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Abstract

The boundary structure of 3 4+ 1-dimensional gravity (in the Palatini-Cartan formalism)
coupled to to gauge (Yang—Mills) and matter (scalar and spinorial) fields is described through
the use of the Kijowski—Tulczijew construction. In particular, the reduced phase space
is obtained as the reduction of a symplectic space by some first class constraints and a
cohomological description (BFV) of it is presented.
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1 Introduction

In this paper we will study the boundary structure of general relativity (in 341 dimensions in the
Palatini—Cartan formalism) coupled to different types of fields, such as a scalar field, a Yang—Mills
field, and a spinor field. Our goal is to describe the reduced phase space of the aforementioned
theories coupled to gravity in two ways: (i) through a symplectic space and constraints on it and
(ii) using a cohomological description, the BFV formalism.

The reduced phase space can be considered as the fundamental building block of the analysis
of field theories on manifolds with boundary. If the boundary is a Cauchy surface, we can define
it to be the space of possible initial conditions. Often in the literature, the reduced phase space
is obtained through Dirac’s algorithm, while in this paper we follow and expand the description
given for the gravity field alone in using the Kijowski and Tulczijew (KT) construction
. This construction roughly goes as follows: a space of boundary fields together with a
closed two-form and some constraint functions are derived from the variation of the action and
the Euler-Lagrange equations in the bulk. Then, if the two-form is degenerate (as will be more
precisely explained in Section and its kernel is regular, we perform a quotient and obtain a
symplectic space, which we call the geometric phase space. On it we define the constraints of the
theory deriving them in a suitable way from the Euler-Lagrange equations. This last step might
present some technical difficulties as the constraints defined as the restriction to the boundary of



the Euler—Lagrange equations might not be basic with respect to the reduction of the two form.
This is precisely the case at hand where both gravity alone and each of the composite theories
have such problem. We overcome it by fixing convenient representatives of the equivalence classes
of the quotient and express the constraints in terms of them.

One of the reason of the choice of the KT construction is that it is automatically compatible
with the cohomological description of the reduced phase space given by the BFV formalism (after
Batalin—Fradkin—Vilkovisky [BV77; BV81; BF83]). Indeed, if the constraints form a first class
system (meaning that the Poisson brackets between them are proportional to the constraints
themselves), it is possible to describe the space of functions over the reduced phase space as the
zeroth cohomology of a cohomological (i.e., odd and squaring to zero) vector field on a graded
manifold constructed out of the geometric phase space and the constraints.

The BFV formalism was born as the hamiltonian version of the BV formalism, which was
developed to overcome the degeneracy problems that one encounters when defining the partition
function of gauge theories. It is a generalization of the constructions of Faddeev and Popov and of
the BRST procedure [FP67; [Tyu75; | BRS76] to encompass more general type of symmetries. The
BV and BFV formalisms are related and it is possible to construct BV-BFV theories in which
additional conditions are added to guarantee compatibility between bulk and boundary data
[CMR14]. A quantization scheme has also been developed for such theories [CMR14; |CMR1§].

Furthermore, given a BV theory on the bulk, under some regularity assumptions, it is possible
to induce a BFV theory on the boundary. Crucially, for both gravity in the coframe formalism
and the composite theories object of this article, in dimension N > 4E| these regularity conditions
of the BV theory are not satisfied (in the standard formulation, see [CS19]) and we have hence
to resort to the alternative method described above to obtain a BFV theory. It is worth noting
that from a BFV theory is then possible to obtain a full BV-BFV theory on cylindrical manifolds
through the AKSZ construction [Ale+97]. Because of the mentioned quantization scheme, one
of the key point of this article is that it constitutes the first step towards the quantization of
gravity together with matter fields.

The formulation of general relativity used in this article will be the Palatini-Cartan (PC) or
coframe one, which is classically equivalent to the standard Einstein—Hilbert theory formulated
in terms of the metric.The PC theory has several advantages when considering manifolds with
boundaries, since it is expressed in terms of forms and connections which have a better behaviour
when restricted to submanifolds. For the same reason, in the case of the scalar and Yang—Mills
fields we will use the first order formulation of these theories.

The main condition that we assume in the derivation of the boundary structure is the non-
degeneracy of the induced metric on the boundary. In other words, we require the boundary to
be time-like or space-like but not light-like. This last case will be object of future studies.

The article is structured as follows. We introduce the relevant constructions, KT and BFV| in
Sections and respectively. Then we give an overview of the Palatini—-Cartan formalism of
gravity and its reduced phase space in Section In particular we recall the results of [CCS21|
where this theory has been analyzed with the two methods mentioned above. In Sections [3] [
and [f] we then consider the coupled theories of gravity with a scalar field, a Yang-Mills field and a
spinor field respectively. For each theory we describe the bulk theory, apply the KT construction
and present the reduced phase space in terms of a symplectic space and some constraints on
them with the corresponding structure of the Poisson brackets. Then we give the fully detailed
description of the corresponding BF'V theories.

Some of the results in this paper first appeared in [Fil21].

n dimension N = 3 gravity is topological and it is possible to induce a BFV theory from the BV one [CS22].
However, this is no longer true if we add matter fields. We postpone the study of this particular case to future
work and consider in this article only the case N = 4.



Remark 1. In this article we focus on the case of field theories defined on a four-dimensional
manifold, this being the most interesting physical case. Some of the technical lemmata however
are formulated and proven for a generic N. The generalization to N > 4 does not bring to a
different structure of the boundary theories, as was shown in [CCS21] for gravity alone, but only
little modifications have to be taken into account. In particular we expect Theorems to
hold verbatim in the generic N > 4 case. The case N = 3 is different, since it is possible to
induce directly a BFV theory from a BV on the bulk for pure gravity |[CS22]. However, adding a
scalar field spoils this possibility, leading to a non regular kernel of the preboundary BFV form.
The same happens when coupling 3d gravity with a Yang-Mills field in the first order formalism.
In these cases we can proceed as described in Sections [3| and [4] keeping in mind that for N = 3
we do not have a kernel in the direction of w and hence we do not have to fix the additional
vector field e,,.

Acknowledgments. The authors would like to thank Valentino Huang for the useful remarks
and comments.

2 Preliminaries

In this section we describe some of the mathematical background required in the rest of the paper.
In particular, Section is devoted to the Kijowski-Tulczijew (KT) construction, Section to
the BFV formalism and Section to the Palatini-Cartan gravity theory.

2.1 The KT construction and the reduced phase space

We describe here the Kijowski-Tulczijew [KT79] construction that we will use in the main part
of the paper to describe the reduced phase space of the field theories considered.

Remark 2. In order to keep the description simple, we describe the construction without details
which are collected in the footonotes.

Let M be an an N—dimensional manifold with boundary OM =: ¥ and let F' be a vector
bundle on M. For a large variety of theories—and in particular the ones at hand—the space of
fields F)y is in general defined as the space of smooth local sections ¢ on F, i.e. Fyy :=T' (M, F),
which is in general an infinite-dimensional manifold (inheriting the structure of a Fréchet space)
on which we assume that Cartan calculus is defined. A field theory on M is then specified by an
action functional Sy, obtained by integrating a Lagrangian density L(qﬁ)ﬂ

2To define precisely such objects, one first needs to define the local calculus on M x Fjs. Let us consider the
infinite jet bundle J°°F. The smooth local sections of the infinite jet bundle I'(M, J*° F'), can also be obtained
by the jet prolongation j*°: I'(M,F) — I'(M, J>*°F). We can define a map es by precomposing j*° with the
evaluation map ev: M X Fpr — F : (z,¢) — ¢(z), i.e.
id,jo
eoo: M x Frg S99 N (M, IR F) &Y g F
It is a well known fact [And] that differential forms on J°°F carry a double degree, defining a bicomplex with
respect to a veritcal differential dy, and a horizontal differential dg, such that d = dy + dg is the usual de Rham
differential. In particular, this implies that d%, =0, dfq =0 and dydyg + dgdy = 0. It is then possible to define
local forms on M x F; by pulling back forms on J°° F along es,. This produces a double complex of local forms
defined by
QP D (M x Fyp) = ef Q0D (J=F), (1)
where p is the vertical degree and g the horizontal one. The differentials are defined by d := e’ dy and 6 := e} dy,
representing respectively the de Rham differential on differential forms on M and the “variational differential” on
forms on F'. In particular, d measures variations of fields at the space—time level, while § measures variations of



The integral over M of the Lagrangian density defines the action functional
S :=/ L(¢) =/ L(¢,0¢,0%¢,- -, 0"¢)dx' A--- A da™. (2)
M M

When we act with ¢ on the Lagrangian, we obtain the variational formula |Zuc]
5L = E(L) — da, (3)

where F(L) contains the Euler—Lagrange equations, and « is defined up to d-exact termsﬁ
If we integrate on M, due to Stokes’ theorem, da gives rise to a boundary term. It was
first noted by Kijowski and Tulczijew [KT79] that this boundary term defines a one form on the
space of boundary fields over ¥ which is analogous to the Liouville form in symplectic geometry.
In particular, defining the space of preboundary fields Fs; as the space of germs of fields at
¥ x {0} on X x [0, €], the variation of the action Sy, yelds

6Sm = E(L)m — 7y (an), (4)

where E(L)ys arises after the integration of E(L) , 7x: Fa — Fy, is the natural surjective
submersion to the space of preboundary fields and @ is a one form on F, found after integrating
aﬁ Now @y, := dayx is by definition a d-closed local two-form and, assuming that its kernel
Ker(@) := {X € TFp | tx@ = 0} defines a regular distribution, it is a presymplectic form on
Fy.. By Frobenius’ theorem, ker(coy) is an involutive distribution on the space of preboundary
fields, hence we are able to consider the symplectic reduction Fy := Fg / ~ defined as the leaf
space of the foliation, which we assume to be smooth. Fy is called the geometric phase space
of the theory and it is by definition a symplectic manifold with symplectic form wy induced by
wy.

Considering the induced surjective submersion 7y : Fjy; — Fy and assuming that as on Fy
is well defined, we obtain

08 = E(L)y — 75 (ax).

We can now define ELys := {¢ € Far | E(L)(¢) = 0} as the zero locus of the Euler-Lagrange
equations, i.e. the space of physically relevant fields. When restricted to the boundary, the EL
equations split into equations containing the derivatives of the fields in a transversal direction and
the remaining equations. They are respectively called evolution equations and constraints. In
order to consider the physical space of fields of the theory on the boundary, one needs to impose
the constraints on the space of boundary fields. In principle this could be done on the space of
preboundary fields, taking into account the fact that the kernel of the presymplectic form might
be enlarged; however, it is better for our purposes to impose them on the geometric phase space.
Since this last space is a quotient, before proceeding we have to make sure that the restriction
of the constraints is basic with respect to the reduction of the kernel of the pre-symplectic form.
As we will see, this is not always the case and we might have to reformulate the constraints in
order to have a basic expression.

In more mathematical terms, following [CMR11|, we define Ly, := wx(ELps) as the projection
to geometric space of the solutions to the EL equations. In general Ly is isotropic with respect
to wy, and sometimes also coisotropic, hence Lagrangian. This is the case of good field theory.

the field configuration at a given space—time point. A Lagrangian L is defined to be an (V,0) local form which,
when evaluated at a field configuration ¢, is called Lagrangian density L(¢).

3E(L) is a (N, 1) local form and has the further property that it only depends on the 0-jet part of the field ¢,
and it is independent of variations of L by d-exact terms, i.e. E(L + dK) = E(L). Such forms are also known as
local source forms. Furthermore o € Ql((ﬁ_l’l).
4More precisely, E(L)s is a (0, 1) local form on M and &y is (0, 1) local form on X.



Hoewever, we are interested in the space Cy; of Cauchy data, i.e. the submanifold of the geometric
phase space that can be completed to an element belonging to Ly o, for € small enough (more
appropriately, one should work on jets in €). The evolution equations will then contain derivatives
along the direction of [0, €], while the zero locus of the constraints defines Cx,. Note that, if Ly, is
Lagrangian for e small, then Cy; is coisotropic.. In our example this fact will be clear, since the
constraints are found to be first class, i.e. local functions on the geometric phase space which are
in involution with respect to the canonical Poisson structure on Fy induced by the symplectic
one. Finally, the physical space of the theory on the boundary is the symplectic reduction Cl,
of Cy, called the reduced phase space. The result in principle might not be smooth. Hence to
describe it we resort to its cohomological resolution known as the BFV formalism.

2.2 Some notes about the BFV formalism

Because of the technical difficulties and the smoothness issues of a direct description of the
reduced phase space, the BFV formalism offers a useful alternative.

The starting point is the symplectic manifold (Fy, wy) (the geometric phase space) and the
set of constraints 1;, i.e. the restrictions of the EL equations to the boundary which are not
evolutionary equations. The fundamental assumption is that these constraints form a first class
set, ie. {¢5, 95} = f{}iﬁk for some functions i’g- on Fy.

Given this setting the BFV formalism describes the functions on the reduced phase space as
the cohomology of a suitable operator on a graded manifold which is a given extension of the
geometric phase space. Let \; € W; be some odd Lagrange multiplyiers of degree +1 such that

we can express the constraints in the integral form

v = [ A
2

We consider the space Fppy = Fx x II;T*W; and denote by )\;f the coordinates on the fibers of
T*W,;. This space has a natural symplectic structure given by

WRBFY = Wy, +/ <Z 6&5)@) .
A

On this symplectic space we define the function
Sprv = / (Aﬂ/% + ikj>‘/];>‘i>‘j + R)
b

where R is a term of higher order in the \f’s chosen so that {SBrv,Sprv} = 0 (Classical Master
Equation). The function Sgry is called BFV action and it has been proven that it is always
possible to find R such that the classical master equation is satisfied[BF83; [Sta97} |Sch08]. We
call Qpry its Hamiltonian vector field. The key result is then given by the fact that @ acts as
a differential on functions on the space of fields and its cohomology in degree zero is isomorphic
to C°(Cy,) as a Poisson algebra when Cf, is smooth. Hence (Fpry,@pryv) is a cohomological
resolution of C*°(Cy;).

2.3 The Palatini—Cartan formalism

In this article we consider the first-order formulation of gravity in which the classical fields are a
coframe and a connection. This formulation is classically equivalent to the original one in terms
of the metric. In this section we describe the setting of this theory, the classical action in the
bulk and its reduced phase space through the KT construction as first described in [CCS21].



2.3.1 Classical space of fields

Let M be an N-dimensional manifold and let P be an SO(N — 1, 1)-principal bundle on it. We
consider an N-dimensional vector space (V,7n) with a Minkowski product, on which we can let
the Lie group SO(N —1,1) act via the fundamental representation p: SO(N —1,1) — End(V).
Next we consider the adjoint vector bundle V := P x, V. Finally, we require that there is an
isomorphism e: TM — V. The first field of the theory is then an explicit choice of isomorphism
e: TM — V, ak.a. avielbein (the Lorentzian metric in the classically equivalent Einstein—Hilbert
formalism will be recovered by pull back: g = n(e, e))lﬂ

The other field that we consider is a connection on P. Let w € Q'(P, so(N — 1,1)) be the
associated connection 1-form. We want to consider the gauge field as a dynamical field of the
theory. The following proposition gives a useful way to include it in this setting.

Proposition 3. The space of principal connections on P over M is an affine space modeled on
A(M) = QY (M, A?V).

Proof. Tt is well known that it is possible to identify the affine space of principal connections as
the space of one forms with values in the corresponding Lie algebra so(N — 1,1). Furthermore,
it is possible to identify so(N — 1,1) with A%V by means of 7. O

We define the space of (i, j)-forms to be the differential i-forms with values in the j-th exterior
power of V| namely
QED (M) == QI(M, N V).
The space of fields of our theory is then defined to be
Fre = QLY x A(M),

where Q;ld’l) is the space of vielbeins as nondegenerate one-forms with values in V. This formalism
has the further advantage that all the fields are expressed as differential forms and hence can
easily be restricted to a suitable submanifold of M (e.g. its boundary, if it has one).

2.3.2 Classical action

We are looking for an action functional that gives the same Euler-Lagrange locus modulo sym-
metries as FEinstein—Hilbert theory. The Palatini—-Cartan action is

— 1 N—-2 A N
Spc = /M (N—Q)!e /\Fw‘l-N!e , (5)

where e¥ :=eAeA---Aeand F, :=dw + %[w, w] is the curvature associated to w which we
~—_——

k times
regard as a (2,2) form. We can find equations of motion by varying the action

— 1 N-3 1 N—-2 A N-—1
5SPC = /M m@ 6€Fw — m@ dw((S(JJ) + m@ de (6)
R B P [ T
v LN —3)! ¢ (N =) (N —2)1"
- ﬁd(eN_Q(SOJ),

5Note that we can pull back the fiber metric eta and this defines a Lorentzian metric on M, so the setting
described above assumes that M admits a Lorentzian structure.



where we used integration by parts and the fact that d,F, = —d,, ((Sw)ﬂ The last term in @
will produce a boundary term if M ## @, due to Stokes theorem.
Then we find equations of motion

eN3d,e = 0; (7)

(Ni3)16N3Fw+<Nji meN*l =0. (8)

Equation is equivalent to d,e = 0 because of the non-degeneracy condition (and because
eV =3 is injective in this case |[CCS21]). Furthermore, it fixes w to be torsionless, and since it is
compatible with 7, then dy,e = 0 implies the metricity condition d-(,)g = 0, which is uniquely
solved by the Levi-Civita metric connection.

After imposing , we find that is equivalent to Einstein’s field equation, with the addition
of a cosmological constant A.

Remark 4. Tt is important to notice that, even if e is an isomorphism, e A - might not be, indeed
eV 3 A F,, = 0 is not equivalent to the flatness condition F,, = 0

Remark 5. There are two ways of showing that the PC and EH theories are equivalent. The first
one is to rewrite equation after imposing and see that it actually yelds Einstein’s field
equation. The other way is to use and rewrite the action Sp¢ in terms of the metric tensor,
to see that it is equivalent to the Einstein—Hilbert action. This is seen very easily by noticing

that
N-2

N
67 = — N = 67 =
NV det(g)d"™ = = Voly, = 2)!Fw RVol, 9)

where R is the Ricci scalar.

2.3.3 The reduced phase space of Palatini—Cartan gravity

We present here the results of |[CCS21| concerning the structure of the reduced phase space of
Palatini—Cartan gravity. The results of this section have been obtained through the Kijowski—
Tulcjiev (KT) construction (described in Section and are the background construction that
we will adapt when adding matter and gauge fields in the following sections.

The starting point of the KT analysis is the boundary term that we get when varying the

action @:

~_ L[ N
a—(N72)!/Ee ow.

Assumption 6. We further assume that the bulk vielbein satisfies the extra nondegeneracy
condition that the induced boundary metric ¢°, defined by ¢° = e (n), is nondegenemteﬂ
This is an open condition on the space of bulk field that ensures that the constrained submanifold
Cys, is coisotropic.

The classical fields on the boundary will again be indicated by (e,w). The inclusion ¢ : ¥ < M
of ¥ in M induces the bundles P|y, := ¢*(P) and V|x := ¢*(V). The fields are respectively defined
as

6SwF,, = 8w (dw + %[w,w]) = —déw + %[&u,w} — %[w,éw] = —d(bw) — [w, dw] = —d., (dw).
7One might also consider the stronger condition that the induced boundary metric is space-like, but this is not

needed for the following considerations.



e ¢ is a nondegenerate section of T*¥ ® V|x, meaning that (i) at each point the three com-
ponents are linearly independent and (ii) the underlying metric g, defined by g := e*(n), is
nondegenerate (because of Assumption @;

e w is an element of the space of connections Ay, locally modeled by T'(T*Y @ A* V]z).

We denote the space of preboundary fields as Fjy = Qg’nl.fi‘ x As.

We note that & is the integral of a local (top, 1) form on Fyx ¥ as defined in (I)) and therefore a
1-form on Fy. By taking its variation (the variational vertical differential), we obtain a two-form
on Fa 1

w = da = 7(]\7 —3)1 /ZeNfdée(;w. (10)
By construction, @ is closed on Fy and satisfies the first requirement to be a symplectic form
on Fy. However, it is degenerate, namely ker(&) := {X € TFpy | t.x@ = 0} # {0}. In |[CCS21]
it was proven that ther kernel is regular. Hence, in order to get rid of this degeneracy, we can
perform a symplectic reductionﬁ The quotient space Fy will be called the geometric phase space
of the theory

Fy

 ker(®)’

Fy: (11)
with the canonical projection my: Fy — Fjy. Hence the space of boundary fields is a bundle
F9 — QL (2,V) with local trivialization on an open Us; C Q2 (%, V)

F8 ~ Us, ¥ Ared(z)’

where A™?(X) is the space of equivalence classes of connections w € A(X) under the equivalence
relation w ~ w + v for every v € Q12(X) such that eN~3v = 0. The corresponding symplectic
form is

—71 eN35ed[w
— (N_S)!/Z Sedlw]. (12)

In order to define the constraints on this quotient space, and to give an explicit description of
the reduced phase space, it is better to fix a representative of the equivalence relation described
above, since the restriction of the EL equations to the boundary are not invariant under the
equivalence relation. A convenient choice is given by the following construction. We choose a
section e, of V|x and we restrict the space of fields by the conditions that ej,eq, e3, e, form a
basis, where e, := e(@a)ﬂ We denote by F, the space of preboundary fields Fj together with
en € V completing the basis. On this space we have the following theorem:

Theorem 7 (|CCS21]). Suppose that g2, the metric induced on the boundary, is nondegenerate.
Given any & € QY2, there is a unique decomposition

V=w+uv (13)
with w and v satisfying

N3y =0 and e’ *d,e€Im Wla’(l’l). (14)

8The vector fields in the kernel of the presymplectic form span a smooth involutive distribution. The quotient
space Fy/ker(o) is the set of leaves in the foliation induced by ker(¢). In our case, the vector fields in the kernel
only act, at fixed e, as translations of the connection w, therefore it is easy to see that the quotient space is still
a smooth manifold.

9there is actually no restriction in the space-like case; otherwise, one has to work on charts of the space of
fields and pick an e, for each chart




Let we denote by F the subspace of F, of the fields satisfying (14).
Corollary 8 (|CCS21|). F, is symplectomorphic to Fp.

Hence from now on we will require and work on F! . The space of coframes and
connections satisfying this last equation is the geometric phase space of the PC gravity theory.
We can now analyse the restriction of the Euler-Lagrange equations on the boundary to see
which further constraints they impose on the geometric phase space. In order to simplify the
computation of their Hamiltonian vector fields, it is convenient to rewrite the constraints on F,
as discussed in [CCS21|:

Lc:/ceNfgdwe,
b))

P = / teee™N T3F, + 1e(w — wo)eN 3d,e,
b

_ ; N-3 # N-1
H)\_/z)\en ((NS)!e F,+ (Nfl)!Ae ,

where wy is a reference connection and ¢ € Qg’Q, EeX(X)and X € Qg’o are Lagrange multipliers.
From now on we are going to consider the fields ¢, £ and A to be odd fields (shifted by 1 in a
suitable supermanifold). This will be useful later for the BFV formalism. For more details we
refer to [CCS21].
The constraints above are of first class, hence defining a coisotropic submanifold of the geo-
metric phase space. The structure is specified by the following

Theorem 9 ([CCS21|). Under Assumption@ the functions L., P, Hy are well defined on F3,
and define a coisotropic submanifold with respect to the symplectic structure wpc. In particular
they satisfy the following relations

1

{L¢, Lo} = _iL[C,C] {PS’PE} = %P[Eﬂ - %LLS%Fwo (15a)
{Les P} = Lygo. {Le, Ha} = =Pxo + Lx (w-wy), =~ Hxom (15b)
{Hx,Ha} =0  {P,Hy} = Py — Ly @ (w-wp), T Hym (15¢)

where X = [¢,hep], Y = L‘go()\en) and Z(@), ZM are the components of Z € {X,Y'} with respect
to the frame (ea,en)m

The data of this theorem can be translated into the BFV formalism as explained in Section
The result is the following theorem.

Theorem 10 ([CCS21]). Under Assumption[, let Fpc be the bundle

‘FPC - Q%Ld(27v)a (16)

with local trivialisation on an open Us C QL ,(,V)

Fro ~Us x A(D) & T* (9%2[1] @ X))@ O°°[1](2)) —Us, X Tre, (17)

10The notation Lg denotes the covariant Lie derivative along the odd vector field £ with respect to a connection
w:

LEA = 1edoA—doteA  A€Qy.
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and fields denoted by e € Us, and w € A(X) in degree zero such that they satisfy the structural
constraint e e’ ~1d,e € Ilea’(l’l), ghost fields ¢ € QY°[1], € € X[1](2) and X € Q%O[1] in
degree one, ¢ € ngﬁLN*Q[fl], e Qgil’N[fl] and ¢ € Qé’o[fl] ® Qgil’N in degree minus
one, together with a fixed e, € T'(V), completing the image of elements e € Us, to a basis of V;
define a symplectic form and an action functional on F respectively by

wpe = /Z ﬁelv_?’éeéw + edel + SAGAT + 1567, (18)
Spo = / #ceN_?’d e+ #L eeV 3, + #L (w—wo)eN d,e
< (N =3)! wETAN =3t “T(N=3*t ©
1 N-3 1 N-1 1 t
Fo4+———A =
+Ae”<(N—3)!e vy o) Talede

1
- LZ’“CCJr + ibngFchT + [e; Aen] D (€] — (w — wo)ach) + [, Aen] AT
W a Wi n 1
~ L)@ (€] — (@~ wn)ac’) — L () AT — L el (19)

Then the triple (Fpc,w@pc, Spc) defines a BFV structure on X.

3 Real scalar field theory coupled to gravity

In this section we explore the boundary structure for the field theory generated by the coupling
of gravity and a real scalar field theory. As we will see, the structure of the constraints of gravity
is not directly affected by this coupling. Nonetheless, the kernel of the two-form induced from
the bulk on the boundary changes in a non-trivial way, resulting in an additional structural
constraint that fixes some components of the momentum of the scalar field on the boundary.

Remark 11. In this section we analyse only the case of a real scalar field. However the results
presented here can be extended without big effort to the case of multiplets, or to the case of
multiple scalar fields.

3.1 Real scalar field in the first order formalism

We now consider a scalar field ¢ € C*°(M) as a smooth function on space-time. In order to
couple the scalar field to gravity in the Palatini-Cartan formalism, it is useful to consider the
first-order formulation introducing a new field II € Q1 (M), i.e. a section of the “Poincaré”
bundle V. The idea behind the introduction of this new field is to avoid to consider the term

1
SV u690, (20)

which usually appears in the Klein—-Gordon Lagrangian on an arbitrary background, because it
involves the inverse g*” of the metric tensor, which is hard to deal with in calculations in terms
of the vielbein.

The new field II is a priori independent of ¢, but after the equations of motion are found, it
will assume the role of the momentum associated to the scalar field.

11



The minimal coupling (in the massless case) is described by the action
S = Spc + Sscal with

1 N-2 A N
= B — F B —
Spc /M (N_2)!6 ALy, + N!(i (21)

1 1
cat = | ———eW-DATI — NI,
Sscal /M (N—l)'e A /\d¢+ 2N'€ ( ) )7

where (-,-) is a shorthand notation for the pairing  in V. In an orthonormal (with respect to
the Minkowski metric) basis {v,} of V, VA = A%,, B = Bv, € V it reads:

(A, B) := A*B"1jqs. (22)

The variation of the action yields

1 N-3 A N—1 1 N_2 1 N1

B o3¢ et o ~—oym¢ I —_— II, 1T
" /M[(N—?’)!e o o Mt oy (Rmjoer
1 N-2 N—1 1 d
(N — o)™ N 1 I+ —e*(IL, 611
+ (N_Q)!d (e"7)ow + Ok dpoTT + e (1, 6T0)+
1

md(e]v_lﬂ)&b + —d<(Nl_2)!eN_25w + (Nl_l)!eN*md)).

(23)

We notice that the variation of the action produces a boundary term which, applying Stokes’
theorem, is given by

. 1 N—2 1 N-1
= —_— ow+ —— 116 24
“ /W(N—z)!e YT o© ¢ (24)
This is the term corresponding to the local 1-form on the space of preboundary fields defined
in Section 21} Its variation will produce the pre-symplectic form which will be essential to
construct the reduced phase space in the next section.

From the variation of the action we also find the equations of motion, which are given by

dye = 0; (25)

wegne” P F A+ e T+ e g + gryeye™ T (AL = 0 (26)
d(eN7HI) = 0; (27)

NN (de — (e, 1)) = 0, (28)

where, to find the equation of motion corresponding to dII, we used the following identityE
which holds for every A, B € QO1):

%eN(A,B) — (—1)AHIBIN=1(e A)B. (29)

We can further simplify equation , in fact, using d(eN~1I) = d,, (e ~1I) because top forms
transform trivially under the action of the Lie algebra, then d(eN~'II) = d,,(eN 1)1+ ~1d,II,
but d,e = 0, therefore we find that is equivalent to

eN7lg, I = 0. (30)

Mproved in Lemma [53.(1)|in Appendix
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Furthermore, we can also simplify (28), since W](Vl’_ol): QUO(M) — QWN=D(M) : A eN71TA
is injective[”] Therefore we obtain
d¢ + (e, I1) = 0. (31)

This equation fixes II in terms of the derivatives of ¢, while (30]) is then just the usual Klein—

Gordon equation for a massless scalar field on an arbitrary background. To see this, we compute

the scalar field part of the Lagrangian after having imposed the constraint and plug it into the

action, showing that we recover the usual Klein—-Gordon Lagrangian on a curved background.
First of all, we have

eN 1 ai anN 1551 uN ai an JN

N1 = pCaran € s Ndrtt e datN = €q, g€ ey d T
= det(e)d" z.

(32)

Then, since det(g) = —det(e)?, we obtain eV /N! = \/—det(g)d¥z = Vol, as the canonical
volume form. In coordinates (with respect to the local basis {e,} of V), assuming that the
metric is nondegenerate, eq. reads

" = — g9, . (33)

Finally we can compute the term in the scalar part of the action, using the previous identity

1

_ N-1 1o~ __/ 1 v
Secal = /M - 1)!6 Ild¢ + 2N!e (IL,1I) = y 2(Volg)g 0,90, 9, (34)

which is exactly the Klein-Gordon Lagrangian, once we notice that V,¢ = d,¢.

3.2 Classical Boundary Structure in N =4

We now assume our space-time manifold M to be a 4-dimensional manifold with boundary
¥ := OM and we study the boundary structure of the theory using the KT construction (see
Section . In particular we show that the constraints defining the reduced phase space are
first class, thus defining a coisotropic submanifold as their zero locus. We also show that the
scalar field coupling does not modify the boundary structure of pure gravity.

3.2.1 The Reduced Phase Space

Many of the results which we present in this section are an extension of what have been shown
in [CCS21] and recalled in Section We start by considering the boundary term that
is found after the variation of the action; for IV = 4 it reads

1 1
G = / —e?0w + —€3T15¢. (35)
52 3!

We again indicate the classical fields on the boundary by (e,w, ¢,II). The fields are defined as
in Section [2.3.3| and additionally we have:

e ¢ € C*(Y) is a smooth function on ¥;
e II is an element of Qg)’l) := QO1(%), where we define Q) (D) :=T(A'T*S @ A/ V|s).
125¢e Lemma m in Appendix
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Hence we denote the space of preboundary fields as Fy = anlzi x As; X C=(X) x Qg)’l). The

next step is to take the variation of & and obtain a closed two-form on Fl:
1
@ = o = / ededw + gé(e?’ﬂ)éq’). (36)
E .
As before, this two-form is degenerate. Considering a generic vector field X = X,-& 50+ Xw% +

X¢ 55 T X5 o we explicitly find the kernel of o as those vector fields satisfying txo = 0,
which is equlva ent to the following system of equations:

eX. = 0; (37)
1

1 1.

562er + get“xn =0; (39)

e*Xg = 0. (40)

Defining W,?(i’j) = ek ng — Qg+k’j+k), by Lemmas |58.(2)| and |58 |VV8(1 Do
W:? ©.9 are both injective, therefore and are solved respectively by X, = 0 and Xy = 0.
and reduce to eX,, = 0 and e3>Xy; = 0. The geometric phase space is then found to be
a bundle over anlzl with local trivialization on an open Us: C QL ,(%,V)

Fy =~ Us; x A4S) x €=(2) x (AP ~),
where
M~ & M-I=~ with e3y=0 (41)

and A"°4 (%) was defined in Section m From now on, We denote Q?ég D= Q(O D / ~. Fyis
thus a symplectic manifold with symplectic form

S /Z ededlw] + %5(63@[])50;. (42)

Remark 12. Instead of II, we might define a new boundary field p := %63H. In this way the
prefactor e automatically selects the physical part in II without the need of a further symplectic
reduction. Furthermore, we obtain a sympletic 2-form whose “scalar field part” is written in
Darboux coordinates: @ = [ eded|w] + dpde.

Remark 13. As for the case without matter, notice that the constraints (as the restrictions of the
EL equations from the bulk to the boundary) are not necessarily invariant under v-translations
and ~-translations, therefore we fix a convenient set of representatives of the equivalence classes
[w] and [II]. The next subsection deals with choosing such representatives in the ideal way. In
order to do so, as in the pure gravity case described in Section [2.3.3] we choose a section e,, of
V|s and we restrict the space of fields by the conditions that ej, es, e3, e, form a basis.

3.2.2 Choice of Representatives via Constraints

As mentioned, we need to fix convenient representatives of the classes [w] € A and [[] €
2(0,1)
Q

req - The idea is to take advantage of the constraints to fix the representatives, in particular

13the components of the vector fields are such that X. € Qén d)7 Xw € Ax, Xy € C(X) and Xyg € Qg]’l)
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we will use parts of the dynamical constraints. The constraints to be imposed on the space of
preboundary fields are

d,e = 0; (43)

eF, + A + 162nd¢ + 3 (T, IT) = 0; (44)
“ 3l 2 2.3l ’ ’

do + (e, 1) = 0. (45)

We do not impose e41d,II = 0 because it is an evolution equation. Furthermore, it is a top
form on M, therefore it cannot be restricted to 3. The choice of representative of [w] uses
and it follows verbatim the choice done in the gravity theory without additional matter fields.
Hence, following the construction described in Section we fix the representative of [w] by
choosing the connection w satisfying

end,e € Im Wla(l’l).

Existence and uniqueness of such connection are proved in Theorem [7}

Let us now consider the equivalence class [II]. We replicate the procedure used for the
connection and use a constraint to fix the representative of it. The constraint will be based on
(45). In particular, we exploit the property of the following Lemma which will be proved in

Appendix

Lemma 14. Suppose that g° is nondegenerate, then the map A : Ker(Wf(O’l)) — Q(})’O, Ac(p) =
(e,p) is bijective.

Remark 15. In analogy to what happens in gravity alone, the non-degeneracy condition is here
fundamental to use this constraint to fix the representative. If the boundary metric is degenerate,
the structure of the theory might be different as was shown for gravity alone in [CCT21].

Using this lemma, the following theorem shows that fixes uniquely the representative of
the equivalence class in an appropriate way.

Theorem 16. Let ¢° be nondegenerate. Given any Il € Qg’l, there is a unique decomposition
Il =11+ p such that p € Ker(WP?(O’l)) and

(e, IT) = —do. (46)

Proof. If I satisfies there is nothing to prove. Suppose that (e, ﬁ) —d¢ = K, then since A,
is bijective, there exists a p € Ker(Wf(O’l)) such that K = (e,p). Then IT = IT — p satisfies (40).

For uniqueness, suppose that there are two such decompositions = Iy +p1 = Iy +ps. Then
we would have (e,II1) = (e,II3) and consequently (e,p1) = (e, p2) with p1,ps € Ker(Wé}(O’l)).
Since A, is bijective, this implies p; = po. O

Hence from now on we will work on the space of fields given by e € QL ,(2,V), w € A(X), ¢ €
C>(X), I e ng’l) such that e,d,e € Im Wla(l’l) and (e, IT) = —d¢, which is symplectomorphic
to Fa.

3.2.3 Poisson Brackets of the Constraints

We still have to impose the constraints on the space of pre-boundary fields. In order to do so,
we recast them into local forms by means of Lagrangian multipliers: furthermore, if we split
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it = tge + Aey, from J; we obtain two functions:

L. ::/cedwe.
)

1 1
Pe = / Ste(€)Fu + §L5(63H)d¢ +tg(w —woedwe;
. !

A 1 1
H, = / ey, <6Fw + —e® + —e*Tldo +
b

FTRE 53¢ (L H)> '

Remark 17. It is important to notice that the Lagrange multiplier have the role of the generators
of the symmetry. In particular, ¢ € Qg)’Q) generates the internal gauge symmetry§ € X(%)
represents the vector field parametrizing the local diffeomorphisms in the direction tangential
to the boundary, while A € C*°(X) is the generator of the local diffeomorphism normal to the
boundary.

For future advantage we added a term in P proportional to ed,e, depending also on a
reference connection. The addition of this term does not change the constrained set. It is also
important to notice that the terms in J; containing e® disappear in P because t¢(e*) = 0.

Furthermore, we assume the Lagrange multipliers to be odd, namely we consider ¢ € Q%Q[l],
¢ € X[1)(%) and X € Q3°[1], and we denote with L¢ the covariant Lie derivative along the odd
vector field £ with respect to a connection w:

LEA = edyA—dyeA A€ Qy. (47)

Theorem 18. With the usual hypothesis that ¢° is nondegenerate, the functions L., P, H)
define a coisotropic submanifold with respect to the symplectic structure wpc. Their Poisson
brackets read

1

{Le:Le} = =5 L {Pe. Pe} = 5Pee) — 5Licier,, (48a)
{Les Pey = Lygo. {Le, Ha} = =Pxo + Lx o (w-wy), =~ Hxom (48b)
{H\,H)\} =0 {P,H\} =Py — Ly @) (w-wp), T Hym, (48c¢)

where X = [c, Aep], Y = L (Aey) and Z@ 7™ are the components of Z € {X, Y} with respect
to the frame (eq,ey).

Remark 19. As said before, this theorem has the same structure as in [CCS21], where the
Palatini-Cartan theory without the scalar coupling is analyzed.

Proof. Theorem [7] allows to have well defined constraint, because of the uniqueness of the repre-
sentative w of |w].

In order to compute the brackets of the constraints, we first compute the Hamiltonian vector
fields associated to the constraints, defined for a function f on the space of boundary fields as
Xy such that (x, @ =4df.

Before explicitly computing the vector fields, we recall Remark [12| and notice that P: can
also be written as

Pe= / %LE(QQ)Fw + te(w —wo)edye + 1e(p)do. (49)
b))

MRecall that we identify so(3,1) ~ A2V
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Then the variations of the constraints are

0L, = / f}c[éw, ee] + 1cdwé(ee) = / [c, e]edw + d,cede;
s 2 2 b

0P = /z te(ede)Fy, — %Lg(ee)dwéw + vedwed,e — %Lg(w — wo)[dw, ee]
1
+ §L§(w — wp)dy,0(ee) + 1 (0p)dd + Lepd(d9)
o 1 1 1
4 / —edereF, + §dwbg(ee)5w - §5WL5dw(€e) + §5w[L§(w —wp), ee]
)
1
+ idw%(w —wo)d(ee) + opLe(do) + d(tep)dd
= / —edetgF, — (Lge)edw + edwlig(w — wo), €] + dute(w — wo)ede
)
—&(¢)dp — L¢° (p)do
_ / —eBe(LE0 (w — wo) + teFuy) — (LE%€)edw — £(9)0p — L (p)oo,
)

In the last computation the symbol ({) indicates that we used integration by parts.

1
23!

1 1
6Hy = / endeF,, + 5/\Aenezae — Aeped,dw + 5[ e, e (T IT) + 2)\en62Hd¢]
3

A, € e3 e? e?
= [ dey| | Fo + =+ —(IL1II) + elld¢ | e + — (IL, 6II) + —d@dIl + —IIdd¢
5 2 4 3! 2 2
+ d,(Nepe)dw

& A, € 1 9
Aen | | Fuo + 7€ + Z(H, IT) + elld¢ | de + idw()\ene IM)d¢
b

e
2n o2

3
+ [d6 + (e, IN)] 811 = A (e, IDSIL + d (Aere)du

A, € A,
= Ae, | B, + —e + —(IL II) + elldg | — —e“(en, INII| de
. 2 1 2

— Men, Tép + %dw(/\enem)aqs + d(Nene)dw,

where we used VA, B € Qg)’l) the following identit

eN—l

1 GN_l
n—-—"(A,B) = (=)AFBH __— ¢ eN"2(¢, A)B+ ——(en, A)B
The components of the Hamiltonian vector fields of L. and P are
Le = [c, €] L,=0
L, =d,c+ Vg Ly=0
P. = ngOe P, = fL?O (p)
Po=—L(w—wo) — teFu, +Vp Py = —£(0),

154 proof can be found in Lemma
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where, e.g., L. = L(e), with ¢ wpe = dL., and V,Vp € ker(Wla’(l’Q)).

The components of the Hamiltonian vector field of H) are described by

He = do(Aen) + Ao

1 1 A
eH, = Xe,, (Fw + 5Ae2 + elld¢ + 1.eQ(H, H)) - 5eQH(H, en)

Aep,
H, = d,, <§e2ﬂ>

Hy = —A(IL, e,).

As one may see, we did not fully compute H,, from the variation of Hy, but we do not need an
explicit expression for it, since in the computations we will only need eH,. A similar argument
holds for L,, and P, which are defined up to an element in ker(Wf) ’(1’2)) that will be irrelevant
in the following arguments.

Remark 20. We argued that )\ is the parameter generating the local diffeomorphisms normal to
the boundary. We now also see in that Hy depends on (II, e,,). In the cylider ¥ x [0, €] we
can apply the equation of motion (II, e,) = 9,¢, hence showing that the (infinitesimal) gauge
transformation generated by H on ¢ depends on the transversal component of ¢, as predictable.

We now proceed to compute the Poisson brackets of the constraints. In the following com-
putations we use integration by parts () and the following identities (for a proof of the second

see |[CCS21)):

FUead = —*stsdwoA + tedugteA — dwobsbgA VA € (W)
LELe"B = LTE gB+ §[L£L5Fwo7 B VB € (&)
1
dwo(WO_W):Fwo—Fw+§[wo—w,wo—w]; (V)
Aen A,
{L¢, Hy\} = E[c Je|hen By + — 1 (I, ) [c, €] + Aepelldd|c, €] — € (1T, e,)[c, €]

1
+ 5[0, e]ANene? + dyce(d,(Ney) + Ao)

:/ern ([c e, + 31 e, ¥JA + = fe, LT + %[C, 62]Hd¢>
+ dycdy(Nene) — =c, 3|TI(I, e,)

2 / —le, Aen] (er — é63 — i 3(11,10) — 162Hd¢>>
b - :

_Aen o2

06 — 2e’le, TI(TT )

1
= / —[e, )\en](a)eaer — e, )\en](")ener — 3—A[c, )\en](”)ene3
b
o3

+ [e, Aen]We, Hd¢+[c Aen]™ en—Hd¢+[c Aen] e o .

5= UL

—P[c,)\en](“> + L[C,Aen](‘”(w—wo)a — H[c,)\en](")’
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In the missing step we used that

A;n 2[ ]dqs - ée [C H](H en) N )\?jn 63 ([67 H](a) (Haea) + [C, H](n) (H, en))
ey, Aen
= ?63([0, H], H) = 5 3!63[67 (H,H)] —o.

{P& Pf} = / 2L‘gﬂ(ee)L‘gO (w — wo) + %LZ’O (ee)%Fwo + §(¢)L¢go (p)

<>
||,.

1 wo 1 1 wo
/E L (ee)(w — wo) + 7liete Fuy, eel(w — wo) + ST (e)ie Pl + dug (16(p) 1 (d0)

1 1
= / ZL[g’g]dwo (e€)(w — wp) + Edwoc[&g](ee)(w — wp)
)

+

1 W
[tete Fuy, e€](w — wo) + §L§0(66>L€Fw0 + te(duwyLe(p))do

<
I
= s =

1
Ug,¢)dw (e€) (w — wo) — 7hee [w — wo, ee](w — wp)

+ ™

1 1 1
e (ee)duy (w0 — i) + 7 lrete P, €€)(w — o) + 5L (eehieFly + Suic ()0

4

o, B

1 1
w(ee)te e (w —wo) — Z[w — wo, ee|g.¢)(w — wo) — 748 (e€)F o,

=

I3
o

[y

1
Jea(ee) i — cuggee)fwo — w wo — o]

>—~)J>

1, 1
+ —[tete By, e€](w — wo) + iLgo(ee)LEFwo + 5”5:5] (p)d¢

4>

L.} / id (ee)tfe,e(w — wo) + ib[gé](ee)Fw + idwo(ee)LngFwo
+ %dwOLg(ee)Lngo — iLELngo [w — wo, e€]

1 (Lgdwc (ee) — duwyte (ee)) teF, + 1L[g ¢ (p)dd)

= / —dy(ee)tfe g(w —wo) + [5 ¢ (ee)F, + L[g ¢q(p)do — idw(ee)LngFwo

P[& g~ 2LL£LsFuo

1
{LC,LC}:/[c,e}edwc:/ —[c, ee]dyc
b x 2
1 1 1
= /Z Zdw[qc]ee :/2 2[0 cled,e = —§L[C,C];
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Le, P —[c,ele w—wg) + teF,,) — d,cels
{Le Pe eFuo ¢
- /E 2 (L?%[“ — wo,e€] + el — wo, LE (ee)] — clee, 1e Py — duLg® (ee)e)

1w 1 1
= /E §L£ clw, ee] — §dCL5d(@€) + 5[%‘“076[(66)]6
1 wo _ .
_/ SL “0cd,, (ee) = /EL5 cedwe—LLgocy

e,
23!

/\en

1
{Pe,Hy} = / —LgedenFly — GALEeAene® — S (ILTNLE (%) — 5 TdGLE" (¢)
b))

A w "
+ QH(H’ en)L§0(63) _ (Lg()(w —wo) + Lngo) e(d,(Ney) + Ao)
w 1
+ )\Lgo(p>(H’ en) - §dw ()\€n62H) Lgdgb

w 1 wo ¢ w
= /E —L%eXen by — gALgoe‘i)\e" — (Lfo(w —wp) + Lwao) dy(eXey)

e e Ae
wo mn 3 n 3 wo n wo
+ L (2'3!>6(H,H) 5 ¢ Le" (ILI) — = TIdgLee (e 2
A w A won Aen w
+§H(H7en)L§°( )+3'L *(m"en)ed (T, e,) — T GOl

+ L’ (t) TG + 2L ()6 + 2L ()
2

:/ZLE’”(/\en) <eF + A+

+ e)\enL‘g F, + (deg(w — wo) —1eF,) dy(edey,)
63 wo 63 wo )‘ 3 wo

(L0 + eHd¢>>

2

* e? e
= / LZ° (Aen) (er + A+ —15,1) + eHd¢>>
. 2 4

+ e)\enL“’OFw + (dwte(w — wo) — teFy) du(eXey,)

)\en wo A wo
<5 e’ (e, TLg (H)*QeS(H,en)Lg (ID)
%63(6 Ly (H) + 363(11, en) LS (TI)

e2

:/ZL‘E"”(/\en) <eF + A+

= PL;}U ()‘en)(a) + HLgO ()\en)(n) - LLE’O ()\En)(n') ("J_"JO)a ?

(L I0) + eHd¢>)

where we used that (e, IT) = d¢
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Finally,

{Hx,Hy\} = /z: [/\en (Fw + %(32 + %(I'LH) + equS) — ;eg(en,ﬂ)ﬂ} (dw(Xen) + Ao)

— Men, I)d,, ()\?621'[)

A A
= / Zdene? (e, I — Zdene?(en, I = 0,
s 2 2

since most of the terms vanish because €2 = 0 and \? = 0. O

3.3 BFYV Formalism

In this section we apply the content of Section In particular, we embed Fy as the body
of a supermanifold F, whose odd coordinates are given by taking the Lagrange multipliers as
fields (the ghosts) and adding their momenta (ghost momenta). The result is presented in the
following theorem, where we use the notation and quantities of the analogous Theorem [I0] in
which the BFV theory of gravity without matter is described.

Theorem 21. Let Fg be the bundle
Fs — QL (5,V),
with local trivialisation on an open Us, C QL ,(2,V)
Fs ~Tpc x Q(ao,;gi x (%)

where Tpo was defined in and the additional fields are denoted by Il € Qg?;?d and ¢ € C=(%)
and such that they satisfy the structural constraints (e,II) = d¢. The symplectic form and the
action functional on Fg are respectively defined by

ws = WpC —|—/ lé(eg’H)dd),
5 3!

1 1 1
S = Spe +/ —1(e’)dep + Ney, | =——=€*(IL 1) + = €Idg | .
5 3! 2.3 2

Then the triple (Fs,wg,Ss) defines a BFV structure on 3.

Proof. We follow the same strategy of |[CCS21], from which we also borrow the notation. The
only bit that we need to prove, is that the new BFV action Sg still satisfies the classical master
equation

{Ss,55} = 1@sts@s =0, (51)
where Qg is the Hamiltonian vector field of Sg, defined by tg,ws = §Ss. In order to do so, we
can exploit the results of [CCS21] and by linearity we get

{Ss,Ss} ={Spc,Spc}+2{Spc, Sadd} + {Sadds Sadd}

where we denoted by S,4q the part of Sg containing the scalar field and its momentum. We have
that {Spc, Spc} = 0 from Theorem The remaining part 2{Spc, Saad} + {Sadd; Sadd} = 0
is instead a consequence of Theorem Indeed, the explicit computation of the second bracket
follows verbatim the computation of the brackets between the constraints in the proof of the
aforementioned theorem by just considering only the terms containing IT or ¢. Nonetheless, the
first bracket produces in a trivial way exactly the results of these brackets, since S,4q does not
depend on ghost momenta. O
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Remark 22. The BFV structure of Theorem [21| depends on a reference connection wy. However,
performing a change of variables it is possible to obtain a BFV theory not depending on it that
still represents a cohomological resolution of the reduced phase space. The precise expression
of the change of variables is given in |[CCS21] for the PC theory without matter and does not
change in presence of a scalar field.

4 Yang—Mills coupled to gravity

We now move our attention to the more complicated (but also more physically interesting) case
of the coupling of Yang-Mills field to gravity. Also in this case it is useful to work in the first
order formalism.

We start by considering a principal bundle (R, G, 7, M) over the N-dimensional space—time
manifold M. We assume G to be a compact Lie group with Lie algebra gE

The gauge field is defined to be the connection 1-form A. Let {77} be a basis for g, then we
express locally A aﬂ

A= AN2)Ty = AL Tyda". (52)

In particular, the gauge fields are in a space locally modeled on I'(T* M & g) which we will denote
by Ayn. The curvature two-form is as usual defined to be Fy := dA + = [A A]. In coordinates,
it reads

1
Fy= (dAI + 2f§KAJAK> T = F'Ty, (53)

where FI = %Fiydm“ Adz”.

The gauge invariant quantity that we can construct starting from A is Tr(Fa A xF4), where
* denotes the Hodge dual. However, in order to define it, we need to use the metric tensor,
which as we know is not the fundamental object of our field theoretical description and is found
in terms of the vielbein. As in the case of the scalar field, we then need to find a way to encode
the dynamics of the Yang-Mills field in an action functional containing the vielbein. To do so,
we introduce an independent field B € T'(A2V ® g), which is a g-valued section of the second
exterior power of the Minkwoski bundle V. In coordinates, it reads B = B**I ey, T, where we
used {e, } as a local basis for V.

The Yang—Mills action in the first order formalism is

1 oN-2 I N
= —_— Tr(BF —e"'Tr(B, B 4
Sy /M 2 r( A)+2N'e r( ) (54)
where (-, -) is the canonical pairing in A2V defined in coordinates for all C, D € A2V by (C, D) :=
C% D%, .myq With respect to an orthonormal basis {u,} of V.
We compute the variation of the action S = Spc + Sym and find

58 = / { (F, + Tr(BF4)) + ( )(A+ L v, B)ﬂae

+ ﬁdw( N=2)5w oo { Fa + )) 53} (55)

+Tr [dA (U\e]N_;!B) (SA] { (]$ — 2)! [6w + Tr(BéA)]} :

16 All the following considerations actually work for any Lie algebra g.
17Note that we use uppercase latin letters to denote the indices of this Lie algebra in order to distinguish them
from the indices of the vector bundle V which are denoted with lowercase latin letters.
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where to extract 6 B out of the bracket we used the following identity holding for all C' € Q(0:2)
and D € Q%2[1] (the fact that they might also have values in g is here irrelevant):

eN eN72

m(C, D) = m(e{ C)D. (56)

First of all, we notice that the variation of the action produces a boundary term, which will be
the local 1-form on the space of preboundary fields whose vertical differential will give rise to
the presymplectic two-form on the boundary. It is given by

€N 2 eN—2

The equations of motion are found to be

dy,e = 0; (58)

=gy (Fo + Te(BFA)) + (31 (A + 3Tx(B, B)) ; (59)
eN—2 (FA + %(eQ,B)) =0; (60)
da(eN—2B) = (61)

Equation can be further simplified by noticing that WJ(\,Q;OQ) is injective Therefore we

obtain
1

5
which in coordinates gives B*” = (—1)N g*? g F,, (omitting the Lie algebra indices). With this
definition, using Corollary [55| we then find

Fy+ -(e?,B) =0, (62)

6N72 N

1 v
WBFA + W(B B) §V01gFuVF” s (63)

giving (up to factors) the standard Yang—Mills term in the action.
In the next section we will analyze the boundary structure.

4.1 Boundary Structure in N =4

We assume the manifold M to be 4-dimensional with boundary ¥ := OM. Unlike the case of
the scalar field, we will see that the equations of motion produce an additional constraint, hence
modifying the boundary structure (but still preserving the first class condition) and the BFV
description.

The boundary term in reads

O~ZYM = %/ 625w + Tr(ezBJA).
b

Here B and A are the fields restricted to the boundary, while e and w are as in the previous
section, in particular

e B is an element of Q © 2) Q(O 2 g;

18Gee Lemma [5 3 in Appendlx!
198ee Lemma [ in Appendi l
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0)

e Ais an element of AXM, locally represented by Qg’ ® g.

The space of preboundary fields is denoted by FyM = Qfl%’dl.) x Ay x AYM x Qg?’;). The
presymplectic form on Fg M ig defined as the variation of Gy

WyM = / ededw + Tr(eBdedA) + %Tr(eQ(SB(?A). (64)
)

We are interested in computing the kernel of @y defined as
Ker(fUYM) = {X S TFgM | LXTOYM = 0}

Considering a generic vector field X = Xeé% + Xw% + XA% + XB%, we find ker(coyy) as the
vector fields satisfying

eXe = 0; (65)

eX, +eBX4, = 0; (66)
1

eBX, + §e2x3 =0; (67)

e?X4 = 0. (68)

We now see by the previous section that is solved by X, = 0, while is solved by X4 =0
by Lemma (7), therefore we are left with eX,, = 0 and e2Xp = 0.

As usual, we define the geometric space Fg M to be the symplectic reduction of Fg M pamely

it is a bundle over Qé{;l%)d. with local trivialization on an open Us, C Q1 (X, V)

FYM U x A AN % Q20
where A*? was defined in Section and Q(a(?’ri)d = Qg?’gz) / ~ with
B~B & B-B=C with ¢C=0. (69)
F g M is thus a symplectic manifold with symplectic form
Synt = /,: edesfu] + %Tr(é(eQ[B])éA). (70)

Remark 23. As one can easily notice, we can rewrite the part of wyy depending on A and B in
Darboux form, by defining p := %ezB, since in this way the components of B which are in the
kernel of e? are automatically suppressed. Therefore we obtain the symplectic form as

WyM = /Eeéeé[w] + Tr(6pdA). (71)

We can as well consider a generic vector field X = Xe% + Xw% + Xp% + XA%, then it will be
useful to consider txwym

IXTOYM = / eXcow + edeX,, + Tr(X,0A4) + Tr(6pXa). (72)
by

As we saw in the previous section, to obtain the physical space of fields on the boundary (i.e.
the reduced phase space) we need to impose constraints on F, g M Recall that the equations of
motion split into evolution equations (containing the derivatives of the fields in the transversal
direction with respect to the boundary) and in the constraints, which contain only derivatives
tangential to the boundary. The latter are readily obtained as the restriction of the equations of
motion to the boundary.
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4.1.1 Choice of representative via constraints

We now fix the representatives of the fields in the geometric phase space. In order to do so, we
make use of the constraints, which in N =4 are

d,e = 0; (73)
A, L3

6Fw+§6 + Tr €BFA+ﬁ€ (BaB):O ) (74)

da(e’B) = 0; (75)
1

FA+§(€273) =0. (76)

The choice of the representative of [w] is performed exactly as in Section
To fix the representative of [B] we use in an analogous way. In particular, we exploit
the property of the following Lemma which will be proved in Appendix [B]

Lemma 24. If g7 is nondegenerate, then the map ¢. : Ker(W2(0,2)) — Q}a’o, pe(b) = L(e2, B)
is bijective.

Analogously to the case of the scalar field, this lemma provides the tools to prove that
fixes uniquely the representative of the equivalence class of [B] in an appropriate way:

Theorem 25. Let ¢° be nondegenerate. Given any Be Qg’2®g, there is a unique decomposition
B =B+b such that b € Ker(WQB(O’Q)) ® g and

1
Fa+ 5(e2, B)=0 (77)
Proof. If B satisfies we can just choose b = 0. On the contrary, suppose that (e, B)+F4 = K,
then since ¢, is bijective, there exists a b € Ker(Wf(O’l)) ® g such that K = —2(e%b). Then
B = B — b satisfies .

Uniqueness goes exactly as in the case of the scalar field. O

4.1.2 Poisson brackets of the constraints

Having defined a symplectic manifold, it is of course possible to define the induced Poisson
structure. In this section we will show that also in the case of a Yang—Mills field coupled to
gravity the boundary structure is such that it produces first-class constraints, namely a set of
functions on the space of fields on the boundary which is algebraically closed with respect to the
Poisson bracket.

As in the case of the scalar field, we use Lagrange multipliers, and we split the constraint
(74) (the projection of Einstein’s equations to the boundary) into two independent ones. We are
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left with four constraints:

L. ::/cedwe; (78)
p)

1
M, = / 5Tr(udA(eQB)); (79)
2

P = / %Lgesz + %L§62T1"(BFA) + te(w — wo)edye (80)

p

1
+ ETr{Lg(A — Ag)da(e*B)}; (81)

A
Hy = / ey | eF, 4+ =€ + eTr(BF4) + e3Tr(B, B) ) . (82)
- 3! 23

(83)

Remark 26. Notice that the constraint M,, can be rewritten in terms of the fields in Darboux
form simply as

M, = /E Tr(udap). (84)

Concerning P, we added the term 1 Tr{t¢(A—Ag)da(e?B)} with respect to a reference connection
Ap. Again, this addition does not change the properties of the boundary structure (we are simply
adding a term that vanishes on the submanifold defined as the zero-locus of the constraints), but
it largely simplifies the calculations, since it allows to find a more explicit form of the Hamiltonian
vector field. We might as well rewrite P in terms of p as

1 1
P = / §L§62Fw + iTr(LgpFA) + te(w — wo)edye + Tr{ee (A — Ap)dap}. (85)
by

The Lagrange multipliers are again chosen to be odd, in particular we have A\ € C*[1](¥),
peT(g)[1], € € X[1](X) and ¢ € Q2 1].
Remark 27. The new constraint M, is associated with the G gauge symmetry of the Yang-Mills
field. In particular, we will see in the proof of Theorem that the Hamiltonian vector field
associated to M, exactly generates the infinitesimal G gauge transformations. Furthermore, we
notice an analogy between M and L, which is not surprising since they both encode the gauge
symmetry of the fields, respectively given by a compact Lie group G and by SO(3,1).

Theorem 28. The constraints L., M,,, Pr, Hy define a coisotropic submanifold with respect to
the symplectic structure wynr. Their Poisson bracketf] read

1 1 1
{Pfapﬁ} = ip[ﬁ,ﬁ] - ingLngO - §ML§L5FAO {H)\7H>\} =0
1
{M;u Mu} = _§M[y,,y,] {Mua Lc} =0
{MMH/\} =0 {Muapf} :ML?OH
1
{LC’Pf} = LLg}Oc {LmLC} = _iL[c,(:];

20We point out that one should not confuse L with L, which respectively indicate the constraint and the Lie
derivative
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{L¢;, Hy} = —Pxa) + LX(G)(w—wo)a — Hyw + MX(G)(A—AO)(,L)

{P¢,Hy} = Pyo) — Lym)(w,wo)a + Hy-(n) — My(a)(A,AO)(a),
where X = [c, Xep|, Y = L% (Aey) and Z@ 7™ are the components of Z € {X, Y} with respect
to the frame (eq,ep).

Proof. We start by computing the Hamiltonian vector fields associated to the constraints. Many
of the calculations will be exactly the same as in the previous section, therefore we refer to
Section [3.2.3] for the parts that we leave out.

0L. = / e, e]edw + d,cede;
)

6P = | —ede(L¢®(w —wo) + teFuy,) — (Lge)edw + Tr[0(tgpFa) + 6(ee(A — Ag)dap)]

(-++) = Tr{eedpFa — tepdadA — 1e(6A)dap — te(A — Ag)[0A, p| + te(A — Ag)dadp}

() = Tr{0p(teFa — date(A — Ao)) + (—tedap + datep + [Le(A — Ao), p])0 A}

g

= / —ede(Lg®(w — wo) + teFly) — (L°e)edw — Tr {6p(Lé4° (A—Ao) + teFa,) + L?”pdA} ;
b

M, = [ T (utda) = [ Trl-n(54.0]+ daGo)

:/Tr(éA[,u,p]+dAﬂ5P)§
s

SHy = / («+-)40Tr {/\enBFA + Aen 63(373)}
- 23!

2
= / («+-)+Tr {)\en [BFA + 6Z(B7 B)} de + Aeped BE 4 — Aenebda(0A) + %63(13, 5B)}
2 .

[

2
() +/ Tr {)\en {BFA + (B, B)} Je + AenedBF4 + dA()\eneb)éA}
>
+Tr {Agne(e?, B)SB + %(B, ene)e253}

= /Z(- )+ Tr{ [Aen(BFA + 675(3, B)) — XeB(B, ene)] 56}
+ Tr{da(Ne,eB)JA + \(B, ene)dp},

where we used a generalization of to the boundary in N = 4. Assuming C € Qg)’z) and
De 9(302)7 we find the following useful identit

%63(0, D) = %(C, ene)e?D + %6(62, C)D. (%)

21Gee Lemmafor N =4in Appendix
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The components of the Hamiltonian vector fields therefore are

A 1
eH,, = Xe, (Fw + 562 + ieQTT(B,B) + Tr(BFA)) — AeTr(B(B, ene))

He = do(Xen) + Ao
H, = da(XeneB)

Hi = A(B,eey,)
L. =[c €] La=0
L., = dyuc+Vp e’Lp = €’[c, B]
M. =0 Mg =dap
M, =0 M, = [u, p]
P = —L¢°(e) Po = —L(w —wo) — te(Fiu,) +Vp
P, = ~L{(p) Pa=—L{(A— Ag) — 1e(Fa,)-

We can now start computing the Poisson brackets of the constraints. We notice that since
L:(p) = 0 and L.(A) = 0, the brackets {L., L.} and {L., P¢} will be computed exactly as in
Section Also {M,,, L.} = 0 is seen very easily without the need of any calculation.

(M) = [ T (danlip) = [ =T danlp)

=5 [T @abesle) = =5 [ T (Gnosddar)

1
= _§M[u,u]5

(M, P} = /E —Tr{[,u,p] (L?O(A—AO) +L5FAO) +L?°pd,4u}

= /E Tr Lo u[A — Ao, pl + ulA — Ao, LE° ()] — plp, e Fa,] — daLg® (p)u}

(M B} = Tr [ (1. pIAB cen) + da(DencB)dan
b

= Tr/ d(XeneB)[A, p] + [A, AepeBld, + [A, AeneB][A, u] + %eQ(een, B)[u, B)
)

Aen
* Tr/ —XeneB[dA, p] + AepeB[A, du — NeneB[A, du] + %eB[u, [A, A]]
)

(B, [ BY) — 2 e(B, ), B
1 9 D YCH. B
=1 [ deness ([Pl + 3l (28] ) + 55l (B B)] =0
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where in the last passage we used that % + F4 =0 and that Tr[u, (B, B)] =0

The computation of the YM part of { P, P:} depending only on p and A is exactly equivalent
to the computation of the free part of {P¢, P¢} (i.e. the one depending only on e and w), as one
can notice by substltutlng Lle?2 — pand w(o) = Ao, then we obtain

1 1 1
{Pe, P¢} /2 Zdw(ee)b[g,ﬂ (w—wop) + ZL[E,E]@e)Fw — Zdw(ee)bngFwo

1 1 1
+Tr{2dA(P)L[£,E}(A—A0) *L[f E]( ) A_*dA( )LELfFAU}

1 1

1
§P[§7§] - §LL&L£Fw0 - §ML§L§FA05

{Hy,Hy\} = /2( ) — XeB(B, epe)d,(Aeyn) + A(B, ene)da(reneB)

= /Z (---) — XeB(B, ene)dXe, + AeB(B, eqe)dre, = 0;
{P:, Hy} = /E(~ )+ Tr/Z f% (B, B)L¢° (€) — Aen BFALZ" (€) + AeB(B, e,e)Ls" (e)
— M(B, ene)L{°(p) + da(AeneB)(—teFa + date(A — A))
= /Z(...) +Tr/2 ’\egl (B, B)L{(€%) — Aen BFALZ (e) + %B(B,ene)Lz.’“(ez)
— 33(37 ene)L0 () — %&(B, ene) LT (B) — AeneBda(—1eFa + date(A — Ag))

w e’ Aen w w
é/z(---)+Tr/ZL§0(Aen)2 3'(3 B) + 2_3!e3L§0+A0(B,B)+L§°(/\en)eBFA

A
+ AepeLo T4 (BFy) — (B, ene)e’ LT (B) — XepeB {—dateFa + [Fa, te(A — Ag)]}

1 n w
x /(---)+Tr/ +LE (Nep) ( 5—€®(B, B) + eBFa | + A g, st g)
. . 2.3l

3'
(B, Lo+ B) + /\%e( ,B)Lo B

Aén, e3

+ )\eneL?”AO (B)Fa + /\eneBL?OFA a0

— XepeB {—dAOLgFA + I,g[A — AO,FA]}
= /2( )+ Tr/EJrLg“()\en) (2_13!63(B,B) + eBFA) + )\eneBLg‘O (Fa)
- )\eneB (LEdAOFA — dAOLEFA)
w A 1
_ /ZLEO()\en) (eF e+ T {2 ¢ (B.B)+ eBFAD

= Preore @+ HLzo (e, )0 = LLzo (e, )@ (w—wo) )~ MLEO (ren) @ (w=w0)(a)?

where we also used the Bianchi identities

d12404= [Fa, ] daFs =0. (A)
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{Lc, Hy} =/

Lo
2() +Tr/2)\en (e (B, B)c, €] —I—BFA[C,€]> + AeB(B, epne)[c, €]

4
_ /E(...) —|—Tr/2—[c7 New] (;me3(B,B)+eBFA> ~ Aenele, BIFa

+ %eQ(B, ene)lc, B

* 1
= /E( )+ TI‘/Z —le, ey <M63(B,B) + eBFA> — AepeFale, B]
+ 2)\6;:; 63[Ca (BaB)] - )\ﬁe(€2,B)[C, B]

:/—[c,)\en] er—&—Ae‘g—‘—Tr L e3(B,B) + eBFa
. 31 2.3l

= —Pse,)@ T Lie e, @ @w-wo)a — Hyem T Mie e, @ (A-A0) ) -

4.2 The BFV Formalism in the YMPC Theory

As we did for the case of the scalar field, we replicate the discussion about the BFV formalism
applied to the space of boundary fields, which is now promoted to a graded symplectic manifold by
considering the Lagrange multipliers as ghost fields and adding ghost momenta. We express the
BFV quantities in the following theorem starting from the quantities of gravity alone described
in Theorem [I0l

Theorem 29. Let F¥M be the bundle
Fym — Q4(5,V),
with local trivialisation on an open Us. C Q) ,(Z,V)
Font = Too x AP x Q9% & T (T[1)(g)), (86)

where where Tpc was defined in and the additional fields in degree zero are denoted by

Ae AXM and B € Q(BO’Q) and they satisfy the structural constraint 1/2(e?, B) + Fa = 0. The
additional ghost field is denoted by p € T[1](g) and its antifield by pt € T[-1](APT*L @AV ®@7g).
We define an action functional and a symplectic form on Fyn by

e3Tr(B, B))

1
Syu = Spc +/ Tr{te(A — Ao)dap} + Tr(epFa) + Xey, (eTr(BFA) + 53]
b el

1 1
+ Tr(pdap) + TT{Q[AL, plpt = Lo ()t + QLELEFAo/JT}
+ Tr{ [L‘go()\en)(“) — e, )\en](“)} (A- Ao)a/ﬂ} . (87)
wyM = wpc + / Tr(6pSA) + Tr(Sudu') (88)
b

Then the triple (Fym, @yMm, Sym) defines a BFV structure on 3.
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Proof. We need to prove that {Sym, Sym} = 0. We split the symplectic form into the classical
part and the ghost part

wyM,f =[x ededw + Tr(dpdA); (89)
@yM,g =[5 6c0cT 4 OAGAT + 15¢6€T + Tr(pdpt). (90)

Furthermore it is useful to employ the already known results and split Syy = S¢ ™M + SYM, with
SPM = 8§ + St and SYM = S9 + ST defined such that

1 A
Sy = /cedwe + ibgeQFw + te(w — wo)edye + ey, (er + 3'63) : (91)
Z .
3
Sy = ’IT/ZLgpFA +1e(A— Ag)dap + Ney, (eBFA + ; 3|e?’(B7 B)) + pd ap; (92)

1 1
St = /25[67 clet — L‘gochr + §L£L£FwoCT + [e, )\en](a) (fl — (w — wp)ach)

+ [e; Aep] AT — L‘g”(/\en)(“)(fl — (w— wp)ach) — L?“(Aen)(”))\T

1
— St (93)

1 1 w a
St = ﬁ/zi[u,u]/ﬁ — L ()l + SreteFaon’ + L (en) (A = Ag)ap’
— [e; Xen] (A — Ag)apt. (94)

The cohomological vector field @ splits into Q@ = Q) + Q¢ + QY + Q1, such that LQi TYM = (55}.
The classical master equation reads '

{8,8} = {50, S0} s +2{S0, S1}f +2{S0, S1}4 + {S1, 51} + {51, S1}4-

Of course we have {So, So}s + 2{So, 51}y = 0 by “definition” and {Sy, Sp}, = 0 since Sy has
no antighost part. Again we should prove separately that 2{Sy,Si}; + {S1,51}; = 0 and
{51,51}s = 0. This means

(585005 + 153, 5115 + {53, S1}s + {9, S}y + 5151, 813, = 0 (95)
(89510 + 518151, =0, (96)
We compute them explicitly. In order to do so, we first need to find Q1
S} =Tr /E toete Fagut + %LgbgFAUCS,UJ[ — S, 1] = togdagppt — SpLge (uh)
— L2 ()op" + {(tseduay (Nen))@ = Lg* (0hen) @ — Lg* (Aen) P oef®

— [0¢, Aen )@ + e, 0hen] @ + e, )\en](b)éeba)}(A — Ag)apt'+
(Lz’o()\en)(“) — [, Xen) oAt + (L?O(Aen)(“) — e, Xen]) D) (A — Ag)adpt.

From this variation we find that Q1 ,,Q1., Q1y, Q1., @1 vanish. In particular, we are also able
to explicitly compute Qh and Q}m

]' 1 w a a
QY = SteteFaot + 5[, 1] = T2 (1) + (L ()@ = [, Aea] @) (A = Ag)a

Q1 = —[p, '] = Lo (uh).
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The components of QY and Q} are recovered from the Hamiltonian vector fields in the previous
sections, while Q¥ is the same as in [CCS21].

We now prove and we leave the other identity for the appendix. First, we notice that
{S1,51}s = 0 because Q] , = 0 and @}, = 0. Furthermore

{0,551} = tgoiqr / ededw + Tr(6psA)
b))
=10 /E ([e, Aen]® — L (Aen) )85 (A — Ag)au’

_ / (e, Aen]® — L2 (he)®) (Q2)1 (A — Ag)apt® o / A2 — 0.
> \ﬂ;—/ b))
oA x

O

Remark 30. As in the case of the scalar field the BFV structure of Theorem depends on
reference connections wg and Ag. In this case the change of variables that brings to a BFV
theory not depending on them, is slightly different, having to account also for Ag:

d=ctigw-w) & =€~ @-wodac! ~T[(A=Ao)un!] K =p+ig(A- Ao).

5 Spinor field coupled to gravity

We now want to describe the interaction of gravity with fermionic spin 1/2 matter, i.e. with those
particles that obey the Fermi—Dirac statistics: fermions. The standard discussion about fermions
in Quantum Field Theory is developed on a flat 4-dimensional space-time with a Minkowskian
signature by means of an algebraic construction involving Clifford algebras (see appendix [A| for
the definitions and properties). In Minkowski space—time, fermions are described by spinors,
which are sections of a vector bundle with fibers carrying a linear representation of the Clifford
algebra and therefore with an induced action of the universal covering of the group of rotations.
In particular, a rotation of 27 will not act as the identity, but a rotation of 47 will. This property
is expressed mathematically by asking that they transform under the spin 1/2 representation of
the double cover of the Lorentz group: the spin group.

The traditional approach in the construction of spinor fields on a curved background involves
the definition of spin structures. A spin structure is defined as a principal bundle morphisms
A: ¥ — SO(M,g), where ¥ is a principal fiber bundle having Spin(N — 1,1) as its structure
group and SO(M, g) is the space of orthonormal frames on the N-dimensional pseudoriemannian
manifold M with respect to a metric g of signature (N — 1, 1).

Y is usually called spin bundle and such a structure exists only if M meets certain topological
requirements (see [LM90]). If this is the case, one takes a (complex) N-dimensional vector space
V and defines the bundle Ey := ¥ x, V associated to the spin bundle via a representation A
(with half-integer spin). E} is called a spinor bundle and spinor fields are defined to be sections
of it.

Spin structures are useful since they allow to overcome technical difficulties in the definition
of the Dirac equation on the manifold M, in the sense that they resolve possible glueing issues,
and are in general used when describing spinors on a fixed (curved) background.

However, the dependence of the spin structure on a reference metric does not allow for
a coherent description in which gravity interacts with the matter field as a dynamical field.
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Furthermore, once a metric has been fixed, there might be more inequivalent choices of spin
bundles on M.

Therefore we need to move our attention to a more general construction allowing to consider
the metric as a a dynamical field while preserving the possibility of introducing spinors. This is

done in terms of spin frames.
This section is largely based on [Fat18], [NF22], [Fat+98|, [RMC21] and |[LM90].

5.1 Spin frames and spinor fields

As usual, before moving to the 4-dimensional case, we will be looking at the general construction
on an N-dimensional pseudoriemannian manifold M. As we explain in Appendix[A] there exists
a group homomorphism [: Spin(N — 1,1) — SO(N — 1,1) which is a double covering. The
spin group is defined within a Clifford algebra C(N — 1,1) whose basis is given in terms of
gamma matrices (in the gamma representation) that satisfy

{’7a37b} = _277ab1- (97)

We can also define 7/ (the adjoint gamma matrix) by

707570 = a- (98)
The covering map [: Spin(N — 1,1) — SO(N —1,1), S — I(S) is defined via
S7a85™" =Wl (S). (99)

Now let us consider a principal fiber bundle P whose structure group is Spin(N —1,1). We find
that P is a double covering of a principal orthogonal bundle P such that the following diagram
commutes

*ZA> P
(100)

= @

P
M 4

where I: P — P : [2,5] — [2,1(S)] (one can prove that it is global and independent of the
trivialization).

In analogy with the vielbein map, we define a spin frame to be an equivariant principal
morphism é: P LM , namely such that the following diagram commutes

P55 LM
Rioysy0€=¢éoRg JRS J{Riol(s) (equivariance)
P LM
where LM is the frame bundle (a principal-GL(N,R) bundle).

As in the case of the vielbein, thanks to equivariance, we can uniquely determine a spin frame
é once we know it on a local section. .

As usual, a family of local sections 6(4): Uq) — P induces a local trivialization on P. For any
spin frame é, this defines a local moving frame é(6()) = (, ez(za)), where (") = (el®)rd,. On
the overlap of two local trivializations the moving frames change by an orthogonal transformation
defined by

€@ = e S = el =i (5. (101)
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Also in this case we can define spin coframes as duals of spin frames, then for each frame we
obtain a unique metric g induced by
v = eZnabeg. (102)
Remark 31. The image 6(15) C LM coincides with the orthonormal frames defined by means of
the induced metric g, namely é(P) = SO(M, g).

The trivialization on P induces a trivialization on P by post-composition with [: P — P.
For each family of local sections 6 (,) we obtain o(,) := 10 G(q): Uq) — P, which is equivalent
to having the following diagram commute

P—— ¢ LM

\ / (103)

Remark 32. Notice that we do not need a metric to define spin frames, indeed one is induced by
spin coframes. However, when dealing with spin geometry, one usually considers spin structures,
which are defined in terms of a (pseudo—Riemannian) metric g on M. In particular, a spin
structure is an equivariant morphism A: P — § O(M, g), where P is a spin bundle. An important
result (chap. 2 [LM90]) states that a spin structure exists if and only if the second Stiefel-Whitney
class of M vanishes. Then the following question arises naturally: when do spin frames exist?
An answer is given by the following result [NF22]: A spin frame é on M exists if and only if
there exists a spin structure A: P — SO(M, g) for a suitable metric g on M.

Now we can as usual define the Minkowski bundle V := P x 5V, where V is an N-dimensional
(real) vector space and p := pol is the vector (i.e. spin 1) representation of Spin(N —1,1) on V
corresponding to the fundamental representation of SO(N — 1,1).

A spin coframe can then be seen as an isomorphism TM — V which produces the same
dynamics of the vielbein. Indeed diagram exactly tells us that the dynamics of the spin
frame factorizes through the dynamics of the vielbein. This is also true for any matter field
coupled to spin frames transforming under a tensor representation A (i.e. with integer spin) of
the spin group, since in this case we also have the factorization

A(S) = A1U(S)), (104)

where A is the corresponding representation of SO(N — 1,1).

This is not the case for spinors and that is precisely why we needed to introduce spin
frames (indeed spinors are defined to be those matter fields which couple to spin frames “non-
tensorially”)

Definition 33 (Spinor bundle and spinor fields). Let W be an N-dimensional complex vector
space and let A: Spin(N — 1,1) x W — W be a non-tensorial representation of the spin group
on W. The spinor bundle F) is defined to be the associated bundle to P

Ey =P x, W. (105)

When considering 2m—dimensional manifolds, thanks to the gamma representation, we can
define the bundle of Dirac spinors as

S:=Px,Cc?. (106)
Sections of S are called Dirac spinors, indicated as ¢ € S(M) :=T'(M, S).
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Remark 34. In our case, given that Dirac spinors obey the so-called Fermi-Dirac statistics, it is
appropriate to consider ¢ € I'(M,ILS), where II indicates the parity-reversal operation. In other
words, the components of Dirac spinors are now defined to take values in Grassmann numbers,
hence the parity of ¢ is set to be 1.

5.2 Coupling of the spinor field and the Dirac Lagrangian

In the coupling of the spinor field, we start by considering an orthogonal principal connection w
on the principal bundle P with structure group SO(N —1,1). Since the map [: P — P is a local

diffeomorphism, we can pull back connections from P onto P. Locally we have

w= wﬁbva A vpdxt. (107)

When we pull it back to P, in the gamma representation, we obtain

1
W= —Zwﬁb’ya%dx". (108)
Indeed this is a spin(N — 1,1)-valued 1-form, since spin(N — 1,1) = so(N — 1,1) and since
—1[7as 5] provides a basis for it.
At this point it is easy to define the covariant derivative of a Dirac spinor field :

Qo = i+ o, 9] = b — J a0 (109)

We briefly check that it transforms well under a gauge transformation ¢ — ¢’ = S(x)y, where
for each z, S(x) € Spin(N — 1,1)

dt) = dy (SvY) = (duw S) + Sdrip

(dS) + (W', S| + Sdp + S[w', 9]

(dS) + w'(Sv) — SW' (¥) + Sdy + Sw' ()
(dS)Y + Sw(¥p) — (dSy) + Sdyp = S{dy + w(y)}

S{dy + [w, Y]} = Sd,p = (duﬂ/}),v

where we used w’ = SwS~! — (dS)S~1.

We now need to construct a invariant Lagrangian. In order to do so, we proceed in the
standard way and introduce the hermitian conjugate 1) of the field w To define it properly,
we consider the hermitian conjugate W of the complex vector space W. Of course the represen-
tation A of Spin(N — 1,1) on W will induce a representation A\ on W. We can then define the
adjoint spinor bundle to be Ey := P x5 W. Hence we take ¢ € T'(E) =: S(M).

The relation between v and its hermitian conjugate in our setting reads v := ¥f~y. As we
will see later, this relation gives the right equations of motion.

We denote the canonical (hermitian) pairing between sections of Ey and Ey by

@1& =< aa ’(/} >= EAwA7 (110)

where A =1,--- , N are the spinor indices.

22In this case we consider the parity of 9 to be 1, meaning that it anticommutes with other odd quantities.
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We define the covariant derivative of the hermitian conjugate of 9 such that d v = d,1,
hence obtaining

4 = 4 + [, 3] = d — 30" ram. (1)

The definition of covariant derivative extends also to the gamma matrices and we get the
following result

Lemma 35. Let v := y*v, € VQC(N — 1,1) be an element of the vector space V with values
in the Clifford algebra (seen as endomorphisms of the spin bundle E)). Then

dy,y = 0.

Proof. v is a section of V and an endomorphism of the spin bundle E,. Hence its covariant
derivative reads

1
()’ = ()" + "% = 20" (177" = 7"Yae)-

Note that this formula implies the correct Leibniz rule for d, (). Using the anti-commutation
relation we can show that wb®y, — %w“cnbd (YaYeYd — YdYaYe) = 0 and conclude the proof by
choosing v constant. O

At this point the action functional containing the spinor field is written as

Somne i | i= ) duth — 4T
Dirac 1= /Mlm [ydotp — dupyy] (112)

Alternatively, we can write the action as
eV R
Soicse = [ g {07V = iV, T70} (13)
M 2N!
with Va1 == et (9,1 — %Wﬁb%%ﬂ))~

5.2.1 Equations of motion

We now consider the full action S := Spc + Spirac and take its variation:

oN-3 CeN-2 _
68 =6,S + /M [(]V—?\)'Fw + lm (¢’de¢ - daﬂ/”ﬂ/’):| de
o] IR R (. (114)
*thN—nﬂwwW<mN—nJ”4
N1

e

_ _ oN-1 \ _
+{W_w%m+%gw_mﬂﬂw,

where we used that d,vy = 0.
To compute 4,5, first we define the internal contraction on V. In particular, for any X € V'
and for all & € AFV, we define for all a = %a““'”@vil ARERNAN 'S

Jjxa = (kal)!X“abiz”'i’“viQ A A, (115)
With this definition, we obtain
1. _ (=1)lellvl_
[, Y] = ZMHON/J, and [, Y] = _fdjj'y]'ya' (116)
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We know 6,5 = d,Spc + 0., SDirac, With

6N73 eN72

5uSpe = | S des s, 11
Sro /M<N—3>! “’*/aMw—z)!‘" ()

while

. N—1
Gt = | 5= [Pl = bl

(N -1)
jeN-1
= /M m¢ [V 0w + JoyJnowy] ¥ (118)

_ i TTlos s N—1 , : : N—1
_/]v m¢ [7]7]76 + JyJve "/] Pow,

where in the last step we used the following result

Nt [(ViydnOw + jyjndwy] = dw ['Y.j'yj’yeN%L +j'yj'yeN71'7] ) (119)

Now, before looking at the equations of motion, we notice that we obtain a boundary term
after imposing Stokes’ theorem:

B eN—2 ) eN-1 o .
«= /aM m&u + N 1) (byd — 59y) - (120)
The equations of motion become
eN—3 eN-2 . .
Vst Tl = (vydut) — duipyyp) =0, (121)
eN—3 i _
- 3),dwe g 1)!1/) (Gydre™ 1y + iy gy M) v =0, (122)
eN-1 eN-1
m’yduﬂﬂ —dy, (MU') vy =0, (123)
N-1 _ N-1 .
mdwlm + dy, (2(‘;1)') Py = 0. (124)

Notice that, once we impose ¥ = )Ty, then equations (123) and (124) are one the Hermitian
conjugate of the other, representing Dirac equation on a curved background.

5.3 Boundary structure in N =4

We now look at the boundary structure of the fields in the theory. As usual, we restrict the space

of fields to the boundary, obtaining Fjj = As; x lenlzi x S(X) x S(X), where S(X) :=T'(X, Ex|x).
The presymplectic form on the space of preboundary fields is given as usual by the variation

of the boundary 1-form resulting from the variation of the action. We obtain

o2

4

€

3
@ = /2 ededw + i— (Yydp — 6Yyy) de + %5%5@&, (125)

while

IXTTs = / eX 0w + {eXw + %e%@wa - me)} oe
i

—( € el [e*— e3
+ @01 (—47¢Xe + 3!7X7> +1 <41/er + me) o
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The kernel of the presymplectic form is hence given by the following system of equations:

2

€7 [—
eX. =0 eX, + ZZ (mm + —ngz/}) =0
e? e3 e?— e3
— — X + =Xy =0 —YPyXe + =Xy = 0.
1 VXe + 57Xy 19X+ 51 %5y

We can first solve the last two equations, using that -y is invertible and that Wg? (0.0) 4 injective
(see Lemma in Appendix. We then find X, = Xy, = XE = 0 and eX, = 0. The geometric

phase space is a bundle over Qal’;ll_l)j_ with local trivialization F? ~ F9 x (%) x S(X).

5.3.1 Choice of representative of [w]
First of all, we point out that in N = 4 we can further simplify eq. (122]) in the bulk by noticing
that j,yj,ye3 = bej,ej e = 3ejyj e, hence obtaining
i _
e [due+ Sk 0l - 0] =0 (126)

We will provide a generalization of Theorem [7] which allows to consider the newly found
constraint (126)). We notice that, when restricted to the boundary, it splits into two equations

e [duet IR0l - 10
o |de b {1 0] = 00| = el

We will take the second one as an inspiration for the structural constraint (which enables us
to fix the representative of [w]), while the first one is the invariant one. Following |[CCS21|, we
reformulate the theorem fixing the representative of w in the new setting.

Theorem 36. Suppose that g°, the metric induced on the boundary, is nondegenerate. Given
any w € QY2 there is a unique decomposition

w=w+w, (127)

with w and v satisfying
_ b Tmle? 2 7 8,(1,1)
ev=0 and e, {dwe + Z(z/}’y[e ] — e 7’(/J]’7’L/J):| € Im W, . (128)

Proof. Let w € QE’Q. From Lemma we deduce that there exist unique o € Qé’l and v €
KerWla’(l’2) such that

en |doe 4 B0 0] = . 5w) | = o+ enlone]

We define w := & — v. Then w and v satisfy (127)) and (128).
For uniqueness, suppose that w = w1 + v1 = we + v2 with ev; = 0 and e,d,, e € Im VVl8
for i = 1,2. Hence

,(1,1)

2,(1,1
endwle_endw2e: en[’Ug —’U17€] S Ilex( 5 )

Hence from Lemma and Lemma (for which we need nondegeneracy of ¢?), we deduce
02

vy —v1 = 0, since vo — vy € KerWla’( O
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5.3.2 Poisson brackets of the constraints

We now project the equations of motion to the boundary, casting them into constraints, which
will define the physical space of boundary fields as the coisotropic submanifold of the geometric
phase space given by the zero-locus of the constraints. Dirac equation does not project to
the boundary because it is a top form, hence we only obtain the constraints

T = ..

L.= /E ‘ (ed‘“e &Y (7232€%7 + 7ivive’) 1”) ’
1 i -
P = /z §LE€2FW + te(w — wp) <edwe — ﬁﬂ’ (37]7637 + 7371763) 1/’>
)
23!
&3 2 _
H, :/2/\6n {er + §A + ZZ (Wdew - duﬂb%ﬁ)} :

+ Léeg (@’)/dww - dw@'ﬂ/})v

Remark 37. As it turns out, using (157, we can rewrite L. to make the action of the internal
symmetry group on the fields more evident. In particular we obtain

el _ -
L= /Ecedwe — s ([e B = Ble b)) (129
while P: becomes

te€® ) (—[w — wo, Py + Yy[w — wo, ¥]) ¥

1
P :/E§L562Fw+Lg(w—wo)edwe— 8-13!

7
2.3l
[ b R B (130)
= g Slee Fo + te(w — wo)ed,e — BT (1/)’}/L§dwo () — tedu, (1/1)71/))

+ e’ (Pydot) — duhyi))

—/ 1L e*F,, + te(w — wo)ed e—ii (@ L0 (1) — LY () ¢)
T g2t e 0)CwE Tty g (T e ¢ W)

Theorem 38. The constraints L., P¢, Hy define a coisotropic submanifold with respect to the
symplectic structure ws. Their Poisson bmcketﬂ read

1 1
{Pe, Pe} = §P[g,g] - §LL§L5FWO {Hx,Hx} =0

1
{Lc, Pg} = LL?OC {Lca Lc} = _iL[c,c];

{chH)\} = _PX(G) + LX(Q)(wfwg)a - HX(“')
{Pfa H)\} = PY(“) - LY(H)(w—wo)a + HY(")u

where X = [¢,hep], Y = L‘Z"(Aen) and Z@), Z™) are the components of Z € {X,Y} with respect
to the frame (eq,en).

23We point out that one should not confuse L with L, which respectively indicate the constraint and the Lie
derivative
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Proof. We first compute the Hamiltonian vector fields of the constraints:

L. = /E[c, eledw + (ed c+ e 2 (Yyle, ] — e, ¢]’Y¢)) de
¥ e [0, 0] - e 501+ e 67170 + e 0]
L/[c,e]e&qu <ed c+ e % (Pye,
)

e3

+g[[ VYo + 69[e, )] — [1/)[

Yy +

:/[c,e]eéw—F (edwc+i€ ([ Vv + Pyle, ¥ )
!

1

2

5[5 (3tetv +atecd) + (13

where in the last passage we used that

+ ¥le, 7109

te) ou]

%

’(/7}’7[07 (W] = 7/;[07 7]5¢ - [Ca 1/;]757/}
[67 51/;]’71)[) = 67[]'7[6’ 77/}] - 5111_)[67 ’YWJ

which can easily be proved using the following identity@

jwj’yc'y = _Vj'yj'yc - 4j70 = _Vj'yj'yc + 4[07 7]'

We also get

o = [ —ese (L2 —wn) + 16, — S (BL2 ) - 10 @0) )
3
— L0 (e)edw + 0y (— 26' 3!7L2’° (1/))) +
3
.3l
= / —ede <L50 (w = wo) + teFl — 7e (PILE (%) — Lg" <w>w)>
3

— Lg% (e)edw — 6 (;’YLWO () — % ¢ (e )72/1)

ie3
23!

S VYLE° (69)

i

L (0¢)yp —

57¢ L ()69

<3:Lw°(1/’) + 3 S,Lw( )m) 59,

24 A proof of this identity can be found in appendix
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§H) = / Aen {Fw eyl (ydotp — dwww)} de + du,(Aene)dw
. 2 2
+ %Aene2 {Mmdww — pydy 69 + dudpyih + dubydep
+ 0] - oo, B
= / ey, {Fw + %62 + ig (E’)/dwl/) - dwd)’ﬂ/}):| oe + dy,(Nepe)dw
- — e? e?
+ 167 {)\enél'ydwl/) —d, (/\6n 4’777[})]
ez e?_
+1 [A€7z4dww7 +d,, <)\en41/ry>} o

i o
+ 15\ (Jy iy (en€®)y — Yy (€ne?)) Yiw.

We are then left with

Le = [Cﬂ 6] Ldl = [67 ’t/J]
L, = duc+Vp, Ly = [e, 9]
P.= L Py = —L2 (1)
P, = —L¢(w — wo) — teFl, + Vp Py =L (¥).

i— o
He = dw(Xen) + Ao + TR (Jyenjrey = Vivenjye)

eHo — e, (Fw + ;e2> - i%e(%dww — dP)

e? ey, Aen i — .
oMy = eyt — = Fedyeyy + TR (Gydn (en€®)y — Yivy(ene?)) ] vib
e? ey,

- Aen o — N . .
S5y = et duty + S eduety = oA [ (G155 (ene®)y = Vi (ene®)) Y]

The Poisson brackets of the constraints are:
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{La Lc} = /E( : ) - 262 (_il/]jvjvcyl/) + iszjvj'ycw) [07 e]

Z/E(---)Jr 3 ’3,wwm Vindne)dle, €]

7
16.31° 0 G YTy Iy

* [ g (e - Tl e
E( 7.7“/.776.71776 + 4[C '7]]7]7 jvj'ycj'y.jvc'y + 4j,yj76[(3, '7]) (0

€ (7/}7[07 [Ca 7/}]] - [Cv [Cv ¢H’W))

et g5 et Tl

1
=—=L
2 le,e]»
where in last few steps we used the graded Jacobi identity to prove
1
[Ca [Ca QM = 75[[07 C]a 1/)]

and the fact that
VInInCInIn € = JryJnCInInCY + 4Jy~ClnyC + 4jyCly e

{Le, P} = /E(- )= 3 ?3163 (le; PILEow = BALee (fe, v]) + L0 (e, B)vee + LE Py e, 0]
— ol ] (P — L)
= /E(~ )= 3 _13!63([0’ PILE Y + L9y, ¢ — ¥y[Lg° e, ¥] + ¥rfe, L)

— [Lgoe, Pl — [, LEPlyy) — [e, ) (PyLe* ) — Lo Pya))

v
' 2 - 3!
= [ = 55 (0T s + Lo ] - TrlLghe.v] + L0, T
= e, YIVLE Y — Ple, AL P — L[, Ay — LePy[e, 9]
+Ple, 9Ly + L“‘@[C )
/EL veedue — e (Lo, P — L, o))
= LLZ’OC’
where in the second to last passage we used that
Byle, Low] = —[e, BIALEs — le, v]LEw,
e, LEOB )7 = LEGle, 1] + Lo Pre, o).

42



{LmH)\} = LC(H)\) = /E( a ) + )‘en{i[ca 62](E’}/dw’(/) - dw@’ﬂb) + 262([0’ @]’detb
— pydule, ¥] + du([e, D)) 79 + dutpr[c, 9]
+ E’Y[dwca Y] — [dwcvi/)]W)}

>

1<

L( : ) [C )\en] (¢7dw¢ dlei/J) - 7/ 2{ - @[C, '7]dw'(/} - dw@[@ 7]’@[1
+ e, vduth — Py[e, duth] + [dwe, Y]y — e, dww]vw + [e, du Y]y
Bl + Byldue 8] — [duc, T — Byldue, 6] + Tl dww}}

A P _

= / 7[67 Aen] (er + 562 + iez(dwdwdj - duﬂ/Wi/)))
>

= = Piepen@ = Hiepnen )@ + Liere, )@ (w—wo) )

having used the following identities, which can be easily found

dut0yle, Y] = [e, du ]y + dutd[e, Y0,
[Ca a]’}/duﬂ/) = @[Ca ’Y]d“ﬂ/} - @7[67 duﬂ/}]

(Pepd = [+ g le @ B0 - L) - 5 oze{ - LETLe
+PALLTL — LT — Lz’wgow}
= [ = e LT+ LT — LT + LGy
LG + PALELL — LGy — LG}
CREE T S

& wo wo
= /E() 9. 3, ("/J’VL[g 5]1P L[“lﬁmﬂ)

5 '23!6 ([tete Fuogs V1) — y[eete Fug, )

1 1
= g Heq = 5 LteteFus
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(P, Hy} = / () + Aen{ — LA Tty — dT + 16~ LTy
+ Pyd L% — d LYYy — duPyLeod

- JV[LﬁFwo + L{E}O (w - w0)7 1” + [LﬁFwo + L‘go (W - wo)»ihiﬁ] }

2 o A o
= /E () + L Qo) T (Bt — duyd)) + i e (YL dut
— L du vt + yd Ly — du L9y
— Y[t Fluy + L% (w — wo), ¥ + [te Fuoy + L (w — wo), Py}
2
¢ T W € - - )‘ n - w w I
s /E () + L (Aen) T (D1t — dutBre) + = (P ILgw, ] — [LE°w, Py
— [t Fu, + L (w —wo), Y]+ [teFuy + L (w — wo), Ylye }
) >\
= /Z(' )+ ZL?°(>\6n) (dwdwl/) Ay ) + i {Py L wo — te Floy, Y]
— [Lgwo — teFuy, Y170}
A,
= /)E L0 (Ney) (eF + Ee + e (Yrydyp — dwww))
= PLeo(xen)@ T Hizo e, @ — LL‘S“(AenM@(wwO)a
where we used that Lgowo — 1eF,y = —digwp and the following identity:
Lz’odw¢ = —deZ’°¢ + [L?“w,w]. (¢)
Furthermore, recalling that d,,,v = 0, it is quite easy to see that

Pyldigwo, Y] — [degwo, Plye = —[diewo, ¥y¢] = 0.

Now, before computing { Hy, Hy}, we first notice that the Hamiltonian vector field associated
to H) can be rewritten as

3 3t
evHy = 8Xenydut) = SAoip + TAS
eHyy = 3Xend, Uy + gE’MU - §i)\Ba
2 8
with 8 := B (jrendy07 = 1yendse) 10, hence
)\en 1 )\en
{Hx, Hy} = /z {Hwe Vot — < dy(Nep)e?Hyyy — deeewa}

+i [(A;n d + d ()\en)l/i> e*yHy + A;”dwewewa}

B / ﬁ o (Aen) MDY [V (G G (en€®)y = Vi (ene?)) Y]

- m Ao (A )NV [V (G (en€®)y = Vi (ene®) ) 9] =0,

where all the remaining terms vanish because they are either proportional to A2 =0 ore? = 0. O
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5.4 The BFYV formalism of the theory of gravity coupled to the spinor
field

Since there are no additional constraints, the BF'V discussion of the spinor field coupled to gravity
is very similar to the case of the scalar field.

Theorem 39. Let F be the bundle
]:s :]:PC X S(Z) X§(2>7
where the additional fields are denoted by ¢ € S(X) and 1 € S(X). The symplectic form and the
action functional on Fs are respectively defined by
ed — T o — —
@, = wpo + | igoUrdy — 1ebe (5% — Prov)
E .

3 — —
S = Spe+ [ igt (1o i),

Then the triple (Fs,ws,Ss) defines a BEV structure on X.

Proof. The proof can be copied mutatis mutandis from the one of Theorem [2]] O
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A Clifford algebras and spin groups

This first appendix is useful when defining exactly what spinor fields appear in the context of
field theory. We will mainly follow [Fat1§|, [LM90] and [KS87].

A.1 Clifford algebras

Let V be a real vector space of dimension N with an inner product of signature (r,s). Let 74
be the matrix diag(—1,---,—1,1,--+,1) with  plus 1 and s minus 1, giving the inner product
on V with respect to an orthonormal basis {v,}.

We define the Clifford algebra on V' by means of its universal property. In particular

Definition 40 (Clifford map). A Clifford map is a pair consisting of an associative algebra A
with unity and a linear map ¢: V — A satisfying Yu,v € V

P(u)p(u) = —n(u, u)la (133)
The Clifford algebra of V' is the solution corresponding to the universal problem, that is

Definition 41 (Clifford algebra). The Clifford algebra C(V') is an associative algebra with unit
together with a Clifford map i: V' — C(V') such that any Clifford map factors through a unique
algebra homomorphism from C(V). In other words, given any Clifford map (A4, ¢) there is a
unique algebra homomorphism ®: C(V) — A such that ¢ = P o4

v —2 424

l % (134)
%)

The Clifford algebra of V' is unique up to isomorphisms.
We give a model for such an algebra. Consider the tensor algebra T(V) :=ReV &V & ---
and quotient it out by the two-sided ideal I(V') generated by v ® v + n(v,v)1, i.e.

C(V) = =2 (135)

Notice that T(V) is a Z-graded algebra. The ideal I(V') is spanned by elements that are not
necessarily homogeneous, therefore the Z-grading is lost in the Clifford algebra. However, the
generators of I(V') are even, therefore C(V') will be Zs-graded. In particular, it splits into

C(V)=Co(V) @ Cu(V) (136)
Another important property, for any two vectors v,w € V, is the following

(v 4+ w)? = v* + vw + wu + w* = —n(v,v)1 - n(w,w)l + {v,w}
= —77(7) + w,v + ’U))l = _77(71, U>1 - 77(“% w)l - 277(1]? ’U))l (137)
= {v,w}:=vw+wv=-2n(v,w)l
Now, considering an orthonormal basis {v,} of V, setting the first s elements {v} such that

N(va,va) = —1 and the second r elements {v;} such that n(v;,v;) = 1, we obtain {v,,vs} =
—2n4p1. This means that when a # b, v,v, = —vpv, and that vev, = +1.
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At this point, since every element in the tensor algebra T'(V) is a finite linear combination
of the product of finite elements in the basis of V, then to obtain elements in C(V') we simply
apply the constraint {v,,vp} = —21451. In other words, a basis of Clifford algebra is in the form

1 vy Vgh i=VaUh Vgbe i= VaUple -++ UV :i= Vgl1 " UN_1 (138)
a<b<c
The Z5-grading is now clearer, as we can interpret even (odd) elements of C(V') to be finite linear
combinations of products of an even (odd) number of elements of the basis V. In particular, the
even part Co(V) is a sub-algebra of C(V'), while the odd part C;(V') is not (it does not contain
the unity). They are both 2V ~1-dimensional, making C(V') 2V-dimensional.

A.2 Pin and spin groups

Definition 42 (grading map). Consider the Clifford map i: V' — C(V'). By abuse of notation,
this map sends v to v inside C(V'). Defining a := —i: v — C(V) : v — —wv, it has the property
that a(v)a(v) = —n(v,v)1. We can extend it to the whole C(V') as a: C(V)) — C(V) by restricting
it to the identity on even elements, to minus the identity on odd elements. This map is called
grading since it essentially defines the Zy-grading on C(V).

Clearly we have that a o a = 1, therefore « is invertible and equal to its inverse.

Definition 43 (transpose). Let S = v1vg--- vy, € C(V). We define the transpose of S to be

H8) =" (v1vg---v) =g -+ vavy =1 S (139)
It is well defined since the generators of the Clifford ideal are invariant under the transposition.
Furthermore, the transpose preserves the grading, namely ‘(a(S)) = a(*(S5)).

Definition 44 (Pin and Spin groups). It is a well known fact that not all elements in C(V) are
invertible. Let us define the multiplicative subgroup C(V) C C(V) of invertible elements and the
further subgroup S(V') C C(V)) C C(V) of invertible elements S whose inverse is proportional to
their transpose, namely such that SiS oc 1.

We define the Pin group Pin(V') to be the subgroup of S(V') generated by unit vectors (i.e.
such that v? = n(v,v) = £1). The Spin group Spin(V) is defined to be the intersection of Pin(V)
with the even Clifford subalgebra C(V').

Elements in Spin(V') are products of an even number of unit vectors, S = vyvs - - - vgg. In this
case it is easy to find the inverse of S, as

(=" _
S = m’l}n st VU1 = +S (140)

A.3 The covering of spin groups

Consider an element S in Pin(V), namely S = vjvy-- v, and a vector w € V. By abuse of

notation, we denote w := i(w) € C(V'). We also denote w := %v to be the component of w

parallel to v € V', assuming v to be a unit vector. The perpendicular component is defined as
N |

wT = w—w

We define a linear map on V depending on the unit vector v as

I(0): V=V :w— a@uwr!
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Lemma 45. The map l(v) is a reflection of w about the plane orthogonal to the unit vector v
Proof. Recalling that uu = —n(v,v)1 = —|v|?1, we have

a@)wr™! = —vwr™! = o] 2wy = |v] 72 (quv + vw”v)

o2 (—vowt — (v, wh)o — [oPwl) (141)

=wt —wl

O

Furthermore, being [(v) a reflection, it is an element of O(V'), the group of orthogonal trans-
formations on V.

Definition 46 (covering). For any S in Pin(V'), we can extend the definition of [ as I(S): V — V
and {(S) € O(V),

1(S)(w) := a(S)wS™ = (I(vy) o l(vg) 0 --- o l(vg)) (w) (142)

In particular, I: Pin(V) — O(V) is called covering of the Pin group.

Since reflections are transformations with determinant -1, the composition of an even number
of reflections will have determinant 41, therefore when we restrict to Spin(V'), we have the
covering of the Spin group [: Spin(V) — SO(V).

It can be checked that the map I: Pin(V) — O(V) is a group homomorphism, and so is [
when restricted to Spin(V).

Proposition 47. The covering map is not injective but is surjective. Furthermore, there is a
short exact sequence

0 Zs Spin —— SO 0. (143)

A.4 Spinor representations

Let S be a (complex) vector space. A complex representation of the Clifford algebra C(V) is an
algebra homomorphism
C(V) — End(S). (144)

S is called spinor space.
We now are interested in the case where N = dim V = 2m is even.

Definition 48 (Dirac spinor and gamma representation). Let S := C2". A Dirac Spinor is any
element of S, on which C(V') acts as the full algebra of 2™ x 2™ complex matrices.
In particular, considering V := CV, it acts on S via the gamma representation

v: C(V) — End(S)
v; = i o= y(vi), )

where +; is the i—th Dirac gamma matrix in /N dimensions. In general, for 1 < j <m

v =101®---® o1 ®o3®-- Qo3
~—~
j—th elem.
,’yj+m=1®1®® g2 Koz Q-+ & 0o3.
~—~

j-th elem.

Here o; are the usual Pauli matrices.
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Remark 49. Considering the “volume element” vy ---vy on C(V), its image under the gamma
representation defines

Yoem+1 = (=9)" 91 Yam = (—1)"y(v1 - - v2m) (146)

In particular it can be proven that vs,,+1 has eigenvalues 41, hence there is a splitting into
eigenspaces S = ST @ S~. S* are called spaces of Weyl spinors of positive/negative chirality.

A.5 Lie Algebra of Spin group

It is quite easy to see that Lie(C'(V)) = C(V'). We are interested in the Lie algebra of Spin(V') C
c(V).

Proposition 50. Let V' be an N —dimensional real vector space. Lie(Spin(V)) is a Lie subalgebra
of C(V'), given by
Lie(Spin(V)) = A2V (147)

This can be seen by noticing that the double cover I: Spin(V) — SO(V) reduces to an
isomorphism of Lie algebras (locally their tangent space at the identity is the same)

[: spin(V) — so(V)

. (148)
ar— l(a) = [a, ],
where, for all u € V| the [a,u] € SO(V) is given by
9 —ta, ta
[a,u] := §|t=0(e ue'). (149)
Now, knowing that {v, A v,} is a basis for so(V'), we compute a basis for spin(V).
Define vy := i[va, vp], then, for all u = u‘v, € V
. 1 1
Wvgp)u = Z[[va,vb},u] = i[vavb,u]
1 1
=3 (VaUpU — UV, V) = 5 (VaUpU — UVEUY + VUV — VaULp)
= 77(“, Ua)vb - U(Uba U)Ua = uc(élc)lnac - 6gnbc)vd7
hence '
l(vab)g = 51?77110 - 5277170 = _(Mab)g (150)

where M, are the generators of the Lorentz group SO(V) in the fundamental representation.
This implies that — 1 [v,, ] defines a basis for spin(V/).

B Technical results and lenghty proofs

B.1 Technical results

In this appendix we present a collection of results that are useful throughout the paper, especially
in the constraint analysis of the theories and in some calculations. We refer to |[CCS21] for the

proofs that we leave out.
First we present a precise definition of the brackets (-, -) we employed in the previous chapters.
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Definition 51 (internal product). Let A, B € QY and C, D € Q(*-2), Expanding them in the
bases {e,} and {e, e, }, we obtain

(A,B) = g, A" B",

(Ca D) = gupguaCHVBpga

which is a simple consequence of the fact that (e,,e,) = g, by definition of the vielbein.
We also notice that

(e, A) = (e dat, A) = —dat g, AY;
(e?,0) = —da"dz" g, 9,5 C*°.
Lemma 52. For all N > 0, define

{N] = {g FN even (151)

2 NoL if N odd

Then
e = (—1)[5]6,Ll ceeey, datt - datn

Proof. We proceed by induction. In the case n = 1 we have e" = e, da* = (—1)‘%‘eudx“.
Assuming that the identity holds for n, we prove that it is true also for n + 1, in fact

"t = ele,dat = (—1)[%]%1 ey, datt - dat e, dat

= (—1)[%}+ne#1 R e#nJrldle v dptnr

Lﬂ]

= (-l

In fact (—1)"27] = (-1)

e if n = even, then (71)['T

o if n = odd, then (—1)[3

B.2 1In the bulk
Lemma 53. Let C,D € Q2 and A, B € QU Then the following identities hold
L 57 (A,B) = (~)IAHIPIN 1 (e, A)B ;

N

2 stv=an(¢*,C)D = 5 (C, D) .

Proof. 1. We use e, as a basis for QO Then
eN=l(e, A)B = (—1)[1\,2_1]4'1%1 ey dxtt - datN-tdatg,,, AY BPe,
N’l]Jrlx‘lHlB\JrNJrle#1 ey epdat - dzPN 1 datg,,, AY BP

= (-l
_ (_1)[N;1]+|A\+|B\+N+1(N _ 1)!61 . eNdNarg,wA”B”
= (-l

__)lAaHBIe 4 B
(-1) (4. B);

N

-1 N
2 ]+|A\+|B\+N+1+[%}%(A73)
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2. We now use e,e, as a basis for Q0:2) Then

eN72(e?,0)D = (—1)[N2‘72]+le#1 a2 €plodatt - drN =2zt dz” g,0,9,5C P DO
= (- (N = 2)tey - endat - daN guag,sCOP DI

No21, [N q 2(N —2)!
= (P 2(N —2)! i )eN(C’,D)

2(N — 2)!
TeN(C, D)

(—1)2[%]

O

Lemma 54. Let g, := (¢”,-): QO™ — QO gnd let e be nondegenerate. Then for N > 2 we
have that o, is bijective for n =1, 2.

Proof. It is a simple consequence of the fact that the metric g, is invertible. O

Corollary 55. We then have a corollary of the two previous lemmas. Let a € Q10 7 e QO
w e Q2 gnd C € QO then

1. eN"laB = (—1)|B‘+1%aﬂB“;
2. eN"2yD = —72(1\5\,_!2)!6quyD””.

Proof. By Lemma [54] there have to exist B € Q%Y and D € Q2 such that o = (e, A) and
w = (2, C)E In particular, this means

Ccr” = _gp“gﬂuww/v
AY = (_1)1+\a|guua#'

We then simply apply Lemma
O

Lemma 56. Let Wéi’j) be such that W,gi’j): Q3) — QUARIEE) o s ek Ao, Then the following
propositions are true

1. WJ(Vl;Ol) 18 1njective;
2. WJ(\,2;02) 1s injective.
Proof. We prove the statements locally. Choosing as usual a local basis {e, } of V, we have that
1 Ker(W{%) := {a € Q1) | ¢N=1q = 0}. In particular, this means
€yt Cpn_y datt - dr N daY ocepy - eN_lozN]de =0 & «a,=0, (152)
hence proving that Ker(W](Vl’_Ol) ) ={0};
2. Ker(WY) = {w € Q@0 | N2y = 0}. Similarly as before, we find:

€y " Cuy o Wypdxht - dxtN 2 drV dx? o epy - eN_nghN]sz =0 & wun=0,
(153)
hence proving that Ker(W](VZ;Og) = {0}.

O

250f course |a| = |A| and |w| = |C|
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B.3 On the boundary

We now generalize Lemma [53] to the boundary. We can simply do this by setting exdzy ~ e,,.

Then it is easy to see that

eN s Nepe™W =1, (154)

Hence we have

Lemma 57. Let C,D € Q(ao,z) and A, B € Qg)’l). Then the follwing identities hold

N-—-1
1. en(N (A B) = (~1)lA+1Bl [( —2y1€n€ _2(€aA)B+h(€mA)B}{

3

2. en i (C,D) = [enstiy(€, O)D + oy (ene, )]

Proof. We simply impose the substitution defined in equation ((154)), noticing also that (4, B) —
(A,B) and (C, D) — (C, D).

1.
eN eN-1
N!( I ) en(N_1)|( ’ )7
eN-1 N N—1 N1
A)B ~~ N-2(c  A\B AVB
(N - 1)'(6’ ) (N —1)! { nene (e, A)B+ ——(en, 4) }
1 N-2 1 N-1
~ A 7L7A B7
gt @Bt e d)
2.
eN eN-1
D) ~~ n ’D ;
(C. D) > en (=131 (& D)
N2 N -2 N-3/.2 N
2(N _ 2)|(€ aO)D ~ N{Nene (6 ,O)D+ Ne (ene C’) }
1 N-3/ 2 1 N
2(N—3)l€ne (e ’C)D+(N—2)'6 (ene, C)
O
We recall
woti) . i) QUitk.i+k)
’ o (155)

Lo ek N Q.
Then we have

Lemma 58. The maps W,?’(i’j) have the following properties for N > 4:

a(z 1)

1. Wy 1§ surjective;

2. Wg’gjl) s injective;
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9,(1,2) - L
3. WN£3 ) s surjective;

4. W,?(O’O) 18 injective;

5. dim KerW 22 = dimKerW 31

6. Wfr’gjl) is injective. (N >5) ;
7. sz?[,£12,0) is injective.

Proof. The proofs of the statements (1) — (6) can be found in [CCS21] and |[CCS21], with the
exception of (4), which is easily seen since any ¢ € Q%0 is a function, hence e* just acts as a
multiplication. We just need to prove |7l Considering A € Qg’o), then

eNTPA=¢, eun ,Apdatt o dat N2 da? =0
is satisfied if and only if A, =0 for all p =1,---, N, hence showing that A = 0. O

Lemma 59. Let o € Qz’l. Then

0 = " Pa=0 (156)
o = .
eneN 4o € Im W;?,’Slgl)

Lemma 60. Let § € QgiZ’Nﬂ, If g2 is nondegenerate, there exist a unique v € Keer,’Elg’m
and a unique y € Qé’l such that

B=eN3y +eeN v, €.

Proof. The proofs of the previous two lemmas are found in |[CCS21| O

B.4 Proofs of Lemmas [14] and 24

Proof of Lemma[Ij} Let N = 4. In this proof we fix as a basis of V the set €,,¢,, p = 1,2,3
where €, is a vector completing the basis.

oD

With this choice, consider the kernel of the map W, . It is defined by the equation

a 1251 2 M3 —
X%qep, epyep, datt dzt?dat® =0

which implies X™ = 0. Hence we get that the components in the kernel are X', X? and X3.

o0

Let us now consider the map A.. Let p € Ker(W, ) be generated by p = ple;+p2es+pies.

Then we have

(e,p)u = €4pay = €S p Ny = 95,0"

where we used that ¢’ = 6% in our basis. Now, if g2 is nondegenerate, using normal geodesic

coordinates, we obtain

(e,p), = £p"

depending on the sign of the elements in the diagonal of the diagonalized boundary metric. This
shows that the map A, is injective and surjective. O
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Proof of Lemma[2{} Let N = 4. In this proof we fix as a basis of V the set €,,€,, p = 1,2,3
where €, is a vector completing the basis.

With this choice, consider the kernel of the map WB(O D,

It is defined by the equationa
X‘lbeaebeme,wclav’“clat“2 =0.

which imply X™¢ = 0 for a = 1,2,3. Hence we get that the components in the kernel are X

for a,b=1,2,3.

Let us now consider the map ¢.. Let b € Ker(Wg(O’l)) ® g be generated by b = b%e,e; for
a,b=1,2,3. Then we have

1
2 a bied a b _c_ dipo 9 0 o
5(6 ?b),u” = ep.elzb Nacbd = ep.el/epegbp NacTlbd = gppguabp

where we used that e} = 6% in our basis. Now, if g7 is nondegenerate, using normal geodesic
coordinates, we obtain

1
=(€%,0) 0, = £

2
depending on the sign of the elements in the diagonal of the diagonalized boundary metric. This
shows that the map ¢, is injective and surjective. O

B.5 Proof of gamma matrices identities
e (v):
Recall ¢ € Q(02)[1]. In general if we let ¢ be any section of A%V, then
Jydyey = vavbvctvabvbcvc = (=)l 9Py ety Ly,
= (=Dl [y = 290" vety, tu,c
= (=)l [yoy* 9P + 29P%¢ — 29°5%] vty Luyc
= (—=D!yjyse + 2(=Dlefve [v'0" = ¥*n"] taanpc?
= (=1)1yjygye + 2(=1) clve [v*05mus — ¥ 05naa] ¥
=(=1)
= (1) ye — 4dpe,
hence, in general
ydvesnl = 4len]

e eq. (T19): Consider any a € Q(+?) of arbitrary parity. We rely on the fact that eN_lvjija
is a top form in V' and that j,, respects the (graded) Leibniz rule for all v,’s forming a
basis of V/

Ny = 0 Y N T gy o
=797 [, (€N T )va + €N M ap] o, b
= —7%y ’YC ['Uajvc.jvbeN71 - jw)eNilnac +ijeN717]ab] «
= [Virive™ T = 2077 e ]
= ['yjA,jWeN_l + 2NjVeN_1} «,
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analogously we find
eNilj'yj'ya’Y = (71)la"ybﬁyc’yaeNilvajvijCa

= (=)' [7jy,eN Tt = 2N eV o,
hence

Nt [’Yj'ija + (‘D‘aljwjva'd = ['Yj'yj'yeNil + Jyive 7] @,

eN_l [1;7[0‘71#] - [Oé»i/j]ﬂb] = ["ZW[GN_la dj] - [GN_IJ/;]%H «

N-1

B.6 Lenghty proofs of Section

In this section we show explicitly equation

1
{S&S?}f + {5875%}f + {557511}f + {S?,S%}g + 5{5%75%}9 =0.

{567 S?}f = LQéLQ?Wf
=11 /2 Lqo(ededw) + Trego(6pdA)
— [ Q@i [ 2 =0,
b b
because Q(l)p =0, QY4 =0 and both @Y, and eQ},, are proportional to .

{80, 81}y =
=10 [ fedesden]Ves] (A = b, ~ e dea VL) (A ~ A

— [, den) D dpecel (A — Ao)a,uT3 — e, L?“(Aen)(b)eb]“(A - Ao)a;ﬂ4

+ L (Aen) VLE (e) ) (A — Ao)am5 + L0 (Nen) P 0 el (A — Ag)apt
where we used L (e)y = L (ep) + Op&°ee.

{S5,S1}r =

=T [ 6 A L2 (A = A =L () VL2 (A = At

+ e, )‘en](a)(LEFAo)aNTg - L?O (Aen)(a)(LEFAo)aNTA

= e den] @ (dap)ap” +Lg en) ™ (dap)ap” ;
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(157)

(158)

(159)

(160)
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{S?v Sll}g =

=Tr / {_LgO([C,Aen]%n)(a + L (LY (Nen) Men) W 4 [LE (c), Aen]
>
1

-3 e, ], )\en](a)4 — e, LZ)O ()\en)(n)en](a)5 + e [e, )\en](n)en](a)6

2

1 a a w a
- *[%L&me )‘en]( ) }(A - AO)aNT - [, Aen]( )(LEFAo)aNTS + Lgo()‘en)( )(%FAo)aNT
7

1 a Wi a 1
+ e LsFAoﬂTm = e Aen] gl |+ L (Nen) Vedag, i+ §L[§7f]dA0““T13

1 a
— 5 (tie g1y (Nen)) (A = Ag)ap!
14

+ { e ren) V (duy en))n) @, = (L5 D) (dy (Aen))n) |} (A = Ao) i

(162)
1
5{511’*911}9 =
1
= Tlf/E §L§‘°(L5L§FAO)MT1 [ L ()’ — LE L !
Lo (L (Aen) @) (A = Ag)ap’ —Lg (e, Aen] @) (A = Ag)ap’
. 5 (163)

+ L¢" (Aen) LE (A = Ag)a)u’ = [e; Aen] L ((A = Ag)a)!

1 1
+ g leteFag plut + 5[l pl it — [ L ()] *
8 g ———————10

L (Aen) (A = Ao)a, s’ = [e Aen] (A = Ag)a, "

12°

Now we check term by term that the sum is zero
e (L601), (162}6) and (162}4) give
1
e, [, Aen]®e) @ + [e, [c, Aen] e, (@ — 5[[0, e, @
1
= [e, [e, Aep) ] — 5[[0, e, @ =

because of graded Jacobi identity

) , , ,, and sum to zero, in fact
—Lg([e, Aen )@ = L% ([e, Aen]™e, + e, Aen]Pep) @
= —L¢°([e, Aen|™e, )@ — Lo (le, Aen )@ —[e, Ne ](b)Lwo(eb)(a)
(L (€), Aen] @ + [, LE en) D)@+ [ L%(Aen) ](“’
= —Lg([e, Aen]Men) ) — L (e, Aen]) ™ = [c, Aen] DL (€)@
= [Lg°(c), Aen] @ + [e, L (Aen) Pep] ) + [e, L (Nen )< Den]@
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o (T60[H), (16212), (162l7), ([162I14), (163l[4]) sum to zero, in fact

)(a)

LE (L0 (hea)) ™ = LE(LE° (hen) ey + Lg? (M) e
= LEO (L (Aen)() — LE (e DLE" (64) @ — L2 (Ae) V1L (e,)

1 W
= 5Ly
1

1
= g(b{s,sldwo/\en)(“) + §[L5L5Fw(ﬂ Aen )@

1
(Men) (@ 4 3 [tete By, Aen] (a)

= L (L (Aen) ™) — L (Aen) WL (€)@ — LEo (Aen) ™ LE () )

1 " 1 )
- §(L[£,£]dwo)\€n)( ) - §[L5L5Fw0,>\en]( ) = 0;

(LE (A = Ap))a = LI (A = Ag)q + 0aEP(A — Ap)y.

e Now consider the following identity: (
Then, considering the terms (160[[3)), 1|161"1|) and |163"?| we find
e, )\en](“)L?O (A—Ap)e =

— e Aen] DOE + [, Aen] @ (LEW) (A — Ag))a —
— [e, Aen] W Bpe® + e, )\en](a)L?U (A— A
—[e, /\en](b)ﬁbéa — e, )\en](a)L?O (A= Ap)a = 0;

the same can be done with the terms (T60|6]), (T61l[2) and (163][6));

the following pairs of terms simply cancel each other out

0w (2
() and (TE20)
- 1 2) and (TG0

e the terms (162l[15) and (162l[16) vanish because they are proportional to A2. They are
separately zero because both Lg* (Aen)® and [c, Ae,,|®) are proportional to A, and

(dusy Nen) 1)\ = Bl — A(duen) )

= —)\(dwoen)gz));

(163}19) vanishes because of the graded Jacobi identity;

e Considering (162[11]) and (163[[12) we find
- [[67 )‘en](a) (A - AO)aa M]MT - [C, )‘en](a)dAOQMMT =
= —[e; Aen) Wdia—agy, 't = [e, Aen] @ (dap)ap’

, which cancels out (161]15));
e the same holds also for (161)i5) (162lI12)) and (163)i11));
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e the terms (162}f10) and (163}l sum to a boundary term, in fact
1 i LA i
JUedteFaon’ + 5L (LeteFa, )u' =

1 1 A
= SueqteFaon’ = SreteFa, + L3 (uf)

1
§d,40 (LngFAOL&UT)

e Finally, we are left with (162}f13)), (163li3) and (163l|8)), they sum up to zero, in fact

—_

Ioa
§L[g?,g] (1) + §[L€L£FA07 1

Ao1 A
LioLiop

1 1
SUedaots + S lete Fag, pl,

which proves equation ((158)).
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