN−3Fω +

1

(N − 1)!
ΛeN−1

)
, (42c)

and Theorem 22 holds verbatim for these constraints too.

6.2. Extension of BFV data to higher dimensions. Since the the brackets between the
constraints are the same as in the N = 4 case (Theorem 22), the BFV action will have a similar
expression too. For reference purposes, below we write the general version of Theorem 29:

Theorem 34. Let g∂ be nondegenerate on Σ. Let F be the bundle

F −→ Ω1
nd(Σ,V), (43)

with local trivialisation on an open UΣ ⊂ Ω1
nd(Σ,V)

F ' UΣ ×Ared(Σ)⊕ T ∗
(

Ω0,2
∂ [1]⊕ X[1](Σ)⊕ Ω0,0

∂ [1]
)
, (44)

and fields denoted by e ∈ UΣ and ω ∈ Ared(Σ) in degree zero, c ∈ Ω0,2
∂ [1], ξ ∈ X[1](Σ) and

λ ∈ Ω0,0[1] in degree one, c† ∈ ΩN−1,N−2
∂ [−1], λ† ∈ ΩN−1,N

∂ [−1] and ξ† ∈ Ω1,0[−1]⊗ΩN−1,N
∂ in

degree minus one, together with a fixed en ∈ Γ(V), completing the image of elements e ∈ UΣ to
a basis of V; define a symplectic form and an action functional on F respectively by

$ =

∫
Σ

eN−3δeδω + δcδc† + δλδλ† + ιδξδξ
†, (45)

S =

∫
Σ

ceN−3dωe+ ιξee
N−3Fω + ιξ(ω − ω0)eN−3dωe+ λene

N−3Fω

+
1

(N − 1)!
Λλene

N−1 +
1

2
[c, c]c† − Lω0

ξ cc
† +

1

2
ιξιξFω0c

† + [c, λen](n)λ†

+ [c, λen](a)(ξ†a − (ω − ω0)ac
†)− Lω0

ξ (λen)(a)(ξ†a − (ω − ω0)ac
†)

− Lω0

ξ (λen)(n)λ† − 1

2
ι[ξ,ξ]ξ

† (46)

where ω satisfies the additional requirement ene
N−4dωe ∈ ImW

∂,(1,1)
N−3 . Then the triple (F , $, S)

forms a BFV structure on Σ.

The covariant version of the action and symplectic form are

S =

∫
Σ

c′eN−3dωe+ ιξee
N−3Fω + λen

(
eN−3Fω +

1

(N − 1)!
ΛeN−1

)
+

1

2
[c′, c′]c†

− Lωξ c′c† +
1

2
ιξιξFωc

† + [c′, λen]y† − Lωξ (λen)y† − 1

2
ι[ξ,ξ]ey

†, (47)

$ =

∫
Σ

eN−3δeδω + δc′δc† − δωδ(ιξc†) + δλenδy
† + ιδξδ(ey

†). (48)
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Appendix A. Lengthy proofs of Section 3

In this appendix we prove Lemmas 8, 9 and 10.

Proof of Lemma 8. For each of the properties we use the following demonstrative scheme. We
first compute the number of independent equations that a quantity must satisfy in order to lie in
the kernel of the map under consideration. We then compare it to the dimension of the domain.
If they agree, then the function is injective, otherwise comparing it with the dimension of the
codomain we can deduce whether the map is surjective.

(1) Consider W
(2,1)
N−3 : Ω2,1 −→ ΩN−1,N−2 :

the dimension of the spaces are dim Ω2,1 =
(
N
2

)(
N
1

)
and dim ΩN−1,N−2 =

(
N
N−2

)(
N
N−1

)
.

Notice that the two dimensions agree. The kernel of W
(2,1)
N−3 is defined by the following

set of equations:

Xa
µ1µ2

ea ∧ eµ3
∧ · · · ∧ eµN−1

dxµ1dxµ2 . . . dxµN−1 = 0

where we used the vectors ea = e(∂a) as a basis for V. Let now 1 ≤ k ≤ N . Since
{dxµ1dxµ2 . . . dxµN−1} is a basis for ΩN−1(M) we obtain N equations of the form∑

σ

Xa
µσ(1)µσ(2)

ea ∧ eµσ(3) ∧ · · · ∧ eµσ(N−1)
= 0

where σ runs on all permutations of N − 1 elements and 1 ≤ µi ≤ N , µi 6= k for all
1 ≤ i ≤ N − 1. Recall now that ea ∧ eµσ(3) ∧ · · · ∧ eµσ(N−1)

is a basis of ∧N−2V. Hence
we obtain the following equations:

Xk
ij = 0 1 ≤ i, j ≤ N i 6= j, i, j 6= k∑

i 6=k,i 6=j

Xi
ij = 0 ∀1 ≤ j ≤ N j 6= k

Letting now k vary in {1, . . . , N} we obtain the following equations:

Xk
ij = 0 1 ≤ i, j, k ≤ N i 6= j 6= k 6= i∑

i6=k,i 6=j

Xi
ij = 0 ∀j 6= k, 1 ≤ k, j ≤ N.

It is easy to check that these equations are independent. The total number of equations

defining the kernel is then N(N−1)(N−2)
2 + (N − 1)N = (N−1)N2

2 which coincides with

both the dimensions of the domain and codomain. Hence W
(2,1)
N−3 is bijective.

(2) W
(2,2)
N−3 : Ω2,2 → ΩN−1,N−1 cannot be injective since Ω2,2 has N2(N−1)2

4 degrees of free-

dom, while ΩN−1,N−1 has just N2 degrees of freedom and N ≥ 4.

X

Proof of Lemma 9. For each of the properties we use the same scheme of the proof of Lemma 8.

(1) The proof of W
∂,(2,1)
N−3 is analogous to that of W

(2,1)
N−3 with the difference that now k is

fixed to be the transversal direction (conventionally k = N). Hence we get the following
set of equations:

XN
ij = 0 1 ≤ i, j ≤ N − 1 i 6= j∑

i 6=j

Xi
ij = 0 ∀1 ≤ j ≤ N − 1
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which are (N−1)(N−2)
2 + (N − 1) = N(N−1)

2 which is exactly the number of degrees

of freedom of ΩN−1,N−2
∂ . Hence W

∂,(2,1)
N−3 is surjective but not injective. In particular

dim KerW
∂,(2,1)
N−3 = N(N−1)(N−2)

2 − N(N−1)
2 = N(N−1)

2 (N − 3).

(2) Consider W
∂,(1,1)
N−3 : Ω1,1

∂ −→ ΩN−2,N−2
∂ : the dimension of the spaces are dim Ω1,1

∂ =

(N − 1)N and dim ΩN−2,N−2
∂ = (N − 1)N(N−1)

2 . The kernel of W
∂,(1,1)
N−3 is defined by the

following set of equations:

Xa
µ1
ea ∧ eµ2

∧ · · · ∧ eµN−2
dxµ1dxµ2 . . . dxµN−2 = 0

where we used ea as a basis for V. Let now k = N be the transversal direction and let
k′ ∈ {1, . . . N −1}. Since {dxµ1dxµ2 . . . dxµN−2} is a basis for ΩN−2(M) we obtain N −1
equations of the form∑

σ

Xa
µσ(1)

ea ∧ eµσ(2) ∧ · · · ∧ eµσ(N−2)
= 0

where σ runs on all permutations of N − 2 elements and 1 ≤ µi ≤ N − 1, µi 6= k′ for all
1 ≤ i ≤ N − 2. Recall now that ea ∧ eµσ(2) ∧ · · · ∧ eµσ(N−2)

is a basis of ∧N−2V. Hence
we obtain the following equations:

Xk
i = 0 1 ≤ i ≤ N − 1 i 6= k′

Xk′

i = 0 1 ≤ i ≤ N − 1 i 6= k′∑
i 6=k,i 6=k′

Xi
i = 0

Letting now k′ vary in {1, . . . , N − 1} we obtain the following equations:

Xk
i = 0 1 ≤ i ≤ N − 1

Xj
i = 0 1 ≤ i, j ≤ N − 1 i 6= j∑

i 6=k,i 6=j

Xi
i = 0 1 ≤ j ≤ N − 1

It is easy to check that these equations are independent. The total number of equations
defining the kernel is then (N−1)+(N−1)(N−2)+(N−1) = (N−1)N which coincides

with number of degrees of freedom of the domain. Hence W
∂,(1,1)
N−3 is injective but not

surjective.

(3) Consider W
∂,(1,2)
N−3 : Ω1,2

∂ −→ ΩN−2,N−1
∂ : the dimensions of domain and codomain are

dim Ω1,2
∂ = (N − 1)N(N−1)

2 and dim ΩN−2,N−1
∂ = (N − 1)N . The kernel of W

∂,(1,2)
N−3 is

defined by the following set of equations:

Xab
µ1
eaeb ∧ eµ2 ∧ · · · ∧ eµN−2

dxµ1dxµ2 . . . dxµN−2 = 0

where we used ea as a basis for V. Let now k = N be the transversal direction and let
k′ ∈ {1, . . . N −1}. Since {dxµ1dxµ2 . . . dxµN−2} is a basis for ΩN−2(M) we obtain N −1
equations of the form∑

σ

Xab
µσ(1)

eaeb ∧ eµσ(2) ∧ · · · ∧ eµσ(N−2)
= 0

where σ runs on all permutations of N − 2 elements and 1 ≤ µi ≤ N − 1, µi 6= k′ for all
1 ≤ i ≤ N − 2. Recall now that eaeb ∧ eµσ(2) ∧ · · · ∧ eµσ(N−2)

is a basis of ∧N−1V. Hence
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we obtain the following equations:

XNk′

i = 0 1 ≤ i ≤ N − 1 i 6= k′∑
i 6=N,i6=k′

XiN
i = 0

∑
i 6=N,i6=k′

Xik′

i = 0

Letting now k′ vary in {1, . . . , N − 1} we obtain the following equations:

XNj
i = 0 1 ≤ i, j ≤ N − 1 i 6= j (49a)∑

i6=N,i6=j

XiN
i = 0 1 ≤ j ≤ N − 1 (49b)

∑
i 6=N,i6=j

Xij
i = 0 1 ≤ j ≤ N − 1 (49c)

It is easy to check that these equations are independent. The total number of equations
defining the kernel is then (N−1)+(N−1)(N−2)+(N−1) = (N−1)N which coincides

with number of degrees of freedom of the codomain. Hence W
∂,(1,2)
N−3 is surjective but not

injective. In particular dim KerW
∂,(1,2)
N−3 = (N −1)N(N−1)

2 −N(N −1) = N(N−1)
2 (N −3).

(4) Is a direct consequence of the previous parts.

(5) Consider W
∂,(2,1)
N−4 : Ω2,1

∂ −→ ΩN−2,N−3
∂ : the dimension of domain and codomain are

dim Ω2,1
∂ = (N−2)(N−1)

2 N and dim ΩN−2,N−3
∂ = (N − 1)N(N−1)(N−2)

6 . The kernel of

W
∂,(2,1)
N−4 is defined by the following set of equations:

Xa
µ1µ2

ea ∧ eµ3
∧ · · · ∧ eµN−2

dxµ1dxµ2 . . . dxµN−2 = 0

where we used ea as a basis for V. Let now k = N be the transversal direction and let
k′ ∈ {1, . . . N −1}. Since {dxµ1dxµ2 . . . dxµN−2} is a basis for ΩN−2(M) we obtain N −1
equations of the form∑

σ

Xa
µσ(1)µσ(2)

ea ∧ eµσ(3) ∧ · · · ∧ eµσ(N−2)
= 0

where σ runs on all permutations of N − 2 elements and 1 ≤ µi ≤ N − 1, µi 6= k′ for all
1 ≤ i ≤ N − 2. Recall now that ea ∧ eµσ(3) ∧ · · · ∧ eµσ(N−2)

is a basis of ∧N−3V. Hence
we obtain the following equations:

XN
ij = 0 1 ≤ i, j ≤ N − 1 i, j 6= k′

Xk′

ij = 0 1 ≤ i, j ≤ N − 1 i, j 6= k′∑
i 6=N,i6=k′

Xi
ij = 0 1 ≤ j ≤ N − 1 j 6= k′

Letting now k′ vary in {1, . . . , N − 1} we obtain the following equations:

XN
ij = 0 1 ≤ i, j ≤ N − 1

Xj′

ij = 0 1 ≤ i, j, j′ ≤ N − 1 i, j 6= j′ i 6= j∑
i 6=k,i 6=j′

Xi
ij = 0 1 ≤ j, j′ ≤ N − 1 j 6= j′

It is easy to check that these equations are independent. The total number of equations

defining the kernel is then (N−2)(N−1)
2 + (N−3)(N−2)(N−1)

2 (N −2)(N −1) = (N−2)(N−1)N
2

which coincides with number of degrees of freedom of the domain. Hence W
∂,(2,1)
N−4 is

injective but not surjective.



BOUNDARY BFV ACTION IN PC FORMALISM 27

X

Proof of Lemma 10. Consider %|
KerW

∂,(1,2)
N−3

: KerW
∂,(1,2)
N−3 → Ω2,1

∂ . From 9.(3) we know that

dim KerW
∂,(2,1)
N−3 = N(N−1)

2 (N − 3). An element v ∈ KerW
∂,(1,2)
N−3 must satisfy equations (49).

The kernel of % is defined by the following set of equations: 20

[v, e]aµ1µ2
= vabµ1

g∂bµ2
− vabµ2

g∂bµ1
= 0.

Using now normal geodesic coordinates, we can diagonalise g∂ with eigenvalues on the diagonal
αµ ∈ {1,−1, 0}:

[v, e]aµ1µ2
= vaµ2

µ1
αµ2
− vaµ1

µ2
αµ1

= 0

If g∂ is nondegenerate these equations become vaµ2
µ1

= ±vaµ1
µ2

. Namely, using v ∈ KerW
∂,(2,1)
N−3 we

get

viji = 0 0 ≤ i, j ≤ N − 1, i 6= j

vi2i3i1
= ±vi1i3i2

0 ≤ i1, i2, i3 ≤ N − 1 i1, i2 6= i3, i2 6= i1

It is easy to check that these equations are independent. The total number of equations defining

the kernel is then (N − 1)(N − 3) + (N−1)(N−2)(N−3)
2 = N(N−1)

2 (N − 3) which coincides with
number of degrees of freedom of the domain. Hence %|

KerW
∂,(1,2)
N−3

is injective. X

Appendix B. Lengthy proofs of Section 5

We complete the proof of Theorem 29. Namely we prove here explicitly that 2{S0, S1}f +
{S1, S1}g = 0. From the expression of Q and {S0, S1}f = ιQ0

ιQ1
$f , we get:

{S0, S1}f (50)

=− [c, λen](b)([c, e])
(a)
b (ξ†a − (ω − ω0)ac

†)
1
− [c, λen](b)([c, e])

(n)
b λ†

2

+ Lω0

ξ (λen)(b)([c, e])
(a)
b (ξ†a − (ω − ω0)ac

†)
3

+ Lω0

ξ (λen)(b)([c, e])
(n)
b λ†

4

+ [c, λen](b)(Lω0

ξ e)
(a)
b (ξ†a − (ω − ω0)ac

†)
5

+ [c, λen](b)(Lω0

ξ e)
(n)
b λ†

6

− Lω0

ξ (λen)(b)(Lω0

ξ e)
(a)
b (ξ†a − (ω − ω0)ac

†)
7
− Lω0

ξ (λen)(b)(Lω0

ξ e)
(n)
b λ†

8

− [c, λen](b)(dω(λen))
(a)
b (ξ†a − (ω − ω0)ac

†)
9
− [c, λen](b)(dω(λen))

(n)
b λ†

10

+ Lω0

ξ (λen)(b)(dω(λen))
(a)
b (ξ†a − (ω − ω0)ac

†)
11

+ Lω0

ξ (λen)(b)(dω(λen))
(n)
b λ†

12

− [c, λen](b)(λσ)
(a)
b (ξ†a − (ω − ω0)ac

†)
13
− [c, λen](b)(λσ)

(n)
b λ†

14

+ Lω0

ξ (λen)(b)(λσ)
(a)
b (ξ†a − (ω − ω0)ac

†)
15

+ Lω0

ξ (λen)(b)(λσ)
(n)
b λ†

16

− [c, λen](a)(dωc)ac
†
17

+ Lω0

ξ (λen)(a)(dωc)ac
†
18

+ [c, λen](a)(Lω0

ξ (ω − ω0))ac
†
19

− Lω0

ξ (λen)(a)(Lω0

ξ (ω − ω0))ac
†
20
− [c, λen](a)(W−1

1 (λenFω))ac
†
21

+ Lω0

ξ (λen)(a)(W−1
1 (λenFω))ac

†
22

+ [c, λen](a)(ιξFω0)ac
†
23

− Lω0

ξ (λen)(a)(ιξFω0)ac
†
24
− 1

2
Λ[c, λen](a)eaλenc

†

25

+
1

2
ΛLω0

ξ (λen)(a)eaλenc
†.

26

20Here we use that in every point we can find a basis in V such that eiµ = δiµ: [v, e]aµ1µ2
= vabµ1

ηbcecµ2
−

vabµ2
ηbcecµ1

= vabµ1
edbηdce

c
µ2
− vabµ2

edbηdce
c
µ1
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From {S1, S1}g = ιQ1ιQ1$g we get:

1

2
{S1, S1}g (51)

=
1

2
[[c, c], c]c†

1

− 1

2
[c, c]Lω0

ξ c
†

2

+
1

2
[[c, c], λen](a)(ξ†a − (ω − ω0)ac

†)
3

+
1

2
[[c, c], λen](n)λ†

4

− [Lω0

ξ c, c]c
†
5

+ Lω0

ξ cL
ω0

ξ c
†
6
− [Lω0

ξ c, λen](a)(ξ†a + (ω − ω0)ac
†)

7

− [Lω0

ξ c, λen](n)λ†
8
− [[c, λen](a)(ω − ω0)a, c]c

†
9

+ [c, λen](a)(ω − ω0)aL
ω0

ξ c
†
10

− [[c, λen](a)(ω − ω0)a, λen](a)(ξ†a + (ω − ω0)ac
†)

11
− [[c, λen](a)(ω − ω0)a, λen](n)λ†

12

+ [Lω0

ξ (λen)(a)(ω − ω0)a, c]c
†
13
− Lω0

ξ (λen)(a)(ω − ω0)aL
ω0

ξ c
†
14

+ [Lω0

ξ (λen)(a)(ω − ω0)a, λen](a)(ξ†a − (ω − ω0)ac
†)

15
+ [Lω0

ξ (λen)(a)(ω − ω0)a, λen](n)λ†
16

− [c, [c, λen](n)en](a)(ξ†a − (ω − ω0)ac
†)

17
− [c, [c, λen](n)en](n)λ†

18

+ Lω0

ξ ([c, λen](n)en)(a)(ξ†a − (ω − ω0)ac
†)

19
+ Lω0

ξ ([c, λen](n)en)(n)λ†
20

+ [c, Lω0

ξ (λen)(n)en](a)(ξ†a − (ω − ω0)ac
†)

21
+ [c, Lω0

ξ (λen)(n)en](n)λ†
22

− Lω0

ξ (Lω0

ξ (λen)(n)en)(a)(ξ†a − (ω − ω0)ac
†)

23
− Lω0

ξ (Lω0

ξ (λen)(n)en)(n)λ†
24

− [c, λen](a)dω0acc
†
25
− ([c, λen](b)dω0b(λen))(a)(ξ†a − (ω − ω0)ac

†)
26

− ([c, λen](a)dω0a(λen))(n)λ†
27
− [c, λen](a)(∂aξ

b)ξ†b28
− [c, λen](a)∂b(ξ

bξ†a)
29

+ Lω0

ξ (λen)(a)dω0acc
†
30

+ (Lω0

ξ (λen)(b)dω0b(λen))(a)(ξ†a − (ω − ω0)ac
†)

31

+ (Lω0

ξ (λen)(a)dω0a(λen))(n)λ†
32

+ Lω0

ξ (λen)(a)(∂aξ
b)ξ†b

33
+ Lω0

ξ (λen)(a)∂b(ξ
bξ†a)

34

+
1

2
ι[ξ,ξ]dω0

cc†

35

+
1

2
(ι[ξ,ξ]dω0

(λen))(a)(ξ†a − (ω − ω0)ac
†)

36

+
1

2
(ι[ξ,ξ]dω0

(λen))(n)λ†

37

+
1

2
[ξ, ξ]a(∂aξ

b)ξ†b
38

+
1

2
[ξ, ξ]a∂b(ξ

bξ†a)
39

+
1

2
[ιξιξFω0 , c]c

†

40

− 1

2
ιξιξFω0L

ω0

ξ c
†

41

+
1

2
[ιξιξFω0

, λen](a)(ξ†a − (ω − ω0)ac
†)

42

+
1

2
[ιξιξFω0

, λen](n)λ†

43

− [c, λen](a)(ιξFω0
)ac
†
44

+ Lω0

ξ (λen)(a)(ιξFω0
)ac
†
45

+
1

2
ι[ξ,ξ]ιξFω0

c†.
46

We now check term by term that the sum 2{S0, S1}f + {S1, S1}g is zero. We have:

• (51.1) =0 using (graded) Jacobi identity.
• (51.2) and (51.5):

−1

2
Lω0

ξ ([c, c]c†) = −1

2
[c, c]Lω0

ξ c
† − [Lω0

ξ c, c]c
†.

• (51.3), (51.17), (50.1): using (graded) Jacobi identity:

1

2
[[c, c], λen](a)(ξ†a − (ω − ω0)ac

†)− [c, [c, λen](n)en](a)(ξ†a − (ω − ω0)ac
†)

− [c, λen](b)([c, e])
(a)
b (ξ†a − (ω − ω0)ac

†) = 0

• (51.4), (51.18), (50.2): as before.
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• (51.6), (51.35) and (51.40) :

Lω0

ξ cL
ω0

ξ c
† +

1

2
ι[ξ,ξ]dω0

cc† +
1

2
[ιξιξFω0

, c]c† = −dω0
(ιξdω0

cιξc
†).

• (51.7), (51.21) and (50.3):

−[Lω0

ξ c, λen](a)(ξ†a + (ω − ω0)ac
†) + [c, Lω0

ξ (λen)(n)en](a)(ξ†a − (ω − ω0)ac
†)

+ Lω0

ξ (λen)(b)([c, e])
(a)
b (ξ†a − (ω − ω0)ac

†)

=− (Lω0

ξ [c, λen])(a)(ξ†a + (ω − ω0)ac
†)

We have (Lω0

ξ ω)a = Lω0

ξ (ω−ω0)a+∂aξ
cωc and (Lω0

ξ e)a = Lω0

ξ ea+∂aξ
cec. (50.5), (51.28),

(50.19):

[c, λen](b)(Lω0

ξ e)
(a)
b (ξ†a − (ω − ω0)ac

†)− [c, λen](a)(∂aξ
b)ξ†b + [c, λen](a)(Lω0

ξ ω)ac
†

=[c, λen](b)(Lω0

ξ eb)
(a)(ξ†a − (ω − ω0)ac

†) + [c, λen](b)(∂bξ
cec)

(a)(ξ†a − (ω − ω0)ac
†)

− [c, λen](b)(∂bξ
c)ξ†c + [c, λen](a)(Lω0

ξ (ω − ω0)a)c† + [c, λen](a)(∂aξ
cωc)c

†

=[c, λen](b)(Lω0

ξ eb)
(a)(ξ†a − (ω − ω0)ac

†) + [c, λen](a)(Lω0

ξ (ω − ω0)a)c†

(51.29): −[c, λen](a)∂b(ξ
bξ†a) = ∂b([c, λen](a)ξbξ†a) + Lω0

ξ [c, λen](a)ξ†a
(51.19), (51.10) and previous relations:

[c, λen](b)(Lω0

ξ eb)
(a)(ξ†a − (ω − ω0)ac

†) + [c, λen](a)(Lω0

ξ (ω − ω0)a)c†

+ Lω0

ξ ([c, λen](n)en)(a)(ξ†a − (ω − ω0)ac
†) + Lω0

ξ [c, λen](a)ξ†a

+ [c, λen](a)(ω − ω0)aL
ω0

ξ c
†

=Lω0

ξ ([c, λen])(a)(ξ†a − (ω − ω0)ac
†)− Lω0

ξ ([c, λen](a))(ξ†a − (ω − ω0)ac
†)

+ Lω0

ξ [c, λen](a)ξ†a + [c, λen](a)(Lω0

ξ (ω − ω0)a)c† + [c, λen](a)(ω − ω0)aL
ω0

ξ c
†

=Lω0

ξ ([c, λen])(a)(ξ†a − (ω − ω0)ac
†) + Lω0

ξ ([c, λen](a))(ω − ω0)ac
†

+ [c, λen](a)(Lω0

ξ (ω − ω0)a)c† + [c, λen](a)(ω − ω0)aL
ω0

ξ c
†

=Lω0

ξ ([c, λen])(a)(ξ†a − (ω − ω0)ac
†)

This last term cancels out with the one resulting from the first computation.
• (51.8), (51.22) and (50.4):

− [Lω0

ξ c, λen](n)λ† + [c, Lω0

ξ (λen)(n)en](n)λ† + Lω0

ξ (λen)(b)([c, e])
(n)
b λ†

=− (Lω0

ξ [c, λen])(n)λ†

(51.20), (50.6): since e
(n)
a = 0 we have

Lω0

ξ ([c, λen](n)en)(n)λ† + [c, λen](b)(Lω0

ξ e)
(n)
b λ†

=Lω0

ξ ([c, λen](n)en)(n)λ† + Lω0

ξ ([c, λen](a)ea)(n)λ†

=(Lω0

ξ [c, λen])(n)λ†

• (51.9), (51.25) and (50.17):

− [[c, λen](a)(ω − ω0)a, c]c
† − [c, λen](a)dω0acc

†

=− [c, λen](a)d(ω−ω0)acc
† = [c, λen](a)(dωc)ac

†.
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• (51.13), (51.30) and (50.18): as before.
• (51.11), (51.26) and (50.9): as before.
• (51.12), (51.27) and (50.10): as before.
• (51.15), (51.31) and (50.11): as before.
• (51.16), (51.32) and (50.12): as before.
• (51.36) and (51.42) :

1

2
(ι[ξ,ξ]dω0

(λen))(a)(ξ†a − (ω − ω0)ac
†) +

1

2
[ιξιξFω0

, λen](a)(ξ†a − (ω − ω0)ac
†)

= (Lω0

ξ L
ω0

ξ (λen))(a)(ξ†a − (ω − ω0)ac
†)

(51.14) and (50.20):

− Lω0

ξ (λen)(a)(ω − ω0)aL
ω0

ξ c
† − Lω0

ξ (λen)(a)(Lω0

ξ ω)ac
†

=Lω0

ξ (Lω0

ξ (λen)(a)(ω − ω0)a)c† − Lω0

ξ (λen)(a)(Lω0

ξ (ω − ω0)a)c†

− Lω0

ξ (λen)(a)∂aξ
cωcc

†

=Lω0

ξ (Lω0

ξ (λen)(a))(ω − ω0)ac
† − Lω0

ξ (λen)(a)∂aξ
cωcc

†

(51.33), (51.34) and previous relation:

Lω0

ξ (λen)(a)(∂aξ
b)ξ†b + Lω0

ξ (λen)(a)∂b(ξ
bξ†a) + Lω0

ξ (Lω0

ξ (λen)(a))(ω − ω0)ac
†

− Lω0

ξ (λen)(a)∂aξ
cωcc

†

=
[
Lω0

ξ (λen)(b)(∂bξ
cec)

(a) − Lω0

ξ (Lω0

ξ (λen)(b))e
(a)
b

]
(ξ†a − (ω − ω0)ac

†)

(50.7) and previous relation:[
−Lω0

ξ (λen)(b)(Lω0

ξ e)
(a)
b + Lω0

ξ (λen)(b)(∂bξ
cec)

(a)
]

(ξ†a − (ω − ω0)ac
†)

− Lω0

ξ (Lω0

ξ (λen)(b))e
(a)
b (ξ†a − (ω − ω0)ac

†)

= −(Lω0

ξ (Lω0

ξ (λen)(b)eb))
(a)(ξ†a − (ω − ω0)ac

†)

(51.23) and previous relation:[
−Lω0

ξ (Lω0

ξ (λen)(n)en)(a) − (Lω0

ξ (Lω0

ξ (λen)(b)eb))
(a)
]

(ξ†a − (ω − ω0)ac
†)

= −(Lω0

ξ L
ω0

ξ (λen))(a)(ξ†a − (ω − ω0)ac
†)

This last term cancels out with the one resulting from the first computation.
• (51.37) and (51.43):

1

2
(ι[ξ,ξ]dω0(λen))(n)λ† +

1

2
[ιξιξFω0 , λen](n)λ† = (Lω0

ξ L
ω0

ξ (λen))(n)λ†

(51.24) and (50.8):

− Lω0

ξ (Lω0

ξ (λen)(n)en)(n)λ† − Lω0

ξ (λen)(b)(Lω0

ξ e)
(n)
b λ†

= −Lω0

ξ (Lω0

ξ (λen)(n)en)(n)λ† − Lω0

ξ (Lω0

ξ (λen)(b)eb)
(n)λ†

= −(Lω0

ξ L
ω0

ξ (λen))(n)λ†

This last term cancels out with the one resulting from the first computation.
• (50.13), (50.14), (50.15), (50.16), (50.21), (50.22), (50.25) and (50.26): Everything van-

ishes since λλ = 0 and e
(b)
n = 0.
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• (51.38) and (51.39):

+
1

2
[ξ, ξ]a(∂aξ

b)ξ†b +
1

2
[ξ, ξ]a∂b(ξ

bξ†a) = ξc∂cξ
a(∂aξ

b)ξ†b + ξc∂cξ
a∂b(ξ

bξ†a)

= ∂b(ξ
c∂cξ

aξbξ†a)− ξc∂c∂bξaξbξ†a
where the last term vanishes since it is symmetric and antisymmetric in the indexes b
and c.

• (51.44) = − (50.23).
• (51.45) = − (50.24).
• (51.41) and (51.46):

−1

2
ιξιξFω0

Lω0

ξ c
† +

1

2
ι[ξ,ξ]ιξFω0

c† =
1

2
dω0

(ιξιξFω0
ιξc
†)

References

[1] A. Ashtekar. “New variables for classical and quantum gravity”. Physical Review Letters
57 (Nov. 1986), pp. 2244–2247. doi: 10.1103/PhysRevLett.57.2244.

[2] I. A. Batalin and E. S. Fradkin. “A generalized canonical formalism and quantization of
reducible gauge theories”. Physics Letters B 122.2 (Mar. 1983), pp. 157–164. doi: 10.

1016/0370-2693(83)90784-0.
[3] I. A. Batalin and G. A. Vilkovisky. “Gauge algebra and quantization”. Physics Letters B

102.1 (June 1981), pp. 27–31. doi: 10.1016/0370-2693(81)90205-7.
[4] I. A. Batalin and G. A. Vilkovisky. “Relativistic S-matrix of dynamical systems with boson

and fermion constraints”. Physics Letters B 69.3 (Aug. 1977), pp. 309–312. doi: 10.1016/
0370-2693(77)90553-6.

[5] G. Canepa, A. S. Cattaneo, and M. Schiavina. “General Relativity and the AKSZ con-
struction” (2020). arXiv: 2006.13078 [math-ph].

[6] G. Canepa, A. S. Cattaneo, and M. Tecchiolli. “Gravitational Constraints on a Lightlike
boundary” (2020). arXiv: 2010.14871 [math-ph].

[7] G. Canepa and M. Schiavina. “Fully extended BV-BFV description of General Relativity
in three dimensions” (2019). arXiv: 1905.09333 [math-ph].
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