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Abstract

In this note, we revisit the Θ-invariant as defined by R. Bott and the
first author in [4]. The Θ-invariant is an invariant of rational homology
3-spheres with acyclic orthogonal local systems, which is a generalization
of the 2-loop term of the Chern-Simons perturbation theory. The Θ-
invariant can be defined when a cohomology group is vanishing. In this
note, we give a slightly modified version of the Θ-invariant that we can
define even if the cohomology group is not vanishing.

1 Introduction

In 1998, R. Bott and the first author defined topological invariants of rational
homology spheres with acyclic orthogonal local systems in [3], [4]. These in-
variant were inspired by the Chern-Simons perturbation theory developed by
M. Kontsevich in [6], S. Axelrod and M. I. Singer in [2]. The Chern-Simons
perturbation theory gives invariants of 3-manifolds with flat connections of the
trivial G-bundle over the 3-manifold, where G is a semi-simple Lie group. The
composition of adjoint representation of G and the holonomy representation of
the flat connection gives an orthogonal local system.

In [4], Bott and the first author constructed a real valued invariant, called
Θ-invarant (In this note, we denote by ZΘ the corresponding term), which is
a generalization of a 2-loop term of Chern-Simons perturbation theory. The
vanishing of a cohomology group (denoted by H∗

−(∆;π−1
1 E ⊗ π−1

2 E) in [4],
H∗

−(∆;Eρ⊠Eρ) in this note) plays an important role in the construction of the
Θ-invariant ZΘ. There are few gaps in the proof of this vanishing (Lemma 1.2
of [4]). In this note, we show that a linear combination of ZΘ and another term
ZO−O is, however, a topological invariant of closed 3-manifolds with orthogonal
acyclic local systems, when the local system is given by using a holonomy rep-
resentation of a flat connection. The term ZO−O is also related to the 2-loop
term of the Chern-Simons perturbation theory. We note that the second author
proved that when G = SU(2), ZΘ itself is an invariant of closed 3–manifolds
with orthogonal local systems in [9].

The organization of this paper is as follows. In Section 2 we give a modi-
fied version of the Bott-Cattaneo Θ-invariant without proof. In Section 3 and
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Section 4 we prove a proposition and a theorem about well-definedness of the
invariant stated in Section 2. Both the invariant defined in Section 2 of this
note and the Θ-invariant depend on the choice of a framing of the 3-manifold.
In Section 5 we introduce a framing correction.

Orientation convention

In this note, all manifolds are oriented. Boundaries are oriented by the outward
normal first convention. Products of oriented manifolds are oriented by the
order of the factors. The interval [0, 1] ⊂ R is oriented from 0 to 1.

Acknowledgments

A. S. C. acknowledges partial support of SNF Grant No. 200020 172498/1. This
research was (partly) supported by the NCCR SwissMAP, funded by the Swiss
National Science Foundation, and by the COST Action MP1405 QSPACE, sup-
ported by COST (European Cooperation in Science and Technology). T. S.
expresses his appreciation to Professor Tadayuki Watanabe for his helpful com-
ments and discussion on the Chern-Simons perturbation theory. This work was
(partly) supported by JSPS KAKENHI Grant Number JP15K13437.

2 The invariant

Let M be a closed oriented framed 3-manifold, namely a trivialization of the
tangent bundle of M is fixed. We take a metric on M compatible with the
framing. Let ρ : π1 → G be a representation of the fundamental group into a
semi-simple Lie group G. We denote by ad : G → g the adjoint representation
of G, where g is the Lie algebra of G. Since G is semi-simple, the representation
ad ◦ ρ is orthonormal with respect to the Killing form. A local system is a
covariant functor from the fundamental groupoid of M to the category of finite
dimensional vector spaces. Note that a representation of π1(M) gives a local
system. We denote by Eρ the local system given by ad ◦ ρ. We assume that Eρ

is acyclic, namely
H∗(M ;Eρ) = 0.

In this note, we say that such a representation ρ is acyclic.

2.1 A compactification of a configuration space

Let ∆ = {(x, x) | x ∈ M} ⊂ M2 be the diagonal. We identify ∆ with M by

∆ ∋ (x, x) → x ∈ M.

We orient ∆ by using this identification. We denote by ν∆ the normal bundle
of ∆ in M2. We identify ν∆ with the tangent bundle TM via the isomorphism
defined by

TM
∼=→ ν∆, (x, v) 7→ ((x, x), (−v, v))
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where x ∈ M and v ∈ TxM . On the other hand, M is framed. Then TM is
identified with M × R3. Thus ν∆ is identified with M × R3.

Let C2(M) = Bℓ(M2,∆) be the compact 6-dimensional manifold with the
boundary obtained by the real blowing up of M2 along ∆. We denote by

q : C2(M) → M2

the blow-down map. As manifolds,

C2(M) = (M2 \∆) ∪ Sν∆

and q(Sν∆) = ∆. Here Sν∆ is the unit sphere bundle of ν∆ with respect to the
metric on M . C2(M) is a compactification of the configuration space M2 \ ∆
of two distinct points. Obviously, ∂C2(M) = Sν∆.

Sν∆ is identified with ∆× S2. We denote by

p : ∂C2(M) = ∆× S2 → S2

the projection. We use the same symbol q for the restriction map q|∂C2(M) :
∂C2(M)(= ∆× S2) → ∆ of the blow-down map q.

2.2 The natural transformations c and Tr

The killing form gives an isomorphism g ⊗ g ∼= g∗ ⊗ g∗. Let 1 ∈ g ⊗ g the
element corresponding to the killing form in g∗ ⊗ g∗. By using an orthonormal
basis e1, . . . , edim g ∈ g of g, 1 can be described as

1 =

dim g∑
i=1

ei ⊗ ei.

1 ∈ g ⊗ g is invariant under the diagonal action of π1(M). Thus we have a
natural transformation

c : R → Eρ ⊗ Eρ, 1 7→ 1.

Here R is the trivial local system, namely a local system corresponding to the
1-dimensional trivial representation of π1(M).

We define a natural transformation

Tr : Eρ ⊗ Eρ ⊗ Eρ → R

as follows: for x, y, z ∈ g,

Tr(x⊗ y ⊗ z) = ⟨[x, y], z⟩

where ⟨, ⟩ is the Killing form and [, ] is the Lie bracket.
Let π1, π2 : M2 → M be the projections defined by π1(x1, x2) = x1, π2(x1, x2) =

x2. π
∗
1Eρ ⊗ π∗

2Eρ is a local system on M2. We denote Eρ ⊠Eρ = π∗
1Eρ ⊗ π∗

2Eρ.
We remark that Eρ ⊠ Eρ|∆ = Eρ ⊗ Eρ. The pull-back

Fρ = q∗(Eρ ⊠ Eρ)

is a local system on C2(M). Clearly, Fρ|∂C2(M) = q∗(Eρ ⊗ Eρ).
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2.3 The involution T on C2(M)

The involution T0 : M2 → M2 defined by T0(x1, x2) = (x2, x1) induces an
involution T : C2(M) → C2(M). T0, T induce homomorphisms T ∗

0 , T
∗ on the

cohomology groups H∗(M2, Eρ ⊠Eρ), H
∗(C2(M);Fρ), H

∗(∆;Eρ ⊗Eρ) and on
the space of differential k forms Ωk(C2(M);Fρ). We denote byH∗

+(M
2;Eρ⊠Eρ),

H∗
−(M

2;Eρ⊠Eρ) the +1,−1 eigenspaces of the homomorphism T ∗
0 respectively.

We use similar notations H∗
+(C2(M);Fρ),H

∗
+(∆, Eρ⊗Eρ),Ω

k
+(C2(M);Fρ)... in

the same manner.
Let TS2 : S2 → S2 be the involution defined as TS2(x) = −x for any x ∈ S2.

Since the metric on M is compatible with the framing, we have p ◦ T |∂C2(M) =
TS2 ◦ p : ∂C2(M) → S2.

2.4 The invariant

Take a 2-form ωS2 ∈ Ω2(S2;R) on S2 satisfying
∫
S2 ωS2 = 1 and T ∗

S2ωS2 =
−ωS2 . p∗ωS2 is a closed 2-form on ∂C2(M). Thus

c∗(p
∗ωS2) = p∗ωS21

is a closed 2-form on ∂C2(M) such that (T |C2(M))
∗p∗ωS21 = −p∗ωS21. There-

fore the closed 2-form p∗ωS21 represents a cohomology class inH2
−(∂C2(M);Fρ|∂C2(M)):

[p∗ωS21] ∈ H2
−(∂C2(M);Fρ|∂C2(M)).

Proposition 2.1. There exist 2 forms ω ∈ Ω2(C2(M);Fρ) and ξ ∈ Ω2(∆;Eρ⊗
Eρ) satisfying the following conditions:

(1) ω|∂C2(M) = p∗ωS21+ q∗ξ,

(2) T ∗ω = −ω, (T0|∆)∗ξ = −ξ, namely ω ∈ Ω2
−(C2(M);Fρ), ξ ∈ Ω2

−(∆;Eρ ⊗
Eρ).

Furthermore, the cohomology class [ξ] ∈ H2
−(∆;Eρ ⊗ Eρ) is independent of the

choice of ξ.

This proposition is proved in Section 3.
Now, we have the following 2-forms:

q∗π∗
1ξ ∈ Ω2(C2(M); q∗(E⊗2

ρ ⊠ R)),

q∗π∗
2ξ ∈ Ω2(C2(M); q∗(R⊠ E⊗2

ρ )).

Then we obtain closed 6-forms

ω3 ∈ Ω6(C2(M);F⊗3
ρ ),

(q∗π∗
1ξ)(q

∗π∗
2ξ)ω ∈ Ω6(C2(M);F⊗3

ρ ).
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Since F⊗3
ρ = q∗(E⊗3

ρ ⊠E⊗3
ρ ), the natural transformation Tr : E⊗3

ρ → R induces
a natural transformation

Tr⊠2 : F⊗3
ρ → (R⊠ R =)R.

Therefore we get closed 6-forms

Tr⊠2ω3,Tr⊠2((q∗π∗
1ξ)(q

∗π∗
2ξ)ω) ∈ Ω6(C2(M);R).

Definition 2.2.

ZΘ(ω) =

∫
C2(M)

Tr⊠2ω3, ZO−O(ω, ξ) =

∫
C2(M)

Tr⊠2((q∗π∗
1ξ)(q

∗π∗
2ξ)ω),

Z1(M,ρ) = ZΘ(ω)− 3ZO−O(ω, ξ).

Theorem 2.3. Z1(M,ρ) is an invariant of M , ρ (independent of the choices
of ω, ξ). Furthermore, Z1(M,ρ) is invariant under homotopy of the framing.

This theorem is proved in Section 4.

Remark 2.4. When we can take ξ = 0, obviously ZO−O(ω, ξ) = 0 and then
Z1(M,ρ) coincides with the Θ-invariant I(Θ,tr,tr)(M) of the framed 3-manifold
M given in Theorem 2.5 in [4].

3 Proof of Proposition2.1

In the following commutative diagram, the top horizontal line is a part of the
long exact sequence of the pair (C2(M), ∂C2(M)) and the bottom line is that
of (M2,∆). Thanks to the excision theorem, the right vertical homomorphism
q∗ is an isomorphism.

H2
−(∂C2(M); q∗(Eρ ⊗ Eρ))

δ∗C2(M) //

⟲

H3
−(C2(M), ∂C2(M);Fρ)

H2
−(∆;Eρ ⊗ Eρ)

(q|∂C2(M))
∗

OO

δ∗
M2

∼=
// H3

−(M
2,∆;Eρ ⊗ Eρ)

q∗ ∼=

OO

Since H2
−(M

2;Eρ⊗Eρ) = H3
−(M

2;Eρ⊗Eρ) = 0, the connected homomorphism
δ∗M2 on the bottom line is an isomorphism. Set

Φ = (δ∗M2)−1 ◦ (q∗)−1 ◦ δ∗C2(M) : H
2
−(∂C2(M); q∗(Eρ ⊗Eρ)) → H2

−(∆;Eρ ⊗Eρ).

We take a 2-form ξ ∈ Ω2
−(∆;Eρ ⊗ Eρ) such that

Φ([p∗ωS21]) = −[ξ] ∈ H2
−(∆;Eρ ⊗ Eρ).

The above diagram implies that Φ(q∗[ξ]) = [ξ]. Then Φ(p∗ωS21 + q∗ξ) = 0.
Thus δ∗C2(M)(p

∗ωS21 + q∗ξ) = 0. Therefore there exists a closed 2-form ω ∈
Ω2

−(C2(M);Fρ) such that

ω|∂C2(M) = p∗ωS21+ q∗ξ.

The second assertion is a direct consequence of the definition−[ξ] = Φ([p∗ωS21]).
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4 Proof of Theorem 2.3

The proof is reduced to the following two propositions:

Proposition 4.1. Let ω, ω′ ∈ Ω2
−(C2(M);Fρ) be closed 2-forms such that

ω|∂C2(M) = ω′|∂C2(M) = p∗ωS21+ q∗ξ.

Then ZΘ(ω) = ZΘ(ω
′) and ZO−O(ω, ξ) = ZO−O(ω

′, ξ) hold.

Proposition 4.2. Let ωS2,0, ωS2,1 ∈ Ω2(S2;R) be closed 2-forms satsfying∫
S2 ωS2,0 =

∫
S2 ωS2,1 = 1, T ∗

S2ωS2,0 = −ωS2,0 and T ∗
S2ωS2,1 = −ωS2,1. Let

{pt : ∆ × S2 → S2}t∈[0,1] be a homotopy such that p0 = p and pt ◦ T |∂C2(M) =
TS2 ◦ pt for t = 0, 1. Let ω0, ω1 ∈ Ω2

−(C2(M);Fρ) and ξ0, ξ1 ∈ Ω2
−(∆;Eρ ⊗ Eρ)

be closed 2-forms satisfying

ω0|∂C2(M) = p∗0ωS2,01+ q∗ξ0, ω1|∂C2(M) = p∗1ωS2,11+ q∗ξ1.

Then ZΘ(ω0)− 3ZO−O(ω0, ξ0) = ZΘ(ω1)− 3ZO−O(ω1, ξ1) holds.

4.1 Proof of Proposition4.1

Lemma 4.3. There exists a 1-form η ∈ Ω1
−(M

2;Eρ ⊠ Eρ) such that ω − ω′ =
d(q∗η).

Proof. In the following diagram, the top horizontal line is a part of the long
exact sequence of the pair (C2(M), ∂C2(M)) and the bottom line is that of
(M2,∆). The left vertical homomorphism q∗ is an isomorphism because of the
excision theorem.

H2
−(C2(M), ∂C2(M);Fρ) //

⟲

H2
−(C2(M);Fρ)

H2
−(M

2,∆;Eρ ⊠ Eρ)

q∗ ∼=

OO

// H2
−(M

2;Eρ ⊠ Eρ)

q∗

OO

The closed 2-form ω − ω′ gives a cohomology class in H2
−(C2(M), ∂C2(M);Fρ)

and then ((q∗)−1(ω − ω′))|M2 gives a cohomology class in H2
−(M

2;Eρ ⊠ Eρ).
Since H2

−(M
2;Eρ ⊠ Eρ) = 0, there exists a 1-form η ∈ Ω1

−(M
2;Eρ ⊠ Eρ) such

that
dη = ((q∗)−1(ω − ω′))|M2 .

Thus we have d(q∗η) = ω − ω′.
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Thanks to Lemma 4.3 and Stokes’s theorem,

ZΘ(ω)− ZΘ(ω
′) =

∫
C2(M)

Tr⊠2
(
(ω − ω′)(ω2 + ωω′ + ω′2)

)
=

∫
C2(M)

Tr⊠2
(
d(q∗η)(ω2 + ωω′ + ω′2)

)
=

∫
∂C2(M)

Tr⊠2
(
(q∗η)|∂C2(M)(ω

2 + ωω′ + ω′2)|∂C2(M)

)
= 3

∫
∂C2(M)

Tr⊠2
(
(q∗η)|∂C2(M)(p

∗ωS21+ q∗ξ)2
)

= 6

∫
∆×S2

Tr⊠2 (q∗(η|∆)p∗ωS21q∗ξ)

= 6

∫
∆

Tr⊠2 (η|∆ξ1) .

To simplify the notation, we set η = η|∆.
Let l : Eρ ⊗ Eρ → Eρ be a natural transformation induced from the Lie

bracket [, ] : g ⊗ g → g. We have l(η) ∈ Ω1(∆;Eρ), l(ξ) ∈ Ω2(∆;Eρ). Let
I : Eρ ⊗ Eρ → R be a natural transformation induced from the inner product
of g. Then I(l(η)l(ξ)) is a 2-form in Ω2(∆;R).

Lemma 4.4. Tr⊠2(ηξ1) = I(l(η)l(ξ)).

Proof. Since T0|∆ = id, Ω∗
−(∆;E⊗E)) = Ω∗(∆; (E⊗E)−). Then we only need

to check the claim on g⊗3 ⊗ g⊗3. Let e1, . . . , edim g ∈ g be an orthonormal basis
of g. Then {ei ⊗ ej − ej ⊗ ei | i < j} is a basis of (g⊗ g)−. It is enough to show
the claim for this basis.

Tr⊠2

(
(ei ⊗ ej − ej ⊗ ei)⊗ (ek ⊗ el − el ⊗ ek)⊗ (

∑
n

en ⊗ en)

)
= 2(⟨[ei, ek], [ej , el]⟩ − ⟨[ei, el], [ej , ek]⟩)
= 2(⟨ei, [ek, [ej , el]]⟩+ ⟨ei, [el, [ek, ej ]]⟩)
= 2 ((−⟨ei, [ej , [el, ek]]⟩ − ⟨ei, [el, [ek, ej ]]⟩) + ⟨ei, [el, [ek, ej ]]⟩)
= 2⟨ei, [ej , [ek, el]]⟩
= 2⟨[ei, ej ], [ek, el]⟩

=
1

2
⟨2[ei, ej ], 2[ek, el]⟩

=
1

2
⟨l(ei ⊗ ej − ej ⊗ ei)l(ek ⊗ el − el ⊗ ek)⟩.

Corollary 4.5.
∫
∆
Tr⊠2(ηξ1) = 0.
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Proof. Thanks to the above lemma,∫
∆

Tr⊠2(ηξ1) =

∫
∆

I(l(η)l(ξ)).

Since Eρ is acyclic, [l(ξ)] = 0 ∈ H2(∆;Eρ) = 0. Thus there exists a 1-form
ζ ∈ Ω1(∆;Eρ) such that dζ = l(ξ). Therefore∫

∆

I(l(η)l(ξ)) =

∫
∆

I(ηdζ)

=

∫
∆

dI(ηζ) = 0.

Thanks to the above lemma, we have

ZΘ(ω)− ZΘ(ω
′) = 0.

Similarly,

ZO−O(ω, ξ)− ZO−O(ω
′, ξ) =

∫
C2(M)

Tr⊠2((q∗π∗
1ξ)(q

∗π∗
2ξ)(ω − ω′))

=

∫
C2(M)

Tr⊠2((q∗π∗
1ξ)(q

∗π∗
2ξ)dq

∗η)

=

∫
∂C2(M)

Tr⊠2 (q∗((π1|∆)∗ξ(π2|∆)∗ξη)) .

Since (π1|∆)∗ξ(π2|∆)∗ξη is a 5-form on the 3-dimensional manifold ∆, the last
term is vanishing. This completes the proof of Proposition 4.1.

4.2 Proof of Proposition 4.2

Since [ωS2,0] = [ωS2,1] ∈ H2(S2;R), there exists a closed 2-form ω̃S2
∈ Ω2([0, 1]×

S2;R) such that ω̃S2 |{t}×S2 = ωS2,t for t = 0, 1.
Since [ξ0] = [ξ1](Proposition 2.1), there exists a closed 1-form

ξ̃ ∈ Ω1([0, 1]×∆, π∗
∆(Eρ ⊗ Eρ))

such that ξ̃|{0}×∆ = ξ0 and ξ̃|{1}×∆ = ξ1. Here π∆ : [0, 1] × ∆ → ∆ is the
projection.

Let πC2(M) : [0, 1] × C2(M) → C2(M) be the projection. Let q̃ = id[0,1] ×
q : [0, 1] × C2(M) → [0, 1] × M2 and we also denote the restriction map
q̃|[0,1]×∂C2(M) : [0, 1] × ∂C2(M) → [0, 1] × ∆ as q̃. By a similar argument as
in Proposition 2.1, we can take a closed 2-form

ω̃ ∈ Ω2([0, 1]× C2(M), π∗
C2(M)Fρ)
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such that
ω̃|[0,1]×∂C2(M) = p̃∗ω̃S21+ q̃∗ξ̃.

Here p̃ = {pt}t : ([0, 1] × ∂C2(M) =)[0, 1] × ∆ × S2 → S2 is the homotopy
between p0 and p1.

Thanks to Proposition 4.1, both ZΘ(ω) and ZO−O(ω, ξ) depend only on
ω|∆×S2 and ξ. Thus we have ZΘ(ω0) = ZΘ(ω̃|{0}×C2(M)), ZΘ(ω1) = ZΘ(ω̃|{1}×C2(M)),
ZO−O(ω0, ξ0) = ZO−O(ω̃|{0}×C2(M), ξ0) and ZO−O(ω1, ξ1) = ZO−O(ω̃|{1}×C2(M), ξ1).
We note that, with our orientation convention,

∂([0, 1]× C2(M)) = {1} × C2(M)− {0} × C2(M)− [0, 1]× ∂C2(M).

Therefore, by using Stokes’ theorem,

0 =

∫
[0,1]×C2(M)

dTr⊠2ω̃3

=

∫
{1}×C2(M)

Tr⊠2(ω̃|3{1}×C2(M))−
∫
{0}×C2(M)

Tr⊠2(ω̃|3{0}×C2(M))

−
∫
[0,1]×∂C2(M)

Tr⊠2(ω̃|3[0,1]×∂C2(M))

= ZΘ(ω̃|{1}×C2(M))− ZΘ(ω̃|{0}×C2(M))−
∫
[0,1]×∂C2(M)

Tr⊠2(p̃∗ω̃S21+ q̃∗ξ̃)3

= ZΘ(ω1)− ZΘ(ω0)−
∫
[0,1]×∂C2(M)

Tr⊠2(3p̃∗ω̃S21q̃∗ξ̃2)

We denote π̃i = id[0,1] × πi : [0, 1]×M2 → [0, 1]×M for i = 1, 2. We have,

0 =

∫
[0,1]×C2(M)

dTr⊠2
(
(q̃∗π̃1

∗
ξ̃)(q̃∗π̃2

∗
ξ̃)ω̃
)

= ZO−O(ω1, ξ1)− ZO−O(ω0, ξ0)

−
∫
[0,1]×∂C2(M)

Tr⊠2
(
(q̃∗((π̃1|[0,1]×∆)

∗ξ(π̃2|[0,1]×∆)
∗ξ)ω̃|[0,1]×∂C2(M)

)
.

Here, π̃1|[0,1]×∆ = π̃2|[0,1]×∆ : [0, 1]×∆ → M . Thus (π̃1|[0,1]×∆)
∗ξ̃(π̃2|[0,1]×∆)

∗ξ̃ =

ξ̃2 under the identification ∆ = M . We have

ZO−O(ω1, ξ1)− ZO−O(ω0, ξ0)

=

∫
[0,1]×∂C2(M)

Tr⊠2(p̃∗ω̃S21q̃∗ξ̃2)

Then we have

ZΘ(ω1)− ZΘ(ω0) = 3(ZO−O(ω1, ξ1)− ZO−O(ω0, ξ0)).

This completes the proof of Proposition 4.2.
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5 A framing correction

In this section, we introduce a correction term for framings to give an invariant
of closed 3-manifolds with acyclic representations. Let M be a closed oriented
3-manifold (without framings). Recall that ∂C2(M) is identified with the unit
sphere bundle STM (see Section 2.1). Take a framing f : TM → M × R3 of
M . Then (M,f) is a framed 3-manifold. Let p : (∂C2(M) =)STM → S2 be
the projection defined by the framing f . Let δ(f) ∈ Z be the signature defect
(or Hirzebruch defect. For example, see [1], [5] for the details) of a framing f .
For the convenience of the reader, we give a short review of the construction of
δ(f) in the next section. Let ρ : π1(M) → G be an acyclic representation as in
Section 2.1.

Theorem 5.1.
Z1((M,f), ρ)− (dim g)2δ(f)

is an topological invariant of M,ρ.

5.1 The signature defect δ(p)

Let W be a compact 4-manifold such that ∂W = M and its Euler characteristic
is zero. Then there exists an R3 sub-bundle T vW of TW satisfying T vW |M =
TM . Let ST vW → W be the unit sphere bundle of T vW → W . Thus ST vW is
a 6-dimensional manifold with ∂ST vW = STM . We denote by FW → ST vW
the tangent bundle along the fiber of the S2 bundle π : ST vW → W .

Take a closed 2-form αW ∈ Ω2(ST vW ;R) such that αW |STM = p∗ωS2 and
[αW ] = e(FW )/2 ∈ H2(ST vW ;R), where e(FW ) is the Euler class of FW →
ST vW .

Lemma 5.2. When ∂W = M = ∅, we have
∫
STvW

α3
W = 3

4SignW . Here
SignW is the signature of W .

Proof. We give an outline of the proof. See Appendix of [8] or Proposition 2.45
of [7], for the details of the proof.

Since W is closed,
∫
STvW

α3
W =

∫
STvW

(
1
2e(FW )

)3
. We denote by p1(FW ) ∈

H4(ST vW ;R) the 1st Pontrjagin class of the bundle FW . We remark that
R ⊕ FW = π∗T vW and R ⊕ T vW = TW . Here R is the trivial R bundle over
an appropriate manifold. Therefore,∫

STvW

α3
W =

1

8

∫
STvW

e(FW )3

=
1

8

∫
STvW

e(FW )p1(FW )

=
1

8

∫
STvW

e(FW )π∗p1(T
vW )

=
1

4

∫
W

p1(TW )

=
3

4
SignW.
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Thanks to the Novikov additivity for the signature, the following corollary
holds.

Corollary 5.3. The signature defect δ(f) defined to be δ(f) =
∫
STW α3

W −
3
4SignW is independent of the choices of W and αW .

5.2 Proof of Theorem 5.1

Let f0, f1 : TM → M × R3 be framings and let p0, p1 : ∂C2(M) → S2 be the
projections given by framings f0, f1 respectively. Since [p∗0ωS2 ] and [p∗1ωS2 ] are
in H2

−(∆ × S2;R) = H2(S2;R) = R, [p∗0ωS2 ] = [p∗1ωS2 ]. Thus there exists a
closed 2-form

ω̃∂ ∈ Ω2
−([0, 1]× ∂C2(M);R)

such that ω̃∂ |{0}×∂C2(M) = p∗0ωS2 , ω̃∂ |{1}×∂C2(M) = p∗1ωS2 . We recall that ξ ∈
Ω2

−(∆;Eρ ⊗ Eρ) is a closed 2-form representing Φ([p∗ωS21]) = Φ ◦ c∗([p∗ωS2 ])
when we take a projection p : ∂C2(M) → S2 given by a framing f . The
homomorphism Φ ◦ c∗ is independent from the choice of a framing. Then we
can use same ξ ∈ Ω2

−(∆;Eρ ⊗ Eρ) for any framing.
By a similar argument as in proof of Proposition2.1, we can take a closed

2-form
ω̃ ∈ Ω2([0, 1]× C2(M);π∗

C2(M)Fρ)

such that
ω̃|[0,1]×∂C2(M) = ω̃∂1+Q∗ξ.

Here, πC2(M) : [0, 1] × C2(M) → C2(M) and Q : [0, 1] × ∂C2(M) → ∆ are the
projections. We denote by

ω0 = ω̃|{0}×C2(M),

ω1 = ω̃|{1}×C2(M).

Then,
Z1((M,f0), ρ) = ZΘ(ω0)− 3ZO−O(ω0, ξ),

Z1((M,f1), ρ) = ZΘ(ω1)− 3ZO−O(ω1, ξ).

Thanks to Stokes’ theorem,

0 =

∫
[0,1]×C2(M)

dTr⊠2(ω̃3)

= ZΘ(ω1)− ZΘ(ω0)−
∫
[0,1]×∂C2(M)

Tr⊠2(ω̃|3[0,1]×∂C2(M))

= ZΘ(ω1)− ZΘ(ω0)−
∫
[0,1]×∂C2(M)

Tr⊠2(ω̃3
∂1

⊗3)−
∫
[0,1]×∂C2(M)

3Tr⊠2(ω̃2
∂1

⊗2Q∗ξ)

= ZΘ(ω1)− ZΘ(ω0)−
∫
[0,1]×∂C2(M)

ω̃3
∂Tr

⊠2(1⊗3)−
∫
[0,1]×∂C2(M)

3Tr⊠2(ω̃2
∂1

⊗2Q∗ξ)

= ZΘ(ω1)− ZΘ(ω0)− (dim g)2
∫
[0,1]×∂C2(M)

ω̃3
∂ −

∫
[0,1]×∂C2(M)

3Tr⊠2(ω̃2
∂1

⊗2Q∗ξ).
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We denote πi : [0, 1]×M2 → M, (t, x1, x2) 7→ xi for i = 1, 2. We have,

0 =

∫
[0,1]×C2(M)

dTr⊠2 ((q̃∗π∗
1ξ)(q̃

∗π∗
2ξ)ω̃)

= ZO−O(ω1, ξ)− ZO−O(ω0, ξ)

−
∫
[0,1]×∂C2(M)

Tr⊠2
(
(q̃∗((π1|[0,1]×∆)

∗ξ(π2|[0,1]×∆)
∗ξ)ω̃∂1

)
= ZO−O(ω1, ξ)− ZO−O(ω0, ξ)−

∫
[0,1]×∂C2(M)

Tr⊠2
(
Q∗ξ2ω̃∂1

)
= 0

Thus we have

Z1((M,f0), ρ)−Z1((M,f1), ρ) = (dim g)2
∫
[0,1]×∂C2(M)

ω̃3
∂+

∫
[0,1]×∂C2(M)

3Tr⊠2(ω̃2
∂1

⊗2Q∗ξ).

Lemma 5.4.
Tr⊠2(ω̃∂1

⊗2Q∗ξ) = 0.

Proof. Let TE : Eρ ⊗ Eρ → Eρ ⊗ Eρ be the involution induced by g ⊗ g →
g ⊗ g, x ⊗ y 7→ y ⊗ x. Cleary, Tr⊠2 ◦ T⊗3

E = Tr⊠2 : E⊗3 ⊗ E⊗3 → R. Since
TE(1) = 1 and T ∗

E = (T0|∆)∗ on Ω1(∆;Eρ ⊗ Eρ), we have

Tr⊠2(ω̃∂1
⊗2Q∗ξ) = Tr⊠2

(
T⊗3
E (ω̃∂1

⊗2Q∗ξ)
)
= −Tr⊠2(ω̃∂1

⊗2Q∗ξ).

Thus Tr⊠2(ω̃∂1
⊗2Q∗ξ) = 0.

Lemma 5.5.

δ(f1)− δ(f0) =

∫
[0,1]×∂C2(M)

ω̃3
∂ .

Proof. We take a compact 4-manifold W with ∂W = M and its Euler character-
istic is zero. Take a collar neighborhood [0, 1]×∂M of M = ∂W in W such that
{1}×M = ∂W . Set W0 = W \([0, 1]×M). We can take T vW as T vW |[0,1]×M =
[0, 1]×TM . Thus ST vW |[0,1]×M is identified with [0, 1]×∂C2(M). Take a closed

2-form αW ∈ Ω2(ST vW ;R) satisfying αW |[0,1]×STM = ω̃∂ and [αW ] = 1
2e(FW ).

Then we have

δ(f1)− δ(f0) =

(∫
STvW

α3
W − 3

4
SignW

)
−
(∫

STvW0

(αW |STvW0)
3 − 3

4
SignW0

)
=

∫
[0,1]×STM

(αW |[0,1]×STM )3

=

∫
[0,1]×∂C2(M)

ω̃3
∂ .
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By the above two lemmas,

Z1((M,f0), ρ)− (dim g)2δ(f0) = Z1((M,f1), ρ)− (dim g)2δ(f1).

Namely, Z1((M,f), ρ)− (dim g)2δ(f) is independent of the choice of a framing
f .
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