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1. Introduction: calculating partition functions by cutting-pasting

Locality in quantum field theory can be understood as the possibility to recover, by

means of a simple gluing formula, the partition function on a manifold M split into

submanifolds M1, . . . ,Mk from partition functions on the pieces M1, . . . ,Mk. This

principle was made precise in the setting of 2-dimensional conformal field theory by

Segal12 and for topological field theory by Atiyah2. In this description, an (n− 1)-

manifold Σ gets assigned a complex vector space – the space of states HΣ, and an

n-manifold M with boundary ∂M gets assigned a vector ZM ∈ H∂M in the space

of states for its boundary. The main axiom states that if M = M1 ∪Σ M2 is the

gluing of two n-manifolds along a closed (n− 1)-manifold Σ, the partition function

for the whole manifold can be recovered from the partition functions for the pieces,

ZM = 〈ZM1
, ZM2

〉Σ. Here 〈, 〉Σ is the pairing of states in HΣ. In the case of a

topological theory, partition functions are interesting diffeomorphism invariants of

manifolds that can be recovered from cutting the (possibly complicated) manifold

into simple pieces. For instance, for a 2-dimensional topological field theory, it
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suffices to know the space of states for the circle and the partition function for the

disk and the pair of pants to recover the partition function on any oriented surface.

Our program1,4–6 is to construct quantum field theories on manifolds with

boundary, compatible with cutting-pasting in Atiyah-Segal sense, from perturbative

path integral quantization of gauge theories in the Batalin-Vilkovisky formalism.

Our next goals are 1) to extend this quantization procedure to cutting-pasting

with corners and 2) to prove that the k →∞ asymptotics of the Reshetikhin-Turaev

invariant9 coincides with the perturbative expansion of Chern-Simons theory13.

2. BV-BFV formalism for gauge theory on manifolds with

boundary: an outline

2.1. Classical BV-BFV formalism

A classical n-dimensional BV-BFV theory4 is defined, in the spirit of Atiyah-Segal

axiomatics of QFT2,12, as the following association T.

• To a closed (n− 1)-manifold Σ, the theory T assigns a phase space ΦΣ – a

supermanifold equipped with

– Z-grading by the ghost number,a

– a cohomological vector field QΣ (an odd vector field of ghost number

gh(QΣ) = 1 satisfying (QΣ)2 = 0) – the BRST operator,b

– an even exact symplectic structure ωΣ of ghost number 0, compatible

with QΣ, with a fixed primitive 1-form αΣ such that ωΣ = δαΣ,c

– the BFV charge SΣ – an odd function of ghost number 1 which is the

Hamiltonian for QΣ.

• To an n-manifold M with possibly nonempty boundary, T assigns the space

of fields FM – a Z-graded supermanifold equipped with the following struc-

tures.

– Boundary restriction of fields – a projection (surjective submersion)

π : FM → Φ∂M ,

– a cohomological vector field QM ; it is required to be projectable by π,

with the boundary phase space BRST operator its projection, π∗QM =

Q∂M ,

– an odd symplectic structure ωM of ghost number −1 (the BV 2-form),

aIn bosonic theories, the parity is the mod 2 reduction of the Z-grading. The Z-grading is useful
for bookkeeping, but is not really essential, and is not even available in some field theories1.
bGeometrically, it is a vector field; it also an operator in the sense that it acts on functions on the

phase space.
cWe use δ to denote de Rham operator on fields and reserve d for de Rham on the spacetime

manifold. In a more general setup, ωΣ, rather than being exact, is allowed to be the curvature of
a connection in a U(1)-bundle over the phase space.
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– the action (or master action) S – an even function of ghost number

0, satisfying the following “almost-Hamiltonianity” relation:

ιQMωM = δSM + π∗α∂M (1)

• Disjoint unions of manifolds are mapped by T to direct products of phase

spaces/spaces of fields.

• If an n-manifold M is cut along a codimension 1 submanifold Σ into two

pieces M1 and M2, then the space of fields on the whole n-manifold is the

(homotopy) fiber product of spaces of fields for pieces M1 and M2 over the

phase space for the cut ΦΣ, FM = FM1 ×ΦΣ FM2 .

The main structure equation (1) implies that the BRST operator QM does

not preserve the BV 2-form ωM , instead the Lie derivative is a boundary term:

LQMωM = π∗ω∂M . Another consequence of (1) is a form of Batalin-Vilkovisky

classical master equation: 1
2 ιQM ιQMωM = π∗S∂M .

Remark 2.1. One can pass to the “reduced” BV-BFV picture, by passing to the

Euler-Lagrange moduli spaces MM , MΣ – generally, singular super varieties, con-

structed as the zero locus of Q quotiented by the integrable distribution induced by

Q on the zero-locus.d Under some Hodge-theoretic assumptions on the BV-BFV

theory,MΣ carries an even-symplectic structure ωΣ, the image of π∗ :MM →MΣ

is Lagrangian, MM carries a gh = 1 Poisson structure whose symplectic leaves are

fibers of π∗,MΣ carries a prequantum U(1)-bundle LΣ with connection ∇Σ (inher-

ited from αΣ) of curvature ωΣ and the pullback bundle (π∗)
∗LΣ overMM carries a

horizontal section (understood as the exponential of the Hamilton-Jacobi action).

2.2. Quantum BV-BFV formalism

A quantum n-dimensional BV-BFV theory5 is the following association Tq.

• To a closed (n− 1)-manifold, Tq assigns a BFV space of states – a cochain

complex of C-vector spaces H•Σ graded by the ghost number, with differen-

tial ΩΣ (the quantum BFV charge).

• To an n-manifold M with boundary, Tq assigns:

– a finite-dimensional space of residual fieldse F res
M equipped with a BV

2-form (an odd gh = −1 symplectic structure) ωres
M ,

– the partition function – an element in the space of states for the bound-

ary valued in half-densities of residual fields ZM ∈ Dens
1
2 (F res

M )⊗H∂M

dE.g. in abelian Chern-Simons theory (with gauge group R) on a 3-manifold with boundary, the
relevant moduli spaces are given by de Rham cohomology with degree shift, MM = H•(M)[1],

MΣ = H•(Σ)[1]. For non-abelian Chern-Simons, they get replaced by certain natural super-

geometric extension of the moduli space of flat connections on M and Σ, respectively.
eCf. “slow” (or “infrared”) fields in Wilson’s effective action approach to renormalization. Also,
in our examples, “residual fields” are the same as “zero-modes”.
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satisfying the BV quantum master equation (QME), modified by a

boundary term: (
Ω∂M + ~2∆res

M

)
ZM = 0 (2)

where ∆res
M is the canonical BV operator – the second order odd Lapla-

cian on half-densities on F res
M associated to the odd symplectic struc-

ture ωres
M . Operator acting on ZM in (2) is required to square to zero.

The partition function ZM is defined modulo equivalence

ZM ∼ ZM +
(
Ω∂M + ~2∆res

M

)
(· · · ) (3)

coming from the gauge-fixing ambiguity.

• Disjoint unions are sent by Tq to tensor products (for spaces of states and

partition functions) and direct products (for residual fields).

• If M is cut into pieces M1 and M2 by a codimension 1 submanifold Σ, then

the partition function on M is recovered by the following procedure:

(i) One constructs Z̃M = 〈ZM1 , ZM2〉Σ where 〈, 〉Σ denotes the pairing of

states in HΣ.f

(ii) Z̃M is a half-density on F res
M1
× F res

M2
(with values in vectors in H∂M ).

To obtain a half-density on a smaller space F res
M , one splits F res

M1
×F res

M2

into F res
M and a symplectic complement W and evaluates the integral

over a Lagrangian L in W , ZM =
∫
L Z̃M . We call this fiber BV integral

construction the BV pushforward 5 P∗ of half-densities along the odd

symplectic fibration P : F res
M1
× F res

M2
→ F res

M . Thus, the final gluing

formula is

ZM = P∗ 〈ZM1
, ZM2

〉Σ (4)

Remark 2.2. A correction to this picture is that one may allow different real-

izations of the space of residual fields F res
M , taking values in the partially ordered

set (poset) of realizations RM . Then if r1 � r2 is an ordered pair of realizations,

one can pass from r1 to r2 by a BV pushforward Zr2M = P∗Z
r1
M corresponding to

an odd symplectic fibration of a bigger model for residual fields over the smaller

one P : Fr1M → F
r2
M . Jumping along the poset of realizations by BV pushforwards

is a model for Wilson’s renormalization group flow (in that context, realizations

correspond for values of momentum cutoff). In special examples6, one can con-

struct realizations corresponding to cellular decompositions of a manifold, with

poset structure given by cellular aggregations (inverses of subdivisions).

fMore precisely, it is the canonical pairing between the space of states HΣ and its dual, as Σ
embeds into M1 and M2 with opposite orientations. Reversal of orientation of a (d− 1)-manifold

acts on the space of states by dualization.
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2.3. Quantization – the idea

The general idea of the passage from a classical BV-BFV theory T to a quantum

one Tq is as follows. Here we assume for simplicity that the spaces of fields are

graded vector spaces (as opposed to more general graded manifolds).g

For an (n− 1)-dimensional closed manifold Σ, one fixes a fibration of the phase

space p : ΦΣ → BΣ with Lagrangian fibers. Moreover, one requires that the prim-

itive 1-form αΣ vanishes on fibers of p. Then one defines the space of states as

the space of C-valued half-densities on the base H•Σ = Dens
1
2

C (BΣ). This is a sim-

ple instance of geometric quantization. The differential on H•Σ (the quantum BFV

charge) is constructed as a quantization of the classical BFV charge ΩΣ = ŜΣ. In

many examples there is a preferred quantization, defined as a series in ~, which does

square to zero and gives the correct boundary term for the QME (2).

For an n-manifold M with boundary, we consider fibers Fb ⊂ FM of the com-

position FM
π−→ Φ∂M

p−→ B∂M over b ∈ B∂M , i.e. Fb are fields on M with boundary

values in the Lagrangian fiber p−1{b} ⊂ Φ∂M . It is tempting to define the parti-

tion function as a function of the boundary condition b, by a functional integral

ZM (b) =
∫
L⊂Fb e

i
~SMµ

1
2

M over a gauge-fixing Lagrangian L ⊂ Fb; here µ
1
2

M is a

reference half-density on FM . However, such an integral is typically perturbatively

ill-defined due to zero-modes of the quadratic part of SM . The solution is to split

out a finite-dimensional subspace F res
M out of Fb, i.e. fix a splitting Fb = F res

M ×W
compatible with the BV 2-form, and integrate over a Lagrangian L in W :

ZM (b, φ) =

∫
L⊂W

e
i
~SMµ

1
2

M

Here φ ∈ F res
M is a residual field. The result is a complex half-density on B∂M and

a half-density on F res
M :

ZM ∈ C⊗Dens
1
2 (B∂M )⊗Dens

1
2 (F res

M ) = H∂M ⊗Dens
1
2 (F res

M )

In a class of examples5, one can prove that the perturbative (Feynman diagram)

evaluation of ZM satisfies the axioms of a quantum BV-BFV theory of Section 2.2

(QME, cohomological independence on the choice of gauge-fixing, gluing formula).

3. Some topological examples

3.1. Abelian BF theory

In abelian BF theory11 on an n-manifold M , fields are pairs of differential forms

FM = Ω•(M)[1]⊕Ω•(M)[n−2] 3 (A,B); the BV 2-form pairs the two summands,

ωM =
∫
M
δB ∧ δA. The action is SM =

∫
M
B ∧ dA and the cohomological vector

field is QM =
∫
M
dA ∧ δ

δA + dB ∧ δ
δB . For M with boundary split into in- and

out-part, ∂M = ∂inM t ∂outM (a cobordism), we correct the action by a boundary

gThis assumption makes perfect sense in perturbation theory, where the perturbative path integral
sees only a formal neighborhood of a fixed classical solution of equations of motion.
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term to SM =
∫
M
B ∧ dA+ (−1)n−1

∫
∂in
B ∧ A. The phase space Φ∂M 3 (A∂ , B∂)

is the space of pairs of forms on ∂M and the base of Lagrangian fibration is B∂M =

Ω•(∂outM)[1]⊕ Ω•(∂inM)[n− 2] 3 (A,B).

The space of states of the theory is H∂M = Dens
1
2

C (B∂M ). In particular, it

contains states of the form∫
Cj(∂inM)×Ck(∂outM)3(x1,...,xj ;y1,...,yk)

Ψ(x1, . . . , xj ; y1, . . . , yk)·B(x1) · · ·B(xj)·A(y1) · · ·A(yk)

where Cj , Ck are the configuration spaces of j distinct points x1, . . . , xj on in-

boundary and k distinct points y1, . . . , yk on out-boundary; Ψ are the coefficient

functions (“wave-functions”) which parameterize the states. More generally one

can allow sums of such expressions for different j, k and insertions of differential

polynomials in A,B at points of the boundary, rather than fields A,B themselves.

The quantum BFV operator on the space of states is simply the lifting of the

de Rham operator Ω∂M = (−1)ni~
(∫

∂inM
dB ∧ δ

δB +
∫
∂outM

dA ∧ δ
δA

)
.

The space of residual fields is the double of de Rham cohomology relative to

the boundary components F res
M = H•(M,∂outM)[1]⊕H•(M,∂inM)[n− 2] 3 (a, b).

It inherits an odd symplectic form given by Poincaré-Lefschetz duality. Explicit

calculation of the partition function yields5:

ZM = ξM ·τ(M,∂outM)·e
i
~

(
(−1)n−1

∫
∂inM

B∧a+(−1)n
∫
∂outM

b∧A−
∫
∂inM×∂outM3(x,y)

B(x)∧η(x,y)∧A(y)
)

Here η ∈ Ωn−1(C2(M)) is the propagator – the integral kernel of the homotopy

inverse of de Rham operator on forms on M vanishing on ∂outM ; τ(M,∂outM) ∈
DetH•(M,∂outM)/{±1} is the Reidemeister torsion of M relative to ∂outM . Note

that the determinant line DetH•(M,∂outM)/{±1} is canonically identified with

constant half-densities on F res
M . The coefficient6

ξM = (2π~)
∑n
k=0(− 1

4−
1
2k(−1)k)·dimHk(M,∂outM)·(e−πi2 ~)

∑n
k=0( 1

4−
1
2k(−1)k)·dimHk(M,∂outM)

contains a mod 16 phase e
2πi
16 s with s =

∑n
k=0(−1 + 2k(−1)k) dimHk(M,∂outM),

which bears some similarity with the Atiyah-Patodi-Singer eta invariant appearing

in the phase of Chern-Simons partition function13. The partition function ZM
satisfies the QME (2), changes by an equivalence (3) with the change of gauge-

fixing (choice of propagator η and choice of representatives for cohomology) and

behaves with respect to cutting/pasting according to the gluing formula (4).

3.2. The Poisson sigma model

Let π =
∑m
α,β=0 π

αβ(u) ∂
∂uα ∧

∂
∂uβ

be a Poisson bivector field on Rm. The Poisson

sigma model3,7,8,10 is a 2-dimensional sigma model defined by the BV action

S(A,B) =

∫
M

∑
α

Bα ∧ dAα +
∑
α,β

1

2
παβ(B) ∧Aα ∧Aβ
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where the fields (Aα, B
β) ∈ (Ω•(M)[1]⊕Ω•(M)[n− 2])⊗Rm are the m-component

versions of the fields of abelian BF theory. Thus, the Poisson sigma model is a per-

turbation of the (m-component) 2-dimensional abelian BF theory by an interaction

term depending on a Poisson bivector field on the target Rm.

For a surface with boundary ∂M = ∂inM t ∂outM , the space of states H∂M is

the same as for abelian BF theory (where the fields Aα,Bα now carry the target

index). The residual fields are the m-component version of those of Section 3.1,

F res
M = (H•(M,∂outM)[1]⊕H•(M,∂outM)[n− 2])⊗ Rm 3 (aα, b

α).

The partition function is as follows:

ZM = ξmM · τ(M,∂outM)m · exp
i

~

(∑
Γ

(−i~)loops(Γ)

|Aut(Γ)|

∫
Cj,k,l(M)

φΓ(A,B, a, b)

)

Here ξM and τ(M,∂outM) are the same as in Section 3.1. The sum in the exponen-

tial is over oriented connected graphs Γ without short loopsh with j ≥ 0 1-valent

vertices on ∂inM with adjacent half-edge oriented to the vertex, k ≥ 0 1-valent

vertices on ∂outM with adjacent half-edge oriented from the vertex, l ≥ 0 internal

vertices on M with 2 outgoing and ≥ 0 incoming half-edges. The graph is allowed to

have loose half-edges (leaves). Half-edges are decorated with target space index α;

in-vertices – with Bα, out-vertices – with Aα, bulk vertices of valence (2, r) – with

partial derivatives of π at the origin, ∂r

∂uβ1 ···∂uβr
∣∣
u=0

πα1α2(u). Edges are decorated

with the propagator −δαβ · η(x, y), with η as in Section 3.1. Leaves – with residual

fields aα (for out-orientation), bα (for in-orientation). Wedging the forms associ-

ated with vertices, edges and leaves, one obtains a differential form φΓ(A,B, a, b) on

the compactified configuration space Cj,k,l(M) of j + k + l distinct ordered points

on M such that j of them are on ∂inM and k of them are on ∂outM . Form φΓ

is polynomial in boundary fields Aα,Bα and residual fields aα, b
α and the integral

over the configuration space is convergent.

The differential Ω∂M onH∂M can be calculated from the boundary contributions

of configuration space integrals appearing in the partition function: acting on ZM ,

Ω∂M is the standard-ordering quantization (replacing Aα 7→ i~ δ
δBα on ∂inM and

Bα 7→ i~ δ
δAα on ∂outM , and putting all derivatives to the right) of the expression∫

∂M

∑
α

Bα ∧ dAα +
∑
α,β

1

2
Παβ(B) ∧ Aα ∧ Aβ

where Παβ(u) = uα∗uβ−uβ∗uα
i~ is the deformation of π by Kontsevich’s star-product8.

These data (ZM , Ω∂M ) satisfy the properties of a quantum BV-BFV theory –

the QME (2), cohomological independence on gauge-fixing (3) and gluing (4).

hThis is consistent with the assumption that either π is unimodular or the surface has zero Euler
characteristic.
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