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Abstract. In this note the AKSZ construction is applied to the BFV descrip-

tion of the reduced phase space of the Einstein-Hilbert and of the Palatini–
Cartan theories in every space-time dimension greater than two. In the former

case one obtains a BV theory for the first-order formulation of Einstein–Hilbert

theory, in the latter a BV theory for Palatini–Cartan theory with a partial im-
plementation of the torsion-free condition already on the space of fields. All

theories described here are BV versions of the same classical system on cylin-

ders. The AKSZ implementations we present have the advantage of yielding
a compatible BV-BFV description, which is the required starting point for a

quantization in presence of a boundary.
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Introduction

A Lagrangian field theory F on a cylinder Σ×I, where I is a “time” interval, can
be given a corresponding Hamiltonian description in terms of a symplectic manifold
(the phase space) of the possible initial conditions on Σ and a Hamiltonian that
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describes the time evolution. If the Lagrangian is degenerate, its Euler–Lagrange
equations yield, in addition to time evolution, some constraints that have to be
taken into account when specifying the initial conditions. The true phase space,
called the “reduced phase space”, is typically described as the symplectic reduction
of the coisotropic submanifold defined by the constraints (hence the name).

This reduction is often singular, and one possible description is by means of a
cohomological resolution: one introduces a complex whose cohomology is the alge-
bra of functions of the reduced phase space. In addition, one wants this resolution
to feature also the symplectic/Poisson nature of the phase space, and a solution
to this problem is provided by the Batalin–Fradkin–Vilkovisky (BFV) formalism
[BF83] (see also [Sch08; Sch09; Sta97]). We denote by F∂ the collection of data
associated to the reduced phase space of a Lagrangian theory F, as a BFV theory
(Definition 3).

On the other hand, a flexible way to deal with a degenerate Lagrangian is the
Batalin–Vilkovisky (BV) formalism [BV81], which allows a cohomological resolution
of the space of solutions to the Euler–Lagrange equations modulo symmetries but
is also the starting point for perturbative quantization. We denote with F the BV
data associated to a classical Lagrangian field theory F, as a BV theory (Definition
1).

To quantize a Lagrangian field theory F on a cylinder Σ × I, one needs a good
relation between its associated BV and BFV data F and F∂ . In [CMR11] an explicit
procedure was introduced to construct what in [CMR14] is called a BV-BFV theory
(Definition 5), associating to the BV data F certain BFV data denoted by BFV (F)
in a way suitable for quantization [CMR18] — under some regularity assumptions.
In regular cases it relates F and F∂ , so that that BFV (F) = F∂ .

While it is true that both F and F∂ depend on F, the relation BFV (F) = F∂ is not
guaranteed, and it is a necessary requirement for BV quantisation with boundary
[CMR18]. This relation turns out to hold for a large variety of field theories,
including general relativity (GR) in the Einstein–Hilbert (EH) formulation in any
space–time dimension greater than 2 [CS16]. However, the procedure notably fails
in the case of GR in the Palatini–Cartan (PC) formulation1 in 3 + 1 dimensions
[CS19b], as the construction of BFV (F) is obstructed. However, F∂ exists and has
been presented in [CCS20].

Conversely, given a BFV theory F∂ associated to a manifold Σ, there is a stan-
dard way2 to produce a BV theory on Σ × I by means of a construction due to
Alexandrov, Kontsevich, Schwarz and Zaboronski (AKSZ [Ale+97]). The resulting
BV theory, which we temporarily denote here by3 AKSZ (F∂), satisfies automati-
cally the regularity assumptions required by the BV-BFV formalism, and we also
have BFV (AKSZ (F∂)) = F∂ .

On the other hand, in general AKSZ (BFV (F)) will not be the same as F. In fact,
the AKSZ construction produces a theory that is invariant under reparametrization
of I, which is certainly different from F if the latter does not enjoy this invariance.
In this case AKSZ (BFV (F)) is a version of F with “frozen time” and may be used
to describe a change in the polarization chosen for the quantization of the reduced
phase space (see [CMR18, Remark 2.38]). If F is reparametrization invariant —
e.g. a topological field theory or GR — we may wonder whether AKSZ (BFV (F))

1There appears to be no uniform consensus on the nomenclature to best attribute and label
the theory that will be described in Sections 2.2 and 4. We discuss our choice “Palatini–Cartan”
in [CS19c] (see also references therein). Other choices include the names of Einstein, Weyl, Sciama

and Kibble, in various combinations.
2To the best of our knowledge, the first explicit application of the AKSZ construction to a

BFV target to produce a BV structure in one dimension goes back to [GD00].
3This construction is clarified in Theorem 14, and AKSZ (F∂) will be denoted FAKSZ(I;F∂).
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and F are somehow related. In the case of AKSZ topological field theories, it
turns out that AKSZ (BFV (F)) and F are actually the same. For more general
reparametrization invariant theories we might expect the two to be equivalent, in
one of the possible ways presented below.

A BV theory F is essentially composed of a (-1)-symplectic manifold (F , $) and
an action functional S over it. We say that F1 and F2 are strongly BV-equivalent
if there is a symplectomorphism φ : (F1, $1) → (F2, $2) that relates their action
functionals, i.e. S1 = φ∗S2. This in particular implies that their BV cohomology
groups are isomorphic. A nontrivial example of strong BV-equivalence is the one
betwen PC and BF theory in 3 space–time dimensions [CS19a; CSS18].

If F2 is obtained from F1 by a partial integration of the fields4 (with some
partial gauge fixing), we say that F2 is an effective theory for F1. We say that
two BV theories are effectively BV-equivalent if one is (strongly BV-equivalent to)
an effective theory for the other. Typical cases for this are Wilson renormalization
or the passage to a second-order theory from its associated first-order formulation.
Another important example is given by elimination of so-called auxiliary fields. In
that case, one can argue that effective equivalence also preserves the BV cohomology
[BBH95; Hen90] (see Remark 12).

A third case is when the theories F1 and F2 have the same space of classical
solutions modulo symmetries. We speak in this case of classical equivalence. A
typical case of classical equivalence is that between EH and PC. Observe that this
is equivalent to just asking that the degree-zero BV cohomologies of the two theories
coincide, making this kind of equivalence weaker.

In this paper we study this question for EH and PC models of gravity in any
space–time dimension greater than 2, assuming that the metric encoded in the BFV
data F∂ is nondegenerate (i.e. assuming that the manifold Σ is either spacelike or
timelike but not lightlike). In the case of EH, we show that F and AKSZ (BFV (F))
are effectively equivalent, with the former being actually the first-order formulation
of the latter.

In the case of PC in three dimensions, where BFV (F) = F∂ holds, we show
that AKSZ (BFV (F)) and F are strongly BV equivalent, which is not unexpected,
since PC is strongly BV equivalent to BF theory [CS19a; CSS18], and the lat-
ter is a topological AKSZ theory. Instead, for higher dimensional PC theory we
show that AKSZ (F∂) and F are classically equivalent5, with F∂ the BFV data con-
structed from the reduced phase space of PC theory [CCS20; CS19c]. This case
is particularly interesting because the BV-BFV construction for PC is obstructed
in dimension 4 (and presumably higher). The data AKSZ (F∂) resulting from the
AKSZ construction is a new BV theory defined on cylinders that is still classically
equivalent to EH, but also compatible with the BV-BFV formalism (by construc-
tion via the AKSZ procedure). Classically, it is simply PC on a smaller space of
fields, where part of the torsion-free condition is imposed a priori instead of through
the Euler–Lagrange equations.

Our result addresses the problem presented in [CS19b], where it was pointed
out that PC theory in dimension greater than three must be complemented with
requirements on field configurations at the boundary in order to induce a well-
defined BV-BFV structure. One possible way to construct a BV-BFV structure
for PC theory is to assume vector fields generating diffeomorphisms transversal to
the boundary to vanish at the boundary. Denote by F the resulting BV theory.
In [CS19b, Section 5, Remark 34] this was shown to be insufficient to describe

4This is more appropriately called BV-pushforward or BV fiber integral, see [CMR18, Section
2.2.2].

5On an open subset of the moduli space of solutions.
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the full reduced phase space of GR, as the Hamiltonian constraint is lost in the
process: this means that BFV (F) 6= F∂ . Alternatively one may require certain
components of the Lorentz connection to vanish on the boundary, although this
condition is not natural for general manifolds. One way of reading our paper is to
make these conditions natural on cylindrical manifolds, in the sense that we present
a version of PC theory, with the compatibility requirements already implemented.
In fact, the resulting AKSZ theory has the same equations of motion and the same
symmetries, but the AKSZ procedure restricts the moduli space of solutions to an
open subset. This is akin to restricting to globally hyperbolic solutions. One can
think of the extra required conditions as imposing part of the equations of motion
that fix ω to be the Levi-Civita connection for the metric induced by a tetrad e.
This is discussed in Section 4.2.

Let us stress that having a well-defined BV-BFV structure is a necessary require-
ment for the quantisation of BV theories with boundary [CMR18]. The fact that
the boundary-compatible AKSZ version of PC theory is (possibly) only classically
equivalent to the original PC formulation reinforces the idea that care must be
placed when attempting BV quantisation of the latter.

A related approach is the ‘parent formulation’ by Barnich and Grigoriev [BG11;
Gri11] which derives an AKSZ construction of the BV theory from the jet space
formalism (trivariational complex). What is crucially different in our construction
is that we consider, as a target, a symplectic description of the classical bound-
ary states. This involves a careful symplectic reduction of the naively associated
boundary spaces6. The result of our construction is not only a BV reformulation
of the original bulk theory, but a reformulation that is compatible with the bound-
ary as a 1-extended BV-BFV theory (see Definition 5), which is the starting point
for quantum (or at least semiclassical) considerations for a theory with boundary
[CMR18].

For the same reason, unlike the presymplectic AKSZ formulation presented by
Grigoriev et Alkalaev in [AG14] and [Gri16], our BV-BFV description of PC gravity
is based on a symplectic structure, which is essential for quantization. This does not
arise directly from a reduction of the natural presymplectic BFV structure derived
from BV in the bulk, which is impossible for N ≥ 4 as shown in [CS19b], but it
is the symplectic BFV structure [CCS20] that resolves the reduced phase space of
the theory.

Finally, note that in this paper we consider two separate applications of the
AKSZ “reconstruction” of a parametrization-invariant bulk BV theory from its
boundary BFV structure, respectively for two formulations of GR (EH and PC).
We do not discuss the equivalence between EH and PC, but we investigate the
appropriate BV equivalence between each formulation and its own AKSZ “recon-
struction.”

These considerations do not exclude, however, some deeper connection between
our construction and the ones mentioned above, which are definitely worth explor-
ing.

The paper is organised as follow. In Sections 1.1 and 1.2 we will outline the BV-
BFV and AKSZ constructions, while Section 2 is a brief review of the construction
of the BFV data for Einstein–Hilbert and Palatini–Cartan theories of gravity, as
presented respectively in [CS16] and [CCS20].

Finally, in Sections 3 and 4 we will apply the AKSZ construction to the BFV
data of EH and PC gravity, respectively, and compare it with the BV data for the
two formulations as presented in [CS16] and [CS19b].

6This association is the natural restriction of fields and normal jets to the boundary, see
[CMR14].
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Relevance and outlook. This work is intended as a first reaping, as a result of
a few years of sowing, in a program directed at an analysis of classical General
Relativity seen through the lens of the BV formalism with boundary, an attempt
at formalising its quantisation within the BV-BFV formalism [CMR18]. The pro-
gram was initiated in [CS16; CS19b; Sch15], where a few inconsistencies in the
behaviour of GR in the presence of boundaries in dimension 4 were detected, and
was later extended in [CCS20; CS19a; CSS18], where the comparison with the three
dimensional analogue was made.

This series of works is motivated by the obstruction encountered in defining the
BV-BFV data for Palatini–Cartan gravity, a requirement for the BV quantisation
program with boundary, which has otherwise provided very reliable and flexible (see
[CMR18; CMR20] for the quantisation of BF theory, [IM19] for Yang–Mills theory
in dimension 2, [CMW17; CMW19a] for split Chern–Simons theory and [CMW19b]
for a general approach to a class of AKSZ models, including the Poisson sigma
model). No obstruction to BV quantisation with boundary is otherwise present
for Einstein–Hilbert theory, and this discrepancy points at the fact that classical
equivalence of field theories might be too coarse a classification to have bearing on
the respective quantum theories.

The results contained in this paper close the circle, so to speak, in the comparison
of classical BV general relativity with boundary, between EH and PC formulations.
As a matter of fact, while the AKSZ construction for EH theory is effectively equiv-
alent to the BV theory analysed in [CS16], this is not the case in PC theory analysed
in [CS19b] (it is only included within). This fact, together with the equivalence of
the reduced phase spaces for EH and PC theories [CCS20; CS19c], can be inter-
preted as a confirmation that BV Palatini–Cartan theory must be supplemented
with additional requirements on fields, or otherwise restricted, in order to be viable
for BV quantisation. The requirements we find, summarised by Definition 52 are
conditions on the Lorentz connection and its conjugate variable, which effectively
restrict the space of fields. We find that these conditions are somewhat natural on
cylinders.

The very ultimate goal of the construction presented in this paper is the grail
of quantisation of gravity. We do not attempt doing it here. What we present
is the preliminary setting for a perturbative quantisation on cylinders resulting
in the quantum evolution operator from the initial to the final quantum space of
states. Due to the degeneracy of the actions (related to gauge invariance), one
needs a formalism that allows imposing gauge fixings and checking that the results
are independent thereof, up to equivalences that are under control. In the absence
of free boundaries (i.e., in the computation of partition functions and expectation
values), there are several good methods to do this, including BRST and BV. In the
presence of boundary, the best developed method is a compatible combination of
BV in the bulk and BFV on the boundary. The compatibility is the main issue
here, and this paper discusses it in the context of GR theories.

Performing the actual quantisation, which is far beyond the scope of this pa-
per, implies choosing a polarization on the boundary and a gauge fixing in the
bulk, computing the resulting propagators, regularizing the theory, and performing
renormalisation in a compatible way with the BV-BFV data (the quantum master
equation, and its version with boundary [CMR18]). In the case of gravity, one of
course expects an infinite number of independent counterterms to be taken care
of. Clever or miraculous ways to keep them under control are the same issue as in
other treatments (without boundary): we do not claim to have a better recipe for
this issue, but just to have a method to incorporate free boundaries. A minimal
way to proceed, as, e.g., in [BFR16], is to allow for infinite counterterms (which is
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algebraically possible and allows for the construction of families of effective theories,
even though the predictivity at all energies is missing).

Naturally, since the outlook of this extended program is that of addressing quan-
tisation of General Relativity (with boundary), we wish to stress that without the
observations produced in this preliminary phase, an early attempt at directly quan-
tising PC theory might have been thwarted by the very obstructions highlighted
by our investigations.

In this sense, we believe the correct preparation of a field theory for its pertur-
bative quantisation to be of crucial importance to drive the scientific effort towards
sensible questions, and divert it when evidence is presented of a potential roadblock
ahead. This should be of particular interest for the scientific community heavily
involved with the study of Palatini–Cartan theory as a fundamental building block
for a quantum theory of gravity.

Acknowledgements. We thank G. Barnich and M. Grigoriev for useful discus-
sions on both content and context, as well as the anonymous referees, whose com-
ments have helped improve our manuscript. M.S. would also like to thank C.
Blohmann and A. Weinstein for numerous scientific interactions relevant to this
paper.

1. Background

One of the goals of this paper is the construction of a BV theory on a cylindrical
manifold Σ × I by means of the AKSZ construction, with target a BFV theory
associated to Σ. In this section we introduce the basic definition of the BV(-BFV)
and AKSZ formalisms, together with the relevant notions of equivalence that will
allow us to compare theories. We refer to [BF83; BV77; BV81; CMR11; CMR14] for
a more detailed introduction and more insight in the meaning and the motivations
for the following definitions and theorems. For an introduction of the BV (-BFV)
formalism and gravity see [CS19a; CS17; CS19c]. Other versions and interpretations
of the BV formalism for gravity can be found in [BFR16].

1.1. The Batalin–Vilkovisky formalism.

Definition 1. A BV theory is a quadruple F = (F , S,$,Q) where F is a graded
manifold (the space of BV fields) endowed with a degree −1 symplectic form $,
S : F → R is a degree 0 functional (the BV action) and Q is the (odd) Hamiltonian
vector field of S with respect to $ satisfying [Q,Q] = 0.

Remark 2. Since Q is the Hamiltonian vector field of S, i.e. ιQ$ = δS where δ is
the de Rham differential on F and ιQ is the contraction w.r.t. Q, we can rewrite the
equation [Q,Q] = 0 as (S, S) = 0 where (·, ·) denotes the Poisson bracket defined
by $. The latter equation is called the Classical Master Equation (CME).

Definition 3. An exact BFV theory is a quadruple F∂ =
(
F∂ , S∂ , $∂ , Q∂

)
where

F∂ is a graded manifold (the space of boundary fields) endowed with a degree-0
exact symplectic form $∂ = δα∂ , S∂ : F∂ → R is a degree 1 functional and Q∂ is
the Hamiltonian vector field of S∂ with respect to $∂ such that [Q∂ , Q∂ ] = 0.

Remark 4. Typical examples of BV and BFV theories are modeled on sections
of bundles over differentiable manifolds, possibly with boundary, with $(∂), S(∂)

and Q(∂) respectively a local two-form, functional and vector field. Throughout
the paper, when specifying BV theories, we will assume that the equations ιQ$ =
δS and (S, S) = 0 are satisfied only up to boundary terms. The failure of said
equations will be controlled by the data of a BV-BFV theory, as follows. It is
often convenient, in this scenario, to define the slightly more general concept of a
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relaxed BV theory, i.e. data F = (F , S,$,Q) as in Definition 3, but without the
requirement that Q be the Hamiltonian vector field of S. If we are given a BV
theory on a closed manifold without boundary, we can consider the same local data
as a relaxed BV theory on a manifold with boundary.

Definition 5 ([CMR14]). A (relaxed) BV theory F = (F , S,$,Q) is said to be
1-extended to the BFV theory F∂ =

(
F∂ , S∂ , $∂ , Q∂

)
if there exists a surjective

submersion π : F → F∂ , such that the following compatibility relation is satisfied:

ιQ$ = δS + π∗α∂ (1a)

The data F↑1 =
(
F,F∂ , π

)
will be called 1-extended BV-BFV theory.

Remark 6. Notice that, from the data above, the following relation follows:

ιQιQ$ = 2π∗S∂ . (1b)

The following definitions compare two different BV (or BFV) theories.

Definition 7. Two B(F)V theories F
(∂)
1 and F

(∂)
2 are said to be strongly B(F)V-

equivalent if there exists a symplectomorphism

Φ : (F (∂)
1 , $

(∂)
1 )→ (F (∂)

2 , $
(∂)
2 )

preserving the BV action: Φ∗S
(∂)
2 = S

(∂)
1 . The map Φ is called a strong B(F)V-

equivalence.

Definition 8. Let F1 and F2 be two (relaxed) BV theories. A (relaxed) BV-
inclusion I : F1 → F2 is an inclusion of (super)manifolds ι : F1 → F2 such that
$1 = ι∗$2 and ι∗Q1 = Q2ι

∗. If the two theories are relaxed we will additionally
require ι∗S2 = S1. In this case we say that F1 is a BV-subspace7 of F2.

Remark 9. Naturally, if Q1 and Q2 are the Hamiltonian vector fields of S1 and S2

respectively, the condition ι∗S2 = S1 is equivalent to the condition ι∗Q2 = Q1ι
∗,

up to a constant.

Proposition 10. The composition of a strong BV equivalence and a BV inclusion
is in turn a BV inclusion.

Proof. The map Φ ◦ ι satisfies trivially the properties of a BV inclusion. �

A notion that we will need to compare theories is that of BV-pushforward. This
notion is usually phrased at the quantum level [CMR18; Mne17], where the addi-
tional data of a BV Laplacian needs to be provided. However here we are interested
mainly in its classical counterpart. The basic setting is the same, although we con-
sider the following simplifying assumptions. Suppose that we have a splitting of a
graded symplectic manifold (F , $) so that F = F ′ × F ′′, with $ = $′ +$′′, and
let L be a Lagrangian submanifold of (F ′′, $′′) endowed with a half-density µ on
F ′′, which thus defines by restriction a density µL on L. Denote coordinates (z′, z′′)
respectively in F ′,F ′′, and let z′′ ∈ {x, x†} be Darboux adapted coordinates such
that x parametrises L and x† are transversal.

Definition 11. We define the Batalin–Vilkovisky–Legendre transform of a func-
tional S ∈ C∞(F), with respect to the Lagrangian L ⊂ F ′′, as SBVL ∈ C∞(F ′):

SBVL = S(z, x0, x
† = 0) (2)

where x0 is a critical point for S (assumed unique):

δS

δx

∣∣∣∣
x†=0

(x0) = 0.

7In the math literature, a map with this compatibility between the symplectic structures and
the cohomological vector fields is known as a morphism of dg symplectic manifolds.
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Starting from a BV theory on (F , $) we build a theory on (F ′, $′) by means
of a gauge-fixed fiber integral along F ′′, with gauge-fixing Lagrangian L. In other
words, if S denotes a BV action on F we consider the effective result of the BV
pushforward (fiber integral) to be

exp

(
i

~
Seff

)
:=

∫
L⊂F ′′

exp

(
i

~
S

) ∣∣∣∣
L
µL (3)

where the integral is defined perturbatively as a power series in ~. Note that SBVL

is the dominant term of Seff. When S depends only quadratically on the variables
on L, the only correction is i~/2 times the logarithm of the determinant of the
quadratic form.

Remark 12. Let us comment briefly on the notion of equivalence of theories in
the BV formalism. When the moduli spaces of solutions of the equations of motion
for two theories coincide, the theories are said to be classically equivalent. A finer
notion of equivalence requires that the BV cohomologies be isomorphic8, and it
allows for an extension to the case with boundary. One looks at the bicomplex
given by the BV operator and the de Rham differential (Ω•,•(Fi,M), Qi − d), and
equivalence in this sense requires two theories to have quasi-isomorphic local de
Rham/BV complexes. The typical argument for equivalence involves the elimina-
tion of so-called generalised auxiliary fields and trivial pairs [BBH95; Hen90]. This
notion, however, is suboptimal because it relies on homological perturbation the-
ory, which potentially could output an infinite tower of ghosts and antighosts in
the process of constructing an equivalent theory. In other words, that approach —
albeit somewhat well-established— does not provide a direct answer to the question
of whether two given BV theories (in the form of two Hamiltonian dg-manifolds)
are equivalent, provided their degree-0 sectors are classically equivalent. For this,
instead, a spectral sequence argument would be more appropriate.9

On the other hand, one could phrase equivalence in the BV-BFV formalism,
requiring existence of the BV-BFV structure and equivalence of the respective BV
and BFV cohomologies (an explicit example of this, is the strong equivalence of
General Relativity and BF theory in three dimensions [CS19a]). This existence
requirement might become an obstruction to BV-BFV equivalence10. For our pur-
poses, then, even assuming that by removal of generalised auxiliary fields one may
prove some BV equivalence between Palatini–Cartan and Einstein–Hilbert theories,
the results of [CS19b] and of the present paper show a discrepancy of the theories
in the BV-BFV sense.

1.2. The AKSZ construction. Let X be a graded manifold and N an ordinary
manifold and let µN be the canonical Berezinian11 on T [1]N .

Definition 13 (Transgression map). Consider the map

T
(•)
N : Ω•(X) −→ Ω• (Map(T [1]N,X)) (4)

8Classical equivalence is the less restrictive requirement that only their 0-cohomologies be

isomorphic.
9In an optimal scenario, to auxiliary fields one can associate a subcomplex with trivial coho-

mology. More generally, one has a filtration of the original BV complex, so that the associated

spectral sequence converges. However, this is in general quite hard to prove.
10Observe that this is essentially the strictification requirement of the presymplectic BFV data,

see Remark 29.
11Recall that a function on T[1]N is the same as a differential form on N. Integrating a func-

tion on T [1]N against the canonical Berezinian µN is by definition the same as integrating the

corresponding differential form on N , which we assume to be oriented.
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defined by T
(•)
N := p∗ev∗, where

Map(T [1]N,X)× T [1]N

p

��

ev
// X

Map(T [1]N,X)

(5)

and we set p∗ =
∫
N

µN . We will call T
(•)
N the transgression map, and its evaluation

a transgression.

We endow the graded manifold X with a function S of degree n and parity n
mod 2, together with a one-form α of degree n − 1 and parity n − 1 mod 2, such
that $ = dα is nondegenerate and {S, S} = 0 with respect to the Poisson structure
defined by $. Then we say that X has a Hamiltonian dg-manifold structure, with
differential {S, ·}.

Observing that the de Rham differential dN on N can be seen as a degree 1
vector field on Map(T [1]N,X) we have

Theorem 14 ([Ale+97]). Let (X,S, α) a dg-manifold as described above. Consider
the data

FAKSZ(N ;X,S, α) :=
(
FAKSZ, SAKSZ,ΩAKSZ, QAKSZ

)
(6)

with FAKSZ = Map(T [1]N,X), ΩAKSZ := T
(2)
N ($), the functional SAKSZ : FAKSZ → R,

SAKSZ := T
(0)
N (S) + ιdNT

(1)
N (α). (7)

and the cohomological vector field QAKSZ such that ιQAKSZΩAKSZ = δSAKSZ. Then,

FAKSZ(N ;X,S, α) defines a BV theory.

We will call FAKSZ := Map(T [1]N,X) the AKSZ space of fields. Introducing
Darboux coordinates {pi, qi} in X so that α = pidq

i, the space of AKSZ fields is
composed of inhomogeneous differential forms P,Q on N . Then, if we consider X to
be the space of sections of a bundle E → Σ, that is to say X = T ∗[n−1]C∞(Σ, E),
we can write

ΩAKSZ =

∫
Σ×N

[〈δP, δQ〉]top ≡
∫

Σ×N

[
δPiδQ

i
]top

(8)

where we have denoted by δ the deRham differential on spaces of maps and C∞-
sections, and top denotes the top-form parts of the inhomogeneous differential forms
within brackets. We will drop the superscript top in what follows.

Consider this elementary fact:

Lemma 15. Let A,B,C be graded manifolds, φ : B → C an isomorphism of graded
manifolds, and µA a measure on A. Consider the diagram

A×B
id×φ

//

πB

��

A× C

πC

��

B
φ

// C

(9)

Then, setting πB∗ =
∫
µA· and πC∗ =

∫
µA·, we have φ∗ ◦ πC∗ = πB∗ ◦ (id× φ)∗.

Theorem 16. Let (X,SX , αX) and (Y, SY , αY ) be equivalent Hamiltonian dg-
manifolds, i.e. there exists a diffeomorphism φ : X → Y such that $X = φ∗$Y ,
and SX = φ∗SY . Then FAKSZ(N ;X,SX , αX) and FAKSZ(N ;Y, SY , αY ) are strongly
equivalent BV(-BFV) theories for every manifold N .
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Proof. φ : X → Y induces an isomorphism

φ̃ : Maps(T [1]N,X)→ Maps(T [1]N,Y )

by precomposing maps with φ∗ or φ−1∗. Then, we can apply Lemma 15 with
B = Maps(T [1]N,X), C = Maps(T [1]N,Y ) and A = T [1]N . �

1.3. One-dimensional AKSZ construction. Let I ⊂ R be an interval, and F∂

an exact BFV theory. We can construct a BV theory by applying Theorem 14 on
the Hamiltonian dg-manifold underlying an exact BFV theory:

FAKSZ(I;F∂) := FAKSZ(I;F∂ , S∂ , α∂).

The resulting space of fields reads

FAKSZ = Map(T [1]I,F∂).

Since the target space F∂ is (locally) a graded vector space, we identify the space
of AKSZ fields with

FAKSZ = Ω•(I)⊗F∂ .

In particular, when F∂ is modeled on sections of some bundle over a (N − 1)-
dimensional manifold Σ, we can view FAKSZ as the space of sections of some (graded)
bundle over Σ× I. The space Ω•(I) splits into:

Ω•(I) = C∞(I)⊕ Ω1(I)[−1]

hence, to each field in F∂ we associate two new fields. For simplicity we denote the
field in C∞(I)⊗F∂ with the same letter as the old one, and use another letter for
the one in Ω1[−1](I)⊗F∂ .

Proposition 17 ([CMR18] and [CMR14]). Let F∂(Σ) = (F∂(Σ), S∂(Σ), $∂(Σ), Q∂(Σ))
be an exact BFV theory, with F∂(Σ) := Γ(E → Σ), and $∂(Σ) = δα∂(Σ). Then, if
I := [0, 1] we have that FAKSZ(I;F∂(Σ)) is a 1-extended BV-BFV theory over F∂(Σ)
(see Definition 5).

Proof. Theorem 14 tells us that FAKSZ(I;F∂(Σ)) is a BV theory (up to boundary
terms). If we parametrise fields in FAKSZ as

P = p(t) + q†(t)dt Q = q(t) + p†(t)dt

we get

ΩAKSZ =

∫
Σ×I

〈δP, δQ〉 =

∫
Σ×I

{
〈δp, δp†〉+ (−1)|q|+1〈δq, δq†〉

}
dt

and

SAKSZ =

∫
Σ×I

〈p, dIq〉+ [T
(0)
I (S∂(Σ))]top.

The transgressed integrand needs to be first-order in dt, which leaves us with

[T
(0)
I (S∂(Σ))]top ≡ S∂(Σ)[p+ q†dt, q + p†dt] =

δS∂(Σ)

δp
(q†dt) +

δS∂(Σ)

δq
(p†dt)

Then QAKSZ splits in a transversal part plus a tangential one: QAKSZ = QT + Q̂,
where QT q† = −ṗ and QT p† = q̇ is essentially just deRham differential on I, and
Q̂ is easily obtained:

Q̂p =
δS∂(Σ)

δq
≡ Q∂p Q̂q =

δS∂(Σ)

δp
≡ Q∂q

Q̂p† =
δ2S∂(Σ)

δqδp
(p†) +

δ2S∂(Σ)

δp2
(q†) Q̂q† =

δ2S∂(Σ)

δpδq
(q†) +

δ2S∂(Σ)

δq2
(p†).
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The boundary terms are easily seen in the given local chart, in fact:

ιQAKSZΩAKSZ = δSAKSZ + α̌

but α̌ only sees contributions from 〈p, dq〉 and, up to sign, we get α̌ = α∂(Σ), with
δα∂(Σ) = $∂

Σ. Then, the projection of QAKSZ along the natural projection map from
FAKSZ to the space of boundary fields, which coincides with F∂(Σ), is precisely
Q∂(Σ), concluding the argument. �

Remark 18. A similar statement to Proposition 17 is presented in Henneaux–
Bunster [HT92, Theorem 18.4.5], where one identifies the output of the above
AKSZ construction with the (first-order) BV theory obtained by embedding in
the BV formalism the generalised Hamiltonian formulation of a given field theory
(see also [DGH90]). An analogous construction, already in the context of AKSZ
theories, was presented in [BG05; GD00]. The added observation of Proposition 17
is the compatibility between BV for the bulk and BFV on the boundary, viz., what
we call a 1-extended BV-BFV theory in Definition 5.

We would like to show that this construction behaves well under equivalences of
the relevant BFV data.

Corollary 19 (Theorem 16). Let F∂1 and F∂2 be two strongly BFV-equivalent (exact)
theories, then FAKSZ(I;F∂1 ) and FAKSZ(I;F∂2 ) are strongly BV-equivalent.

Proof. A strong BV equivalence induces an isomorphism of the underlying dg-
manifolds. �

2. BFV theories of gravity

2.1. BFV Einstein–Hilbert Theory. The BFV theory for GR in the Einstein–
Hilbert formalism (as described in [CS16]) associates to any (N − 1)-dimensional
(pseudo)-Riemannian12 manifold Σ the graded 0-symplectic manifold

F∂EH(Σ) = T ∗
(
S2
nd(TΣ)× X[1](Σ)× C∞[1](Σ)

)︸ ︷︷ ︸
{γ,ξ∂ ,ξn}

, (10)

where S2
nd(Σ) denotes the space of nondegenerate symmetric tensor fields of rank

two, with canonical exact symplectic structure:

$∂
EH(Σ) = δα∂EH(Σ) = δ

∫
Σ

〈Π, δγ〉+ 〈ϕ∂ , δξ∂〉+ 〈ϕn, δξn〉, (11)

and {Π, ϕ∂ , ϕn} denote variables in the cotangent fiber, dual to {γ, ξ∂ , ξn} respec-
tively, i.e.

Π ∈ S2(T ∗Σ)⊗Dens(Σ),

ϕ∂ ∈ Ω1(Σ)⊗Dens(Σ),

ϕn ∈ C∞(Σ)⊗Dens(Σ).

Remark 20. The components (γ)ab of a γ ∈ S2
nd(TΣ) can be thought of as the

inverse of a (pseudo-)Riemannian metric on Σ, which we denote by γ−1. With a

slight abuse of notation13 we will denote by
√
γ =

√
det(γab) the square root of the

12In this paper we will mostly focus on the case where Σ is a Riemannian manifold, seen

as a spacelike boundary of a cylinder Σ × R. Generalisations of this to the timelike case are
straightforward. The relevant BFV data can be found in [CS16].

13This is not really problematic, since its variation reads δ
√
γ = 1

2

√
γγabδγab = − 1

2

√
γγabδγ

ab

and we can use either formula according to our needs. If we wanted to use the correct notation
we should simply replace

√
γ with its reciprocal, in formula (13).
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determinant of the metric on Σ that we denote by γ−1 everywhere else. In other
words,

√
γ is the usual density associated to a metric, i.e.

√
γ dN−1x is a volume

form on Σ. Observe that all fields in the fibres of the cotangent bundle (10) are
sections of the respective dual bundles, tensored with densities. The conjugate field
to γ is a section of the second symmetric tensor power of the cotangent bundle of Σ
tensored with densities on Σ, i.e. Π ∈ S2(T ∗Σ)⊗Dens(Σ) is of the form Π =

√
γπ,

for π ∈ S2(T ∗Σ). A similar decomposition holds for ϕ∂ , ϕn.

In addition to F∂EH(Σ) and $∂
EH(Σ), the BV-BFV procedure outputs a func-

tional of degree 1 on F∂EH(Σ), called BFV action. It is given by the local expression

S∂EH(Σ) =

∫
Σ

{
Hnξ

n + 〈Π, Lξ∂γ〉+ ϕnLξ∂ ξ
n − γ(ϕ∂ , dξ

n)ξn +

〈
ϕ∂ ,

1

2
[ξ∂ , ξ∂ ]

〉}
(12)

where we have denoted the Hamiltonian constraint density by

Hn(γ,Π) =

(
1
√
γ

(
Trγ [Π2]− 1

d− 1
Trγ [Π]2

)
+
√
γ
(
R∂ − 2Λ

))
(13)

with R∂ is the trace of the Ricci tensor with respect to the metric γ−1, Λ ∈ R
is the cosmological constant, Trγ [Π2] = γabγcdΠbcΠad and TrγΠ is the density
γabΠab. Observe that we can also denote the momentum constraint density as the
density-valued one-form

H∂ : X(Σ)→ Dens(Σ) H∂(X) = 〈Π, LXγ〉 (14)

for X ∈ X(Σ).

Remark 21. One can integrate the density of equation (13) against a function
λ ∈ C∞(Σ), or integrate the density in (14) to get local functionals on fields. Then
λ and X play the role of Lagrange multipliers, to enforce the so-called Hamiltonian
and momentum constraints.

The Hamiltonian vector field Q∂EH(Σ) of S∂EH(Σ) with respect to $∂
EH(Σ) is a

differential on C∞(F∂EH(Σ)), the BFV differential, and its cohomology in degree
zero is the reduced phase space defined by the constraints {Hn, H∂}.

Definition 22. We define BFV Einstein–Hilbert theory associated to be the as-
signment

Σ F∂EH(Σ) = (F∂EH(Σ), S∂EH(Σ), $∂
EH(Σ), Q∂EH(Σ)). (15)

2.2. BFV Palatini–Cartan theory. Let Σ be an (N − 1)-dimensional compact
and orientable14 smooth manifold and let P → Σ be an SO(N − 1, 1)-principal
bundle. Let also V be the associated vector bundle where each fibre is isomorphic
to (V, η), an N -dimensional vector space with a pseudo-Riemannian inner product

η on it. We further identify so(N − 1, 1) ∼=
∧2 V using η.

Furthermore we use the following notation:

Ωi,j∂ := Ωi
(

Σ,
∧jV) .

The BFV data for PC theory has been described in [CCS20] for N ≥ 4 and in
[CS19a] for N = 3, the following discussion will be nontrivial for N ≥ 4, see Remark

28. The classical fields of the theory are then e ∈ Ω1
nd(Σ,V) — i.e Ω1,1

∂ plus the
nondegeneracy condition that the induced morphism TΣ → V should be injective

14For simplicity we orient Σ and V , but the formalism generalizes to nonorientable Σ as well,
see [CCS20].
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— and the equivalence class of a connection ω ∈ A(Σ) under the e-dependent

relation ω ∼ ω + v for v such that W 1,1
eN−3(v) = 0, where

W 1,1
eN−3 : Ω1,1

∂ → Ω2,2
∂ , W 1,1

eN−3(v) = eN−3 ∧ v.
We denote this equivalence class and the quotient space it belongs to by [ω] ∈
Ared(Σ). We further assume that the boundary metric

g∂ij := η(ei, ej) (16)

is nondegenerate.
The symplectic manifold F ∂PC of (degree-0) boundary fields for PC theory is

then the total space of the fibre bundle F ∂PC −→ Ω1
nd(Σ,V), with fiber Ared. The

manifold F ∂PC is obtained as the symplectic reduction of the naive boundary two-

form $̌ =
∫
eN−3δeδω, which is pre-symplectic since ker($̌) ' ker(W 1,2

eN−3) 6= {0},
as described in [CS19c]. Instead of working with equivalence classes of connections,
it is convenient to fix a nonvanishing section εn ∈ Γ(V) and enforce a condition
called structural constraint, which was introduced in [CCS20]:

(N − 3)εne
N−4dωe ∈ ImW 1,1

eN−3 , (17)

in the space of boundary tetrads and connections. In order to do this one restricts
to tetrads e that are linearly independent from εn. In general this implies working
in patches over the space of the e-fields. However, if g∂ is space-like, we may choose
once and for all εn to be time-like, which provides a global choice on the space of
the e-fields.

Remark 23. Considering the boundary by itself, the constraint (17) is one of the
possible ways to fix the the transformations in the kernel of the presymplectic form.
If we take the bulk as well into account, it assumes a more fundamental role: it is
the necessary and sufficient condition for the transversal equations of motions to
be solvable. Indeed, the (bulk) equations of motion split into a tangential equation

eN−3dωe = 0

and a transversal one

(N − 3)ene
N−4dωe = eN−3(dωe)n,

which tells us that ene
N−4dωe must be in the image of W 1,1

eN−3 . Then, upon using
the tangential equation, we can replace en with some fixed εn. See Section 4.2.

Denoting by S ⊂ Ω1
nd(Σ,V) × A(Σ) the submanifold defined by Equation (17),

we have:

Proposition 24 ([CCS20; CS19c]). There exists a symplectomorphism

F ∂PC(Σ) −→ S.

Effectively, then, one can work on S. The main advantage of this explicit de-
scription of the symplectic space of boundary fields is that it allows to explicitly
compute the symplectic BFV data for PC theory (see Remark 29).

In order to write down the BFV data it is sufficient to fix the equivalence class
[ω] ∈ Ared(Σ) using (17) as done in [CCS20], however, when extending F ∂PC to a
graded manifold we can choose to modify the structural constraint by adding terms
in the ghosts and antifields. This will turn out to be convenient in what follows.

Definition 25. Consider the graded manifold

F̌PC(Σ) := Ω1,1
nd (Σ,V)×A(Σ)× T ∗

(
Ω0,2
∂ [1]⊕ X[1](Σ)⊕ C∞[1](Σ)

)
, (18)

where we denote fields by
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• e ∈ Ω1,1
nd (Σ,V) and ω ∈ A(Σ) in degree zero,

• c ∈ Ω0,2
∂ [1], ξ ∈ X[1](Σ) and λ ∈ Ω0,0[1] in degree one,

• c† ∈ Ω3,2
∂ [−1], λ† ∈ Ω3,4

∂ [−1] and ξ† ∈ Ω1,0
∂ [−1]⊗Ω3,4

∂ in degree minus one,

together with a fixed section εn ∈ Γ(M,V), completing the image of e to a basis of
V. We define the BFV structural constraint to be condition15:

(N − 3)εne
N−4dωe+

(
Lωξ εn − [c, εn]

)(a)
c†a ∈ ImW 1,1

eN−3 (19)

where {(a), (n)} denote components with respect to a basis {ea, εn}. We define the
space of BFV fields F∂PC(Σ) to be the space of solutions of the BFV structural

constraints within F̌PC(Σ).

In order to have a better expression of the BFV structure, following [CCS20,

Section 5.2], we introduce the field y† ∈ Ω3,3
∂ [−1] such that the original fields λ†

and ξ†
′

are recovered through εny
† = −λ† and eay

† = −ξ†′a . This also allows us to
write a single expression for all N ≥ 3.

To complete the definition of the BFV data for Palatini–Cartan theory we con-
sider a degree 1 functional and a symplectic form16 given, respectively, by:

S∂PC(Σ) =

∫
Σ

ceN−3dωe+ ιξee
N−3Fω + εnλe

N−3Fω +
1

2
[c, c]c† − Lωξ cc†

+
1

2
ιξιξFωc

† − [c, εnλ]y† + Lωξ (εnλ)y† +
1

2
ι[ξ,ξ]ey

†, (20)

$∂
PC(Σ) =

∫
Σ

eN−3δeδω + δcδc† + δωδ(ιξc
†)− δλεnδy† + ιδξδ(ey

†). (21)

Note that each term of the integrals belongs to ΩN−1,N , which can be canonically
identified, using

√
|det η|, with the space of densities on Σ. A detailed explanation

can be found in [CCS20]. However, we will not write down the factor
√
|det η|

explicitly.

Definition 26. We define BFV Palatini–Cartan theory to be the assignment

Σ F∂PC(Σ) = (F∂PC(Σ), S∂PC(Σ), $∂
PC(Σ), Q∂PC(Σ)). (22)

with Q∂PC(Σ) the Hamiltonian vector field of S∂PC(Σ) with respect to $∂
PC(Σ).

Remark 27. Notice that the data presented in Definition 26 are equivalent to the
BFV data presented in [CCS20]. The cohomological vector field of a function on
(the presymplectic manifold) F̌PC(Σ) is uniquely fixed by the tangency to the BFV
structural constraint (19). In [CCS20] the equivalent choice of the constraint (17)

is made, and the resulting Q’s differ along ω by a term in the kernel of W 1,2
eN−3 .17

We make this choice in this paper because it makes it easier to compare the AKSZ
construction for the constrained space F∂PC(Σ) with a constrained version of PC,
see Remark 28.

15This BFV structural constraint differs from the classical one of equation (17) by a term
depending on ghosts and their antifields, so it reduces to the classical structural constraint if we
restrict it to the classical space of boundary fields (the body of F̌PC(Σ)).

16This version of the BFV data features a particularly simple action functional, at the price of
not expressing the symplectic form in its Darboux form. An alternative can be found in [CCS20].

17Also note that this term vanishes on the body of F̌PC when imposing the classical con-

straints, i.e., the expressions paired to the ghosts in the first three terms of (20). The two BFV
constructions, by (17) or by (19), describe the characteristic distribution of the coisotropic sub-

manifold determined by the constraints. They extend this distribution in a different way outside
of it, but this is irrelevant.
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Remark 28. In [CS19b] two of the authors showed that the natural BV data
for PC theory (in dimension N ≥ 4) cannot be extended to a BV-BFV theory
(Definition 5). Since the degree-0 part of our AKSZ target will be the constrained
space F∂PC(Σ), the extension to the cylinder18 of Equation (19) provides an explicit
realisation of (one of) the conditions that must be imposed on the bulk BV fields,
in order to have a 1-extended BV-BFV theory. For N = 3, the additional condition
imposed by (17) is void, explaining why 3d PC theory can be (fully) extended
without additional requirements on the fields [CS19a]. We will comment further on
this in Section 4.2.

Remark 29. The main difficulty in constructing BFV data for PC theory comes
from the requirement that (F∂PC , $∂

PC) be a symplectic manifold, as opposed to
pre-symplectic (cf. with [AG14] and [Gri16]). We stress that this requirement is
essential for quantisation. To the best of our knowledge, a complete description
of the symplectic BFV structure for PC gravity was not available before [CCS20].
The complexity of the symplectic reduction arising in the classical description of the
degree-0 boudary structure [CCS20; CS19c], as well as the obstruction in the BV-
BFV induction procedure [CS19b], are relevant features peculiar to this formulation
of gravity.

Remark 30. The conventions we choose for the fields in (20) and in (21) differ from
those in [CS19a, Proposition 21]. In order to make contact between the formulas
one has to perform the following change of variables:

e† 7→ y† ω† 7→ c†

c 7→ −c ξ 7→ −ξ ξn 7→ −λ.
In the caseN ≥ 4 some signs differ from the ones in [CCS20] due to a sign convention
for λ.

3. AKSZ EH

We explore here the idea of reconstructing the (d+ 1)-dimensional BV extension
of Einstein–Hilbert theory by means of the AKSZ construction, with target the BFV
data for Einstein–Hilbert theory (as presented in Section 2.1, based on [CS16]). In
order to do this one looks at the space FAKSZ

EH := Maps(T [1]I,F∂EH(Σ)), with I an
interval. In a chart, to consider the transgression map of Equation (13) means to
look at fields composed of a 0-form and a 1-form on the interval I, with values in
F∂EH(Σ) and fixed total degree. For the case at hand we will then have

G = γ(t) + Π†(t)dt Zn = ξn(t) + η(t)dt Za = ξa(t) + βa(t)dt (23a)

P = Π(t) + γ†(t)dt Hn = ϕn(t) + ξ†n(t)dt Ha = ϕa(t) + ξ†a(t)dt (23b)

where, for all t ∈ I, we parametrise FAKSZ
EH with fields19

γ(t) ∈ Map(I, S2
nd(TΣ)), γ†(t) ∈ Map(I, S2[−1](T ∗Σ)),

Π(t) ∈ Map(I, S2(T ∗Σ)), Π†(t) ∈ Map(I, S[−1]2(TΣ)),

η(t), βa(t) ∈ Map(I, C∞(Σ)), ϕn(t), ϕa(t) ∈ Map(I,Dens[−1](Σ)),

ξn(t), ξa(t) ∈ Map(I, C∞[1](Σ)), ξ†n(t), ξ†a(t) ∈ Map(I,Dens[−2](Σ)),

where we required γ(t) to be nondegenerate for all t ∈ I. Now, observe that η, ξn are
functions on Σ whereas βa, ξa can be considered as the components of vector (fields)
tangent to Σ, which we will denote by β and ξ∂ . Similarly, we can promote ϕa and

18Equation (19) can be extended to the space of fields over a cylinder. We consider this point
of view in Definition 58.

19The motivation for this particular choice of notation will be manifest very soon.
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ξ†a into Σ-density valued one forms, which we will denote by ϕ∂ , ξ
†
∂ . For simplicity

of notation we will often use a unified index ρ ∈ {n, a}, so that ϕρ ∈ {ϕn, ϕa} and
ξ†ρ ∈ {ξ†n, ξ†a}.

Remark 31. Notice once again that we are using (nondegenerate) sections of
S2(TM) instead of actual metrics. Occasionally we will need to raise/lower indices
using γ and its “inverse” which we will denote by γ−1. See Remark 20.

In what follows it will be useful to denote the Kinetic part of the Hamiltonian
functional (Equation (13)) as

K :=
1
√
γ

(
Trγ [Π2]− 1

d− 1
Trγ [Π]2

)
, (24)

and the cosmological Einstein tensor with respect to a metric γ−1 with cosmological
constant Λ will be

G[γ,Λ] = R[γ] +

(
Λ− 1

2
TrγR[γ]

)
γ−1, (25)

where R[γ] is the Ricci–Riemann tensor of γ. We also introduce a tensor-valued
second order operator Dγ that on functions φ ∈ C∞(Σ) acts as

Dγφ = γ−1∆∂φ−∇∂ �∇∂φ (26)

where ∇∂ denotes the Levi-Civita connection of γ, and we denoted by ∆∂ = ∇∂ ·∇∂
the Laplace-Beltrami operator. In a coordinate chart this reads:

[Dγφ]ab = γabγ
cd∇∂c∇∂dφ−∇∂a∇∂bφ

In what follows we will also use the metric gradient, i.e. the vector field gradγφ =

γ(dφ, ·). Since the covariant derivative∇∂ will not explicitly appear in what follows,
we shall employ the symbol ∇ to introduce a shorthand notation for the metric
gradient:

∇γφ ≡
1

2
gradγφ.

Then, it is a matter of a straightforward calculation to show that

Dγφ =
1

2

(
γ−1Tr[L∇γφγ]− L∇γφγ−1

)
.

With this in mind we can state the following:

Theorem 32. The AKSZ data FAKSZ
EH (I;F∂EH(Σ)) are given by the (−1)-shifted

symplectic manifold

FAKSZ
EH ' T ∗[−1]

(
Map(I, S2

nd(TΣ)× S2(T ∗Σ)× C∞(Σ)× X(Σ)× X[1](Σ)× C∞[1](Σ))
)

ΩAKSZ
EH =

∫
Σ×I

{
−〈δγ, δγ†〉+ 〈δΠ, δΠ†〉+ δξρδξ†ρ + δηδϕn + δβaδϕa

}
dt (27)

and the AKSZ action functional :

SAKSZ
EH =

∫
Σ×I

{
〈Π, γ̇〉 − 〈ϕρ, ξ̇ρ〉+Hnη +H∂(β)− 〈γ†, Lξ∂γ〉+ 〈Π†, Lξ∂Π〉 (28a)

−
(
δK
δγ

(Π†) +
δK
δΠ

(γ†)

)
ξn −√γ〈Π†,G[γ, λ]ξn + Dγ(ξn)〉 (28b)

+ 〈ϕ∂ ,∇γηξn − η∇γξn + Lξ∂β〉 − ϕnLβξn + ϕnLξ∂η (28c)

+

〈
ξ†∂ ,

1

2
[ξ∂ , ξ∂ ] + ξn∇γξn

〉
+ Π†(ϕ∂ , dξ

n)ξn + ξ†nLξ∂ ξ
n
}
dt, (28d)

together with its Hamiltonian vector field QAKSZ
EH .
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Proof. The prescription of Theorem 14, suggests that to construct the data in
FAKSZ(I;F∂EH) we need to compute

ΩAKSZ
EH = T

(2)
I $∂

EH(Σ) =

∫
Σ×I

〈δP, δG〉+ 〈δHρ, δZρ〉. (29)

By selecting the top-form part of the integrand and observing that |dt| = 1 we get

ΩAKSZ
EH =

∫
Σ×I

{
−〈δγ†, δγ〉+ 〈δΠ, δΠ†〉+ δξ†ρδξ

ρ + δϕnδη + δϕaδβ
a
}
dt (30)

where the sign comes from 〈δ(γ†dt), δγ〉 = −〈δγ†, δγ〉dt, since |δγ| = 1, while
δξ†ρdtδξ

ρ = δξ†ρδξ
ρdt, since |δξρ| = 2. ΩAKSZ is a (−1)-symplectic structure on

Maps(T [1]I,F∂EH(Σ)), a BV 2-form.
Now, from α∂EH(Σ) we can construct a degree-0 functional on FAKSZ

EH by first
applying the transgression map, which yields the 1-form

T
(1)
I α∂ ∈ Ω1(Maps(T [1]I,F∂EH(Σ))),

and then contracting it with the de Rham differential on I seen as an odd cohomo-
logical vector field dI . In a local chart this is tantamount to replacing δ  dI :=
dt ddt , so that

ιdIT
(1)
I α∂EH(Σ) =

∫
Σ×I

{
〈Π, γ̇〉 − 〈ϕρ, ξ̇ρ〉

}
dt. (31)

where the sign comes from the fact that 〈ϕρdt, ξ̇ρ〉 = −〈ϕρ, ξ̇ρ〉dt. Finally, we want
to compute the AKSZ action functional

SAKSZ
EH := T

(0)
I (S∂EH(Σ)) + ιdIT

(1)
I (α∂EH(Σ)).

This calculation is completely analogous to the previous ones, and it is mostly
straightforward. One needs to pay attention to the signs, so it is worthwhile to
stress that

Π†dt (ϕ∂ , dξ
n)ξn = [Π†]abdtϕa∂bξ

nξn = [Π†]abϕa∂bξ
nξndt = Π†(ϕ∂ , dξ

n)ξndt

while

−γ(ξ†∂dt, dξ
n)ξn − γ(ϕ∂ , dη dt ξ

n + dξnηdt) =
(
〈ξ†∂ , ξ

n∇γξn〉+ 〈ϕ∂ ,∇γηξn − η∇γξn〉
)
dt

Finally, at first order in dt,

Hn(γ + Π†dt,Π + γ†)ξn =
δ(Hnξ

n)

δγ
(Π†dt) +

δ(Hnξ
n)

δΠ
(γ†dt),

and dt ξn = −ξndt. We write the formulas above as derivatives of the functional
Hnξ

n to stress that total derivatives will appear, due to the term R∂ in Hn. Re-
calling the expression for Hn of equation (13) and the definition of K, G[γ,Λ] and
Dγ of Equations (24),(25) and (26), the variation of Hnξ

n with respect to γ yields

δ(Hnξ
n)

δγ
=
δK
δγ
ξn +

δ(
√
γR∂ξn)

δγ
=
δK
δγ
ξn +

√
γ (G[γ,Λ]ξn + Dγ(ξn)) + d(. . . ).

The total derivative term is exact with respect to the tangent differential dΣ. It can
be discarded, provided Σ has no boundary (which we are assuming throughout),
so:

Hn(γ + Π†dt,Π + γ†)ξn =

−
(
δK
δΠ

(γ†) +
δK
δγ

(Π†)

)
ξndt−√γ

〈
Π†,G[γ,Λ]ξn + Dγ(ξn)

〉
dt. (32)

�
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Remark 33. In order to compute the cohomological vector field QAKSZ
EH we enforce

the Hamiltonian condition ιQAKSZ
EH

ΩAKSZ
EH = δSAKSZ

EH dropping all possible boundary

terms. It reads (we omit the expression for QAKSZ
EH ξ† and QAKSZ

EH ϕ):

QAKSZ
EH γ =

δHn

δΠ
ξn + Lξ∂γ (33a)

QAKSZ
EH Π = −δK

δγ
ξn −√γ (G[γ,Λ]ξn + Dγ(ξn)) + Lξ∂Π+ϕ� dξnξn (33b)

QAKSZ
EH η = −ξ̇n + Lξ∂η − Lβξn (33c)

QAKSZ
EH β = −ξ̇∂ + Lξ∂β +∇γη ξn − η∇γξn−∇Π†ξ

nξn (33d)

QAKSZ
EH ξ∂ =

1

2
[ξ∂ , ξ∂ ] + ξn∇γξn (33e)

QAKSZ
EH ξn = Lξ∂ ξ

n (33f)

QAKSZ
EH γ† = Π̇ +

δK
δγ
η +
√
γ (G[γ,Λ]η + Dγ(η)) + LβΠ + Lξ∂γ

† (33g)

+ ξ†∂ � dξ
nξn − ϕ∂ � dηξn+ηϕ∂ � dξn (33h)

+

[
δ2K
δγ2

(Π†) +
δ2Hn

δγδΠ
(γ†)

]
ξn − 1

2
γ−1〈Π†,G[γ, λ]ξn + Dγ(ξn)〉 (33i)

−√γ
〈

Π†,
δG[γ, λ]

δγ
ξn +

δDγ(ξn)

δγ

〉
(33j)

QAKSZ
EH Π† = γ̇ +

δK
δΠ

η + Lβγ + Lξ∂Π†−
[
δ2K
δΠ2

(γ†) +
δ2K
δγδΠ

(Π†)

]
ξn. (33k)

Remark 34. We notice that the term
√
γDγ(·) is the contribution to the field

equations for a metric due to the presence of a Brans–Dicke “dilaton” field, whose
role is played by the ghost ξn in the BFV action S∂EH(Σ) and by η in SAKSZ

EH .

3.1. Pushforward. We would like to compute the BV pushforward of FAKSZ along
the symplectic submanifold (Π,Π†) ∈ F ′′ = T ∗[−1]Map(I, S2(T ∗Σ)) ⊂ FAKSZ

EH .

Remark 35. This is the same as evaluating Seff from equation (3). Since SAKSZ
EH is

only quadratic in Π, the calculation reduces to computing the Batalin–Vilkovisky–
Legendre transform SBVL of SAKSZ

EH with respect to L, as in Definition 11, plus
a correction in the integration measure for the remaining (second-order) effective
theory. Note that Equation 2 is equivalent to setting to zero the r.h.s. of Equation
(33k), together with Π† = 0.

Recall that we are assuming γ(t) to be a nondegenerate section of S2(TΣ) for
every t, i.e. it represents the inverse of a metric, and dually Π(t) ∈ S2(T ∗Σ). We can
use γ and its inverse (denoted γ[) to raise/lower indices: explicitly, if γ = γab∂a�∂b,
we have γ[ = γabdx

a�dxb, with γabγbc = δac . Then, for X ∈ S2(T ∗Σ), Y ∈ S2(TΣ)
we define (X])ab := γacγbdXbc and (Y [)ab = γacγbdY

cd.

Definition 36. Consider the space of fields FR(Σ× I) ⊆ FAKSZ as

FR(Σ× I) := T ∗[−1]
(
Map

(
I, S2

nd(TΣ)× T [1] (C∞(Σ)× X(Σ))
))

(34)

parametrised by (γ, η, β, ξn, ξ∂ , ϕn, ϕ∂ , ξ
†
n, ξ
†
∂), with ιEH : FR(Σ× I)→ FAKSZ the

inclusion map.

Theorem 37. The BV-pushforward of FAKSZ(I;F∂EH(Σ)) with respect to the La-
grangian submanifold L = {(Π,Π†) ∈ F ′′ | Π† = 0} is the BV theory given by

FR(Σ× I) := (FR(Σ× I), SR(Σ× I), $R(Σ× I))
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where

SR(Σ× I) =

∫
R

dt

∫
Σ

−η√γ
[(
〈K],K〉 − Tr(K)2

)
+R∂ − 2Λ

]
(35)

− 〈γ†, Lξ∂γ〉 − 2〈K], γ†〉ξn − 〈ϕρ, ξ̇ρ〉
+ 〈ϕ∂ ,∇γηξn − η∇γξn + Lξ∂β〉+ ϕn

(
−Lβξn + Lξ∂η

)
+

〈
ξ†∂ , ξ

n∇γξn +
1

2
[ξ∂ , ξ∂ ]

〉
+ ξ†nLξ∂ ξ

n

with K := η−1

2 (γ̇ + Lβγ)
[
, and

$R(Σ× I) = ι∗EHΩAKSZ
EH . (36)

Proof. As discussed in Remark 35, we are interested in finding the effective action
one obtains by means of the perturbative expansion of the integral

exp

(
i

~
Seff

)
:=

∫
L⊂F ′′

exp

(
i

~
SAKSZ
EH

)
(37)

because SAKSZ
EH |L is quadratic in Π, through the term K(Π)η. Observing that

δK
δΠ

=
2
√
γ

(
Π] − γ

d− 1
Tr(Π)

)
(38)

δ2K
δΠ2

(γ†) =
2
√
γ

(
(γ†)] − γ

d− 1
Tr(γ†)

)
, (39)

we have that Equation (33k) reads

2
√
γ

(
Π] − γ

d− 1
Tr(Π)

)
= −η−1

(
γ̇ + Lβγ−

2
√
γ

(
(γ†)] − γ

d− 1
Tr(γ†)

)
ξn
)

+ F (Π†)

(40)

where Tr(X) = γabXab. We will use the symbol ≈ to denote the enforcing of
Equation (33k) and of Π† = 0. Then, requiring Π† = 0 and defining

K :=
η−1

2
(γ̇ + Lβγ)

[
, (41)

we obtain that

Π ≈ −√γ
(
K − Tr(K)γ[

)
+ η−1γ†ξn. (42)

It is easy to compute now

Hn ≈
√
γ
[(
〈K],K〉 − Tr(K)2

)
+R∂ − 2Λ

]
− 2η−1〈K], γ†〉ξn (43)

which, together with

〈Π, γ̇ + Lβγ〉 ≈ −2
√
γ
[(
〈K],K〉 − Tr(K)2

)
+R∂ − 2Λ

]
+ 2η−1〈K], γ†〉ξn (44)

and

− δHn

δΠ
(γ†)ξn ≈ +2〈K], γ†〉ξn, (45)

yields

SAKSZ
EH ≈

∫
R

dt

∫
Σ

−η√γ
[(
〈K],K〉 − Tr(K)2

)
+R∂ − 2Λ

]
(46)

− 〈γ†, Lξ∂γ〉+ 2〈K], γ†〉ξn − 〈ϕρ, ξ̇ρ〉
+ 〈ϕ∂ ,∇γηξn − η∇γξn + Lξ∂β〉+ ϕn

(
−Lβξn + Lξ∂η

)
+

〈
ξ†∂ , ξ

n∇γξn +
1

2
[ξ∂ , ξ∂ ]

〉
+ ξ†nLξ∂ ξ

n =: SR(Σ× I).
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So, formula (46) shows that Seff = SR(Σ × I) + O(~). The ~ correction is the
(logarithm of the) determinant of the operator defining the quadratic form K, i.e.
the determinant of the deWitt super metric20 [DeW67]

Wijkl
γ =

1
√
γ

(
γikγjl − 1

d− 1
γijγkl

)
,

or, more invariantly

Wγ(Π,Π) =
1
√
γ

(
〈Π],Π〉 − 1

d− 1
Trγ [Π]2

)
, (47)

and it will have the effect of correcting the overall measure on the residual BV space
of fields FR(Σ× I). �

Remark 38. Up to boundary, we can compute QR(Σ× I) (denoted hereinafter by
QR) to be:

QRγ = Lξ∂γ − η−1(γ̇ + Lβγ)ξn (48a)

QRη = −Lβξn + Lξ∂η (48b)

QRβ = ∇γηξn − η∇γξn + Lξ∂β (48c)

QRξ
n = Lξ∂ ξ

n (48d)

QRξ
∂ = ξn∇γξn +

1

2
[ξ∂ , ξ∂ ] (48e)

and similarly for antifields.

3.2. Reconstruction of Einstein–Hilbert theory. In this section we wish to
show that the BV pushforward of the AKSZ theory constructed in Section 3.1 is
strongly equivalent to Einstein–Hilbert theory in the BV formalism.

To do this, we begin by considering the following definitions:

ξ̃ = −η−1ξn(∂t + β) + ξ∂ (49a)

g̃ = −η−2∂t � ∂t − 2η−2β � ∂t + γ − η−2β � β (49b)

Lemma 39. We have the following relations

1

2
[ξ̃ , ξ̃ ] = QRξ̃ , (50a)

Lξ̃ g̃ = QRg̃. (50b)

Proof. It is a straightforward calculation to show

QRξ̃ = η−2(QRη)ξn(∂t + β) + η−1QRξ
n(∂t + β) +QRξ

∂ + η−1ξnQRβ

=
(
−η−2ξ̇nξn − η−2Lβξ

nξn + Lξ∂ (−η−1ξn)
)

(∂t + β)

− η−1ξnξ̇∂ + η−1ξnLξ∂β +
1

2
[ξ∂ , ξ∂ ].

Observe that the “algebroid term” (see Remark 40, below) ξn∇γξn in QRξ
∂ cancels

out with part of η−1ξnQRβ. On the other hand this coincides with

1

2
[ξ̃ , ξ̃ ] =

1

2
[−η−1ξn(∂t + β) + ξ∂ ,−η−1ξn(∂t + β) + ξ∂ ]

=
(
η−2ξn(∂t + β)ξn + Lξ∂ (−η−1ξn)

)
(∂t + β)

− η−1ξnξ̇∂ + η−1ξnLξ∂β +
1

2
[ξ∂ , ξ∂ ],

20To be precise, Wγ is the inverse of the metric introduced by deWitt, due to our choice of

working with inverse metrics γ.
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proving the first claim. We compute

Lξ̃ g̃ = −2η−3ξ̇n∂t∂t + 2η−3Lξ∂η∂t∂t + 2η−2ξ̇∂t − 2η−4ξnLβη∂t∂t

− 2η−2∂t
(
η−1ξnβ

)
∂t − 4η−4ξn∂tηβ∂t + 4η−3Lξ∂ηβ∂t − 4η−4Lβηξ

nβ∂t

− 2η−2Lξ∂β∂t − 2η−2Lβ
(
η−1ξn

)
∂t∂t + 2η−2∂t

(
ξ∂ − η−1ξnβ

)
β

− 2η−2Lβ
(
η−1ξn

)
β∂t − 2η−2∂t

(
η−1ξn

)
β∂t + 2η−2ξnβ̇∂t − η−1ξnγ̇ab∂a∂b

+ Lξ∂
(
γab∂a∂b

)
− η−1ξnLβ(γab)∂a∂b + 2∇γ

(
η−1ξn

)
∂t + 2∇γ

(
η−1ξnβ

)
∂c

− 2η−4ξnη̇ββ + 2η−3Lξηββ − 2η−4ξnLβηββ + 2η−3ξnβ̇β − η−2Lξ∂ (ββ)

− 2η−2Lβ
(
η−1ξn

)
(β∂t + ββ)

where we recall that expressions like Lξ∂ (β) denote the Lie derivative of the vector

field β = βa∂a along ξ∂ . On the other hand we have

QR(−η−2)∂t∂t =
(
−2η−3ξ̇n + 2η−3Lξ∂η − 2η−3Lβξ

n
)
∂t∂t

QR(−2η−2β)∂t =
(
−4η−3ξ̇nβ + 4η−3Lξ∂η − 4η−3Lβξ

nβ
)
∂t

+
(

2η−2ξ̇∂ − 2η−2Lξ∂β − 2η−2∇γηξn + 2η−1∇γξn
)
∂t

QR(γab)∂a∂b = −η−1ξnγ̇ − η−1ξnLβγ + Lξ∂γ

QR(−η−2ββ) = −2η−3ξ̇nββ + 2η−3Lξ∂ηββ − 2η−3Lβξ
nββ

+ 2η−2βξ̇∂ − 2η−2Lξ∂ββ − 2η−2 (∇γηξn − η∇γξn)β

And it is a matter of a straightforward, but lengthy computation to show that the
two expressions coincide. Indeed, subtracting one from the other we obtain

Lξ̃ g̃−QRg̃ = 2η−3(−η−1ξn(η̇+Lβ(η))ββ+2η−3ξnβ̇β−2η−2Lβ(η−1)ξn(β∂t+ββ)

− 2η−4ξnLβ(η)∂2
t + 2η−4η̇ξnβ∂t − 2η−3ξnβ̇ξn∂t − 4η−4ξn(η̇ + Lβη)β∂t

+ 2η−3ξnβ̇∂t + 2η−4Lβη(∂2
t + β∂t) + 2η−4η̇ξn(β∂t + ββ)− 2η−3ξnβ̇β ≡ 0 (51)

�

Remark 40. Using Lemma 39 we wish to interpret (49) as a map of Lie algebroids.
Consider the (trivial) vector bundle over

Map(I, S2
nd(TΣ)× C∞(Σ)× X(Σ)) ' PRΣ(Σ× I),

where PRΣ(Σ × I) denotes pseudo-Riemennian metrics on Σ × I such that their
restriction to Σ is nondegenerate, with fibre

Map(I, C∞(Σ)× X(Σ)) ' X(Σ× I).

We consider two different Lie algebroid structures on this vector bundle. One is
the action algebroid with bracket given by the bracket of (d + 1)-vector fields,
and anchor given by Lie derivatives on metrics. The other algebroid structure is
given by formulas (48), with (48a),(48b) and (48c) defining the anchor map, and
(48d) and (48e) specifying the bracket of sections. Observe that the morphism of
algebroids (49) does not preserve constant sections, as the splitting of a generic

vector field ξ̃ depends on the so-called lapse η and shift β, which are coordinates
on the base of the fibre bundle. The latter algebroid encodes the algebraic relations
of the constraints of Einstein–Hilbert theory21, and was carefully studied by other
means in [BFW13]. It was also mentioned as a motivating example for the notion

21We stress that, as it is, the structure one can extract from the BFV differential Q∂ is that
of a curved L∞ algebroid, due to the dependency on fields of negative degree. We thank A.

Weinstein, C. Blohmann and N. L. Delgado for enlightening discussions on this matter.
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of Hamiltonian Lie Algebroid, introduced in [BW18]. It is an interesting question
to check whether this construction satisfies the Hamiltonian requirements for an
algebroid.

To proceed, we need to recall the BV data associated with Einstein–Hilbert
theory, in the ADM formalism. Given a pseudo-Riemannian (inverse) metric g̃ on
a manifold M , we can perform a d+ 1 decomposition and rewrite it as22

g̃µν =

(
−η−2 −η−2βb

−η−2βa γab − η−2βaβb

)
In the case where M has a boundary, we can define the second fundamental form of
the boundary submanifold Kab and its trace K by means of the boundary covariant
derivative ∇∂ (the Levi-Civita connection of γ) as follows

Kab =
1

2
η−1(2∇∂(aβb) + ∂tγab) K = γabKab (52)

where t denotes a coordinate transverse to the boundary ∂M . Finally, notice that

(Lβγ)cdγacγbd = −2∇∂(aβb) (γ̇)cdγacγbd = −∂tγab.

Definition 41. Let (FEH(M),ΩEH(M)) be the symplectic manifold

FEH(M) := T ∗[−1]
(
PR∂M (M)× X[1](M)

)
with its canonical symplectic structure, and PR∂M (M) denotes pseudo-Riemennian
metrics on M such that their restriction to ∂M is nondegenerate. Consider the
functional

SEH(M) =

∫
M

{
− η√γ(ε(KabK

ab −K2) +R∂ − 2Λ)
}

+ g̃†Lξ̃ g̃ +
1

2
ι[ξ̃,ξ̃]ξ̃

† (53)

and denote by QEH(M) the Hamiltonian vector field of SEH(M), up to boundary
terms. Then, the assignment of the tuple

FEH = (FEH(M), SEH(M),ΩEH(M), QEH(M)))

to every (d+1)-dimensional manifold M that admits a Lorentzian structure will be
called Einstein–Hilbert theory in the BV formalism.

Remark 42. The sign convention used above is obtained from the standard ADM
decomposition by redefining (η, β) → (−η,−β). This matches our conventions
below. This change is due to the choice of using inverse metrics for the first order
formulation, instead of metrics (in fact Πab∂tγ

ab = −Πab∂tγab).

Theorem 43. Einstein–Hilbert theory in the BV formalism FEH(Σ×I) is strongly
equivalent to FR(Σ × I). Explicitly, the isomorphism of the underlying symplectic

22In this paper we will assume that the manifold M has a global product structure M = Σ×R,
and the induced metric on Σ will be Riemannian, i.e. the leaves Σt are spacelike submanifolds

of M . It is straightforward to generalise this to the timelike case. The relevant formulas for EH
theory in the BV-BFV formalism have been given in [CS16].
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dg-manifolds reads:

g̃ = −η−2∂t∂t − 2η−2β∂t + γ − η−2ββ (54a)

ξ̃ = −η−1ξn∂t + ξ∂ − η−1ξnβ (54b)

ξ̃† = ξ†∂ −
(
ηξ†n + ιβξ

†
∂

)
dt (54c)

g̃† =

(
1

2
η3ϕn − η2ϕaβ

a − γ†abβ
aβb + ηβaξ†aξ

n +
1

2
η−1ξ†nξ

n

)
dt2

+

(
1

2
η2ϕa + γ†abβ

b − 1

2
ηξ†aξ

n

)
dxadt− γ†abdx

adxb (54d)

with inverse:

η = [−g̃tt]− 1
2 (55a)

βa = −[−g̃tt]−1g̃ta (55b)

γab = [−g̃tt]−1g̃tag̃tb (55c)

ξn = −[−g̃tt]− 1
2 ξ̃t (55d)

ξa = ξ̃a + [−g̃tt]g̃taξ̃t (55e)

γ†ab = g̃†ab (55f)

ϕa = 2[−g̃tt]g̃†at + 2g̃†abg̃
tb + ξ̃†aξ̃

t (55g)

ϕn = 2[−g̃tt] 3
2 g̃†tt − 4[−g̃tt] 1

2 g̃†tag̃
ta + 2[−g̃tt]− 1

2 g̃†abg̃
tag̃tb (55h)

+ [−g̃tt] 1
2 ξ̃†nξ̃

t − [−g̃tt]− 1
2 gtaξ̃†aξ̃

a (55i)

ξ†n = −[−g̃tt] 1
2 ξ̃†n + [−g̃tt]− 1

2 ξ̃†ag̃
ta (55j)

ξ†a = ξ̃†a (55k)

Proof. We begin observing that the definitions of K in (41) and K in (52) coincide
up to sign, after identifying g̃ with the expression of Equation (49b). Since the
expression SADM := −η√γ(ε(KabK

ab − K2) + R∂ − 2Λ) is quadratic in K, we
conclude that the degree-zero part of (53) and (46) coincide. This means that the
two theories are classically equivalent23, and (49b) is the map between second-order
and first-order Einstein–Hilbert theory.

We endeavour now to find the explicit expression for g̃† and ξ̃† so that

φ∗(〈g̃†, δg̃〉+ 〈ξ̃†, δξ̃〉) = −〈δγ†, δγ〉+ 〈Π, δΠ†〉+ ξ†ρδξ
ρ + ϕnδη + ϕaδβ

a.

It is straightforward to compute

φ∗(〈g̃†, δg̃〉+ 〈ξ̃†, δξ̃〉) = −
[
(φ∗ξ̃†)nη

−1 + (φ∗ξ̃†)aη
−1βa

]
δξn + (φ∗ξ̃†)aδξ

a

+
[
2(φ∗g̃†)ttη

−3 + 4(φ∗g̃†)atη
−3βa + 2(φ∗g̃†)abη

−3βaβb
]
δη

−
[
(φ∗ξ̃†)tη

−2ξn − (φ∗ξ̃†)aη
−2βaξn

]
δη + (φ∗g̃†)abδγ

ab

+
[
2(φ∗g̃†)atη

−2 − 2(φ∗g̃†)abη
−2βb + (φ∗ξ̃†)aη

−1ξn
]
δβa (56)

23Strictly speaking this is only true on an open subset of the moduli space of solutions, due to
the nondegeneracy condition on γ(t) enforced on the whole cylinder by the AKSZ construction,
while Definition 53 only requires the nondegeneracy of g̃|∂M .
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which leaves us with the intermediate expression:

ξ†a = (φ∗ξ̃†)a (57a)

ξ†n = −
[
(φ∗ξ̃†)tη

−1 + (φ∗ξ̃†)aη
−1βa

]
(57b)

γ†ab = −(φ∗g̃†)ab (57c)

ϕa = −2(φ∗g̃†)atη
−2 − 2(φ∗g̃†)abη

−2βb + (φ∗ξ̃†)aη
−1ξn (57d)

ϕn = 2(φ∗g̃†)ttη
−3 + 4(φ∗g̃†)atη

−3βa + 2(φ∗g̃†)abη
−3βaβb

− (φ∗ξ̃†)tη
−2ξn − (φ∗ξ̃†)aη

−2βaξn (57e)

Starting from the top and solving downwards, we easily get

(φ∗ξ̃†)a = ξ†a (58)

(φ∗ξ̃†)n = −ηξ†n − ξ†aβa (59)

(φ∗g̃†)ab = −γ†ab (60)

(φ∗g̃†)at = −1

2
η2ϕa + γ†abβ

b +
1

2
ηξ†aξ

n (61)

(φ∗g̃†)tt =
1

2
η3ϕn + η2ϕaβ

a − γ†abβ
aβb − ηξ†aβaξn −

1

2
ηξ†nξ

n (62)

Alternatively, from (57), observing that the assignment (49) can be inverted to
yield

φ−1∗η = [−g̃tt]− 1
2 , φ−1∗βa = −[−g̃tt]−1g̃ta, φ−1∗γab = [−g̃tt]−1g̃tag̃tb

together with

φ−1∗ξn = −[−g̃tt]− 1
2 ξ̃t; φ−1∗ξa = ξ̃a + [−g̃tt]−1g̃taξ̃t

we can similarly obtain the inverse:

φ−1∗η = [−g̃tt]− 1
2

φ−1∗βa = −[−g̃tt]−1g̃ta

φ−1∗γab = [−g̃tt]−1g̃tag̃tb

φ−1∗ξn = −[−g̃tt]− 1
2 ξ̃t

φ−1∗ξa = ξ̃a + [−g̃tt]g̃taξ̃t

φ−1∗γ†ab = −g̃†ab

φ−1∗ξ†a = ξ̃†a

φ−1∗ξ†n = −ξ̃†n[−g̃tt] 1
2 + ξ̃†a[−g̃tt]− 1

2 g̃ta

φ−1∗ϕa = −2g̃†at[−g̃tt] + 2g̃†abg̃
tb − ξ̃†aξ̃t

φ−1∗ϕn = 2g̃†tt[−g̃tt]
3
2 − 4g̃†ta[−g̃tt] 1

2 g̃ta + 2g̃†ab[−g̃
tt]−

1
2 g̃tag̃tb

+ [−g̃tt] 1
2 ξ̃†t ξ̃

t − [−g̃tt]− 1
2 gtaξ̃†aξ̃

t.

Now, using again the intermediate expressions (57) let us consider the following
terms, coming from Equation (46):

ξ†nLξ∂ ξ
n = −(φ∗ξ̃†)tη

−1Lξ∂ ξ
n − (φ∗ξ̃†)aη

−1βaLξ∂ ξ
n

〈ξ†∂ , (ξ
n∇γξn +

1

2
[ξ∂ , ξ∂ ]〉 = 〈(φ∗ξ̃†)∂ , (ξn∇γξn +

1

2
[ξ∂ , ξ∂ ]〉
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ϕn

(
Lξ∂η − Lβξn − ξ̇n

)
= η−3

[
2(φ∗g̃†)tt + 4(φ∗g̃†)atβ

a + (φ∗g̃†)abβ
aβb
] (
Lξ∂η − Lβξn − ξ̇n

)
− η−2

[
(φ∗ξ̃†)nξ

n + (φ∗ξ̃†)aβ
aξn
] (
Lξ∂η − Lβξn − ξ̇n

)
〈ϕ∂ ,

(
∇γξn − η∇γξn + Lξ∂β

)
〉

= −2η−2
(
(φ∗g̃†)at + (φ∗g̃†)abβ

b
) (

(∇γη)aξn − η(∇γξn)a + (Lξ∂β)a − ξ̇a
)

+ (φ∗ξ̃†)aη
−1ξn

(
(Lξ∂β)a − η(∇γξn)a − ξ̇a

)
〈γ†, η−1 (γ̇ + Lβγ) ξn − Lξ∂γ〉 = −(φ∗g̃†)ab

(
η−1 (γ̇ + Lβγ) ξn − Lξ∂γ

)ab
.

Then, summing all terms on the left hand side and factoring (φ∗ξ̃†)t, (φ∗ξ̃†)a and
(φ∗g̃†), we obtain

(φ∗ξ̃†)t
[
−Lξ∂ (η−1ξn) + η−2ξn

(
Lβξ

n + ξ̇n
)]

+ (φ∗g̃†)tt
[
2η−3

(
Lξ∂η − Lβξ

n − ξ̇n
)]

+

〈
(φ∗ξ̃†)∂ ,

1

2
[ξ∂ , ξ∂ ]

〉
+
〈

(φ∗ξ̃†)∂ ,−Lξ∂ (η−1ξn)β + η−1Lξ∂βξ
n + η−2βξnLβξ

n + η−2βξnξ̇n − η−1ξnξ̇∂
〉

+ (φ∗g̃†)ab
[
−η−1γ̇abξn − η−1(Lβγ)abξn + (Lξ∂γ)ab + 4η−3βa

(
Lξ∂η − Lβξ

n − ξ̇n
)]

+ (φ∗g̃†)ab
[
−2η−2

(
(∇γη)aξn − η(∇γξn)a + (Lξ∂β)a − ξ̇a

)]
+ (φ∗g̃†)ab

[
2η−3βaβb

(
Lξ∂η − Lβξ

n − ξ̇n
)]

+ (φ∗g̃†)ab
[
−2η−2βb

(
(∇γη)aξn − η(∇γξn)a + (Lξ∂β)a − ξ̇a

)]
Which, using Lemma 39, can be shown to be

φ∗
(
g̃†Lξ̃ g̃ + ι[ξ̃,ξ̃]ξ̃

†
)

(63)

leading to

φ∗SEH(Σ× I) = SR(Σ× I). (64)

�

Remark 44. We would like to stress here that the results in this section are a
“strictification” of the general construction of a solution of the classical master
equation for the extended Hamiltonian, as presented by Henneaux and Bunster in
[HT92, Theorem 18.8]. Indeed, the Hamiltonian analysis for a field theory relies on
a (possibly) non-reduced version of the strict BFV data we consider, where strict
indicates that we require all spaces of fields to be smooth symplectic manifolds. The
AKSZ construction yields a BV theory (Theorem 32) which is effectively equivalent
to the natural BV extension of Einstein–Hilbert theory (Theorems 37 and 43).
It could be argued that this effective equivalence preserves the BV cohomology
[BBH95; DGH90; Hen90]. However, note that the quantisation procedure outlined
in [CMR18] does indeed require the strict version of a BV-BFV structure24, and its
existence is not to be taken for granted, as was shown in [CS19b] and [CS17].

24See [MSW19] for the comparison between strict and lax BV-BFV structures.



26 G. CANEPA, A. S. CATTANEO, AND M. SCHIAVINA

4. AKSZ PC

Following the construction outlined in Section 1.3, starting from the BFV theory
of Palatini–Cartan gravity (see Section 2.2), we can construct the AKSZ space of
fields FAKSZ

PC . We will use the following notation:

e = e+ f† w = ω + u† (65a)

c = c+ w x = ξ + z (65b)

l = λ+ µ c† = k† + c† (65c)

y† = e† + y† (65d)

where

e ∈ C∞(I)⊗ Ω1
nd(Σ,V) f† ∈ Ω1[−1](I)⊗ Ω1(Σ,V)

ω ∈ C∞(I)⊗A(Σ) u† ∈ Ω1[−1](I)⊗A(Σ)

c ∈ Ω0[1](I × Σ,
∧2V) w ∈ Ω1[−1](I)⊗ Ω0[1](Σ,

∧2V)

ξ ∈ C∞(I)⊗ X[1](Σ) z ∈ Ω1[−1](I)⊗ X[1](Σ)

λ ∈ C∞[1](I × Σ) µ ∈ Ω1[−1](I)⊗ C∞[1](Σ)

k† ∈ C∞(I)⊗ ΩN−1[−1](Σ,
∧N−2V) c† ∈ Ω1[−1](I)⊗ ΩN−1[−1](Σ,

∧N−2V)

e† ∈ C∞(I)⊗ ΩN−1[−1](Σ,
∧N−1V) y† ∈ Ω1[−1](I)⊗ ΩN−1[−1](Σ,

∧N−1V)

(66)
such that, for some σ ∈ C∞(I) ⊗ Ω1(Σ,V) and B ∈ Ω1[−1](I) ⊗ Ω1(Σ,V), they
satisfy the structural AKSZ constraints:

εn
{

(N − 4)f†eN−5dωe+ eN−4dωf
† + eN−4[u†, e]

}
(67a)

+
(
ιzdωεn − [w − ιξu†, εn]

)(a)
k†a +X(a)c†a +

(
X(b)f†b

)(a)

k†a = f†eN−4σ + eN−3B;

εne
N−4dωe+X(a)k†a = eN−3σ; (67b)

where X =
(
Lωξ εn − [c, εn]

)
∈ Γ(M,V), while εn ∈ Γ(M,V) is a fixed section, and

the indices {(a), (n)} denote components with respect to a basis {ea, εn}.

Remark 45. Observe that our target for the AKSZ construction for Palatini–
Cartan theory is the BFV theory defined in Definition 26, whose space of fields
F∂PC is defined by the structural constraint (19). As a consequence, the BFV
constraint must be imposed on the AKSZ fields at every point of I. As the AKSZ
fields consists of a 0- and and 1-form component, along the interval, the structural
constraints now has a 0-form and a 1- form component corresponding to (67b) and
(67a), respectively. Despite the apparent complexity of these two equations, it is
worth noting that they fix certain components of the AKSZ fields ω and u†. See
Section 4.2 for an interpretation.

Remark 46. Recall that to define the BFV structure for PC theory we needed a
fixed section εn ∈ Γ(Σ,V) (cf. Definition 25). Note that εn is not a field of the
theory but is part of the structure that defines it (more like a coupling constant).
For this reason, in the AKSZ construction εn does not depend on the coordinate xn

of the interval I. In the following, we will regard εn as a given section of Γ(M,V )
satisfying dI(εn) = 0.

Theorem 47. The AKSZ data FAKSZ
PC (I;F∂PC) are given by the quadruple

FAKSZ
PC (I;F∂PC) = (FAKSZ

PC , SAKSZ
PC , $AKSZ

PC , QAKSZ
PC )



GENERAL RELATIVITY AND THE AKSZ CONSTRUCTION 27

where:

FAKSZ
PC ' T ∗[−1](Map(I,F∂PC))

$AKSZ
PC =

∫
I×Σ

δ(eN−3f†)δω + eN−3δeδu† + δwδk† + δcδc† + δu†δ(ιξk
†)

+ δωδ(ιzk
†) + δωδ(ιξc

†)− δµεnδe† − δλεnδy†

+ ιδzδ(ee
†) + ιδξδ(f

†e†) + ιδξδ(ey
†);

SAKSZ
PC =

∫
I×Σ

weN−3dωe+ (N − 3)ceN−4f†dωe+ ceN−3[u†, e] + ceN−3dωf
†

+ ιzee
N−3Fω + ιξ(e

N−3f†)Fω + ιξee
N−3dωu

† + εnµe
N−3Fω

+ (N − 3)εnλe
N−4f†Fω + εnλe

N−3dωu
† + [w, c]k† +

1

2
[c, c]c†

− ιzdωck† − [ιξu
†, c]k† − ιξdωwk† − ιξdωcc† + ιzιξFωk

†

+
1

2
ιξιξdωu

†k† +
1

2
ιξιξFωc

† − [w, εnλ]e† − [c, εnµ]e† − [c, εnλ]y†

+ ιzdω(εnλ)e† + [ιξu
†, εnλ]e† + ιξdω(εnµ)e† + ιξdω(εnλ)y†

+ ι[z,ξ]ee
† +

1

2
ι[ξ,ξ]f

†e† +
1

2
ι[ξ,ξ]ey

†

+
1

N − 2
eN−2dIω + cdIk

† + dIωιξk
† − ιdIξee† + dIλεne

†.

and QAKSZ
PC is defined as QAKSZ

PC = QdR
PC +Qlift

PC where Qlift
PC is the tangent lift of Q∂PC

to Map(T [1]I,F∂PC(Σ)) and QdRPC is the lift of the de Rham differential dI .

Proof. This is a straightforward application of the AKSZ prescription outlined in
Section 1.3. Using the transgression map we can build a symplectic form FAKSZ

PC

$AKSZ
PC =

∫
I×Σ

eN−3δeδw + δcδc† + δwδ(ιxc
†)− δlenδy† + ιδxδ(ey

†) (68)

from which we obtain the claimed expression using (65). Analogously the AKSZ
action can be constructed using the transgression map from the boundary one-form
α∂ and from the boundary action S∂ . Namely we have

SAKSZ
PC =

∫
I×Σ

1

N − 2
eN−2dIw + cdIc

† + dIwιxc
† − ιdIxey† + dI lεny

† (69)

cedwe + ιxeeFw + εnleFw +
1

2
[c, c]c† − Lw

x cc
† +

1

2
ιxιxFwc

†

− [c, εnl]y
† + Lw

x (εnl)y
† +

1

2
ι[x,x]ey

†.

Again the claimed expression can be obtained straightforwardly from (65). �

Remark 48. The invariance of the constraints (67b) and (67a) with respect to
QAKSZ
PC is guaranteed by the invariance of the structural constraint on the boundary

(19) with respect to QBFV
PC , and by the properties of the AKSZ construction.

From Theorem 14 we know that FAKSZ
PC (I;F∂PC) yields a BV theory on the manifold

I ×Σ. Furthermore, by Proposition 17 these data satisfy also the BV-BFV axioms
of Equation (5).

Definition 49. We call nondegenerate AKSZ PC theory the data FAKSZ
PC?

obtained by

restricting the space of fields of FAKSZ
PC (I;F∂PC(Σ)) to those maps whose µ component

(as defined by Equation (65)) is nonvanishing.
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In [CS19b] two of the authors proved that, using the natural symmetries of
PC theory, the resulting BV theory FPC does not satisfy the BV-BFV axioms (it
is not a 1-extended BV theory) unless additional requirements on the fields are
enforced. Next section will be devoted to the comparison between FPC(Σ× I) and
FAKSZ
PC?

(I;F∂PC(Σ)).

4.1. Comparison of BV data for PC theory. We want to compare the AKSZ-
BV theory of Theorem 47 with the one proposed for PC-gravity by two of the
authors [CS19b], which we briefly recall here. Let M be an N -dimensional manifold
with N > 2.

Definition 50. We call standard BV theory for PC gravity the BV data

FPC(M) = (FPC(M), SPC(M), $PC(M), QPC(M))

where

FPC(M) := T ∗[−1]
(
Ω1
nd(M,V)⊕A(M)⊕ X[1](M)⊕ Ω0[1](M, adP )

)
and the fields in the base are denoted by (e,ω, ξ, c), while the corresponding vari-

ables in the cotangent fibre are denoted by (e†,ω†, ξ†, c†);

$PC(M) =

∫
M

δeδe† + δωδω† + δcδc† + ιδξδξ
†;

SPC(M) =

∫
M

1

N − 2
eN−2Fω + (ιξFω − dωc)ω† −

(
Lωξ e− [c, e]

)
e†

+

∫
M

1

2
(ιξ ιξFω − [c, c]) c† +

1

2
ι[ξ,ξ]ξ

†.

The explicit expression of the cohomological vector field QPC , defined by the
equation ιQPC$PC = δSPC , will be useful in the following:

QPCe = Lωξ e− [c, e]

QPCω = ιξFω − dωc

QPCc =
1

2
ιξ ιξFω −

1

2
[c, c]

QPCξ =
1

2
[ξ, ξ]

QPCe† = eN−3Fω + Lωξ e† − [c, e†]

QPCω
† = eN−3dωe− dωιξω† − [c,ω†] + ιξ [e, e†]− 1

2
dωιξ ιξc

†

QPCc† = −dωω† − [e, e†]− [c, c†]

QPCξ
†
• = Fω•ω

† − (dω•e)e† + ιξFω•c
† + Lωξ ξ

†
• + (dωιξξ

†)•.

Here we used the symbol • to remind the reader that ξ† is a one-form with values
in densities, and on the right hand side we highlight the one-form part of the
expression.

Remark 51. Throughout the analysis we should always keep in mind that, while
Definition 50 is valid for any manifold M (possibly with boundary), the AKSZ the-
ory obtained in Theorem 47 is by construction defined on a manifold diffeomorphic
to a cylinder: M = Σ× I. Furthermore, as we will see in this section, the fields in
FAKSZ
PC? correspond to those in the standard BV theory for PC but with an additional

constraint.
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The product structure of M induces a splitting of fields:

e = ẽ+ ẽndx
n e† = ẽ† + ẽ†ndx

n

ω = ω̃ + ω̃ndx
n ω† = ω̃† + ω̃†ndx

n

ξ = ξ̃ + ξ̃n∂n ξ† = ξ̃† + ξ̃†ndx
n

(70)

More compactly we can write field components in the xn direction as ẽn = ẽndx
n,

ξ̃n = ξ̃n∂n and so on. Observe that ξ† is a one-form with values in densities on M ,

so we can identify two dxn contributions: we denote by ξ̃
n
† the dxn-component (of

the one-form part) of ξ† and by ξ̃ the rest, stressing that the image of ξ̃ is nontrivial
along dxn. This decomposition allows us to define the maps

W i,j
ẽN−3 : Ωi

(
M,
∧jV)→ Ωi+N−3

(
M,
∧j+N−3V

)
; W i,j

ẽN−3(v) = ẽN−3 ∧ v.
(71)

Let us now fix a nonzero section εn ∈ Γ(M,V) such that dIεn = 0. We will then
restrict the field ẽ not to have components parallel to εn. This is a restriction on
the space of fields (it actually defines an open subspace). The nondegeneracy of
e implies that (i) ẽ and εn form a basis of V at every point, and (ii) ẽn becomes
a linear combination of ẽ and εn, with nonzero εn-component. Denote by X{µ}

the components of a field X with respect to the basis given by ẽ and εn (i.e.
X = X{b}ẽb +X{n}εn).

Additionally, we consider the quantity

W† := ω̃†n − ω̃a†ẽ{a}n dxn − ιξ̃ c̃n
† + c̃an

†ξ̃nẽ{a}n dxn. (72)

Its meaning will become manifest with the following:

Definition 52. We denote by ιR : F res
PC → FPC the subspace of BV Palatini–

Cartan fields defined by the following equations, which we call PC structural con-
straints:

εnẽ
(N−4)dω̃ ẽ− εnẽ(N−4)W−1

ẽN−3(W†)dξ̃n

+([c̃, εn] + Lω̃
ξ̃

(εn)− dω̃nεn]ξ̃n){a}(ω̃a
† − c̃an†ξ̃n) ∈ Im(W 1,1

ẽN−3) (73a)

W† ∈ Im(W 1,1
ẽN−3) (73b)

and by the condition that the metric ghor := ẽ∗η is nowhere degenerate25.

Remark 53. The PC structural constraints (73b) and (73a) are invariant under
the action of QPC . Thus they define a BV theory

Fres
PC := (F res

PC , $
res
PC = ι∗R$PC , S

res
PC = ι∗RSPC , Q

res
PC) (74)

where Qres
PC is the restriction of QPC to F res

PC . We will call this theory the restricted
BV Palatini–Cartan theory. The direct proof of the invariance of the constraints is
lengthy and involved, yet we get this result for free as a corollary of the following
theorem, which also specifies the relations between the three BV theories Fres

PC , FPC
and FAKSZ

PC? .

Theorem 54. Upon choosing the same section εn ∈ Γ(M,V) and the same signa-
ture for ghor in the three theories, the following diagram commutes

FPC

FAKSZ
PC?

ϕ

77

ϕ
// Fres
PC

ιR

OO
(75)

25Notice that the condition on ghor will restrict the moduli space of solutions of the theory to

an open subset.
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Moreover, ϕ is a symplectomorphism and we have

$AKSZ = (ϕ ◦ ιR)∗$PC ; SAKSZ
PC = (ϕ ◦ ιR)∗SPC , (76)

so that ϕ and ι induce a strong BV equivalence and a BV inclusion, respectively:

FAKSZ
PC?

ϕ
−→ Fres

PC FAKSZ
PC?

ϕ−→ FPC .

Remark 55 (Proof Strategy). In order to prove this, we will first show that there is
an injective map ϕ : FAKSZ

PC? → FPC such that ϕ∗$PC = $AKSZ
PC and ϕ∗SPC = SAKSZ

PC .
Note that, as a symplectomprhism, ϕ is then an immersion. Then we will show
that F res

PC is the image of this map, so that the PC structural constraints (73b) and
(73a) are satisfied if and only if the AKSZ structural constraints (67b) and (67a)
are. The fact that ϕ is a symplectomorphism preserving the action also proves
indirectly that Fres

PC is a BV theory.

Proof. Denoting by {e,ω, c, ξ} the fields in FPC (their antifields with a dagger),
and following the notation of Equation (65) for the variables in FAKSZ

PC?
, we define

the map ϕ : FAKSZ
PC?

→ FPC in terms of the splitting (70) (with ϕ∗ implicit on the
right hand sides):

ϕ∗e = ẽ+ ẽn ϕ∗ω = ω̃ + ω̃n ϕ∗e† = ẽ† + ẽn
† (77a)

ϕ∗ω† = ω̃† + ω̃n
† ϕ∗c = c̃ ϕ∗c† = c̃n

† (77b)

ϕ∗ξ = ξ̃ + ξ̃n ϕ∗ξ† = ξ̃† + ξ̃
n
† (77c)

where, using again the underlined notation to signify that the quantity is contains
dxn or ∂n, and a ∈ {1, 2, . . . , N − 1}:

ẽ = e+ λµ−1f† ẽn = εnµ+ ιze+ λµ−1zaf†
a

(78a)

ω̃ = ω − λµ−1u† ω̃n = w − ιξu† − λµ−1zau†a (78b)

ẽ† = e† − λµ−1y†n ẽn
† = eN−3u† + ιze

† − λµ−1zay†
a

+ (N − 3)eN−4λµ−1f†u† (78c)

ω̃† = k† ω̃n
† = eN−3f† + ιzk

† + ιξc
† (78d)

c̃ = c− λµ−1ιξu
† c̃n

† = c† (78e)

ξ̃a = ξa + λµ−1za ξ̃† = ey† + f†e† − u†k† + c†λµ−1u† (78f)

ξ̃n = ξ̃n∂n = λµ−1∂n ξ̃
n

† = eny
† + eN−3f†u† + f†ιze

† + u†ιzk
† + c†λµ−1zau†a (78g)

The explicit, long but straightforward calculation needed to prove that ϕ is an
inclusion of symplectic manifolds preserving the action functionals, i.e. such that
$AKSZ
PC = ϕ∗$PC and SAKSZ

PC = ϕ∗SPC , is given in Appendix A.
We then need to prove that Im(ϕ) = F res

PC . In other words we want to prove
that the map defined in (78) will map a solution of the constraints (67b) and (67a)
into a solution of (73b) and (73a). Applying (78) to the definition of W† as given
in Equation (72) we get:

W† = ω̃†n − ω̃a†ẽ{a}n dxn − ιξ̃ c̃n
† + c̃an

†ξ̃nẽ{a}n dxn

= eN−3f† + ιzk
† + ιξc

† − k†aza − ιξc† − c†aλµ−1za + c†aλµ
−1za

= eN−3f†,
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which is (73b). On the other hand, constraint (73a) is satisfied if (67b) and (67a)
are, as it can be seen by direct inspection: using (78) we get26

εnẽ
(N−4)dω̃ ẽ− εnẽ(N−4)W−1

ẽN−3(W†)dξ̃n

+ ([c̃, εn] + Lω̃
ξ̃

(εn)− dω̃nεn]ξ̃n){a}(ω̃a
† − c̃an†ξ̃n)

= εne
N−4dωe+ (N − 4)εne

N−5λµ−1f†dωe+ εne
N−4[λµ−1u†, e]

+ εne
N−4dω(λµ−1f†) + (N − 4)εne

N−5λµ−1f†dω(λµ−1f†)

+ εnf
†eN−4dω(λµ−1) + (N − 4)εnf

†eN−5λµ−1f†dω(λµ−1)

−
(

[c, εn]− [c, εn](b)λµ−1f†b + [λµ−1ιξu
†, εn]

)(a)

(k†a + c†aλµ
−1)

+
(
Lωξ (εn)− Lωξ (εn)(b)λµ−1f†b + [λµ−1ιξu

†, εn]
)(a)

(k†a + c†aλµ
−1)

− [w − ιξu†, εn](a)k†aλµ
−1

= εne
N−4dωe+

(
Lωξ (εn)− [c, εn]

)(a)
k†a

+ λµ−1
(
εn
{

(N − 4)f†eN−5dωe+ eN−4dωf
† + eN−4[u†, e]

}
+
(
ιzdωεn − [w − ιξu†, εn]

)(a)
k†a

+
(
Lωξ (εn)− [c, εn]

)(a)
c†a +

((
Lωξ (εn)− [c, εn]

)(b)
f†b

)(a)

k†a

)
= (♠).

Using now the AKSZ constraints (67b) and (67a) we obtain

(♠) = eN−3σ + λµ−1(f†eN−4σ + eN−3B)

= ẽN−3(σ + λµ−1B).

Comparing the first and the last line of this computation we get the desired con-
straint (73a). Hence ϕ defines a diffeomorphism ϕ : FAKSZ

PC?
→ F res

PC . Indeed, the
inverse of this map is readily found, as follows.

It is easy to find k† = ω̃†, c† = c̃n
†, and ξ̃n = λµ−1. Then we can write

e = ẽ − ξ̃nf†, so that ẽn = εnµ + ιz ẽ, and taking {ẽa, εn} as a basis, we have

za = ẽn
a and µ = ẽn

n, which also implies λ = ẽn
nξ̃n and ξa = ξ̃a − ẽnaξ̃n.

We now turn to equation (78d) which can be rewritten as

eN−3f† = ω̃n
† − ιzk† − ιξc†

Let us denote the known piece by Ã := −ιzk† − ιξc†, so that we have{
e = ẽ− ξ̃nf†

eN−3f† = ω̃n
† + Ã

=⇒ ẽN−3f† = ω̃n
† + Ã

where we used that f†f† = 0. We see here that this equation can be solved only
when

ω̃n
† − ιzω̃† − ιξ c̃† ∈ Im(W 1,1

ẽN−3).

From the equations

ẽ† = e† − ξ̃ny†, ẽn
† = eN−3u† + ιze

† − λµ−1zay†
a

+ (N − 3)eN−4λµ−1f†u†,

using again e = ẽ− ξ̃nf†, we get

ẽN−3u† = ẽn
† − ιz ẽ†.

26Note that X{a} = X(a) − (X(b)λµ−1f†b )(a).
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Since ẽn
† − ιz ẽ† ∈ Ω(N−2,N−1), on which the map WẽN−3 is surjective, we conclude

that, up to components p(u†) in the kernel of WẽN−3 , we can find

u† = W−1
ẽN−3(ẽn

† − ιz ẽ†) + pu†

However, we know that u† must satisfy the constraint (67a), which (impliclty but
uniquely) fixes pu† as a function of ẽ, ω̃, f†. We can use this directly to solve

ω = ω̃ + ξ̃nu† = ω̃ + ξ̃n
(
W−1
ẽN−3(ẽn

† − ιz ẽ†) + pu†
)

Analogously we can find w and c as follows

w = ω̃n + ιξ̃
(
W−1
ẽN−3(ẽn

† − ιz ẽ†) + pu†
)
,

c = c̃+ ξ̃nιξ̃
(
W−1
ẽN−3(ẽn

† − ιz ẽ†) + pu†
)
.

Finally, we can conclude the calculation with y† and e† by inverting (78c), (78f)
and (78g): it is useful to notice that it is possible to invert an equation of the form
e†(1 + λX) = Y for some X,Y as e† = Y (1 − λX). However, we will not write
down in full these last equations as we will not need them in what follows.

The BV theory FAKSZ
PC?

is obviously strongly equivalent to its image under the
symplectomorphism ϕ, which is Fres

PC . Furthermore, since up to boundary terms
QPC is the Hamiltonian vector field of SPC , and the same holds for QAKSZ

PC and SAKSZ
PC ,

we have that in the interior M◦ = M\∂M the compatibility ϕ∗QPC = QAKSZ
PC ϕ∗ is

a consequence of ϕ∗$PC = $AKSZ
PC and ϕ∗SPC = SAKSZ

PC . However, this is a local
condition that then extends to the whole of (M,∂M) and ϕ is a BV inclusion. �

Remark 56. The defining condition µ 6= 0 and ghor = ẽ∗η nondegenerate given in
Definition 49, used in Theorem 54, are necessary in order to make e non degenerate

in the bulk, to build the symplectomorphism (78) (since ε
[n]
n = µ−1).

Remark 57. The number of free components of ι∗Rω̃ is 3N(N−1)
2 , since ω and w

have respectively N(N−1) and N(N−1)
2 free components. The N(N−1)(N−3)

2 missing
components are those fixed by the condition in Equation (73a). Correspondingly,

also ι∗Rω̃
† has 3N(N−1)

2 independent components: N(N−1)
2 coming from k† and

N(N − 1) from f†.

4.2. An interpretation of the restricted theory. We now want to shed some
light on the interpretation of the restricted theory Fres

PC defined in Theorem 54.
Recall that among the Euler–Lagrange equations of the classical PC theory we

have27 eN−3dωe = 0, which, thanks to the nondegeneracy of e, is equivalent to
dωe = 0, i.e., the torsion-free condition for ω. Imposing this condition forces ω
to correspond to the Levi-Civita connection for the metric gµν = η(eµ, eν), which
is used to recover the Einstein–Hilbert formulation of the theory. Note that this
yields only a classical equivalence of the two theories, as the fluctuations might
violate the condition dωe = 0 at the quantum level. Only by forcing this condition
on the space of fields (i.e., by freezing the fluctuations that might violate it) may
one recover the quantum Einstein–Hilbert theory.

However, one can consider a whole family of theories between PC and EH where
only some part of the condition dωe = 0 is imposed on the fields, looking for
a compromise.28 that retains the good feature of PC of dealing with differential
forms but yields a compatible boundary BFV theory as in EH [CS16].

27We use boldface letters to denote fields in PC theory.
28Imposing too few conditions out of dωe = 0 would not solve the compatibility problem with

the boundary. Imposing too many generates other problems (see, e.g., [CS19c, Section 4.3], where
the whole of dωe = 0 is imposed manually).
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In particular, working on a cylinder I × Σ, we may use the decomposition e =
ẽn + ẽ, ω = ω̃n + ω̃. By choosing once and for all a nonzero section εn ∈ Γ(M,V)
and requiring the components of ẽ to span a transversal hyperplane in V at each
point, we may expand ẽn in the basis (εn, ẽ); moreover, we require ẽ to define a
nondegenerate metric η(ẽ, ẽ) at each point.29 Observe that the splitting of fields

e,ω induced by the cylinder structure also allows the definition of the maps W i,j
ẽN−3

given in Equation (71).
With these notations we may impose the constraint

εnẽ
N−3dω̃ ẽ ∈ Im(W 1,1

ẽN−3), (79)

which implements only some of the conditions in dωe = 0.
Another interpretation of the constraints goes through considering a reduction

of the fields instead of a restriction. Indeed we can also think of Equation (79) as
a classical constraint that freezes certain components of the connection. We need
the following

Definition 58. We define the space of reduced connections on a cylinder to be the
quotient

Ared(Σ× I) := A(Σ× I)/ker(W 1,2
ẽN−3), (80)

and denote by F res
PC the fiber bundle

F res
PC −→ Ω1

nd(Σ× I,V) (81)

with typical fiber Ared(Σ× I) obtained by reducing the fibers of the trivial bundle

A(Σ× I)× Ω1
nd(Σ× I,V) −→ Ω1

nd(Σ× I,V)

by ker(W 1,2
ẽN−3).

Proposition 59. Consider the splitting e = ẽ+ẽn, with ghor := ẽ∗η nondegenerate.
Then for every ([ω], ẽ, ẽn) there exists a unique ω ∈ A(Σ× I) such that

(N − 3)εn ∧ ẽN−4 ∧ dω ẽ ∈ Im(W 1,1
ẽN−3), (82)

which induces a section of the fibration:

A(Σ× I)× Ω1
nd(Σ× I,V) −→ F res

PC , (83)

Proof. This is a straightforward adaptation of [CCS20, Theorem 17], which holds
at every point in I. �

Hence, imposing only some part of the equation dωe = 0 produces an inter-
mediate theory, that in view of Proposition 59 can be alternatively thought of as
Palatini–Cartan theory for a tetrad and a reduced connection. However, in both
interpretations, fixing a condition only on the classical fields does not produce a
symplectic submanifold of the space of BV fields.

If we want to consistently restrict the BV theory of Definition 50 we first have to
impose some condition on the antifields as well, in order to ensure that we have a
nondegenerate BV form. One can show that (79) actually fixes the components of

ω̃ in the kernel of W 1,2
ẽN−3 . As a consequence, we can get a symplectic submanifold

if, in addition to (79), we impose30

ω̃†n ∈ Im(W 1,1
ẽN−3). (84)

29A more physical requirement, as one would like the two boundary components of I × Σ to

be space-like Cauchy surfaces, consists in choosing εn to be a time-like section and ẽ to define a
positive definite metric.

30This condition requires that the antifield of ω̃ be in the dual of the complement of the kernel

of W 1,2

ẽN−3 , which is the image of W 1,1

ẽN−3 because ω̃ is tangent to the slice Σ×{t}, and its antifield

is of the form ω̃†ndxn, with ω̃†n ∈ ΩN−2(M,∧N−2V).
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The problem, though, is that (79) and (84) do not define a Q-submanifold,
which is needed to have a BV theory. However, one can easily check that condition
(79) is compatible with gauge transformations and diffeomorphisms upon using the
Euler–Lagrange equations. This implies that it should be possible to correct (79)—
and concurrently (84) because we want to preserve the condition that we get a
symplectic submanifold—so as to obtain a Q-submanifold. The explicit solution to
this problem is actually given by (73b) and (73a).

Remark 60. Observe that this solution might not be unique, as the choice of a
structural constraint we made in Definition 25 was made to render the invariance
of (19) more manifest. However, Theorem 54 tells us that a different choice of
BFV structural constraint will provide a different extension of the constraint (82)
in Palatini–Cartan theory.

4.3. Three dimensional case. When N = 3 some simplifications occur. In-
deed, in this case the inclusion is actually an identity since there are no additional
constraints on the field. Furthermore we know that the theory is strongly BV-
equivalent, both in the bulk and on the boundary, to the topological BF theory,
denoted here by FAKSZ

BF ′ . Hence we can summarize the results in the following theo-
rem.

Corollary 61. The theories FAKSZ
PC?

and FAKSZ
BF ′ are strongly BV equivalent.

Proof. The claim follows directly from Theorem 16 given the results of Theorem
54 and of [CS19a], which proves the strong equivalence (at all codimensions) of
non-degenerate BF theory and PC gravity in three dimensions. �

Pictorially we can describe the content of Corollary 61 as follows

FPC FBF ′

FAKSZ
PC? FAKSZ

BF ′

F∂PC F∂BF ′

B

φ

ψ

B BA

ψ∂

A

(85)

where the arrows A represent the AKSZ constructions, the arrows B represent the
BV-BFV reductions, while ψ, ψ∂ and φ are the symplectomorphisms mentioned
above.

Appendix A. Lengthy calculations

We prove here that the transformation (78) is a symplectomorphism between
FAKSZ and FR that preserves the action. In the computation we will use multiple
times the following useful relation:

ε[a]
n = −zaε[n]

n , ε[n]
n = µ−1.
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We now prove that ϕ∗$PC = $AKSZ
PC .

ϕ∗$PC = ϕ∗
∫
M

δeδe† + δωδω† + δcδc† + ιδξδξ
†

=

∫
M

δẽδẽn
† + δẽnδẽ

† + δω̃δω̃n
† + δω̃nδω̃

† + δc̃δc̃† + δξ̃aξ̃
a
† + δξ̃nξ̃

n
† (86)

=

∫
M

δeδ(eN−3u†) + δeδ(ιze
†)− δeδ(λε[a]

n y
†
a
) + δeδ((N − 3)eN−4λε[n]

n f†u†)

+ δ(λε[n]
n f†)δ(eu†) + δ(λε[n]

n f†)δ(ιze
†)− δ(λε[n]

n f†)δ(λε[a]
n y
†
a
)

+ δ(λε[n]
n f†)δ(λε[n]

n f†u†) + δ(ιze)δe
† − δ(ιze)δ(λε[n]

n y†) + δ(εnµ)δe†

− δ(εnµ)δ(λε[n]
n y†) + δ(λε[a]

n f
†
a
)δe† − δ(λε[a]

n f
†
a
)δ(λε[n]

n y†)

+ δωδ(eN−3f†) + δωδ(ιzk
†) + δωδ(ιξc

†)− δ(λε[n]
n u†)δ(eN−3f†)

− δ(λε[n]
n u†)δ(ιzk

†)− δ(λε[n]
n u†)δ(ιξc

†) + δwδk† − δ(ιξu†)δk†

− δ(λε[a]
n u
†
a)δk† + δcδc† − δ(ιξλε[n]

n u†)δc† + ιδξδ(ey
†)

+ ιδξδ(f
†e†)− ιδξδ(u†k†) + ιδξδ(c

†λε[n]
n u†) + δ(λε[a]

n )δ(eay
†)

+ δ(λε[a]
n )δ(f†

a
e†) + δ(λε[a]

n )δ(u†ak
†) + δ(λε[a]

n )δ(c†aλε
[n]
n u†)

+ δ(λε[n]
n )δ(eny

†) + δ(λε[n]
n )δ(eN−3f†u†) + δ(λε[n]

n )δ(f†ιze
†)

+ δ(λε[n]
n )δ(u†ιzk

†) + δ(λε[n]
n )δ(c†λε[a]

n u
†
a)

This expression should be compared with the symplectic form coming from the
AKSZ construction:

$AKSZ
PC =

∫
I×∂M

δ(eN−3f†)δω + eN−3δeδu† + δwδk† + δcδc† + δu†δ(ιξk
†)

+ δωδ(ιzk
†) + δωδ(ιξc

†)− δµεnδe† − δλεnδy†

+ ιδzδ(ee
†) + ιδξδ(f

†e†) + ιδξδ(ey
†). (87)

Almost all the terms in (87) can be direclty found in ϕ∗$PC . The remaining terms
can be identified using the following relations:

δu†δ(ιξk
†) = −δ(ιξu†)δk† − ιδξδ(u†k†);

−δ(λεn)δy† = δ(eaλε
[a]
n )δy† + δ(ẽnλε

[n]
n )δy†

= δ(λε[a]
n )δ(eay

†)− δeδ(λε[a]
n y
†
a
)

+ δ(λε[n]
n )δ(ẽny

†)− δẽnδ(λε[n]
n y†);

ιδzδ(ee
†) = δeδ(ιze

†) + δ(ιze)δe
†

All the other terms in (86) sum to zero because of the following identities:



36 G. CANEPA, A. S. CATTANEO, AND M. SCHIAVINA

δ(λε[n]
n f†)δ(eN−3u†) + (N − 3)δeδ(eN−4λε[n]

n f†u†)

− δ(λε[n]
n u†)δ(eN−3f†) + δ(λε[n]

n )δ(eN−3f†u†) = 0;

δ(λε[n]
n f†)δ(ιze

†) + δ(λε[a]
n f
†
a
)δe† + δ(λε[a]

n )δ(f†
a
e†) + δ(λε[n]

n )δ(f†ιze
†) = 0;

− δ(λε[n]
n u†)δ(ιzk

†)− δ(λε[a]
n u
†
a)δk† + δ(λε[a]

n )δ(u†ak
†) + δ(λε[n]

n )δ(u†ιzk
†) = 0;

− δ(λε[n]
n u†)δ(ιξc

†)− δ(ιξλε[n]
n u†)δc† + ιδξδ(c

†λε[n]
n u†) = 0;

δ(λε[a]
n )δ(c†aλε

[n]
n u†) + δ(λε[n]

n )δ(c†λε[a]
n u
†
a) = 0;

− δ(λε[n]
n f†)δ(λε[a]

n y
†
a
)− δ(λε[a]

n f
†
a
)δ(λε[n]

n y†) = 0;

(N − 3)δ(λε[n]
n f†)δ(eN−4λε[n]

n f†u†) = 0.

We go on to show that the symplectomorphism ϕ preserves the action i.e.
ϕ∗SPC = SAKSZ

PC . We do it by direct inspection31:

ϕ∗SPC =ϕ∗
∫
M

1

N − 2
eN−2Fω + (dωc− ιξFω)ω† +

(
Lωξ e− [c, e]

)
e† (88)

+
1

2
([c, c]− ιξιξFω) c† +

1

2
ι[ξ,ξ]ξ

†

=

∫
M

ẽN−3ẽnFω̃ +
1

N − 2
ẽN−2Fω̃n −

(
ιξ̃Fω̃ + Fω̃n ξ̃n − dω̃ c̃

)
ω̃n
†

−
(
ιξ̃Fω̃n − dω̃n c̃

)
ω̃† +

(
Lω̃
ξ̃
ẽ+ dω̃n ẽξ̃n + ẽndξ̃n − [c̃, ẽ]

)
ẽn
†

+
(
ιξ̃dω̃ ẽn + ι∂nξ̃

ẽ− dω̃n(ẽnξ̃n)− [c̃, ẽn]
)
ẽ†

−
(

1

2
ιξ̃ιξ̃Fω̃ + ιξ̃Fω̃n ξ̃n −

1

2
[c̃, c̃]

)
c̃† +

1

2
ι[ξ̃,ξ̃]ξ̃

† +
1

2
ι[ξ̃,ξ̃]n ξ̃

†

=

∫
M

eN−3εnµFω + eN−3ιzeFω + eN−3λε[a]
n f
†
a
Fω + (N − 3)eN−4λε[n]

n f†enFω

− eN−3endω(λε[n]
n u†)− eN−3λε[a]

n f
†
a
dω(λε[n]

n u†)

− (N − 3)eN−4λε[n]
n f†endω(λε[n]

n u†) +
1

N − 2
eN−2

(
∂nω − ∂nλε[n]

n u† + dωw
)

− 1

N − 2
eN−2

(
dω(ιξu

†) + dω(λε[a]
n u
†
a) + [λε[n]

n u†, w − ιξu†]
)

+ eN−3λε[n]
n f†Fωn

− ιξFω(eN−3f† + ιzk
† + ιξc

†) + ιξdω(λε[n]
n u†)(eN−3f† + ιzk

† + ιξc
†)

− Fωaλε[a]
n (eN−3f† + ιzk

† + ιξc
†) + dω(λε[n]

n u†)aλε
[a]
n (eN−3f† + ιzk

† + ιξc
†)

− Fω̃nλε[n]
n eN−3f† − Fω̃nλε[n]

n ιzk
† − Fω̃nλε[n]

n ιξc
†

+ dωc(e
N−3f† + ιzk

† + ιξc
†)− [λε[n]

n u†, c](eN−3f† + ιzk
† + ιξc

†)

− dω(ιξλε
[n]
n u†)(eN−3f† + ιzk

† + ιξc
†)

31We denote with ∂n the de Rham differential on I (previously denoted with dI) in order to
be uniform with the notation of the fields (77).
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− ιξ∂nωk† + ιξ∂n(λε[n]
n u†)k† − ιξdωwk† + ιξdω(ιξu

†)k†

+ ιξdω(λε[a]
n u
†
a)k† + ιξ[λε

[n]
n u†, w − ιξu†]k† − Fω̃anλε[a]

n k
† + ∂nck

†

− ∂n(ιξλε
[n]
n u†)k† + [w, c]k† − [ιξu

†, c]k† − [λε[a]
n u
†
a, c]k

†

+ [w − ιξu†, ιξλε[n]
n u†]k†

+ Lωξ ee
N−3u† + Lωξ eιze

† − Lωξ eλε[a]
n y
†
a

+ (N − 3)Lωξ ee
N−4λε[n]

n f†u†

+ ((dωe)aλε
[a]
n − dω(eaλε

[a]
n ))eN−3u† + ((dωe)aλε

[a]
n − dω(eaλε

[a]
n ))ιze

†

+ dω(eaλε
[a]
n )λε[a]

n y
†
a
− (N − 3)dω(eaλε

[a]
n )eN−4λε[n]

n f†u† + Lωξ (λε[n]
n f†)eN−3u†

+ Lωξ (λε[n]
n f†)ιze

† − Lωξ (λε[n]
n f†)λε[a]

n y
†
a

+ (dω(λε[n]
n f†))aλε

[a]
n e

N−3u†

+ (dω(λε[n]
n f†))aλε

[a]
n ιze

†)− [ιξλε
[n]
n u†, e](eN−3u† + ιze

†) + ∂neλε
[n]
n eN−3u†

+ ∂neλε
[n]
n ιze

† + [w − ιξu†, e]λε[n]
n eN−3u† + [w − ιξu†, e]λε[n]

n ιze
†

+ ∂n(λε[n]
n f†)λε[n]

n (eN−3u† + ιze
†) + end(λε[n]

n )eN−3u† + end(λε[n]
n )ιze

†

+ λε[a]
n f
†
ad(λε[n]

n )eN−3u† + λε[a]
n f
†
ad(λε[n]

n )ιze
† − end(λε[n]

n )λε[a]
n y
†
a

+ (N − 3)end(λε[n]
n )eN−4λε[n]

n f†u† − [c, e]eN−3u† − [c, e]ιze
† + [c, e]λε[a]

n y
†
a

− (N − 3)[c, e]eN−4λε[n]
n f†u† − [c, λε[n]

n f†]eN−3u† − [c, λε[n]
n f†]ιze

†

+ [ιξλε
[n]
n u†, e](eN−3u† + ιze

†)

+ ιξdω(εnµ)e† + ιξdω(ιze)e
† + ιξdω(λε[a]

n f
†
a
)e† + dωa(en)λε[a]

n e
†

+ dωa(λε[a]
n f
†
a
)λε[a]

n e
† − ιξ[λε[n]
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†
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− ξb∂bξaeay† − ξb∂b(λε[a]
n )eay

† − λε[b]n ∂bξaeay† − λε[b]n ∂b(λε[a]
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†
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a
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n )f†eN−3u†
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n )f†ιze

† − λε[a]
n ∂a(λε[n]

n )f†ιze
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n ∂n(λε[n]
n )f†ιze

†

+ ξa∂a(λε[n]
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†
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n u
†
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We want to compare this with the AKSZ action:

SAKSZ
PC =

∫
I×∂M

weN−3dωe+ (N − 3)ceN−4f†dωe+ ceN−3[u†, e] + ceN−3dωf
†

+ιzee
N−3Fω + ιξ(e

N−3f†)Fω + ιξee
N−3dωu

† + εnµe
N−3Fω

+(N − 3)εnλe
N−4f†Fω + εnλe

N−3dωu
† + [w, c]k† +

1

2
[c, c]c†

−ιzdωck† − [ιξu
†, c]k† − ιξdωwk† − ιξdωcc† + ιzιξFωk

†

+
1

2
ιξιξdωu

†k† +
1

2
ιξιξFωc

† − [w, εnλ]e† − [c, εnµ]e† − [c, εnλ]y†

+ιzdω(εnλ)e† + [ιξu
†, εnλ]e† + ιξdω(εnµ)e† + ιξdω(εnλ)y† + ι[z,ξ]ee

†

+
1

2
ι[ξ,ξ]f

†e† +
1

2
ι[ξ,ξ]ey

† +
1

N − 2
eN−2∂nω + c∂nk

† + ∂nωιξk
†

−ι∂nξee† + ∂nλεne
†. (89)

We proceed as follows: we first check that all terms in (89) can be found in (88),
then we show that all other terms in (88) sum to zero.
We can easily recognized many terms identically repeated in both expressions. Some
other terms in (89) can be recovered in (88) using Leibniz rule and Cartan calculus.

(N − 3)ceN−4f†dωe+ cN−3dωf
† = dωc(e

N−3f†);

− 1

N − 2
eN−2dω(ιξu

†) + Lωξ ee
N−3u† = +ιξee

N−3dωu
†;

−1

2
ι[ξ,ξ]u

†k† = −ιξdωιξu†k† +
1

2
ιξιξdωu

†k†;

ι[z,ξ]ee
† = ιξdωιzee

† + Lωξ eιze
†

All the other relations involving terms of (88) are based on the expansion

εn = eaε
(a)
n + enε

(n)
n .

It is a long but rather easy computation to show that the remaining terms in (89)
sum to zero. This is done by making repeated use of Cartan calculus and Leibniz

rule. Notice also that some terms containing expressions of the form ε
[a]
n ε

[b]
n Xab

vanish by antisymmetry.
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