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Abstract. We present a construction of cellular BF theory (in both abelian
and non-abelian variants) on cobordisms equipped with cellular decomposi-

tions. Partition functions of this theory are invariant under subdivisions, sat-

isfy a version of the quantum master equation, and satisfy Atiyah-Segal-type
gluing formula with respect to composition of cobordisms.
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1. Introduction

In this paper we present a combinatorial model of a topological field theory on
cobordisms endowed with a cellular decomposition and a local system E, where the
fields are modelled on cellular cochains. The model is compatible with composition
(concatentation) of cobordisms. In the limit of a dense cellular decomposition (with
mesh going to zero), our combinatorial model converges, in an appropriate sense (for
details, see Section 8.4.2), to the topological BF theory in the Batalin–Vilkovisky
(BV) formalism. Cellular cochains in this context arise as a combinatorial replace-
ment of differential forms – the fields of the continuum model.

Quantization of this model is given by well-defined finite-dimensional integrals
(which replace in this context the functional integral of quantum field theory). The
model is formulated in the Batalin–Vilkovisky formalism (or rather its extension,
“BV-BFV formalism” [4, 5], for manifolds with boundary, which is compatible with
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gluing/cutting).1 The construction of quantization depends on a choice of retraction
of cellular cochains onto cohomology (in particular, a choice of chain homotopy);
this retraction represents the data of gauge-fixing in this context. The space of
choices is contractible.

The result of quantization is a cocycle (the partition function) in a certain cochain
complex, constructed as a tensor product of a complex associated to the boundary
(the space of states) and a complex associated to the “bulk” – the cobordism itself
(half-densities on the space of “residual fields” modelled on cellular cohomology).
The partition function satisfies a gluing rule (a variant of Atiyah-Segal gluing axiom
of quantum field theory) with respect to concatenation of cobordisms and, when
considered modulo coboundaries, is independent of the cellular decomposition of
the cobordism. The cocycle property of the partition function is a variant of the
Batalin-Vilkovisky quantum master equation modified for the presence of boundary.
Changing the choices involved in quantization changes the partition function by a
coboundary.

The model presented in this paper is, on one side, an explicit example of the
BV-BFV framework for quantization of gauge theories in a way compatible with
cutting-pasting of the spacetime manifolds, developed by the authors in [4, 5] (a
short survey of the BV-BFV programme can be found in [6]). On the other side,
it is a development of the work [27, 28] and provides a replacement for the path
integral in a topological field theory by a coherent (w.r.t. aggregations) system
of cellular models, in such a way that each of them can be used to calculate the
partition function as a finite-dimensional integral (exactly, i.e., without having to
pass to a limit of dense refinement).2

We present both the abelian and the non-abelian versions of the model. In the
abelian version, when defined on a closed manifold endowed with an acyclic local
system, the partition function is the Reidemeister torsion. For a non-acyclic local
system, one gets the Reidemeister torsion (which is, in this case, not a number, but
an element of the determinant line of cellular cohomology, defined modulo sign), up
to a factor depending on Betti numbers and containing a mod 16 complex phase.

In the non-abelian case, the model depends on the choice of a unimodular Lie
algebra g of coefficients. The action of the model is constructed in terms of lo-
cal unimodular L∞ algebras defined on g-valued cochains on closures of individual
cells.3 On 0-cells these local unimodular L∞ algebras coincide with g; on higher-
dimensional cells they are constructed by induction in skeleta. Each step of this

1We will give a short, working-knowledge introduction to the BV and the BV-BFV formalisms

in this paper, but the reader is referred to the literature, especially [5], for more details.
2 Besides casting the model into the BV-BFV setting, with cobordisms and Segal-like gluing,

some of the important advancements over [27, 28] are the following: general regular CW complexes

are allowed (as opposed to simplicial and cubic complexes); the new construction of the cellular
action which is intrinsically finite-dimensional and in particular does not use regularized infinite-

dimensional super-traces; a systematic, intrinsically finite-dimensional, treatment of the behavior

w.r.t. moves of CW complexes – elementary collapses and cellular aggregations; understanding
the constant part of the partition function (leading to the contribution of the Reidemeister torsion
and the mod 16 phase); incorporating the twist by a nontrivial local system.

3 In our presentation of this result (Theorem 8.6), the local unimodular L∞ algebras are

packaged into generating functions – the local building blocks S̄e for the cellular action. To be

precise, the sum of building blocks S̄e′ over all cells e′ belonging to the closure of the given cell
e is the generating function for the operations (structure constants) of the local unimodular L∞
algebra assigned to e, in the sense of Section 8.2.1 and (134).
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induction is an inductive construction in its own right where one starts with the
algebra for the boundary of the cell ∂e and extends it by a piece corresponding to
the component of the cellular differential mapping ∂e to e and then continues to add
higher operations to correct for the error in the coherence relations of the algebra.
This is an inductive construction by obstruction theory which has a solution which
is explicit once certain choice of local chain homotopies is made. Moreover, the
space of choices involved is contractible and two different cellular actions are “ho-
motopic” in the appropriate sense (i.e., related by a canonical BV transformation).
Operations of the local unimodular L∞ algebras for cells are expressed in terms of
nested commutators, traces in g and certain interesting structure constants which
can be made rational (with a good choice of local chain homotopies). For example,
for 1-cells these constants are expressed in terms of Bernoulli numbers.

The non-abelian partition function for a closed manifold with cellular decompo-
sition is expressed in terms of the Reidemeister torsion, the mod 16 phase, and a
sum of Feynman diagrams. The latter encode the data of the induced unimodular
L∞ algebra structure on the cohomology of the manifold. The classical L∞ part
of this algebra contains the Massey brackets (also known as Massey-Lie brackets).
on cohomology and is, in case of a simply connected manifold, a complete invari-
ant of the rational homotopy type of the manifold. Also, this L∞ algebra yields
a deformation-theoretic description of the formal neighborhood of the (possibly,
singular) point corresponding to the local system E on the moduli space of local
systems (in non-abelian case E is interpreted as a choice of background flat bundle
around which the theory is perturbatively quantized). The quantum part of the
partition function (corresponding to the “unimodular” or “quantum” operations of
the algebraic structure on cohomology) is related to the behavior of the Reidemeis-
ter torsion in the neighborhood of E on the moduli space of local systems. In the
case of a cobordism, we have a version of this structure relative to the boundary
and compatible with concatenation of cobordisms. The space of states associated
to a boundary component in the non-abelian case is the same as in the abelian case
as a graded vector space but with a more complicated differential. The cohomology
of this differential is the Chevalley-Eilenberg cohomology of the L∞ algebra struc-
ture on the cohomology of the boundary and thus is an invariant of the rational
homotopy type of the boundary.

The non-abelian actions assigned to CW complexes, when considered modulo
canonical BV transformations, are compatible with local moves of CW complexes
– cellular aggregations (inverses of subdivisions) and Whitehead’s elementary col-
lapses (which, together with their inverses, elementary expansions, generate the
simple-homotopy equivalence of CW complexes). Both moves – an aggregation and
a collapse are represented by a fiber BV integral (a.k.a. BV pushforward) along
the corresponding fibration of fields on a bigger complex over fields on a smaller
complex. Expansions and collapses are the more fundamental moves (aggregations
can be decomposed as expansions and collapses) but generally do not preserve the
property of CW complexes to correspond to manifolds. In fact, we consider two
versions of the non-abelian theory:

I The “canonical” version – Section 8. Here the fields are a cochain and a chain
of the same CW complex X which is not required to be a manifold. The cellular
actions are compatible with elementary collapses (Lemma 8.19) and the parti-
tion function, defined via BV pushforward to cohomology, is a simple-homotopy
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invariant (Proposition 8.20). Here one has a version of Mayer-Vietoris gluing
formula for cellular actions (see (vi) of Theorem 8.1), which is not of Segal
type, since one of the fields has “wrong” (covariant) functoriality.

II The version on cobordisms (of a fixed dimension) – Section 9, with Segal-type
gluing formula w.r.t. concatenation of cobordisms. Here the fields are a pair
of cochains of X and the dual complex X∨, and X is required to be a cellular
decomposition of a cobordism. In this picture one does not have elementary
expansions and collapses on the nose, but one has cellular aggregations, and one
can prove the compatibility of the theory w.r.t. aggregations by temporarily
passing to the canonical version and presenting the aggregation via expansions
and collapses (Proposition 8.22, (iii) of Theorem 9.7).

One can regard the passage from more dense to more sparse cellular decompositions
via BV pushforwards as a version of Wilson’s renormalization group flow, passing
from a higher energy effective theory to a lower energy effective theory.

It is important to note two (related) features that set the cellular model apart
from continuum field theories in the BV-BFV formalism and could be regarded as
artifacts of discretization:

• The polarization of the space of phase spaces (a.k.a. spaces of boundary
fields) assigned to the boundaries is built into the theory on a cobordism
already at the classical level, via the convention for the Poincaré dual of
the cellular decomposition (and thus is built into the definition of the space
of classical fields (56)).4 This is different from the usual situation [5] where
one chooses the polarization at a later stage, as a datum necessary for
quantization.
• The BV 2-form on the space of fields is degenerate in presence of the bound-

ary, i.e., it is a (−1-shifted) pre-symplectic structure, rather than a sym-
plectic one. However, once restricted to the subspace of fields satisfying an
admissible boundary condition (as determined by polarization of bound-
ary phase spaces), the BV 2-form becomes non-degenerate. This property
hinges on the link between the convention for the Poincaré dual complex
and the polarization stressed above. As a consequence, BV integrals make
sense fiberwise, in the family over the space B∂ parameterizing the admis-
sible boundary conditions.

Throughout the paper we use the language of perturbative integrals (i.e., of sta-
tionary phase asymptotic formula for oscillating integrals) and we use the “Planck
constant” ~ as the conventional bookkeeping formal parameter controlling the fre-
quency of oscillations. However, one can always choose ~ to be a finite real number
instead: by the virtue of the model at hand, we do not encounter series in ~ of zero
convergence radius, as would be usual for stationary phase asymptotics (in fact, in
BF theory one does not encounter Feynman diagrams with more than one loop, so
the typical power series in ~ we see in the paper truncate at the order O(~1)).

1.1. Main results.

4In this paper we use the convention that the polarization is linked to the designation of

boundaries as in/out. Thus we link out-boundaries to “A-polarization” and in-boundaries with
“B-polarization”. This convention is entirely optional. On the other hand, the link between polar-

ization (69) and the notion of the dual CW complex (Section 2.3) is essential for the construction.
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1.1.1. Abelian cellular BF theory on cobordisms (Sections 5–7).

I. Classical abelian BF theory on a cobordism endowed with cellu-
lar decomposition. For M an n-dimensional cobordism between closed
(n− 1)-manifolds Min,Mout, endowed with a cellular decomposition X and a
coefficient local system (flat bundle) E of rank m with holonomies of determi-
nant ±1 (E plays the role of an external parameter – the twist of the model),
we construct (Section 6; the case of M closed is considered as a warm-up in
Section 5.1) a field theory in BV-BFV formalism with the following data.
• The space of fields assigned to the cobordism (M,X) is F = C•(X,E)[1]⊕
C•(X∨, E∗)[n−2]. Here X∨ is the dual cellular decomposition to X (see
Section 2 for details on the cellular dual for a cellular decomposition of a
cobordism).
• The BV action is S = 〈B, dEA〉+〈B,A〉in where (A,B) ∈ F is the cellular

field.
• The BV 2-form on fields is induced from chain level Poincaré duality.
• The cohomological vector field Q is the sum of lifts of cellular coboundary

operators on CW complexes X and X∨, twisted by the local system, to
vector fields on the space of fields.
• The boundary of (M,X) gets assigned the space of boundary fields (or

the “phase space”) F∂ = C•(X∂ , E)[1] ⊕ C•(X∨∂ , E∗)[n − 2] (naturally
split into in-boundary-fields and out-boundary fields) which carries:

– A degree zero symplectic structure (induced from chain level Poincaré
duality on the boundary), with a preferred primitive 1-form α∂ =
〈B, δA〉out − 〈δB,A〉in (i.e., it distinguishes between in- and out-
boundaries).

– A natural projection of bulk fields onto boundary fields (pullback
by the geometric inclusion of the boundary) π : F → F∂ .

– The cohomological vector field Q∂ on F∂ which is constructed anal-
ogously to the bulk – as a lift of the cellular coboundary operator
(on the boundary of the cobordism). This vector field has a degree
1 Hamiltonian S∂ = 〈B, dA〉∂ .

We prove that this set of data satisfies the structural relations of a classical
BV-BFV theory [4] – Proposition 6.1. Concatenation of cobordisms here maps
to fiber product of the corresponding BV-BFV packages – Section 6.3.

II. Quantization on a closed manifold. In Section 5.2 we construct the finite-
dimensional “functional” integral quantization of the abelian cellular theory
on a closed n-manifold. The partition function Z of the theory is defined as a
BV pushforward (fiber BV integral) of the exponential of the cellular action
from F to residual fields modelled on cohomology, F res = H•(M,E)[1] ⊕
H•(M,E∗)[n− 2].

Gauge-fixing data for the BV pushforward – the splitting of fields into resid-
ual fields plus the complement and a choice of a Lagrangian subspace in the
complement – is inferred from a choice of “induction data” or “retraction”
(see Section 4) of cellular cochains onto cohomology (i.e. a choice of cellular
representatives of cohomology classes, a choice of a projection onto cohomol-
ogy and a chain homotopy between the identity and projection to cohomology
– the latter plays the role of the propagator in the theory, cf. Remark 5.2.2).
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We compute the partition function (Proposition 5.7)5 to be

Z = ξH
•

~ · τ(M,E) ∈ C⊗DetH•(M,E)/{±1}
where:
• τ(M,E) is the Reidemeister torsion,

• ξH•~ is a complex coefficient depeneding on the Betti numbers of M

(twisted by the local system E): ξH
•

~ =
∏n
k=0(ξk~)dimHk(M,E) with

ξk~ = (2π~)−
1
4 + 1

2k(−1)k−1

(e−
πi
2 ~)

1
4 + 1

2k(−1)k−1

In particular, Z depends only on the topology of M and not on the cellular de-
composition X. Note that Z contains, via the factor ξH

•
~ , a mod 16 complex

phase.
The mechanism that leads to the factor ξH

•
~ (discussed in detail in Section

5.2.3) is that, in order to have a partition function independent of X, we
need to scale the reference half-density on the space of fields (playing the role
of the “functional integral measure” in the context of cellular theory) in a
particular way – it differs from the standard cellular half-density by a product
over cells e of X of local factors (ξdim e

~ )m depending only on dimensions of
cells. This a baby version of renormalization in the cellular theory and it leads
to a partition function containing the factor ξH

•
~ .

III. Quantization on a cobordism. In Section 7, we construct the quantum
BV-BFV theory on a cobordism M endowed with cellular decomposition X by
quantizing the classical cellular theory via BV pushforward to residual fields,
in a family over B∂ = C•(Xout, E)[1] ⊕ C•(X∨in, E

∗)[n − 2] = Bout ⊕ Bin –
the base of a Lagrangian fibration p : F∂ → B∂ of the boundary phase space
determining the quantization of the boundary.

The resulting quantum theory is the following assignment:

• To the out-boundary, the theory assigns the space H(A)
out of half-densities

on Bout which is a cochain complex with the differential (the “quantum
BFV operator”, arising as the geometric quantization of the Hamiltonian

for the boundary cohomological vector field) Ŝout = −i~
〈
dEAout,

∂
∂Aout

〉
.

Likewise to the in-boundary, the theory assigns the space H(B)
in of half-

densities on Bin with the differential Ŝin = −i~
〈
dEBin,

∂
∂Bin

〉
.6

• To the bulk (the cobordism itself), the theory assigns:
– The space of residual fields built out of cohomology relative to

in/out boundary, F res = H•(M,Mout;E)[1]⊕H•(M,Min;E∗)[n−
2].

– The partition function

Z = (µ~
B∂ )

1
2 · ξH•~ · τ(M,Mout;E) · e i~ (〈Bres,Aout〉out+〈Bin,Ares〉in−〈Bin,KAout〉in)

(see Proposition 7.4). The partiton function is an element of the
space of states for the boundary tensored with half-densities of
residual fields. Here the coefficient ξH

•
~ ∈ C is as in closed case,

5Partition functions are defined up to sign for the purposes of this paper, so that we don’t

need to keep track of orientations on the spaces of fields and gauge-fixing Lagrangians.
6Superscripts pertain to the polarization p : F∂ → B∂ (field A fixed on the out-boundary and

field B fixed on the in-boundary) used to quantize the in/out-boundary.
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but defined using Betti numbers for cohomology relative to the out-
boundary; (µ~

B∂ )
1
2 is an appropriately normalized half-density on

B∂ ; K is a the chain homotopy part of the retraction of cochains
of X relative to the out-boundary to the cohomology relative to
the out-boundary (which, as in the closed case, plays the role of
gauge-fixing data).

This data satisfies the following properties.
(i) Modified quantum master equation ((ii) of Proposition 7.4): the

partition function satisfies the quantum master equation modified by a
boundary term:

(
i

~
Ŝ∂ − i~∆res

)
Z = 0

(ii) Dependence on gauge-fixing choices ((iii) of Proposition 7.4): change
of the gauge-fixing data (the retraction of relative cochains onto coho-
mology) induces a change of partition function of the form

Z 7→ Z +

(
i

~
Ŝ∂ − i~∆res

)
(· · · )

(iii) Gluing property (Proposition 7.8): partition function on a concatenta-
tion of two cobordisms can be calculated from the partition function on
the two constituent cobordisms by first pairing the states in the gluing
interface, and then evaluating the BV pushforward to the residual fields
for the glued cobordism.

(iv) “Topological property”: the partition function function considered

modulo
(
i
~ Ŝ∂ − i~∆res

)
-exact terms is independent of changes of the

cellular decomposition X of the cobordism M , assuming that the cellular
decomposition of the boundary is kept fixed.

Here the first three properties are the axioms of a quantum BV-BFV theory
[5, 6], and the last one is a manifestation of the quantum field theory being
topological.

The “topological property” can be improved by passing to the cohomology
of the space of states (Section 7.4): this cohomology (the “reduced space of
states”) is independent of X∂ and the corresponding reduced partition func-
tion satisfies the BV-BFV axioms above and is completely independent of the
cellular decomposition X (i.e., one does not have to fix the decomposition of
the boundary).

1.1.2. “Canonical” non-abelian BF theory on CW complexes (Section 8).

I. Non-abelian cellular action: existence/uniqueness result. Theorem
8.6: For X a finite regular CW complex and g a unimodular Lie algebra, we
prove, in a constructive way, that there exists a BV action SX on the space of
fields modelled on cellular cochains and chains FX = C•(X)⊗ g[1]⊕C•(X)⊗
g∗[−2], satisfying the following properties:
• SX satisfies the Batalin-Vilkovisky quantum master equation 1

2{SX , SX}−
i~∆SX = 0 or, equivalently, ∆e

i
~SX = 0. Here {, } and ∆ are the odd-

Poisson bracket and the BV Laplacian on functions on FX induced from
canonical pairing of cochains with chains.
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• The action SX has the form SX =
∑
e⊂X S̄e; i.e., SX is given as the sum

over all cells e of X of certain local building blocks S̄e depending only
on the fields restricted to the closure ē of the cell e. The local building
blocks satisfy the following ansatz:

S̄e =

∞∑

n=1

∑

Γ0

∑

e1,...,en⊂ē

1

|Aut(Γ0)|C
e
Γ0,e1,...,en 〈Be, Jacobi Γ0

(Ae1 , . . . ,Aen)〉g−

− i~
∞∑

n=2

∑

Γ1

∑

e1,...,en⊂ē

1

|Aut(Γ1)|C
e
Γ1,e1,...,enJacobi Γ1(Ae1 , . . . ,Aen)

Here Ae,Be are the cochain and chain field (valued in g and g∗, respec-
tively), evaluated on the cell e. In the sum above, Γ0 runs over binary
rooted trees with n leaves, which we decorate with the n-tuple of faces
(of arbitrary codimension) e1, . . . , en ⊂ ē; likewise Γ1 runs over oriented
connected graphs with one cycle with n incoming leaves and all inter-
nal vertices having incoming/outgoing valency (2, 1). JacobiΓ(· · · ) is, for
Γ = Γ0 a binary rooted tree, a nested commutator of elements of g, as
prescribed by the tree combinatorics. For Γ = Γ1 a 1-loop graph, it is
the trace of an endomorphism of g given as a nested commutator with
one of the slots kept as the input of the endomorphism and other slots
populated by fields Aei . C

e
Γ,e1,...,en

are some structure constants (i.e. the
theorem is that they can be constructed in such a way that the quantum
master equation holds for SX).
• We have two “initial conditions”:7

– SX is given as the “abelian (canonical) action” 〈BX , dAX〉 plus
higher order corrections in fields.

– For e a 0-cell, the building block encodes the data of the Lie algebra
structure on the space of coefficients g: S̄e =

〈
Be,

1
2 [Ae,Ae]

〉
.

This existence theorem is supplemented by a uniqueness up to homotopy
statement (i.e. up to canonical transformations of solutions of the quantum
master equation;8 in this case, the generator of the canonical transformation
turns out to satisfy the same ansatz as SX above) – Lemma 8.7.

The local building blocks S̄e can be chosen universally, uniformly for all CW
complexes X, so that they depend only on the combinatorics of the closure of
the cell e and not on the rest of the combinatorial data of X (Remark 8.11).

Structure constants CeΓ,e1,...,en occurring in the local building blocks can
be chosen to be rational by making a good choice in the construction of the
Theorem 8.6.

II. Compatibility with local moves of CW complexes. Cellular actions,
when considered up to canonical BV transformations, are compatible with

7The role of these two conditions is to exclude trivial solutions to quantum master equation,
e.g. SX = 0, and also to have uniqueness up to homotopy for solutions satisfying the stated
properties.

8 One says that two solutions of the quantum master equation S0 and S1 are related by a
canonical BV transformation (or “homotopy”) if they can be connected by a family of solutions

St such that d
dt
St = {St, Rt} − i~Rt with Rt a degree −1 “generator.” This definition implies

that d
dt
e
i
~St = ∆

(
e
i
~StRt

)
and hence ∆-closed exponentials e

i
~S1 and e

i
~S0 differ by a ∆-exact

term.
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Whitehead elementary collapses of CW compexes and with cellular aggrega-
tions. More precisely, if X,Y are CW complexes and X is an elementary
collapse of Y , the BV pushforward of SY from cellular fields on Y to cellular
fields on X is a canonical transformation of SX (Lemma 8.19). Likewise, if X
is a cellular aggregation of Y (i.e., Y is a subdivision of X), the same holds
(Proposition 8.22).

As a corollary of compatibility of cellular actions with elementary collapses,
the partition function, defined as the BV pushforward to cohomology (more
precisely, to Fres = H•(X)⊗g[1]⊕H•(X)⊗g∗[−2]), which is a ∆-cocycle as a
consequence of Theorem 8.6, is invariant under simple-homotopy equivalence
of CW complexes if considered modulo ∆-coboundaries (Proposition 8.20).

1.1.3. Non-abelian cellular BF theory in BV-BFV setting (Section 9). We combine
the results of Sections 6-7 and Section 8 to construct cellular non-abelian BF theory
on n-cobordisms in BV-BFV formalism.

I. Classical non-abelian theory on a cobordism (BV-BFV setting). We
fix a unimodular Lie algebra g corresponding to a Lie group G. For M an
n-cobordism with a cellular decomposition X and a G-local system E, we
construct the space of fields F , space of boundary fields F∂ , the BV 2-form
on F , the symplectic form on F∂ together with the primitive α∂ exactly as
in the abelian case. The action S, cohomological vector field Q and their
boundary counterparts S∂ , Q∂ are constructed in terms of the local building
blocks S̄e (or, equivalently, local unimodular L∞ algebras) assigned by the
construction of Theorem 8.6 to cells e of X, see (164), (167), (166). Moreover,
in this setting the pullback map of bulk fields to the boundary is deformed
to a nontrivial L∞ morphism (168). This set of data satisfies the axioms of a
classical BV-BFV theory (Proposition 9.1).

II. Quantization. The quantization (Section 9.1) is constructed along the same
lines as in the abelian case – as a geometric (canonical) quantization on the
boundary and a finite-dimensional BV pushforward in the bulk. The resulting
spaces of states assigned to the in/out-boundaries are same as in the abelian
case as graded vector spaces but carry nontrivial differentials (169), (170)
deforming the differentials arising in the abelian case. Residual fields on a
cobordism are same as in the abelian case, while the partition function is
more involved – we develop the corresponding Feynman diagram expansion
in Proposition 9.5. As in the abelian theory, this set of data satisfies the
properties (i)–(iv) of Section 1.1.1 (modified quantum master equation, exact
dependence on gauge-fixing choices, Segal’s gluing property, independence on
cellular decomposition) – Theorem 9.7.

1.2. Open questions/What is not in this paper.

(1) Construction of more general cellular AKSZ theories: our construction of
cellular non-abelian BF action in Theorem 8.6 develops the theory from
its value on 0-cells, by iterative extension to higher-dimensional cells. It
would be very interesting to repeat the construction starting from the tar-
get data of a more general AKSZ theory assigned to a 0-cell. It would
be particularly interesting to construct cellular versions of Chern-Simons
theory and BF +B3 theory in dimension 3. Chern-Simons theory has the
added complication that one has to incorporate in the construction of the



A CELLULAR TOPOLOGICAL FIELD THEORY 11

BV 2-form the Poincaré duality on a single cellular decomposition, without
using the dual one.

(2) Comparison of the cellular non-abelian BF theory constructed here with
non-perturbative answers in terms of the representation theory data of the
structure group G: comparison with zero area limit of Yang-Mills theory in
dimension 2 and comparison with Ponzano-Regge state sum model (defined
in terms of 6j symbols) in dimension 3. Cellular BF + B3 theory should
be compared with Turaev-Viro state sum model (based on q6j symbols for
the quantum group corresponding to G).

(3) In this paper we use, for the construction of quantization, special polariza-
tions of phase spaces assigned to the boundary components of an n-manifold
– the “A-polarization” and “B-polarization”. It would be interesting to
consider more general polarizations and construct the corresponding ver-
sion of Hitchin’s connection (mimicking the situation in Chern-Simons the-
ory), controlling the dependence of the quantum theory on an infinitesimal
change of the polarization.

(4) Q-exact renormalization flow along the poset of CW complexes, arising from
the fact that the “standard” cellular action is sent by a BV pushforward
along a cellular aggregation to an action on the aggregated complex which
differs from the standard one by a canonical transformation (see [26] for
an example of an explicit computation). Keeping track of these canonical
transformations should lead to the picture of a “Q-exact” Wilsonian RG
flow along cellular aggregations (and to the related notion of the combina-
torial Q-exact stress-energy tensor). This picture is expected to be related
to Igusa-Klein’s higher Reidemeister torsion.

(5) Observables supported on CW subcomplexes, possibly meeting the bound-
ary.

(6) Gluing and cutting with corners of codimension ≥ 2, or the version for the
(fully) extended cobordism category, in the sense of Baez-Dolan-Lurie.

(7) Partition functions in this paper are constructed up to sign, so as not to
deal with orientations of spaces of fields and gauge-fixing Lagrangians. It
would be interesting to construct a sign-refined version of the theory.

1.3. Plan of the paper. In Sections 2, 3 we recall and set up the conventions and
notations for chain-level Poincaré duality for cellular decompositions of manifolds
with boundary (Section 2) and local systems in this setting (Section 2). This sets
the stage for the construction of the space of fields of the cellular model.

In Section 4 we recall the homological perturbation theory which later plays the
crucial role for defining the gauge-fixing for the quantization.

In Section 5 we construct the abelian cellular theory on a closed manifold en-
dowed with a cellular decomposition. We first set up the classical theory (Section
5.1) and then construct the quantization (5.2).

In Section 6 we construct the extension of the abelian cellular theory to cobor-
disms, in the BV-BFV setting, on the classical level.

The quantization of the abelian model on cobordisms is constructed in Section
7. In particular, we prove the gluing property of the partition functions in Section
7.3.

In Section 8 we construct the “canonical version” (i.e. with covariant B-field) of
the non-abelian BF theory on arbitrary regular CW complexes in BV formalism
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and establish the invariance of the theory (up to canonical transformations) under
cellular aggregations and elementary collapses of CW complexes.

In Section 9 we construct the non-abelian cellular BF theory on cobordisms
in BV-BFV setting and its quantization. We prove that the quantization satisfies
the axioms of a quantum BV-BFV theory and is independent (modulo canonical
transformations) of the cellular decomposition of the cobordism.

Acknowledgements. We thank Nikolai Mnev for inspiring discussions, crucial to
this work. We are grateful to the anonymous referee for insightful comments and
questions that helped improve the paper. P. M. thanks the University of Zurich and
the Max Planck Institute of Mathematics in Bonn, where he was affiliated during
different stages of this work, for providing the excellent research environment.

2. Reminder: Poincaré duality for cellular decompositions of
manifolds

2.1. Case of a closed manifold. Let M be a compact oriented9 piecewise-linear10

(PL) n-dimensional manifold without boundary, endowed with a cellular decompo-
sition X (with cells being finite unions of simplices of a triangulation compatible
with the PL structure), which we assume to be a regular CW complex.11 One
can construct the dual cellular decomposition of X∨, uniquely defined up to PL
homeomorphism, such that:

• There is a bijection κ between k-cells of X and (n− k)-cells of X∨. (One
calls κ(e) the dual cell for e.)
• For a cell e of X, κ(e) ⊂ star(e) ⊂M .12

• e intersects κ(e) transversally and at a unique point.

Choosing (arbitrarily) orientations of cells of X, we can infer the choice of orien-
tations of cells of X∨ in such a way that the intersection pairing is e · κ(e) = +1.
More generally, for ei running over k-cells of X, we have ei · κ(ej) = +δij .

On the level of cellular chains, we have a non-degenerate intersection pairing

(1) · : Ck(X;Z)⊗ Cn−k(X∨;Z)→ Z

which induces a chain isomorphism between cellular chains and cochains

(2) C•(X;Z), ∂
∼−→ Cn−•(X∨;Z), d

9This assumption is made for convenience and can be dropped, see Remark 2.2 below.
10 Throughout this paper we will be working in the piecewise-linear category. One can replace

PL manifolds with smooth manifolds everywhere, but then instead of gluing of manifolds along a

common boundary, one should talk about cutting a manifold along a submanifold of codimension 1
or work with manifolds with collars in order to achieve the correct gluing of smooth structures.

For details on oriented intersection of chains in piecewise-linear setting, we refer the reader to [23].
11Recall that a CW complex is said to be regular if the characteristic maps from standard

open balls to open cells χ : int(Bk)
∼−→ e ⊂ X extend to homeomorphisms of closed balls to

corresponding closed cells χ̄ : Bk
∼−→ ē ⊂ X. Another term for a regular CW complex is “ball

complex.”
12The standard terminology is that for a cell e of any CW complex X, the star of e is the

subcomplex of X consisting of all cells of X containing e. The link of e is the union of cells of

star(e) which do not intersect e.
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which in turn induces the Poincaré duality between homology and cohomology

H•(X;Z)︸ ︷︷ ︸
=H•(M ;Z)

∼−→ Hn−•(X∨;Z)︸ ︷︷ ︸
=Hn−•(M ;Z)

Remark 2.1. One construction of the dual cellular decomposition X∨ is via the
barycentric subdivision β(X) of X – a simplicial complex, constructed combinato-
rially as the nerve of the partially ordered set of cells of X (with ordering given by
adjacency). The combinatorial simplex σ = (e0 < . . . < ek) has dimension k and
can be geometrically realized as a simplex inside ek with vertices ė0, . . . ėk, where
ė is some a priori fixed point in an open cell e – the barycenter of e. Next, one
constructs X∨ out of β(X) as follows. For v a vertex (0-cell) of X, we set κ(v) to
be the star of v in β(X). For e a k-cell of X, we set

(3) κ(e) =
⋂

v∈e
starβ(X)(v) ∩ starX(e)

where the first intersection runs over vertices of e.

Remark 2.2. Orientability of X is not required to define the complex X∨. How-
ever, global orientation is necessary to define the intersection pairing between cells
of X and cells of X∨ in such a way that (2) becomes a chain map. In a more general
setup, we can allow X to be possibly non-orientable. Denote by Or the orientation
Z2-local system on X (see Section 3 below for a reminder on cellular local systems);
the role of orientation is played by a choice of a primitive element σ ∈ Hn(X,Or;Z).
Then (1) becomes · : Ck(X;Z) ⊗ Cn−k(X∨,Or;Z) → Z. (We twist one of the two
factors by the Or, it is unimportant which factor is twisted.) This pairing de-

pends on the class σ. Likewise (2) becomes C•(X;Z), ∂
∼−→ Cn−•(X∨,Or;Z), d.

This setup can be straightforwardly adapted to the setting of cellular complexes with
boundary – we always have to twist one side in Poincaré-Lefschetz duality by the
orientation local system. However, for simplicity, in this paper we will always be
assuming that Or is trivial and X is oriented.

Remark 2.3. We could require X to be a triangulation and X∨ the dual cellular
complex. We are not imposing this requirement, because later the fields A,B of
our theory will be cochains on X and X∨ and it seems unnecessary to break the
symmetry between A and B (present in the abelian theory) by forcing A to live on
a triangulation.

2.2. Case of a manifold with boundary. Let M be a compact oriented n-
manifold with boundary ∂M . Assume that we have a cellular decomposition X of
M , which restricts on the boundary to a cellular decomposition X∂ of ∂M .

We can construct13 a new cellular decomposition X∨+ of M such that the fol-
lowing holds.

• For every k-cell e of X we have an (n− k)-cell κ(e) ⊂ starX(e) ⊂M − ∂M
of X∨+ .

• For every k-cell e of X∂ , apart from the (n− k)-cell κ(e), X∨+ contains an
(n− k − 1)-cell κ∂(e) ⊂ ∂M of the dual boundary complex (X∂)∨.

13We can again use the construction of Remark 2.1. Cells κ(e) are then defined exactly as in

(3) and cells κ∂(e) for boundary cells e ⊂ X∂ are constructed as κ∂(e) = κ(e) ∩ ∂M .
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• Cells of the form κ(e), κ∂(e) (for boundary cells e) exhaust the CW complex
X∨+ .
• For e a cell of X − X∂ , e and κ(e) intersect transversally and at a single

point. For e a boundary cell of X, e meets the closed cell κ(e) at a single
point.

κ∂(e)

X X∨+

e κ(e)

Figure 1. A cellular decomposition X of a closed 2-disk M
(drawn in solid lines), and the corresponding dual decomposition
X∨+ of a slightly larger disk M+ (drawn in dashed lines).

Again, orientations of X∨+ can be inferred from some chosen orientations of cells
of X in such a way that the intersection is:

ei · κ(ej) = +δij

In case of ej being a boundary cell, we have to regularize the intersection, which
we can do by regarding X∨+ as a cellular decomposition of M+ – an extension of
M by attaching a collar ∂M × [0, ε] at the boundary ∂M . Then all intersections of
cells of X in M ⊂M+ and cells of X∨+ in M+ are transversal. Note that with this
regularization, for ei any cell and ej a boundary cell of X, we have

ei · κ∂(ej) = 0

Intersection pairing defined as above induces a non-degenerate pairing between
absolute and relative chains:

(4) · : Ck(X;Z)⊗ Cn−k(X∨+ , X∨∂ ;Z)→ Z
which in turn gives rise to a chain isomorphism between absolute chains and relative
cochains

C•(X;Z), ∂
∼−→ Cn−•(X∨+ , X∨∂ ;Z), d

On the level of homology/cohomology, one obtains the usual Poincaré-Lefschetz
duality

H•(X;Z)︸ ︷︷ ︸
∼=H•(M ;Z)

∼−→ Hn−•(X∨+ , X∨∂ ;Z)︸ ︷︷ ︸
∼=Hn−•(M,∂M ;Z)

Note that unlike the case of closed manifolds, where the operation X 7→ X∨ is
an involution on cellular decompositions, for manifolds with boundary X∨+ always
has more cells than X and X 7→ X∨+ cannot be an involution.
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We define X∨− as a CW subcomplex of X∨+ obtained by removing the cells κ(e)
and κ∂(e) for every boundary cell e of X. Topologically, X∨− is X∨+ with a collar
near the boundary removed, i.e. the underlying topological space is M− ⊂ M ⊂
M+, where M −M− ' ∂M × [−ε, 0]. The counterpart of (4) is the non-degenerate
intersection pairing

(5) · : Ck(X,X∂ ;Z)⊗ Cn−k(X∨− ;Z)→ Z

X∨−

X

Figure 2. A cellular decomposition X of a closed 2-disk M
(drawn in solid lines) and the dual decomposition X∨− of a smaller
disk M− (drawn in dotted lines).

Definition 2.4. We will say that a cellular decomposition X of a manifold M with
boundary is of product type near the boundary if, for any k-cell e∂ of X∂ , there
exists a unique (k + 1)-cell e of X −X∂ such that e∂ ⊂ ∂e.14

Figure 3. Two examples of non-product type behavior of a cel-
lular decomposition (in this case, of a 2-disk) near the boundary.
Note the extra vertex on the boundary in the example on the left.

There is the obvious geometric inclusion of the boundary ι+ : X∨∂ ↪→ X∨+ .
There is also a cellular map ι− : X∨∂ ↪→ X∨− which sends κ∂(e) to ∂κ(e) ∩ ∂M−

14In other words, we are asking for the intersection of X with a thin tubular neighborhood

of the boundary to look like the product CW-complex X∂ × [0, 1] intersected with X∂ × [0, ε).

Morally, even though there is no metric in our case, one should think of this property as an analog
of the property of a Riemannian metric on a smooth manifold with boundary to be of product

form near the boundary.
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for any cell e of X∂ . Under the assumption that X is of product type near the
boundary, as defined above, ι− is in fact an inclusion. In particular, in this case
the boundary of the dual complex X∨− ∩ ∂M− is isomorphic, as a CW complex,
to X∂ .

As opposed to X∨+ , complex X∨− has less cells then X, and, in the case of prod-
uct type near the boundary, the “double duals” (X∨+)∨− , (X∨−)∨+ are isomorphic
to X as CW complexes.

Note also that X∨+ is always of product type near the boundary.

2.2.1. Cutting a closed manifold into two pieces. Let M be a closed manifold cut
along a codimension 1 submanifold Σ into two parts – manifolds with boundary
MI , MII , with ∂MI = ∂MII = Σ. Let X be a cellular decomposition of M such
that XΣ = Σ ∩ X is a subcomplex of X. Denote XI , XII the induced cellular
decompositions of MI , MII . Then one has the obvious (pushout) relation:

X = XI ∪XΣ
XII

For the dual decompositions, one has

X∨ = X
∨+

I ∪X∨Σ X
∨−
II

assuming that XII is of product type near XΣ, and

X∨ = X
∨−
I ∪X∨Σ X

∨+

II

if XI is of product type near XΣ. It can happen, of course, that X is well-behaved
on both sides of XΣ, and then both formulae above hold.

2.3. Case of a cobordism. A more symmetric version of the construction of
Section 2.2 is as follows. Let M be a compact oriented manifold with boundary split
into two disjoint parts ∂M = Min tMout

15 (i.e. we color the boundary components
of M in two colors – “in” and “out”). We call this set of data a cobordism and

denote it by Min
M

==⇒ Mout. Let X be a cellular decomposition of M inducing
decompositions Xin, Xout of the in- and out-boundary, respectively. When talking
about a cobordism with a cellular decomposition, we always make the following
assumption.

Assumption 2.5. X is of product type near Mout.

We make no assumption on the behavior of X near Min. Then we define the
dual CW complex as

X∨ := X∨+ − (κ∂(Xout) ∪ κ(Xout))

We think of X on the l.h.s. as including the information about which boundary

component is “in” and which is “out”. The underlying manifold M̃ of X∨ is M

with a collar at Min adjoined and a collar at Mout removed; we also regard M̃ as
having the in/out coloring of boundary opposite to that of M .16

15By convention, we endow Mout with the orientation induced from the orientation of M ,

whereas Min is endowed with orientation opposite to the one induced from M . Thus, as an oriented

manifold the boundary splits as ∂M = Min t Mout where the overline stands for orientation
reversal.

16Observe that X∨ is automatically of product type near the in-boundary of M , i.e. near the

out-boundary of M̃ .
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Note that if ∂M = Min, then X∨ = X∨+ . If ∂M = Mout, then X∨ = X∨− . For
the numbers of cells (= ranks of chain groups), we have

rk Ck(X∨) = rk Ck(X) + rk Ck(Xin)− rk Ck(Xout)

Also note that (X∨)∨ = X, thus in this formalism taking dual is again an involution.
One has a non-degenerate intersection pairing

(6) · : Ck(X,Xout;Z)⊗ Cn−k(X∨, X∨in;Z)→ Z
which gives the chain isomorphism

C•(X,Xout;Z), ∂
∼−→ Cn−•(X∨, X∨in;Z), d

and the Poincaré-Lefschetz duality between homology and cohomology

H•(X,Xout;Z)︸ ︷︷ ︸
=H•(M,Mout;Z)

∼−→ Hn−•(X∨, X∨in;Z)︸ ︷︷ ︸
=Hn−•(M,Min;Z)

3. Reminder: cellular local systems

Let X be a CW complex and G a Lie group.

Definition 3.1. We define a G-local system on X as a pair (E , ρ) consisting of a
functor E from the partially ordered set of cells of X (by incidence) to the category
G ⇒ ∗ with single object and with Hom(∗, ∗) = G, and a linear representation
ρ : G→ Aut(V ) with V a finite-dimensional vector space.

One can twist cellular chains of X by E as follows. As vector spaces, we set
Ck(X, E) = V ⊗Ck(X;Z). Assume all cells of X are oriented (in an arbitrary way).
If for a k-cell e we have ∂e =

∑
j εj ej with εj coefficients of the boundary map (in

case of a regular complex, εj ∈ {±1, 0}), then we set

∂E(v ⊗ e) =
∑

j

εj ρ(E(e > ej))(v) ⊗ ej

where v ∈ V is an arbitrary vector. Functoriality of E implies that ∂2
E = 0.

Consider the dual local system E∗ on X, which is the same as E as a functor, but
accompanied with the dual vector representation, ρ∗ = (ρ−1)T : G→ V ∗. Then the
twisted cochains on X, C•(X, E), are constructed as the dual complex to C•(X, E∗),
i.e. Ck(X, E) = (Ck(X, E∗))∗, with differential dE given by the transpose of ∂E∗ .

Definition 3.2. We call two local systems E and E ′ on X equivalent, if there exists
a natural transformation between them, i.e. for every cell e ⊂ X there is a group
element g(e) ∈ G, so that for any pair of cells e′ ⊂ e we have

E ′(e > e′) = g(e) E(e > e′) g(e′)−1

A local system E induces a holonomy functor from the fundamental groupoid of
X to G⇒ ∗, by associating to a path

χ = (v0 < e1 > v1 < e2 > · · · < eN > vN )

from v0 to vN , a group element

holE(χ) = E(eN > vN )−1 · E(eN > vN−1) · · · E(e1 > v1)−1 · E(e1 > v0) ∈ G
Picking a base point x0 – a vertex of X, and restricting the construction to closed
paths from x0 to x0 along 1-cells of X, we get a representation of the fundamental
group π1(X,x0) in G.
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Let M be a manifold (possibly, with boundary) endowed with a principal G-
bundle P →M with a flat connection∇P . Let E = P×GV be the associated vector
bundle with the corresponding flat connection ∇E . If X is a cellular decomposition
of M , one can construct a local system EX on X by marking a point (barycenter)
ė in each cell e and setting

(7) EX(e > e′) = hol∇P (γė′→ė) ∈ Hom(Pė′ , Pė) ' G
– the parallel transport of the connection ∇P along any path γė′→ė from the
barycenter ė′ to ė, staying inside the cell e.17 To identify the hom-space between
fibers of P over ė′ and ė with the group, we assume that P is trivialized over
barycenters of all cells.

The twisted cochain complex (C•(X,EX), dEX ) is quasi-isomorphic to (Ω•(M,E), d∇E )
– the de Rham complex of M twisted by the flat bundle E.

In case of a manifold without boundary, the intersection pairing (1) together
with the canonical pairing V ⊗ V ∗ → R induce a non-degenerate pairing

(8) 〈, 〉 : Ck(X,EX)⊗ Cn−k(X∨, E∗X∨)→ R

Similarly, in presence of a boundary, one has versions of cellular Poincaré-Lefschetz
pairing (4,5,6) with coefficients in EX , E

∗
X∨ .

The local system E∗X∨ that we need in (8) can be constructed from a flat principal
bundle by applying construction (7) to X∨ and using the dual representation ρ∗.
Alternatively, EX∨ can be constructed directly on the combinatorial level, from
EX , by the construction below.

3.1. Local system on the dual cellular decomposition: a combinatorial
description. The local system EX∨ on the dual cellular decomposition X∨ of a
closed manifold M can be described combinatorially in terms of EX as follows:

(9) EX∨ (κ(e′) > κ(e) ) = EX(e > e′)−1 ∈ G
for e, e′ any pair of incident cells of X. The dual local system E∗X∨ on X∨, which
appears in the intersection pairing (8) is same as EX∨ , but accompanied by the
dual representation ρ∗ : G→ V ∗.

Note that the combinatorial definition (9) agrees with the construction of EX∨

by calculating holonomies of the original flat G-bundle P on M between barycenters
of cells of X∨, as in (7). For this to be true it is important that the barycenters
are chosen in such a way that ė = e ∩ κ(e) = κ̇(e).

In the case of a manifold M with boundary, the local system on X∨+ is con-
structed by (9) supplemented by definitions

(10)

EX∨+ (κ∂(e′) > κ∂(e) ) = EX(e > e′)−1, EX∨+ (κ(e′) > κ∂(e) ) = EX(e > e′)−1,

EX∨+ (κ(e) > κ∂(e) ) = 1

for e, e′ cells of X∂ . The third equation above can be regarded as a special case of
the second, with e′ = e.

Assuming that X is of product type near the boundary, the local system on X∨−

is obtained by restricting EX∨+ to the CW subcomplex X∨− ⊂ X∨+ .

17Note that functoriality in this construction corresponds to flatness of ∇P .
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Associated to the inclusion ι− : X∨∂ ↪→ X∨− is the pull-back map for cochains

ι∗− : Ck(X∨− , EX∨− )→ Ck(X∨∂ , EX∨∂ )

defined as

(11) v ⊗ κ(e)∗ 7→
{
ρ(EX(e > ẽ)−1)(v)⊗ κ∂(ẽ)∗ if e is adjacent to ∂M
0 otherwise

extended by linearity to all cochains. Here e is a k-cell of X −X∂ ; for e adjacent
to the boundary, ẽ = ∂e ∩ ∂M is a single (k − 1)-cell, since X is assumed to be
of product type near the boundary; v ∈ V is an arbitrary coefficient; for e a k-cell
of X, e∗ ∈ Ck(X,Z) denotes the corresponding basis integral cochain. Defined as
above, ι∗− is a chain map. Parallel transport by the local system appears in (11) to
account for the collar M −M− (i.e. because we have to move from the local system
trivialized at barycenters κ̇(e) ∈ ∂M− to trivialization at barycenters κ̇∂(ẽ) ∈ ∂M).

In case of the dualX∨+ , the pull-back to the boundary ι∗+ : Ck(X∨+ , EX∨+ )→
Ck(X∨∂ , EX∨∂ ) is simpler:

(12) ι∗+ : v ⊗ (e∨)∗ 7→
{
v ⊗ (e∨)∗ if e∨ = κ(e∂) for e∂ ⊂ X∂

0 otherwise

Absence of the transport by local system here, as opposed to (11), corresponds to
the fact that we implicitly gave the local system a trivial extension to the collar
M+ −M in (10).

Remark 3.3. Let M = MI ∪ΣMII be a closed manifold cut into two, as in Section
2.2.1, with cellular decompositions X = XI ∪XΣ

XII , and assume that XI is of
product type near XΣ. Let also EX be a local system on X. We can restrict EX to
XI , XΣ, XII . Then alongside the obvious fiber product diagram for cochains on X:

Ck(X,EX) −−−−→ Ck(XI , EXI )y
y

Ck(XII , EXII ) −−−−→ Ck(XΣ, EXΣ)

we have the fiber product diagram for cochains on X∨:

Ck(X∨, EX∨) −−−−→ Ck(X
∨−
I , E

X
∨−
I

)
y ι∗I+

y

Ck(X
∨+

II , EX∨+
II

)
ι∗II−−−−−→ Ck(X∨Σ , EX∨Σ )

For M a general cobordism with a cellular decomposition X and a local system
EX , the corresponding local system on X∨ is given by combining the two construc-
tions above, for EX∨+ (used near Min) and EX∨− (used near Mout); we should
assume that X is of product type near Mout.

4. Reminder: homological perturbation theory

Definition 4.1. Let C•, d and C ′•, d′ be two cochain complexes of vector spaces
(e.g. over R). We define the induction data from C• to C ′• as a triple of linear
maps (i, p,K) with

i : C ′• ↪→ C•, p : C• � C ′•, K : C• → C•−1
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satisfying
(13)
p i = idC′ , di = id′, p d = d′p, dK+Kd = idC−ip, Ki = 0, pK = 0, K2 = 0

Induction data exist iff i : C ′ → C is a subcomplex such that i∗ is the identity
in cohomology (i.e. C ′ is a deformation retract of C).

We will use the notation

(14) C•, d
(i,p,K)
 C ′•, d′

for induction data. We will also sometimes call the whole collection of data - a pair
of complexes and the induction data between them - a retraction.

Lemma 4.2 (Homological perturbation lemma [14]). If (i, p,K) are induction data
from C•, d to C ′•, d′ and δ : C• → C•+1 is such that (d+ δ)2 = 0, then the complex

C ′•, d′ + p (δ − δKδ + δKδKδ − · · · ) i

is a deformation retract of C•, d+ δ, with induction data given by

(i−Kδi+KδKδi−· · · , p−p δK+p δKδK−· · · , K−KδK+KδKδK−· · · )

assuming all the series above converge.

For the proof, see e.g. [12].
Given induction data (i, p,K), we have a splitting of C into the image of C ′ and

an acyclic complement C ′′ = ker p:

C• = i(C ′•)⊕ C ′′•︸︷︷︸
ker p

The second term can be in turn represented as a sum of images of d and K. Putting
these splittings together, we have a (formal) Hodge decomposition

(15) C• = i(C ′•)⊕ (ker p ∩ d(C•−1))⊕K(C•+1)︸ ︷︷ ︸
C′′•

An important special case is when C ′• = H•(C) – the cohomology of C•. Then,
in addition to the axioms above, for the induction data from C• to H•(C) we
require the following to hold.

Assumption 4.3. The projection p restricted to closed cochains ker d ⊂ C• agrees
with the canonical projection associating to a closed cochain its cohomology class.

In this case the Hodge decomposition (15) becomes

C• = i(H•)⊕ C•exact ⊕ C•K−exact︸ ︷︷ ︸
im(K)

with the differential now being an isomorphism d : C•K−exact
∼−→ C•+1

exact and vanish-
ing on the first two terms of the decomposition.
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4.1. Composition of induction data. Two retractions

C•(0), d(0)
(i01,p01,K01)
 C•(1), d(1), C•(1), d(1)

(i12,p12,K12)
 C•(2), d(2)

can be composed as follows:

C•(0), d(0)
(i02,p02,K02)
 C•(2), d(2)

with composed induction data

(16) (i02 = i01i12, p02 = p12p01, K02 = K01 + i01K12p01)

4.2. Induction data for the dual complex and for the algebra of poly-
nomial functions. For C•, d a cochain complex, we can construct its dual – the
complex of dual vector spaces C∗ k = Hom(Cn−k,R) endowed with the transpose
differential (d∗)k = (−1)n−k−1(dn−k−1)T : C∗ k → C∗ k+1.18

If (i, p,K) are induction data from C, d to C ′, d′, then we have the dual induction

data C∗
(i∗,p∗,K∗)
 C ′∗ given by

(17) (i∗ = pT , p∗ = iT , (K∗)k = (−1)k(Kn−k+1)T )

Given a finite set of retractions

(18) C•j
(ij ,pj ,Kj)
 C ′•j

for 1 ≤ j ≤ r, one can construct the induction data for the tensor product
⊗

j Cj
(i⊗,p⊗,K⊗)
 

⊗
j C
′
j where

i⊗ =
⊗

j

ij , p⊗ =
⊗

j

pj , K⊗ =
∑

j

(i1p1)⊗· · ·⊗(ij−1pj−1)⊗Kj⊗idj+1⊗· · ·⊗idr

The construction of K⊗ above corresponds to the composition of a sequence of
retractions

r⊗

j=1

Cj  C ′1 ⊗
r⊗

j=2

Cj  C ′1 ⊗ C ′2 ⊗
r⊗

j=3

Cj  · · · 
r⊗

j=1

C ′j

where on each step we use the data (18) tensored with the identity on the other
factors. One can choose instead to perform the retractions Cj  C ′j in a different
order, given by a permutation σ of {1, 2, . . . , r}, which yields another formula for
K⊗, depending on the permutation σ. Symmetrization over permutations σ leads
us to the next construction – retraction between symmetric algebras. In the set-
ting of the present work, we are more interested in the symmetric algebra of dual
complexes.

The symmetric algebra of the dual complex SymC∗ is naturally a differential
graded commutative algebra and can be seen as the algebra of polynomial functions
on C. Induction data from SymC∗ to SymC ′∗ can be constructed as follows:

(19) iSym = p∗, pSym = i∗, KSym =

∫ 1

0

((1− t) + t ip+ dtK)∗

18Having in mind Poincaré duality, we are incorporating the degree shift by n in the definition
of the dual (which is superfluous in purely algebraic setting). In our setup, the canonical pairing

〈, 〉 : C∗ k ⊗ Cn−k → R has degree −n.
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Here asterisks stand for pullbacks. The expression for KSym can be understood in
terms of the diagram

T [1][0, 1]× C λ=(1−t)+t ip+dtK−−−−−−−−−−−−→ C

π2

y

C

where T [1][0, 1] is the odd tangent bundle of the interval, with even coordinate t
and odd tangent coordinate dt. Map λ has total degree 0. Now KSym can be
defined as a transgression

KSym = (π2)∗λ
∗ : SymC∗ → SymC∗

Same formulae can be used for more general classes of functions than polynomials
(e.g. smooth functions) on C, C ′.

4.3. Deformations of induction data. Given a retraction C•, d
(i,p,K)
 C ′•, d′,

one can analyze the possible infinitesimal deformations of the induction data (i, p,K),
as solutions of the system (13). It turns out (see e.g. [28, 3]) that a general infin-
itesimal deformation (i, p,K) 7→ (i + δi, p + δp,K + δK) is a sum of the following
deformations.

(I) Deformation of K, not changing i and p:

(20) δi = δp = 0, δK = dΛ− Λd

with generator Λ : C ′′•exact → C ′′•−2
K−exact, extended by zero to the first and third

terms of the Hodge decomposition (15).
(II) Deformation of i, not changing p, and changing K in the “minimal” way:

(21) δi = dI + Id′, δp = 0, δK = −I p
with I : C ′• → C ′′•−1

K−exact.
(III) Deformation of p, not changing i, and changing K in the “minimal” way:

(22) δi = 0, δp = d′P + Pd, δK = −i P
with P : C ′′•exact → C ′•−1, extended by zero as in (I).

(IV) Deformation, induced by an (infinitesimal) automorphism of C ′, d:

(23) δi = i χ, δp = −χ p, δK = 0

with χ : C ′• → C ′• a chain map.

In other words, if I is the space of all induction data C  C ′, then the tangent
space to I at a point (i, p,K) splits as a direct sum of four subspaces described by
(20–23):

T(i,p,K)I = T I(i,p,K)I⊕ T II(i,p,K)I⊕ T III(i,p,K)I⊕ T IV(i,p,K)I

Note that in case of retraction to cohomology, C•  H•(C), deformations (23)
are prohibited by Assumption 4.3.

Lemma 4.4.

(a) The space of induction data C•  H•(C) satisfying Assumption 4.3 is con-
tractible.

(b) The space I of induction data C•  C ′• for a general deformation retract C ′

(without making Assumption 4.3), is homotopic to Aut(C ′•, d′).
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Proof. For (a), note that induction data C•  H•(C) (and the corresponding
Hodge decompositions) are in one-to-one correspondence with pairs of a right split-
ting of the short exact sequence C•exact ↪→ C•closed � H•(C) and a left splitting of the

short exact sequence C•closed ↪→ C•
d−→ C•+1

exact. Thus, it is contractible as a product
of contractible spaces (of one-sided inverses of linear inclusions and projections).

For (b), note that once chain maps i, p satisfying p◦ i = id are fixed, the space of
choices of K is contractible, by applying (a) to ker p 0. Thus, I contracts onto the
space of choices of pairs (i, p). Fixing some (i0, p0), one can obtain any other (i, p)
by applying to (i0, p0) transformations (21), (22) (note that these formulae describe
not just infinitesimal but also finite transformations; the space of generators I, P
is a product of Hom spaces of linear spaces and is therefore contractible), and
composing with an automorphism of C ′• as a complex (which is the finite version
of (23)). This proves (b). �

Point (a) is particularly important for us when discussing quantization, as it will
imply that the space of choices of gauge-fixing is contractible.

5. Cellular abelian BF theory on a closed manifold

5.1. Classical theory in BV formalism. In this section we introduce the BV
theory for the case at hand. This means an odd (degree −1) graded symplectic
space together with an even (degree 0) function S that Poisson commutes with
itself. Such a function is usually called the BV action and the condition {S, S} = 0
is called the classical master equation. In addition, we define the second order
differential operator ∆, called the BV Laplacian, that generates the Poisson bracket
as the defect of the Leibniz identity and we show that the BV action also satisfies
the quantum master equation 1

2{S, S} − i~∆S = 0, where ~ is a parameter. The
“Planck constant” ~ can be interpreted as the distance from the classical theory
(or the strength of quantization). If ~ is a nonzero real number, instead of a
formal parameter, the quantum master equation may also be equivalently written

as ∆e
i
~S = 0.

Let M be a closed oriented piecewise-linear n-manifold and X a cellular decom-
position of M .

Let also E be a rankm vector bundle overM endowed with a fiberwise density µE
and with a flat connection ∇E , such that the parallel transport by ∇E preserves the
density. One can view E as the associated vector bundle P×GRm for some principal
flat G-bundle P with G = SL±(m,R) the group of m × m real matrices with
determinant 1 or−1.19 By abuse of notations, let E also stand for the corresponding
SL±(m)-local system on X (i.e. we will suppress the subscripts in EX and E∗X∨).

The space of fields is a Z-graded vector space F•, with degree k component given
by

(24) Fk = Ck+1(X,E)⊕ Ck+n−2(X∨, E∗)

It is concentrated in degrees k ∈ {−1, . . . , n − 1} ∪ {2 − n, . . . , 2} and is equipped
with a degree −1 constant symplectic structure (the BV 2-form)

(25) ω : Fk ⊗F1−k → R

19A special case of this situation is a flat Euclidean vector bundle, i.e. with fiberwise scalar
product (, )E and a flat connection preserving it. In this case the structure group reduces to

O(m) ⊂ SL±(m).
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coming from the intersection pairing, see (26) below.
Introduce the superfields – the shifted identity maps pre-composed with projec-

tions from F to the two terms in the r.h.s. of (24):

A : F → C•(X,E)[1]→ C•(X,E), B : F → C•(X∨, E∗)[n−2]→ C•(X∨, E∗)

One can also regard A and B as coordinate functions on F taking values in cochains
of X and X∨, respectively, so that the pair (A,B) is a universal coordinate on F
(i.e. a complete coordinate system).

We write A =
∑
e⊂X e

∗Ae – sum over cells of X of “local” superfields Ae :
F → Eė, taking values in the fiber of the local system over the barycenter ė
of the corresponding cell; e∗ ∈ C•(X,Z) stands for the standard basis integral
cochain associated to the cell e. Similarly, for the second superfield one has B =∑
e∨⊂X∨ Be∨(e∨)∗, with local components Be∨ : F → E∗ė∨ . (Note that our con-

vention for ordering the cochain and the superfield component is different between
superfields A and B.) Internal degrees of field components are |Ae| = 1 − dim e,
|Be∨ | = n − 2 − dim e∨; in particular, the total degree (cellular cochain degree +
internal degree) for the superfield A is 1 and for B is (n− 2).

In terms of superfields, the symplectic form (25) is defined as

(26) ω = 〈δB, δA〉 ∈ Ω2(F)−1

where δ is the de Rham differential on the space of fields20 and 〈, 〉 : Cn−•(X∨, E∗)⊗
C•(X,E)→ R is the inverse of the intersection pairing (8) for chains.21 The sym-
plectic form ω induces the degree +1 Poisson bracket {, } and the BV Laplacian22

∆ =
〈
∂
∂A ,

∂
∂B

〉
on the appropriate space of functions on F which we denote by

Fun(F). For the purpose of this paper we choose Fun(F) = Ŝym •F∗ – the algebra
of polynomial functions on F completed to formal power series.23

Remark 5.1. We can allow M to be non-orientable as in Remark 2.2: we twist
the B-superfield by the orientation local system Or (which superfield to twist is
an arbitrary choice). In this case the space of fields becomes F = C•(X,E)[1] ⊕
C•(X∨, E∗⊗Or)[n−2] and the intersection pairing depends on a choice of primitive
top class σ ∈ Hn(M,Or).

The BV action of the model is

(27) S = 〈B, dA〉 ∈ Fun(F)0

20 In the language of the variational bicomplex, δ is the “vertical differential” mapping

Ωp(F) → Ωp+1(F). It is formal and we stress its distiction from the “horizontal differential”
d – the cellular coboundary operator on cochains of X which does care about the adjacency of

cells in X.
21 We will use the sign convention where the graded binary operation 〈, 〉 is understood as

taking a cochain on X∨ from the left side and a cochain on X from the right side. In other words,

the mnemonic rule is that, for the sake of Koszul signs, the comma separating the inputs in 〈b, a〉
carries degree −n. This pairing is related to the one which operates from the left on two inputs

coming from the right by 〈b, a〉 = (−1)n deg b〈b, a〉′.
22 Recall that, generally, to define the BV Laplacian on functions (as opposed to half-densities)

on an odd-symplectic manifold M, one needs a volume element on M [31]. In our case, the

space of fields is linear, and so possesses a canonical (constant) volume element determined up
to normalization. Since the BV Laplacian is not sensitive to rescaling the volume element by a

constant factor, we have a preferred BV Laplacian.
23In the context of classical abelian BF theory we could instead work with smooth functions

on F .
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where d is the coboundary operator in C•(X,E) twisted by the local system. It
satisfies the classical master equation

{S, S} = 0

Indeed, the left hand side is {S, S} = 2〈B, d2A〉 = 0. Moreover, one has ∆S =
StrC•(X,E)d = 0 (the supertrace of the coboundary operator vanishes since d
changes degree). This implies that the quantum master equation is also satisfied:

(28) ∆e
i
~S = 0 ⇔ 1

2
{S, S} − i~∆S = 0

The Hamiltonian vector field corresponding to S is the degree +1 linear map
dX + dX∨ : F → F dualized to a map F∗ → F∗ and extended to Fun(F) as a
derivation:

Q = {S, •} = 〈dA, ∂
∂A
〉+ 〈dB, ∂

∂B
〉

The Euler-Lagrange equations24 for (27) read dA = 0, dB = 0. The space of
solutions

EL = C•closed(X,E)[1]⊕ C•closed(X∨, E∗)[n− 2] ⊂ F
is coisotropic in F and its reduction

EL = H•(X,E)[1]⊕H•(X∨, E∗)[n− 2] = H•(M,E)[1]⊕H•(M,E∗)[n− 2]

is independent of the cellular decomposition X. We will use it as the space of
residual fields for quantization (in the sense that the partition function will be
defined using the framework of effective BV actions, as a fiber BV integral over the
space of fields as fibered over residual fields, cf. [28, 3, 2, 5]).

5.2. Quantization. Our goal in this section is to construct the partition function
Z for cellular abelian BF theory on a closed manifold M with cell decomposition
X, such that Z is invariant under subdivisions of X. The partition function will
be constructed as a half-density on the space of residual fields EL via a finite-
dimensional fiber BV integral.

Recall that, for a finite dimensional graded vector space W •, one can define the
determinant line

Det W • :=
⊗

k

(
∧dimWk

W k
)(−1)k

where for L a line (i.e. a 1-dimensional vector space), L−1 denotes the dual line
L∗. If furthermore W • is based, with wk = (wk1 , . . . , w

k
Nk

) a basis in W k, then one
has an associated element

(29) µ =

( ⊗

k even

wk1 ∧ · · · ∧ wkNk

)
⊗
(⊗

k odd

(wk1 )∗ ∧ · · · ∧ (wkNk)∗
)

∈ Det W •

where (wk)∗ is the basis in (W ∗)−k = (W k)∗ dual to wk.
Tensoring the cellular basis in Ck(X;Z) with the standard basis in Rm (or any

unimodular basis, i.e. one on which the standard density on Rm evaluates to 1), we
obtain a preferred basis in C•(X,E). Associated to it by the construction above is
an element µC ∈ Det C•(X,E) (well-defined modulo sign).

24The Euler–Lagrange equations describe the critical locus of S or, equivalently, the zero locus
of Q.
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Passing to densities (for more details see Appendix A and [29]), we have a canon-
ical isomorphism

(30) Det C•(X,E) /{±1} ∼= Dens C•(X,E)[1]
(∗)⊗2

−−−→ Dens F
√∗−−→ Dens

1
2F

where on the r.h.s. we have half-densities on F . The middle isomorphism comes
from the fact that, for W • a graded vector space,

(31) Det (W ⊕W ∗[−1]) ∼= (Det W )⊗2

Denote by µ
1/2
F ∈ Dens

1
2F the image of µC under the isomorphism (30).25

One can combine the action S with µ
1/2
F into a (coordinate-dependent) half-

density e
i
~Sµ

1/2
F which, as a consequence of (28), satisfies the equation

∆can(e
i
~Sµ

1/2
F ) = 0

where ∆can is the canonical BV Laplacian on half-densities [19, 32].26

5.2.1. Gauge fixing, perturbative partition function. Choose representatives of coho-
mology classes i : H•(M,E) ↪→ C•closed(X,E) and a right-splitting K : C•exact(X,E)→
C•−1(X,E) of the short exact sequence

C•closed(X,E)→ C•(X,E)
d−→ C•+1

exact(X,E)

Thus we have a Hodge decomposition

(32) C•(X,E) = i(H•(M,E))⊕ C•exact(X,E)︸ ︷︷ ︸
C•closed(X,E)

⊕ im(K)

We extend the domain of K to the whole of C•(X,E) by defining it to be zero on
the first and third terms of (32).

Hodge decomposition (32) together with the dual decomposition27

(33) C•(X∨, E∗) = i∨(H•(M,E∗))⊕ C•exact(X
∨, E∗)⊕ im(K∨)

gives the symplectic splitting

F = i(EL)⊕Ffluct

and produces the Lagrangian subspace L = im(K)[1]⊕ im(K∨)[n− 2] ⊂ Ffluct.
For half-densities on F , we have

Dens
1
2F ∼= Dens

1
2 EL ⊗ Dens

1
2Ffluct︸ ︷︷ ︸

∼=Dens L

We are using the general fact [22] that, for a Lagrangian subspace of an odd-

symplectic space L ⊂ V , one has a canonical isomorphism Dens
1
2V → DensL

arising from (31).

25The superscript in µ
1/2
F stands for both the weight of the density and for the square root.

26The canonical BV Laplacian is related to the BV Laplacian ∆ = ∆µF on functions by

∆can(f µ
1/2
F ) = ∆(f)µ

1/2
F , where f ∈ Fun(F).

27Here the second term on the r.h.s. is nondegenerately paired to the third term on the
r.h.s. of (32) by Poincaré duality and vice versa; the first terms are paired between themselves.

The map K∨k : Ck(X∨, E∗) → Ck−1(X∨, E∗) is defined as the dual (transpose) of Kn−k+1 :

Cn−k+1(X,E)→ Cn−k(X,E), up to the sign (−1)n−k.
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Remark 5.2. We are free to rescale the reference half-density µ
1/2
F on fields by a

factor ξ~. The requirement of having the partition function invariant under subdi-
visions of X can be achieved, as we will see in Section 5.2.3, by introducing such a
factor ξ~ ∈ C, which is a certain extensive28 product of powers of i, ~ and 2π.

According to the BV quantization scheme, the gauge-fixed partition function on
X is defined as the fiber BV integral29

(34) Z(X,E) =

∫

L
e
i
~S(i(Ares)+Afluct,i

∨(Bres)+Bfluct) ξ~ µ
1/2
F =

=

∫

L
e
i
~S(Afluct,Bfluct) ξ~ µ

1/2
F ∈ C⊗Dens

1
2 (EL) ∼= C⊗Det H•(M,E) /{±1}

where Ares, Bres are the superfields for EL and Afluct, Bfluct are the superfields for
Ffluct. By BV-Stokes’ theorem for fiber BV integrals, the value of the integral is
independent of the choice of i,K. A special feature of the model at hand is that
the value of the integral is a constant (coordinate-independent) half-density.

Remark 5.3. A Berezin measure m on a superspace V = (V even, V odd) is not
exactly the same as a density µ on V . Indeed, for a parity-preserving automor-

phism of V , g =

(
geven 0

0 godd

)
, with geven ∈ GL(V even), godd ∈ GL(V odd), the

Berezin integral behaves as∫

V

m · f =

∫

V

|det geven| · (det godd)−1 m︸ ︷︷ ︸
=:(g−1)∗m

·g∗f

for f ∈ Fun(V ) an integrable function. On the other hand, a density on V trans-
forms as

µ 7→ |det geven| · | det godd|−1 µ

(see Appendix A). Thus, a Berezin measure changes its sign when acted on by an
automorphism which changes the orientation of V odd, whereas a density does not.
In this work we are calculating partition functions modulo signs, so we can identify
Berezin measures with densities.

Integral (34) is a conditionally convergent30 Gaussian integral over a finite di-
mensional superspace; we will show in Section 5.2.3, Proposition 5.7, that its value
is

(35) Z(X,E) = ξH
•

~ τ(X,E)

where τ(X,E) is the Reidemeister torsion (or, equivalently, “R-torsion”, see, e.g.

[25, 34]) of the CW-complex X with local system E and the coefficient ξH
•

~ ∈ C
depends only on Betti numbers. Note that the R-torsion for a non-acyclic local
system is indeed an element of Det H•(M,E) /{±1}, not a number. By the com-
binatorial invariance property of the R-torsion, the partition function (34) depends
only on the manifold M and the local system E, but not on a particular cellular
decomposition X.

28That is, a product over cells of X of certain universal elementary factors, depending only on
the dimension of the cell, see Lemma 5.6 below.

29See [5, Section 2.2.2] for details on fiber BV integrals.
30Convergence is due to the fact that, by construction, the point (A,B) = 0 is an isolated

critical point of the action S restricted to L.
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In the special case of an acyclic local system, H•(M,E) = 0, the determinant
line Det H• ∼= R is the trivial line and the partition function (34) is an actual
number, defined modulo sign.

Result (35) can be viewed as a combinatorial version, generalized to possibly non-
acyclic local systems, of the result of [30], where analytic torsion was interpreted
as a functional BV integral for abelian BF theory.

Remark 5.4. We note, anticipating the discussion of the non-abelian case in
Section 8.3, that the partition function (35) is invariant under simple-homotopy
equivalence of cellular complexes (the equivalence relation generated by elementary
expansions and collapses, see Definition 8.18 below for a reminder), since the Rei-
demeister torsion is a simple-homotopy invariant, see [25].

5.2.2. The propagator. Denote by p1, p2 the cellular projections from the product
CW-complex X ×X∨ (a cellular decomposition of M ×M) to the first and second
factor, respectively. Let K ∈ Cn−1(X ×X∨, p∗1E⊗ p∗2E∗) be the parametrix for the
operator K, i.e. the image of K under the isomorphism

End(C•(X,E))−1︸ ︷︷ ︸
3 K

'
n−1⊕

k=0

Ck(X,E)⊗Cn−k−1(X∨, E∗) ' Cn−1(X ×X∨, p∗1E ⊗ p∗2E∗)︸ ︷︷ ︸
3 K

Here in the first isomorphism we use the Poincaré duality to identify Cn−k−1(X∨, E∗)
with the dual of Ck+1(X,E). Then K is the propagator of the theory, i.e. (up to
a factor of i~) the normalized expectation value of the product of evaluations of
fluctuations of fields at two cells:

(36) i~K(e, e∨) =� Afluct(e) ·Bfluct(e
∨)�:=

=
1

Z

∫

L
e
i
~S(A,B)Afluct(e) ·Bfluct(e

∨) ξ~µ
1/2
F ∈ Eė ⊗ E∗ė∨

Here e ⊂ X, e∨ ⊂ X∨ are two arbitrary cells; Eė, E
∗
ė∨ are the fibers of E, E∗ over

the corresponding barycenters; Afluct(e) : Ffluct → Eė and Bfluct(e
∨) : Ffluct → E∗ė∨

are the fluctuations of fields evaluated at the cells e, e∨. Propagator (36) between
two cells vanishes unless the relation dim e+dim e∨ = n−1 holds. Let furthermore
[hα] be a basis in cohomology H•(M,E), [h∨α] the corresponding dual basis in
Hn−•(M,E∗), and let χα = i[hα], χ∨α = i∨[h∨α] be the representatives of cohomology
in cochains. Then, due to the equations (13) satisfied by K, we have the following
equations satisfied by the the parametrix:

(37) dX×X∨K =
∑

e⊂X
e∗ ⊗ κ(e)∗ ⊗ 1−

∑

α

χα ⊗ χ∨α,
∑

e′⊂X
K(e,κ(e′))·χα(e′) = 0,

∑

e′⊂X
χ∨α(κ(e′))·K(e′, e∨) = 0,

∑

e′⊂X
K(e,κ(e′))·K(e′, e∨) = 0

Here 1 ∈ Eė ⊗ E∗ ˙κ(e)
is the element corresponding to the identity id ∈ End(Eė);

κ(e′) is the cell dual to e′, as in Section 2. In the last three equations implicit in
the notations is the convolution tr : E∗ ˙κ(e′)

⊗ Eė → R.

5.2.3. Fixing the normalization of densities. Now we will focus on the factors i,
~ and 2π coming from the Gaussian integral (34) and will fix the normalization

factors ξ~, ξH
•

~ in (34,35).
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The model Gaussian integrals over a pair of even or odd variables are:

(38)

∫

R2

dx dy e
i
~yx = 2π~,

∫

ΠR2

DθDη e i~ηθ =
i

~
Note that the first integral is conditionally convergent. In the second integral ΠR2

stands for the odd plane, with Grassmann coordinates θ, η; we write “D” in Dθ,
Dη to emphasize that the Berezin integration measure is not a differential form.

More generally, for B an even non-degenerate bilinear form on superspace RN |N ′ ,
we have
(39)
∫

R2N|2N′

N∏

j=1

dxjeven dy
j
even ·

N ′∏

j′=1

Dxj
′

odd Dy
j′

odd e
i
~B(~y,~x) = (2π~)N

(
i

~

)N ′
Sdet(B)−1

Note that, if Beven, Bodd denote the even-even and odd-odd blocks of the matrix of

B, i.e., if B =

(
Beven 0

0 Bodd

)
, then we have Sdet(B) = detBeven

detBodd
.

Therefore, for the fiber BV integral in (34), without the factor ξ~ (which is yet
to be specified), we have the following.

Lemma 5.5.

(40)

∫

L
e
i
~Sµ

1/2
F = ζ~τ(X,E)

where the factor is

(41) ζ~ = (2π~)
1
2 dimLeven

(
i

~

) 1
2 dimLodd

= (2π~)dim im(K)odd

(
i

~

)dim im(K)even

Proof. Choose some bases for all terms in the r.h.s. of (32): a basis cH in co-
homology H•(X,E), cex in C•exact and ccoex in im(K). We can assume that the
product of the corresponding coordinate densities agrees with the density µC ∈
Det C•(X,E)/{±1} associated to the cellular basis in cochains:

(42) µH · µex · µcoex = µC

This can always be arranged, e.g., by rescaling one of the basis vectors in cex.
We have dual bases c∨H , c

∨
ex, c

∨
coex on the terms of the dual Hodge decomposition

(33) for C•(X∨, E∗). The corresponding densities µ∨H ∈ Dens H•(X∨, E∗)[n − 2],
µ∨ex ∈ Dens C•ex(X∨, E)[n− 2], µ∨coex ∈ Dens im(K∨)[n− 2] are related to the ones
on the l.h.s. of (42) by

µ∨H = µH , µ∨coex = µex, µ∨ex = µcoex

The integral on the l.h.s. of (40) yields

(43)

∫
e
i
~ 〈Bcoex,dAcoex〉DAcoex︸ ︷︷ ︸

µcoex

DBcoex︸ ︷︷ ︸
µ∨coex

µH = ζ~ · µH · SdetC•coex→C•+1
ex

(d)

where the super-determinant appearing on the r.h.s.,

Sdet(d) =

n−1∏

k=0

(detCkcoex→Ck+1
ex

(d))(−1)k

is the alternating product of determinants of matrices of isomorphisms d : Ckcoex(X,E)→
Ck+1

ex (X,E) with respect to the chosen bases ccoex, cex. In the last two terms on
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the r.h.s. of (43) one recognizes one of the definitions of R-torsion. The coefficient
ζ~ arises as in (39). �

Consider the Hilbert polynomial, packaging the information on dimensions of
cochain spaces into a generating function:

(44) PC•(t) =

n∑

k=0

tk · dimCk(X,E)

and the polynomial, counting dimensions of K-exact cochains by degree:

Q(t) =

n∑

k=0

tk · dim im(K)k

Hodge decomposition (32) implies the relation PC•(t) = PH•(t) + (1 + t) · Q(t),
or equivalently

(45) Q(t) =
PC•(t)− PH•(t)

1 + t

where

(46) PH•(t) =

n∑

k=0

tk · dimHk(M,E)

Note that PC•(−1) = PH•(−1) is the Euler characteristic χ(C•(X,E)) = rk(E) ·
χ(M), and hence there is no singularity on the r.h.s. of (45).

Exponents in (41) can be expressed in terms of values of Q at t = ±1:

(47)

dim im(K)even =
Q(1) +Q(−1)

2
=

1

4
(PC•(1)−PH•(1))+

1

2
(P ′C•(−1)−P ′H•(−1))

dim im(K)odd =
Q(1)−Q(−1)

2
=

1

4
(PC•(1)−PH•(1))− 1

2
(P ′C•(−1)−P ′H•(−1))

where prime stands for the derivative in t (emerging from evaluating Q(−1) by
applying L’Hôpital’s rule to the r.h.s. of (45)).

Lemma 5.6. One can split the coefficient in (40) as

(48) ζ~ =
ξH
•

~
ξ~

with

(49) ξ~ =

n∏

k=0

(ξk~)dimCk(X,E), ξH
•

~ =

n∏

k=0

(ξk~)dimHk(M,E)

where we denoted

(50) ξk~ = (2π~)−
1
4 + 1

2 k (−1)k−1

(e−
πi
2 ~)

1
4 + 1

2 k (−1)k−1

Proof. Indeed, (41) together with (47) implies that one can write ζ~ = ξH
•

~ /ξ~ with

ξ~ = ξC
•

~ = (2π~)−
1
4PC• (1)+ 1

2P′C• (−1)
(
e−

πi
2 ~
) 1

4PC• (1)+ 1
2P′C• (−1)

and ξH
•

~ given by the same formula, replacing cochains by cohomology. Then
formulae (49) follow immediately from the definitions (44,46) of PC•(t), PH•(t). �
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Note that ξ~ is a product over cells of X of factors depending only on dimension
of the cell. We define the normalized density

µ~ := ξ~ · µ ∈ C⊗Det C•(X,E)/{±1}
which can be seen as a product of normalized elementary densities for individual
cells of X,

(51) µ~ =
∏

e⊂X
(ξdim e

~ )rkE · DAe︸ ︷︷ ︸
=:D~Ae

with DAe ∈ Dens Eė[1− dim e] the elementary density for the cell e, associated to
a unimodular basis in the fiber of E over the barycenter ė of e.

On the other hand, ξH
•

~ depends exclusively on Betti numbers of cohomology,
and as such is manifestly independent under subdivisions of X. In particular, for
an acyclic local system, ξH

•
~ = 1. Summarizing this discussion, the result (40) can

be rewritten as follows.

Proposition 5.7. The perturbative partition function (34) with normalization of
integration measure fixed by (51) is

(52) Z(X,E) =

∫

L
e
i
~S(A,B)(µ~

F )1/2 = ξH
•

~ · τ(X,E) ∈ C⊗Dens
1
2 (EL)

with ξH
•

~ given by (49), (50). Here the normalized half-density on the space of fields

is (µ~
F )1/2 =

√
(µ~)⊗2|L = ξ~ ·µ1/2

F . The partition function Z is independent of the
details of gauge-fixing and is invariant under subdivisions of X.

Formula (52) is indeed just the formula (35), where we have identified the factor
in front of the torsion by (49).

For the later use, alongside with the notation D~Ae introduced in (51), we also
introduce the notation

(53) D~Be∨ := (ξn−dim e∨

~ )rkEDBe∨
– the normalized elementary density for the field B, associated to a cell e∨ ⊂ X∨ of
the dual CW-complex; DBe∨ ∈ DensE∗ė∨ [n− 2− dim e∨] is the elementary density
associated to a unimodular basis in the fiber of E∗ over the barycenter of e∨. With
these definitions, for the normalized half-density on bulk fields, appearing in (52),
we have

(µ~
F )1/2 =

∏

e⊂X
(D~Ae)

1/2(D~Bκ(e))
1/2

with κ(e) ⊂ X∨ the dual cell for e, as in Section 2.

Remark 5.8 (Phase of the partition function). By the discussion above, in the case
of a non-acyclic local system E, the partition function Z(X,E) attains a nontrivial
complex phase of the form eπis/8 ∈ U(1)/{±1}, with

(54) s =
∑

k

(−1 + 2k (−1)k) · dimHk(M,E) mod 8

(we do not take it mod 16, since we anyway only define the partition function modulo
sign). This looks surprising, since the model integrals (38) contain simpler phases

(integer powers of e
πi
2 ). The complicated phase arises because we split the factor ζ~

in (40), which contains only a simple phase, into a factor with cellular locality and
a factor depending only on cohomology (48).
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Remark 5.9. For a closed manifold of dimension dimM = 3 mod 4, the phase
of the partition function is trivial, eπis/8 = ±1, as follows from (54) and from
Poincaré duality.

Remark 5.10 (Normalization ambiguities). One can change the definition (49) of
ξ~ by a factor exp(ν P(−1)︸ ︷︷ ︸

χ(C•(X,E))

) with ν ∈ C a parameter. Performing the rescaling

(55) ξ~  eνPC• (−1) · ξ~, ξH
•

~  eνPH• (−1) · ξH•~

(or, equivalently, redefining ξk~  ξk~ · e(−1)kν) does not change the quotient (48).
For example, one can choose ν = iπ

8 , which has the effect of changing the phase of

the partition function of Remark 5.8 from eπis/8 to eπis
′/4 with

s′ =
∑

k

(
−1− (−1)k

2
+ k (−1)k

)
· dimHk(M,E) mod 4

Another ambiguity in the phase of Remark 5.8 stems from the possibility to change
values of the model integrals (38) by some integral powers of e2πi, which results in
the shift of s in (54) by a multiple of 4 ·∑k dimHk(M,E). Since we only consider
s mod 8, this shift can be viewed as a special case of the transformation (55), with
ν = r · iπ2 for some r ∈ Z.

6. Cellular abelian BF theory on manifolds with boundary:
classical theory

6.1. Classical theory on a cobordism. Let M be a compact oriented piecewise-
linear n-manifold with boundary ∂M = MintMout. Overline indicates that we take
Min with the orientation opposite to that induced from M , whereas the orientation
of Mout agrees with that of M . Let (E,µE ,∇E) be a flat vector bundle over M of
rankm with a horizontal fiberwise density µE , and let X be a cellular decomposition
of M .

We define the space of fields to be the graded vector space

(56) F = C•(X,EX)[1]⊕ C•(X∨, E∗X)[n− 2]

where X∨ is defined as in Section 2.3, EX is the cellular SL±(m)-local system on
X induced by the vector bundle E, and E∗X is the dual local system on the dual
cellular decomposition (cf. Section 3.1). We will suppress the local system in the
notation for fields onwards: cochains on X are always taken with coefficients in
EX , cochains on X∨ – with coefficients in E∗X .

The space of fields is equipped with a constant pre-symplectic structure of degree
−1,

ω : Fk ⊗F1−k → R
which is degenerate if and only if ∂M is non-empty. We construct ω by combining
the non-degenerate pairing

(57) Cn−•(X∨, X∨in)⊗ C•(X,Xout)→ R

(the inverse of intersection pairing (6)) with the zero maps

Cn−•(X∨)⊗ C•(Xout)
0−→ R, Cn−•(X∨in)⊗ C•(X)

0−→ R
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to a pairing

(58) 〈, 〉 : Cn−•(X∨)⊗ C•(X)→ R

In terms of superfields

(59) A : F → C•(X), B : F → C•(X∨)

the presymplectic form is

ω = 〈δB, δA〉 ∈ Ω2(F)−1

The space of boundary fields is defined as

(60) F∂ = C•(X∂)[1]⊕ C•(X∨∂ )[n− 2]

(with coefficients in the pullback of the local system to the boundary); a (non-
degenerate) degree 0 symplectic form (the BFV 2-form) on F∂ is given by

ω∂ = δα∂ = 〈δBout, δAout〉out − 〈δBin, δAin〉in ∈ Ω2(F∂)0,(61)

α∂ = 〈Bout, δAout〉out − 〈δBin, Ain〉in ∈ Ω1(F∂)0(62)

where 〈, 〉in/out : Cn−1−k(X∨in/out) ⊗ Ck(Xin/out) → R is the inverse intersection

pairing on the in/out boundary. Boundary superfields A∂ = (Ain, Aout), B∂ =
(Bin, Bout) in the formulae above are defined similarly to (59). The projection

(63) π : F � F∂
is defined as π = ι∗ ⊕ (ι∨)∗, where ι∨ is defined to be ι+ for in-boundary and
ι− for the out-boundary (cf. Section 2.2 for definition of cellular inclusions ι± :
Xin/out → X), i.e. cochains of X are restricted to X∂ , whereas cochains of X∨ are

first restricted to ∂M̃ (i.e. M with a collar at Mout removed and a collar at Min

added) and then parallel transported, using holonomy of E∗, to ∂M , cf. (11,12) in
Section 3.1.

We define the action as

(64) S = 〈B, dA〉+ 〈(ι∨)∗B, ι∗A〉in ∈ Fun(F)0

Since ω is degenerate in the presence of a boundary, one cannot invert it to
construct a Poisson bracket on F . Instead, following the logic of the BV-BFV
formalism [4], we introduce a degree +1 vector field Q as the map dX+dX∨ : F → F
dualized to a map F∗ → F∗ and extended by Leibnitz rule as a derivation on
Fun(F):

Q = 〈dA, ∂
∂A
〉+ 〈dB, ∂

∂B
〉 ∈ X(F)1

(i.e. QA = dA, QB = dB, where Q acts on functions on F while d acts on cochains
where the superfields take values). This vector field is cohomological, i.e. Q2 = 0,
and projects to a cohomological vector field on F∂ ,

π∗Q = Q∂ = 〈dA∂ ,
∂

∂A∂
〉+ 〈dB∂ ,

∂

∂B∂
〉 ∈ X(F∂)1

The projected vector field on the boundary is Hamiltonian w.r.t. to the BFV 2-form
ω∂ , with degree 1 Hamiltonian

(65) S∂ = 〈Bout, dAout〉out − 〈Bin, dAin〉in ∈ Fun(F∂)1

– the BFV action (i.e. the relation is: ιQ∂ω∂ = δS∂). On the other hand, Q itself,
instead of being the Hamiltonian vector field for S, satisfies the following.
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Proposition 6.1. The data of the cellular abelian BF theory satisfy the equation

(66) δS = ιQω − π∗α∂

This relation is a consequence of the following.

Lemma 6.2 (Cellular Stokes’ formula).

(67) (−1)n+deg b〈db, a〉+ 〈b, da〉 = 〈(ι∨)∗b, ι∗a〉out − 〈(ι∨)∗b, ι∗a〉in

with a ∈ Ck(X), b ∈ Cn−k−1(X∨) any cochains.

Proof. For aout ∈ Ck(Xout), denote ãout ∈ Ck(X) the extension of aout by zero on

cells of X −Xout. Likewise denote b̃in an extension of a cochain on X∨in to X∨ by
zero on cells of X∨ −X∨in. Define two degree 1 maps
(68)
φ : Ck(Xout) → Ck+1(X,Xout) , φ∨ : Ck(X∨in) → Ck+1(X∨, X∨in)

aout 7→ dãout − d̃aout b 7→ db̃in − d̃bin

Note that φ, φ∨ are chain maps:

dφ+ φd = 0, dφ∨ + φ∨d = 0

and induce on the level of cohomology the standard homomorphisms φ∗ : H•(Mout)→
H•+1(M,Mout), (φ∨)∗ : H•(Min) → H•+1(M,Min) – connecting homomorphisms
in the two long exact sequences of cohomology of pairs (M,Mout) and (M,Min).

Next, we have

〈b, φ(aout)〉 = 〈b|out, aout〉out, 〈φ∨(bin), a〉 = −(−1)n+deg b〈bin, a|in〉in

— both right hand sides are sums of intersections in cells adjacent to the boundary
and result in boundary terms on the left.31

To prove (67), we calculate

(−1)n+deg b+1〈db, a〉 = (−1)n+deg b+1〈d(b− b̃|in) + φ∨(b|in) , a− ã|out〉 =

= 〈b− b̃|in , d(a− ã|out)〉int + 〈b|in, a|in〉in
= 〈b, da〉 − 〈b, φ(a|out)〉+ 〈b|in, a|in〉in

= 〈b, da〉 − 〈b|out, a|out〉out + 〈b|in, a|in〉in

We put the subscript “int” for the non-degenerate (inverse) intersection pairing
(57) for which the respective coboundary maps dX and dX∨ are mutually adjoint
(up to a sign). �

31We are using the natural notations a|in, a|out for the components of the image of a cochain
a under restriction ι∗ : C•(X)→ C•(Xin)⊕C•(Xout), and likewise b|in, b|out are the components

of the image of b under (ι∨)∗ : C•(X∨)→ C•(X∨in)⊕ C•(X∨out).
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Proof of Proposition 6.1. Indeed, let us calculate the differential of the action (64)
using cellular Stokes’ theorem (67):

δS =

= 〈δB, dA〉− 〈B, dδA〉︸ ︷︷ ︸
−〈dB,δA〉+〈B|out,δA|out〉out−〈B|in,δA|in〉in

+〈δB|in, A|in〉in−〈B|in, δA|in〉in

= 〈δB, dA〉+ 〈dB, δA〉︸ ︷︷ ︸
ιQω

−〈B|out, δA|out〉out + 〈δB|in, Ain〉in︸ ︷︷ ︸
−π∗α∂

�

Remark 6.3. The boundary term in the action (64) was introduced so that equation
(66) is satisfied for the boundary primitive 1-form (62). The latter is chosen so as
to agree with A-polarization for the out-boundary and B-polarization for the in-
boundary, which we are going to use in quantization of the model.

6.2. Euler-Lagrange spaces, reduction. The Euler-Lagrange subspaces in F ,
F∂ are defined as zero-loci of Q, Q∂ respectively:

EL = C•closed(X)[1]⊕C•closed(X∨)[n−2], EL∂ = C•closed(X∂)[1]⊕C•closed(X∨∂ )[n−2]

The respective EL moduli spaces (Q-reduced zero-loci of Q) are independent of the
cellular decomposition:

EL/Q = H•(M)[1]⊕H•(M)[n− 2]

π∗

y

EL∂/Q∂ = EL∂ = H•(∂M)[1]⊕H•(∂M)[n− 2]

The boundary moduli space inherits a (non-degenerate, degree 0) symplectic struc-
ture ω∂ , and the bulk moduli space inherits a degree +1 Poisson structure (cf. [4]),
with symplectic foliation given by fibers of π∗, which are isomorphic to

(π∗)−1{0} =
H•(M,∂M)

H•−1(∂M)
[1]⊕ H•(M,∂M)

H•−1(∂M)
[n− 2]

Here quotients are over the image of the connecting homomorphism in the long
exact sequence in cohomology of the pair (M,∂M). Image of π∗ is a Lagrangian
subspace of EL∂ . The Hamilton-Jacobi action S|EL/Q on the bulk moduli space is
identically zero.

We refer the reader to [4] for generalities on Euler-Lagrange moduli spaces in
the BV-BFV framework.

6.3. Classical “A-B” gluing. 32 Let M be an n-dimensional cobordism from M1

to M3, cut by a codimension 1 submanifold M2 into cobordisms M1
MI==⇒ M2 and

M2
MII===⇒ M3 (we use Roman numerals for n-manifolds and arabic numerals for

(n− 1)-manifolds).
Let X be a cellular decomposition of M for which M2 ∩X is a CW-subcomplex.

Thus we have cellular decompositions X1,2,3, XI,II of M1,2,3 and MI,II , respectively.

32“A-B” means that we stay in the setting of cobordisms and only allow attaching out-
boundary (or “A-boundary”, for the polarization we are going to put on it in the quantization

procedure to follow) of one cobordism to in- (or “B”-) boundary of the next one.
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As usual, we assume that XI is of product type near M2 and XII is of product
type near M3. We also have Poincaré dual decompositions X∨1,2,3 of M1,2,3 and

X∨I , X
∨
II of M̃I , M̃II - displaced versions of MI,II (cf. Section 2.3). On the level of

CW-complexes, we have both X = XI ∪X2
XII and X∨ = X∨I ∪X∨2 X∨II .

The space of fields associated to (M,X) is expressed in terms of spaces of fields
for (MI , XI) and (MII , XII) as

F = FI ×F2
FII

– the fiber product w.r.t. the projections FI
πI,2
� F2

πII,2
� FII – “out-part” of

projection (63) for (MI , XI) and “in-part” of projection (63) for (MII , XII), re-
spectively. Recalling that we also have projections to boundary fields associated to
(M1,3, X1,3), we have the following diagram.

F −−−−→ FII
πII,3−−−−→ F3y πII,2

y

FI
πI,2−−−−→ F2

πI,1

y

F1

The presymplectic BV 2-form on F is recovered as the sum of pullbacks of
presymplectic forms on FI and FII .

For the action, we have

S = SI + SII − 〈B2, A2〉
where the third term, associated to the gluing interface (M2, X2), compensates for
the boundary term in SII .

7. Quantization in A/B-polarization

We choose the following Lagrangian fibration of the space of boundary fields:

(69)

F∂ = C•(X∂)[1]⊕ C•(X∨∂ )[n− 2]

p

y

B∂ = C•(Xout)[1]⊕ C•(X∨in)[n− 2]

Notation B∂ comes from “base” of the fibration. Pre-composing with π : F → F∂ ,
we get the projection p ◦ π : F → B∂ . The presymplectic structure ω restricts
to a symplectic (non-degenerate) structure on the fibers of p ◦ π in F . Thus, for
b = (Aout, Bin) ∈ B∂ , the fiber

(70) Fb = π−1p−1{b} ' C•(X,Xout)[1]⊕ C•(X∨, X∨in)[n− 2]

carries the degree −1 symplectic structure ωb = ω|Fb = 〈δBX∨−X∨in , δAX−Xout
〉int

and the BV Laplacian

∆bulk =

〈
∂

∂AX−Xout

,
∂

∂BX∨−X∨in

〉

int

: Fun(Fb)k → Fun(Fb)k+1

satisfying
∆2

bulk = 0
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As in the proof of Lemma 6.2, we are emphasizing the non-degenerate intersection
pairing, and the inverse one, with subscript “int”.

Geometric (canonical) quantization of the space of boundary fields F∂ (with
symplectic structure ω∂ and the trivial prequantum line bundle with global connec-
tion 1-form i

~α∂) w.r.t. the real polarization given by the vertical tangent bundle
to the fibration (69), yields the space of states

(71) H∂ = C⊗ Fun(B∂)

associated to the boundary.

Remark 7.1. The splitting of the space of boundary fields F∂ into contributions
of in- and out-boundary induces a splitting of the space of states as

(72) H∂ = H(B)
in︸ ︷︷ ︸

FunC(C•(X∨in)[n−2])

⊗̂ H(A)
out︸ ︷︷ ︸

FunC(C•(Xout)[1])

where the superscripts (A), (B) stand for the respective polarizations (“A fixed” on
the out-boundary and “B fixed” on the in-boundary). Subscript C corresponds to
taking complex-valued functions.

Remark 7.2. For N a closed (n − 1)-manifold with a cellular decomposition Y ,
one can introduce a pairing between the spaces of states corresponding to A- and

B-polarizations on Y , H(A)
Y ⊗H(B)

Ȳ
→ C given by

(73) (φ(AY ), ψ(BY )) =

∫

B(A)
Y ×B(B)

Y

φ(AY )
(
D~AY e−

i
~ 〈BY ,AY 〉 D~BY

)
ψ(BY )

for a pair of states φ ∈ H(A)
Y = FunC(B(A)

Y ), ψ ∈ H(B)

Ȳ
= FunC(B(B)

Y ), where

BAY = C•(Y )[1], B(B)
Y = C•(Y ∨)[n − 2] are the bases of A- and B-polarizations

on the space FY , respectively. Normalized densities D~AY , D~BY are defined as
products over cells of Y or Y ∨ of respective normalized densities, cf. (51), (53).
We use the bar to denote the orientation reversal33; in these notations, the spaces

appearing on the r.h.s. of (72) are H(B)
in = H(B)

X̄in
and H(A)

out = H(A)
Xout

.34The pairing

(73) will play a role when we discuss the behavior of partition functions under gluing
of cobordisms (Section 7.3, Proposition 7.8) (with N being the gluing interface
between two cobordisms and Y its cellular decomposition). Using the pairing (73)
for N = Min, Y = Xin, the space of states associated to the boundary of a cobordism
(72) can be identified with the Hom-space

(74) H∂ = Hom(H(A)
in ,H(A)

out )

Quantization of boundary BFV action (65) yields

Ŝ∂ = −i~ QB∂ ∈ End(H∂)1, where QB∂ = 〈dAout,
∂

∂Aout
〉+〈dBin,

∂

∂Bin
〉 ∈ X(B∂)1

33 We also understand that the orientation reversing identity map Y → Ȳ acts on states by

complex conjugation φ(AY ) 7→ φ(AY ), ψ(BY ) 7→ ψ(BY ). In particular, we have a sesquilinear

pairing H(A)
Y ⊗H(B)

Y → C (note that here Y has the same orientation in both factors), given by

the formula (73) with ψ replaced by the complex conjugate ψ̄.
34 Recall that X̄in is the CW complex Xin endowed with the orientation induced from the

orientation of X.
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This odd, degree +1 operator on the space of states satisfies

Ŝ2
∂ = 0

Thus, (H, Ŝ∂) is a cochain complex.

Lemma 7.3. The action satisfies the following version of the quantum master
equation modified by the boundary term:

(75)

(
i

~
Ŝ∂ − i~ ∆bulk

)
e
i
~S(A,B) = 0

where the exponential of the action is regarded as an element of FunC(F) ∼= H∂⊗̂Fun(Fb).
(Here we are exploiting the fact that all fibers Fb for different b are isomorphic.)

Proof. 35 First calculate the Poisson bracket (corresponding to the fiber symplectic
structure ωb for some b ∈ B∂) of the action with itself:

1

2
{S, S}ωb = 〈dB − d̃B , dA− d̃A〉int =

= 〈dB, dA〉 = −〈B, d2A〉︸ ︷︷ ︸
0

+〈B|out, dA|out〉out − 〈B|in, dA|in〉in = π∗S∂

Consider the splitting of superfields into B∂-components and “bulk” components
(corresponding to fibers of p ◦ π : F → B∂):

A = Ã|out + (A− Ã|out)︸ ︷︷ ︸
Abulk

, B = B̃|in + (B − B̃|in)︸ ︷︷ ︸
Bbulk

Substituting this splitting into the action, we have

S(A,B) = 〈Bbulk, φ(A|out) + dAbulk〉+ 〈B|in, Abulk|in〉in
Next, calculate

QB∂S = −〈Bbulk|out, dA|out〉out + 〈B|in, dAbulk|in〉in = −π∗S∂
Therefore, we have

(
i

~
Ŝ∂ − i~∆bulk

)
e
i
~S(A,B) =

i

~


QB∂S︸ ︷︷ ︸
−π∗S∂

+
1

2
{S, S}ωb
︸ ︷︷ ︸

π∗S∂

−i~∆bulkS︸ ︷︷ ︸
0


 · e

i
~S(A,B) = 0

�

Denote µB∂ = DBin · DAout ∈ Dens B∂ the density on B∂ associated to the
cellular basis. The corresponding normalized density is

µ~
B∂ = D~Bin · D~Aout =

∏

e∨in⊂X∨in

D~Be∨in ·
∏

eout⊂Xout

D~Aeout

with D~Be∨ , D~Ae defined as in Section 5.2.3.

35This Lemma follows from the general treatment in [5], Section 2.4.1. For reader’s conve-
nience, we give an adapted proof here.



A CELLULAR TOPOLOGICAL FIELD THEORY 39

Denoting by µ
1/2
bulk ∈ Dens

1
2Fb the half-density on Fb associated to the cellular

basis, by µ1/2 = µ
1/2
B∂ ·µ

1/2
bulk the half-density on F , and by µ

1/2
~ = (µ~

B∂ )1/2 ·(µ~
bulk)1/2

the corresponding normalized half-density, we can rewrite (75) as

(76)

(
i

~
Ŝcan
∂ − i~ ∆can

bulk

) (
e
i
~S(A,B)µ

1/2
~

)

︸ ︷︷ ︸
∈Hcan

∂ ⊗̂Dens
1
2
,Fun

C (Fb)

= 0

Here Ŝcan
∂ , ∆can

bulk are the half-density (“canonical”) versions of the quantum BFV
action and of the BV Laplacian, defined by

Ŝcan
∂

(
φ · (µ~

B)1/2
)

= Ŝ∂ (φ)·(µ~
B)1/2, ∆can

bulk

(
f · (µ~

bulk)1/2
)

= ∆bulk (f)·(µ~
bulk)1/2

for φ ∈ H and f ∈ Fun(Fb). We denote by

Hcan
∂ = Dens

1
2 ,Fun

C (B∂)

the version of the space of states where states are regarded as half-densities on B∂ ;
the superscript Fun means that we allow half-densities to be depend on coordinates
(i.e. Fun stands for tensoring constant half-densities with functions), the subscript
C stands for tensoring the space of half-densities with complex numbers.

7.1. Bulk gauge fixing. Let us choose a realization of relative cohomology i :

H•(M,Mout)→ C•closed(X,Xout) and a section K of C•(X,Xout)
d−→ C•+1

exact(X,Xout).
We have the Hodge decomposition

(77) C•(X,Xout) = im(i)⊕ C•exact(X,Xout)⊕ im(K)

We extend K by zero on the first two terms on the r.h.s. to a map K : C•(X,Xout)→
C•−1(X,Xout). Denote by p : C•(X,Xout)→ H•(X,Xout) the projection to coho-
mology arising from the decomposition (77). Using Poincaré-Lefschetz duality for
cohomology and cochains, we construct the dual (transpose) maps

i∨ = p∗ : H•(M,Min)→ C•closed(X∨, X∨in),

p∨ = i∗ : C•(X∨, X∨in)→ H•(M,Min),

K∨k = (−1)n−k(Kn−k+1)∗ : Ck(X∨, X∨in)→ Ck−1(X∨, X∨in)

Then we have the dual Hodge decomposition for cochains of the dual complex:

(78) C•(X∨, X∨in) = im(i∨)⊕ C•exact(X
∨, X∨in)⊕ im(K∨)

In other words, we chose some induction data C•(X,Xout)
(i,p,K)
 H•(M,Mout)

and inferred the dual one C•(X∨, X∨in)
(i∨,p∨,K∨)
 H•(M,Min) using the construc-

tion (17).
Hodge decompositions (77,78) together yield the symplectic splitting

Fb = (i⊕ i∨)F res
b ⊕Ffluct

where

(79) F res
b = H•(M,Mout)[1]⊕H•(M,Min)[n− 2]

is our choice for the space of bulk residual fields, and we have a Lagrangian subspace
L = im(K)[1]⊕ im(K∨)[n− 2] ⊂ Ffluct.
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7.2. Perturbative partition function: integrating out bulk fields. Substi-
tuting in the action (64) the decomposition of fields into coordinates on B∂ , bulk
residual fields and fluctuations, we have

S(A,B) = S(Ãout +Ares +Afluct , B̃in +Bres +Bfluct) =

= 〈Bres, φ(Aout)〉 − 〈φ∨(Bin), Ares〉+ 〈Bfluct, φ(Aout)〉−
− 〈φ∨(Bin), Afluct〉+ 〈Bfluct, dAfluct〉 =

= 〈Bres|out , Aout〉out + 〈Bin, Ares|in〉in+

+ 〈Bfluct + K∨φ∨(Bin) , d(Afluct + Kφ(Aout))〉 − 〈φ∨(Bin) , Kφ(Aout)〉

We are suppressing the inclusions i, i∨ in bulk residual fields iAres, i
∨Bres in the

notation.
The fiber BV integral over bulk fields yields

(80) Z(Aout, Bin︸ ︷︷ ︸
b

;Ares, Bres) =

=

∫

L⊂Ffluct⊂Fb
e
i
~S(Ãout+Ares+Afluct , B̃in+Bres+Bfluct)µ

1/2
~ =

= e
i
~ 〈Bres|out,Aout〉out+〈Bin,Ares|in〉in−〈φ∨(Bin) , Kφ(Aout)〉·

·
(∫

L
e
i
~S(Afluct+Kφ(Aout),Bfluct+K∨φ∨(Bin))(µ~

bulk)1/2

)
(µ~
B)1/2

Proposition 7.4. (i) Explicitly, the partition function (80) is

(81) Z(Bin, Aout;Ares, Bres) =

= e
i
~ 〈Bres|out,Aout〉out+〈Bin,Ares|in〉in−〈φ∨(Bin) , Kφ(Aout)〉 ξH

•(M,Mout)
~ ·τ(M,Mout)︸ ︷︷ ︸

∈Dens
1
2Fres

b

·(µ~
B∂ )1/2

∈ Hcan
∂ ⊗̂Dens

1
2 ,Fun

C (F res
b )

where τ(M,Mout) ∈ Det H•(M,Mout)/{±1} is the R-torsion and normaliza-

tion factor is ξ
H•(M,Mout)
~ =

∏n
k=0(ξk~)dimHk(M,Mout) with ξk~ as in (50).

(ii) The partition function satisfies the quantum master equation

(82)

(
i

~
Ŝcan
∂ − i~ ∆can

res

)
Z(Aout, Bin;Ares, Bres) = 0

where ∆res =
〈

∂
∂Ares

, ∂
∂Bres

〉
is the BV Laplacian on Fun(F res

b ) and ∆can
res is

the corresponding BV Laplacian on half-densities.

(iii) Deformation of the induction data C•(X,Xout)
(i,p,K)
 H•(M,Mout) induces

a transformation of the partition function of the form

Z 7→ Z +

(
i

~
Ŝcan
∂ − i~ ∆can

res

)
(· · · )

Proof. Part (i) is a straightforward computation of the Gaussian integral over fluc-
tuations in (80).
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Part (ii) is a consequence of (76) and the BV Stokes’ theorem: one has

(
i

~
Ŝcan
∂ − i~ ∆can

res

)
Z =

∫

L⊂Ffluct

(
i

~
Ŝcan
∂ − i~ ∆can

bulk

)(
e
i
~S(A,B)µ

1/2
~

)
+

+

∫

L⊂Ffluct

i~ ∆can
fluct

(
e
i
~S(A,B)µ

1/2
~

)
= 0

with ∆can
fluct =

〈
∂

∂Afluct
, ∂
∂Bfluct

〉
the BV Laplacian on coordinate-dependent half-

densities on the space of bulk fluctuations.
For part (iii), it suffices to consider a general infinitesimal deformation of the

induction data, given as a sum of deformations of the three types (20,21,22), cf.
Section 4.3, with Λ : C•exact(X,Xout) → im(K)•−2, I : H•(M,Mout) → im(K)•−1,
P : C•exact(X,Xout) → H•−1(M,Mout) the corresponding generators. Using the
explicit formula for the partition function (81), one can check directly that the
effect of such a deformation on Z is given by

Z 7→ Z +

(
i

~
Ŝcan
∂ − i~ ∆can

res

)
R

with

R = Z ·
(
−〈I∨(Bres)|out , Aout〉out + 〈Bin, I(Ares)|in〉in − 〈φ∨(Bin) , Λ̃φ(Aout)〉

)

Here Λ̃ = ΛdK : C•(X,Xout) → C•−2(X,Xout) is the extension of Λ from ex-
act to all cochains, by zero on the first and third terms of (77); the map I∨ :
H•(M,Min)→ im(K)•−1 is defined as (I∨)k = (−1)n−k(Pn−k+1)∗. �

Remark 7.5. Recall that, by Poincaré duality for torsions [24], one can relate the

relative and absolute torsions as τ(M,Mout) = τ(M,Min)(−1)n−1

. In particular,
a more symmetric way to write the evaluation of the Gaussian integral over the
fluctuation part of fields in (80) is:

(τ(M,Mout) · τ(M,Min)(−1)n−1

)
1
2 ∈

∈
(

Det H•(M,Mout)⊗ (Det H•(M,Min))(−1)n−1
)⊗ 1

2

/{±1}

Remark 7.6. In the case H•(M,Mout) = 0 (and hence H•(M,Min) = 0, too),
formula (80) simplifies to

Z(Aout, Bin) = e−
i
~ 〈φ∨(Bin) , Kφ(Aout)〉 · τ(M,Mout)︸ ︷︷ ︸

∈R/{±1}

·(µ~
B∂ )1/2

The R-torsion in this formula is a nonzero real number defined modulo sign. In the
case Min = ∅, we also have a simplification:

Z(Aout;Ares, Bres) = e
i
~ 〈Bres|out,Aout〉out · ξH

•(M,Mout)
~ τ(M,Mout) · (µ~

B∂ )1/2

and similarly in case Mout = ∅.

Remark 7.7. The propagator can be introduced as the parametrix K ∈ Cn−1(X ×
X∨; p∗1EX ⊗ p∗2E

∗
X∨) for K, exactly as in Section 5.2.2. Equations (36,37) hold

without changes (with the correction that χα, χ∨α are now the representatives of
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relative cohomology H•(M,Mout), H
n−•(M,Min)). Now the propagator satisfies

additionally the boundary conditions

K(e, e∨) = 0 if e ∈ Xout or e∨ ∈ X∨in
7.3. Gluing. Consider the situation of Section 6.3, i.e. a glued cobordism

(83) M1
M

==⇒M3 = M1
MI==⇒M2

MII===⇒M3

with a glued cellular decomposition

X1
X

==⇒ X3 = X1
XI==⇒ X2

XII===⇒ X3

(and the dual one). Our goal of this Section is obtain an Atiyah-Segal-type gluing
formula, expressing the partition function for (M,X) in terms of partition functions
for (MI , XI) and (MII , XII).

The zeroth approximation to the expected formula is:

Z(B1, A3) =

∫

B(A)
2 ×B(B)

2

ZI(B1, A2)
[
(D~A2)1/2 · e− i

~ 〈B2,A2〉 · (D~B2)1/2
]
ZII(B2, A3)

where the integral is taken over the space of leaves (base) B(A)
2 of A-polarization

on the interface (M2, X2), parameterized by A2, and over the space of leaves BB2 of
B-polarization on the interface, parameterized by B2. In the formula above we are
ignoring (for the moment) the issue that spaces of residual fields on left and right
hand sides are generally different.

Consider the expression36

(84) S( AI︸︷︷︸
s.t. AI |X2

=A∗2

, BI) + S(AII , BII︸︷︷︸
s.t. BII |X∨2 =B∗2

)− 〈B∗2 , A∗2〉

The second term here contains a boundary term 〈B∗2 , AII2 〉 and no other terms
dependent on B∗2 . Therefore, integrating out B∗2 , we impose the constraint A∗2 =
AII2 . Integrating out both A∗2 and B∗2 , we obtain the action on the whole (glued)
cobordism, i.e.

(85) e
i
~S(A,B) =

=

∫

B(A)
2 ×B(B)

2

D~A
∗
2 D~B

∗
2 e−

i
~ 〈B∗2 ,A∗2〉·e i~S(Ã∗2+prel

I (A),pI(B))·e i~S(pII(A),B̃∗2 +prel
II (B))

Here pI , pII is the projection of fields on X to fields on XI , XII , respectively
(by restriction); prel

I,II is the projection to cochains on XI or XII (resp. the dual

complexes) vanishing on X2, e.g. prel
I (A) = pI(A)− Ã|X2 ∈ C•(XI , X2). Note that

normalization of the integration measure coming from conventions of Section 5.2.3
works correctly here.37

36 We are putting asterisks on boundary conditions A∗2, B∗2 at X2 to distinguish them from

the components AII2 , BI2 of bulk fields – coordinates on fibers of FII → B(B)
2 and FI → B(A)

2 ,

respectively. In other words, in (84) we are counting each cell of X2, X∨2 twice: once as a boundary

condition and once as a part of bulk fields.

37Indeed, for a k-cell e ⊂ X2 we have
∫
D~B

∗
κ2(e)

D~A
∗
e e

− i~ 〈B
∗
κ2(e),A

∗
e〉E =

(ξ
n−dim κ2(e)
~ ξdim e

~︸ ︷︷ ︸
ξk+1
~ ξk~

)rkE ·
{

(2π~)rkE if k odd(
i
~
)rkE

if k even
= 1
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If we fix boundary conditions for fields in (85), B1 on X∨1 and A3 on X3, the
l.h.s. of (85) becomes a function on FB1,A3 ' FIB1,0

× FII0,A3
(where subscripts

denote the boundary conditions, as in (70), and ' is a symplectomorphism). Using
the gauge-fixing on XI , XII , we can evaluate the fiber BV integral of (85), yielding
a function of composite residual fields Fcomp. res

B1,A3
= FI res

B1,0
×FII res

0,A3
:

(86) Zcomp. res(B1, A3;AIres, A
II
res, B

I
res, B

II
res) =

∫

B(A)
2 ×B(B)

2

ZI(B1, A2;AIres, B
I
res)·

·
[
(D~A2)1/2 · e− i

~ 〈B2,A2〉 · (D~B2)1/2
]
· ZII(B2, A3;AIIres, B

II
res)

The next step is to pass from the composite residual fields in the expression above
to standard bulk residual fields (79) on X.

7.3.1. Gluing bulk residual fields. Consider the cochain complex

(87) C•(X,X3) ' C•(XI , X2)⊕ C•(XII , X3)

Note that this is an isomorphism of (based) graded vector spaces but not of cochain
complexes: the differential on the l.h.s. has the block triangular form

(88) dC•(X,X3) =

(
dI φIp2

0 dII

)

where p2 : C•(XII , X3)→ C•(X2) is the restriction to the interface; φI : C•(X2)→
C•+1(XI , X2) is as in (68). Similarly, for the dual cochain complex, we have
(89)

C•(X∨, X∨1 ) ' C•(X∨I , X∨1 )⊕ C•(X∨II , X∨2 ), dC•(X∨,X∨1 ) =

(
d∨I 0

φ∨IIp
∨
2 d∨II

)

with p∨2 : C•(X∨I , X
∨
1 )→ C•(X∨2 ) and φ∨II : C•(X∨2 )→ C•+1(X∨II , X

∨
2 ).

Returning to decomposition (87), we would like to view the total differential (88)
as the diagonal part (the standard differential on the r.h.s. of (87)) plus a strictly
upper-triangular perturbation:

(90) dC•(X,X3) =

(
dI 0
0 dII

)
+

(
0 φIp2

0 0

)

By homological perturbation lemma (Lemma 4.2), using the direct sum induction
data
(91)

C•(XI , X2)⊕C•(XII , X3), dI⊕dII
(iI⊕iII ,pI⊕pII ,KI⊕KII)

 H•(MI ,M2)⊕H•(MII ,M3)

we construct the induced differential

(92) D =

(
0 pI(φIp2)iII
0 0

)

on the cohomology H•(MI ,M2) ⊕H•(MII ,M3) of the first term in r.h.s. of (90),
such that cohomology of D is isomorphic to H•(M,M3). Higher terms in the series
for the induced differential vanish due to the special (upper-triangular) form of the
perturbation of the differential.

In purely cohomological terms, without resorting to cochains, D is the com-
position of the natural map H•(MII ,M3) → H•(M2) (pullback by the inclusion
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M2 ↪→MII ) and the connecting homomorphism H•(M2)→ H•+1(MI ,M2) in the
long exact sequence of the pair (MI ,M2).

Choose some induction data

(93) H•(MI ,M2)⊕H•(MII ,M3), D
(igres,pgres,Kgres)

 H•(M,M3)

(“gres” stands for “gluing of residual fields”). This, together with the dual induction
data (in the sense of Section 4.2),

(94) H•(MI ,M1)⊕H•(MII ,M2), D∨
(i∨gres,p

∨
gres,K

∨
gres)

 H•(M,M1)

gives a splitting of the composite residual fields into standard residual fields plus a
complement, and a Lagrangian in the complement:

(95) Fcomp. z.m.
B1,A3

= (igres ⊕ i∨gres)F res
B1,A3

⊕

⊕

F fluct
gres︷ ︸︸ ︷

(im(D)[1]⊕ im(D∨)[n− 2])⊕
(
im(Kgres)[1]⊕ im(K∨gres)[n− 2]

)
︸ ︷︷ ︸

Lgres

Using this gauge-fixing data, we can construct the pushforward of (86) to the
standard residual fields using the fiber BV integral.

Proposition 7.8. The partition function of the glued cobordism (M1, X1)
(M,X)

====⇒
(M3, X3) can be expressed in terms of the partition functions for constituent cobor-

disms (M1, X1)
(MI ,XI)

======⇒ (M2, X2), (M2, X2)
(MII ,XII)

=======⇒ (M3, X3) as an integral
over boundary conditions on the interface (M2, X2) and the fiber BV integral for
gluing the bulk residual fields:

(96) Z(B1, A3;Ares, Bres) =

=

∫

Lgres⊂F fluct
gres

∫

B(A)
2 ×B(B)

2

ZI

(
B1, A2; iIgres(Ares) +Afluct,I

gres , i∨,Igres(Bres) +Bfluct,I
gres

)
·

·
[
(D~A2)1/2 · e− i

~ 〈B2,A2〉 · (D~B2)1/2
]
·

· ZII
(
B2, A3; iIIgres(Ares) +Afluct,II

gres , i∨,IIgres (Bres) +Bfluct,II
gres

)

The equality is modulo
(
i
~ Ŝ

can
∂ − i~∆can

res

)
-coboundaries.

Superscripts I, II correspond to projections to the first and second terms of the
splittings in the l.h.s. of (93,94) in the obvious way. Schematically, the formula
(96) can be written as

Z = (pgres)∗(ZI ∗ ZII)
where ZI ∗ZII stands for the convolution as in (86) and (pgres)∗ stands for the BV
pushforward38 from composite residual fields to the standard residual fields.

The statement (96) follows by construction from general properties of fiber BV
integrals and from (85); we will give a proof by direct computation below, after
describing the gluing on the level of induction data.

38We use the term BV pushforward as a synonym for the fiber BV integral.
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Proposition 7.9. Induction data C•(X,X3)
(ig,pg,Kg)
 H•(M,M3) for the glued

cobordism can be constructed in terms of the induction data for constituent cobor-
disms and the data (93) by the following formulae:

(97)

ig =

(
iI −KIφIp2iII
0 iII

)(
iIgres

iIIgres

)
, pg =

(
pIgres pIIgres

)( pI −pIφIp2KII

0 pII

)
,

Kg =

(
KI −KIφIp2KII

0 KII

)
−
(

iI −KIφIp2iII
0 iII

)
Kgres

(
pI −pIφIp2KII

0 pII

)

(Subscript “g” here stands for “glued”.)

Proof. Indeed, we first deform the induction data in (91) by the upper-triangular
perturbation of the differential in (90), using the homological perturbation lemma,

which yields a retraction C•(X,X3)
(ic,pc,Kc)
 H•(MI ,M2)⊕H•(MII ,M3),D with

(98)

ic =

(
iI −KIφIp2iII
0 iII

)
, pc =

(
pI −pIφIp2KII

0 pII

)
, Kc =

(
KI −KIφIp2KII

0 KII

)

(Subscript “c” for stands for “composite residual fields”.) Then we compose it with

the retraction (93), using construction (16), which yields the retraction C•(X,X3)
(ig,pg,Kg)
 

H•(M,M3) given by (97). �

Proof of Proposition 7.8. Let us check by a direct computation that the l.h.s and
r.h.s. of (96) coincide exactly (not modulo coboundaries) for a special choice of
gauge-fixing data in the integral (80) on the glued cobordism, – the one associated
to the induction data (97). Indeed, substituting explicit expressions (80) into (86),
we have

Zcomp. res(B1, A3;AIres, A
II
res, B

I
res, B

II
res) =

=

∫

B(A)
2 ×B(B)

2

e
i
~ (〈BIres|2,A2〉2+〈B1,A

I
res|1〉1−〈φ∨1→I(B1),KIφ2→I(A2)〉I)·

· (D~B1)1/2 · τ~(MI ,M2) · (D~A2)1/2 ·
[
(D~A2)1/2 · e− i

~ 〈B2,A2〉 · (D~B2)1/2
]
·

· e i~ (〈BIIres|3,A3〉3+〈B2,A
II
res|2〉2−〈φ∨2→II(B2),KIIφ3→II(A3)〉II)·

· (D~B2)1/2 · τ~(MII ,M3) · (D~A3)1/2 =

= e
i
~ (〈B1,A

I
res|1〉1+〈BIIres|3,A3〉3+〈 (BIres−K∨I φ

∨
1→I(B1))|

2
, (AIIres−KIIφ3→II(A3))|

2
〉2)·

· (D~B1)1/2 · τ~(MI ,M2) · τ~(MII ,M3) · (D~A3)1/2
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Here we use the notation τ~(M,Mout) = ξ
H•(M,Mout)
~ τ(M,Mout). Taking the Gauss-

ian fiber BV integral over Lgres ⊂ Fgres, we obtain

(99) Z(B1, A3;Ares, Bres) =

exp i
~

(
〈B1, (iIgres(Ares)−KIφ2→Ip2i

II
gres(Ares))|

1
〉
1
+〈 (i∨,IIgres (Bres)−K∨IIφ

∨
2→IIp

∨
2 i
∨,I
gres(Bres))|

3
,A3〉

3
+

+〈K∨I φ∨1→I(B1)|
2
,KIIφ3→II(A3)|2〉2−

−〈(id−φ∨2→IIp∨2 K∨I )φ∨1→I(B1), (iI⊕iII)Kgres(pI⊕pII) (id−φ2→Ip2KII)φ3→II(A3)〉
I∪II)·

· (D~B1)1/2 · ξ
H•(M,M3)
~

ξ
H•(MI ,M2)
~ · ξH•(MII ,M3)

~

T(τ~(MI ,M2) · τ~(MII ,M3))

︸ ︷︷ ︸
τ~(M,M3)

·(D~A3)1/2

Here T : Det (H•(MI ,M2)⊕H•(MII ,M3))
∼=−→ DetH•(M,M3) is the canonical iso-

morphism between the determinant line of a cochain complex and the determinant
line of cohomology, associated to the retraction (93). The factor ξ

ξ·ξ in front of

T(· · · ) appears as in Lemma 5.5. In the expression (99) one recognizes the r.h.s. of
(80) with the gauge-fixing associated to the induction data of Proposition 7.9. �

Remark 7.10. Note that the formula for Kg in (97) is the gluing formula for
propagators (cf. the analogous formula obtained in a different language in [5]). In
the special case H•(MI ,M2) = H•(MII ,M3) = 0 (or, more generally, D = 0, or
equivalently H•(M,M3) ' H•(MI ,M2)⊕H•(MII ,M3)), the formula simplifies to
Kc of (98). In terms of parametrices, in the latter case one has

Kc(eI , e
∨
I ) = KI(eI , e∨I ), Kc(eII , e

∨
II) = KII(eII , e∨II), Kc(eII , e

∨
I ) = 0,

Kc(eI , e
∨
II) = −

∑

e2∈X2

KI(eI ,κ2(e2)) ·KII(e2, e
∨
II)

7.4. Passing to the reduced space of states. If a state ψ ∈ H∂ = FunC(B∂)

satisfies Ŝ∂ψ = 0, then it can be projected to the reduced space of states – coho-
mology of the quantum BFV operator:

[ψ] ∈ Hr
∂ = H•

Ŝ∂
(H∂) ∼= FunC(Br

∂)

where Br
∂ = H•(Mout)[1] ⊕H•(Min)[n − 2] is the moduli space of the Q-manifold

(B∂ , QB∂ ), i.e. the zero-locus of the cohomological vector field QB∂ reduced modulo
the distribution induced by QB∂ on the zero-locus (see [4]).

Remark 7.11. Returning to the setup of Remark 7.2, let N be a closed (n − 1)-

manifold with a cellular decomposition Y . Given two states φ ∈ H(A)
Y , ψ ∈ H(B)

Ȳ
that

are annihilated by respective quantum BFV operators Ŝ
(A)
Y ∈ End(H(A)

Y )1, Ŝ
(B)
Y ∈

End(H(B)

Ȳ
)1, the pairing (73) between them can be expressed in terms of classes of

states φ, ψ in ŜY -cohomology, [φ] ∈ H(A),r
Y , [ψ] ∈ H(B),r

Ȳ
:

(100) (φ, ψ) =

∫

B(A),r
Y ×B(B),r

Y

[φ] ·
(
D~[AY ] e−

i
~ 〈[BY ],[AY ]〉 D~[BY ]

)
· [ψ]

with [AY ], [BY ] the superfields for B(A),r
Y = H•(N)[1] and B(B),r

Y = H•(N)[n − 2],

respectively. Here the normalized densities on reduced spaces B(A),r
Y , B(B),r

Y are
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defined as:
(101)

D~[AY ] =

n−1∏

k=0

(
ξk~
)dimHk(N)

︸ ︷︷ ︸
ξ
H•(N)
~

·τ(N), D~[BY ] =

n−1∏

k=0

(
ξn−k~

)dimHk(N)

︸ ︷︷ ︸
ξ̃
H•(N)
~

·τ(N)(−1)n−1

with τ(N) ∈ DetH•(N)/{±1} ' DensB
(A),r
Y the R-torsion of N and factors ξk~ as

in (50).39 Equality (100) is checked straightforwardly (cf. Footnote 37) for states

of the “plane wave” form, φ = e
i
~ 〈βY ,AY 〉Y , ψ = e

i
~ 〈BY ,αY 〉Y , with parameters βY

a closed cochain on Y ∨ and αY a closed cochain on Y . Then (100) follows by

extension by bilinearity to all pairs of Ŝ∂-closed states.

In terms of half-densities, the reduction sends a Ŝcan
∂ -closed state ψ ·

(
µ~
B∂
)1/2 ∈

Hcan
∂ to

[ψ] ·
(
µ~
Br
∂

)1/2

∈ Hr,can
∂ = Dens

1
2 ,Fun

C (Br
∂)

where we define the normalized density on Br
∂ as

µ~
Br
∂

= D~[Aout] · D~[Bin] = ξ
H•(Mout)
~ ξ̃

H•(Min)
~ · τ(Mout) · τ(Min)(−1)n−1

with normalization factors as in (101).

If the partition function (81) were a Ŝ∂-cocycle, we could construct the reduced

partition function as the Ŝ∂-cohomology class of Z. However, Z generally only

satisfies
(
i
~ Ŝ∂ − i~∆res

)
Z = 0, but does not satisfy Ŝ∂Z = 0. This problem is

easily overcome as follows.

Fix some induction data (B∂ , dXout
⊕ dX∨in)

(iB,pB,KB)
 Br

∂ = H•(B∂). By the con-

struction of Section 4.2, we can infer the induction data (iH = p∗B, pH = i∗B,KH =

· · · ) from the space of states (H∂ , Ŝ∂) to the reduced space Hr
∂ . (For the moment

we are discussing the non-canonical picture, where states are functions on B∂ or
Br
∂ ; we will switch to half-densities later.) Denote

Zmod = iHpHZ = Z − Ŝ∂(KHZ)−KH( Ŝ∂Z︸︷︷︸
~2∆resZ

) = Z +

(
i

~
Ŝ∂ − i~∆res

)
(· · · )

where we used the quantum master equation (82) and (· · · ) = i~ KHZ. By con-

struction, Ŝ∂Z
mod = 0. Also note that Zmod differs from Z by a

(
i
~ Ŝ∂ − i~∆res

)
-

exact term, i.e. by a BV canonical transformation, and we are ultimately only
interested in partition functions modulo BV canonical transformations.

In this sense, the reduced partition function is simply

Zr := [Zmod] = pHZ ∈ Hr
∂⊗̂FunC(F res

b )

i.e. the evaluation of (81) on chosen representatives of cohomology of Mout, Min,
as boundary fields Aout, Bin.

In terms of half-densities, the pushforward of
(
µ~
B
)1/2

to the reduced space of
states results in the appearance of square roots of torsions of the boundary in the

39 Note that, using Poincaré duality on N , the factor ξ̃
H•(N)
~ in (101) can be expressed as∏

k

(
ξk~
)dimHk−1(N)

= ξ
H•(N)[−1]
~ .
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canonical reduced partition function Zr = (pH)∗Z. More precisely, we have the
following, as a corollary of Proposition 7.4.

Proposition 7.12. The canonical reduced partition function is

(102) Zr([Aout], [Bin];Ares, Bres) =

= e
i
~ 〈Bres|out,iB[Aout]〉out+〈iB[Bin],Ares|in〉in−〈φ∨(iB[Bin]) , Kφ(iB[Aout])〉·

· ξ~
(
Min

M
==⇒Mout

)
· τ(M,Mout) · τ(Mout)

1
2 · τ(Min)

(−1)n−1

2 ∈

∈ Hr,can
∂ ⊗̂ Dens

1
2 ,Fun

C (F res
b )

Here [Aout], [Bin] are the superfields for H•(Mout)[1], H•(Min)[n−2]. The normal-
ization factor is

ξ~

(
Min

M
==⇒Mout

)
= ξ

H•(M,Mout)
~

(
ξ
H•(Mout)
~

) 1
2
(
ξ̃
H•(Min)
~

) 1
2

=

=

n∏

k=0

(ξk~)dimHk(M,Mout)+
1
2 dimHk(Mout)+

1
2 dimHn−k(Min) ∈ C

The first term in the exponential in (102) is the pairing of Hk(M,Min) with
Hn−k−1(Mout) via the natural map Hk(M,Min) → Hk(M) → Hk(Mout) and
Poincaré pairing in cohomology of Mout, and similarly for the second term in the
exponential. Third term generally depends on the details of gauge-fixing.

Remark 7.13. In the case H•(M,Mout) = 0 (or equivalently, H•(M,Min) =

0), one has isomorphisms H•(M)
∼−→ H•(Mout), H

•(M)
∼−→ H•(Min) (arising

from long exact sequences of pairs (M,Mout) and (M,Min), respectively). In this
case the pairing in the third term in the exponential in (102) is the composition of

the isomorphism θ : H•(Mout)
∼−→ H•(M)

∼−→ H•(Min) with Poincaré pairing on
H•(Min), i.e. 〈[Bin], θ[Aout]〉in.

Example 7.14. For M with Min = ∅,

Zr = e
i
~ 〈ι∗Bres,[Aout]〉 · ξH

•(M,Mout)
~

(
ξ
H•(Mout)
~

) 1
2 · τ(M,Mout) · τ(Mout)

1/2

where ι∗ : H•(M) → H•(Mout) is the pullback by the inclusion ι : Mout ↪→ M
in cohomology; 〈, 〉 is the Poincaré pairing in boundary cohomology. An analogous
consideration applies in the case Mout = ∅.

Example 7.15 (cylinder). Let M = N × [0, 1], with in-boundary Min = N × {0}
and out-boundary Mout = N × {1}, endowed with arbitrary cellular decomposition.
Then there are no residual fields and, by Remark 7.13, we have

(103) Zr = e
i
~ 〈[Bin],[Aout]〉 (D~[Bin])1/2 · (D~[Aout])

1/2

with 〈, 〉 the Poincaré pairing on H•(N). Note that this partition function represents

the identity in Hom(H(A),r
N ,H(A),r

N ), cf. (74).

Remark 7.16. By construction, the reduced partition function satisfies the quan-
tum master equation without boundary term:

(104) ∆can
res Z

r = 0
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(which can be thought of as the equation (82) where the boundary BFV operator is
killed by passing to the reduced space of states). Changing the details of gauge-fixing,
i.e. maps i,p,K, iB, pB,KB, results in a transformation of the partition function of
the form

Zr 7→ Zr + ∆can
res (· · · )

These properties follow immediately from (ii), (iii) of Proposition 7.4.

Remark 7.17. Observe the similarity between integration over bulk fluctuations of
fields (80) and pushforward to the reduced space of states on the boundary (102).
Both procedures involve similar sets of gauge-fixing/induction data, both deal with
half-densities and produce the R-torsion in bulk/boundary.

Equality (100) implies that the gluing formula (96) holds also in the setting of
reduced boundary states.

Corollary 7.18 (of Proposition 7.8). For a glued cobordism (83), we have

(105) Zr([B1], [A3];Ares, Bres) =

=

∫

Lgres⊂F fluct
gres

∫

B(A),r
2 ×B(B),r

2

Zr
I

(
[B1], [A2]; iIgres(Ares) +Afluct,I

gres , i∨,Igres(Bres) +Bfluct,I
gres

)
·

·
[
(D~[A2])1/2 · e− i

~ 〈[B2],[A2]〉 · (D~[B2])1/2
]
·

· Zr
II

(
[B2], [A3]; iIIgres(Ares) +Afluct,II

gres , i∨,IIgres (Bres) +Bfluct,II
gres

)

modulo ∆can
res -coboundaries.

Note that Zr is an element of the space which is expressed in terms of coho-
mology of M and its boundary, and thus is manifestly independent on the cellular
decomposition X of M . More precisely, one has the following.

Proposition 7.19. The class of Zr in cohomology of ∆can
res is independent of the

cellular decomposition X.

Proof. First, observe that if we glue to (Min, Xin)
(M,X)

====⇒ (Mout, Xout) at the in-

boundary a cylinder (Min, · · · )
(Min×[0,1],··· )

=========⇒ (Min, Xin) (with arbitrary cellular
decomposition inducing Xin on the out-boundary of the cylinder), this procedure
does not change the reduced partition function:

Zr
cylinder ∪M = Zr

M

This follows directly from the gluing formula (105) and the explicit result for the
cylinder (103).

Now, let X be a cellular decomposition of a cobordism Min
M

==⇒Mout. Consider
the “out-out” cylinder

Cylout−out = ∅ (Min×[0,1],··· )
=========⇒ (Min × {0}, Xin) t (Min × {1}, Y )

and attach its Min × {0}-boundary to the in-boundary of M . The result is a

cobordism M̃ = Cylout−out ∪M with only out-boundary, thus for M̃ the reduced
partition function is independent of cellular decomposition (cf. Example 7.14). On
the other hand, we can attach to Min × {1} ⊂ Cylout−out an “in-in” cylinder

Cylin−in = (Min × {0}, Y ) t (Min × {1}, · · · )
(Min×[0,1],··· )

=========⇒ ∅
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Figure 4. A cobordism with a “tail” of two cylinders (out-out
and in-in) attached.

The resulting cobordism
˜̃
M = Cylin−in∪Cylout−out∪M differs from M by attach-

ing an “in-out” cylinder, thus Zr˜̃
M

= Zr
M by discussion above. On the other hand

Zr
M̃

is independent of cellular decomposition X, as is, of course, Zr
Cylin−in

(which

is also a case of Example 7.14). Therefore Zr
M = Zr˜̃

M
= Gluing(Zr

Cylin−in
, Zr

M̃
) is

independent on X. (Gluing(−,−) is a schematic notation for the r.h.s. of (105).)
�

8. Non-abelian cellular BF theory, I: “canonical setting”

The goal of this section is the construction of a “canonical” version of non-abelian
cellular BF theory, where the fields are a cochain and a chain of the same CW
complex X which is not required to be a manifold. We construct cellular actions
(Theorem 8.6) that deform the abelian action, satisfy the BV quantum master
equation, are compatible with restrictions to subcomplexes, and on 0-cells have the
canonical form for a 0-dimensional non-abelian BF theory (this may be viewed as
a cellular replacement for the AKSZ construction [1] for topological quantum field
theories).

Next, in Section 8.3, we prove that these cellular actions are compatible with
elementary collapses (Lemma 8.19) and that the partition function, defined via BV
pushforward to cohomology, is a simple-homotopy invariant (Proposition 8.20).
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The version of non-abelian cellular BF theory presented in this section is not
of Segal type, since one of the fields has “wrong” (covariant) functoriality. On the
other hand, we have a version of Mayer-Vietoris gluing formula for the cellular
actions (see (vi) of Theorem 8.1).

Throughout this section we adopt the formalism of [27, 28] where the field B of
BF theory is treated as covariant (as a cellular chain in discrete setting and as a
de Rham current in continuous setting40) whereas the field A is contravariant as
usual. To reflect this, we denote the fields (and the space of fields) in a different
font. Later, in Section 9, we will return to the formalism where both fields are
contravariant.

Let X be a finite CW complex (it is not required to be a triangulation of a
manifold) and let g be a unimodular Lie algebra. We introduce the graded vector
space of fields FX = C•(X, g)[1]⊕C•(X, g∗)[−2].41 As in Section 5.1, it is spanned
by the superfields

AX =
∑

e⊂X
e∗ · Ae ∈ Hom1(FX , C

•(X, g)),

BX =
∑

e⊂X
Be · e ∈ Hom−2(FX , C•(X, g

∗))

Here e∗, e are the standard basis integral cochain and chain, respectively, associated
to a cell e ⊂ X; components Ae are g-valued functions on FX of degree 1 − dim e
and components Be are g∗-valued functions on FX of degree −2 + dim e.

Note that here, unlike in the rest of the paper, the field BX is a chain of X,
as opposed to a cochain of X∨ (moreover, in the setup of this subsection, X∨ is
meaningless, as X is not required to be a cellular decomposition of a manifold).

The canonical pairing 〈, 〉 between cochains and chains induces a degree −1
symplectic form

ωX = 〈δBX , δAX〉 =
∑

e⊂X
(−1)dim e〈δBe ∧, δAe〉g

and a BV Laplacian

∆X =

〈
∂

∂BX
,
∂

∂AX

〉
=
∑

e⊂X
(−1)dim e

〈
∂

∂Be
,
∂

∂Ae

〉

g

on Fun(FX) = Ŝym •F∗X (the formal power series in fields). Symbol 〈, 〉g stands for
the canonical pairing between g and g∗.

In our notation e ⊂ X stands for an open cell; its closure ē = e ∪ ∂e ⊂ X
is a closed ball (for X a regular CW complex, which we always assume unless
stated otherwise) inheriting a structure of CW complex from X. Thus, e.g., Ae
is a component of the superfield AX , whereas Aē =

∑
e′⊂ē(e

′)∗ · Ae′ is the entire
superfield for the subcomplex ē ⊂ X containing components of AX for the cell e
itself and cells belonging to the boundary ∂e. Likewise, ∂e ⊂ X is a subcomplex
and A∂e =

∑
e⊂∂e(e

′)∗ · Ae′ is the corresponding A-superfield, and we have Aē =
e∗ · Ae + A∂e.

40This setting for (continuum) BF theory is known as “canonical BF theory” in the literature,
cf. e.g. [7].

41Here we are not introducing the twist by a local system and the notation is simply C•(X, g) :=

g ⊗ C•(X,R) – cellular cochains with coefficients in g. Likewise, for the chains, C•(X, g∗) :=
g∗ ⊗ C•(X,R).
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8.1. Non-abelian BF theory on a simplicial complex, after [27, 28]. Let X
be a simplicial complex.

We denote by ∆̄N the standard closed simplex of dimension N ≥ 0, endowed
with standard triangulation We view it as a simplicial complex with the top cell
the open simplex ∆N .

Let Ω•(X) stand for the complex of continuous piecewise polynomial differen-
tial forms on (the geometric realization of) X. Cochains C•(X,R) can be quasi-
isomophically embedded into Ω•(X) as Whitney forms (continuous piecewise lin-
ear forms, linear on every simplex of X w.r.t. its barycentric coordinates), see
[36, 11] for details. We denote iX : C•(X) ↪→ Ω•(X) the realization of cochains
as Whitney forms. This embedding has a natural left inverse, the Poincaré map
pX : Ω•(X) → C•(X) which integrates a form over simplices of X, i.e. maps
α 7→∑

e⊂X e
∗ ·
(∫
e
α
)
. Dupont has constructed an explicit chain homotopy operator

KX , contracting Ω•(X) onto Whitney forms, see [10, 11]. Thus, in the terminology

of Section 4, we have a retraction Ω•(X)
(iX ,pX ,KX)
 C•(X). It is glued (by fiber

products) out of building blocks – “standard” retractions for ∆̄N for different N
(i.e. when restricted to any simplex of X, it reduces to a “standard” retraction for
a standard simplex).

We will denote by ∗ the pushforward of the wedge product of forms (defined
piecewise on simplices of X) to cochains, a ∗ b := pX(iX(a) ∧ iX(b)) – this is a
graded-commutative non-associative product on C•(X). Tensoring this operation
with the Lie bracket in g, one gets a bilinear operation [− ∗, −] on C•(X, g) defined
by [x⊗ a ∗, y ⊗ b] = [x, y]⊗ (a ∗ b) for x, y ∈ g and a, b ∈ C•(X).

The following is a reformulation of one of the main results of [28].

Theorem 8.1. There exists a sequence of elements S̄∆N ∈ Fun(F∆̄N )[[~]], for
N = 0, 1, 2, . . ., of the form

(106) S̄∆N
(A∆̄N ,B∆N ; ~) =

=

∞∑

n=1

∑

Γ0

∑

e1,...,en⊂∆̄N

1

|Aut(Γ0)|C
∆N

Γ0,e1,...,en 〈B∆N , Jacobi Γ0
(Ae1 , . . . ,Aen)〉g−

− i~
∞∑

n=2

∑

Γ1

∑

e1,...,en⊂∆̄N

1

|Aut(Γ1)|C
∆N

Γ1,e1,...,enJacobi Γ1
(Ae1 , . . . ,Aen)

for some values of “structure constants” C∆N

Γl,e0,...,en
∈ R, l = 0, 1, such that for any

finite simplicial complex X and any unimodular Lie algebra g the element

(107) SX(AX ,BX ; ~) =
∑

e⊂X
S̄e(AX |ē,Be; ~) ∈ Fun(FX)[[~]]

satisfies

(a) the quantum master equation ∆Xe
i
~SX = 0,

(b) the property

(108) SX(AX ,BX ; ~) = 〈BX , dAX〉+
1

2
〈BX , [AX ∗, AX ]〉+R

with the “error term” R ∈ Ŝym≥4F∗X ⊕ ~ · Ŝym≥2F∗X .

Here the notations are:



A CELLULAR TOPOLOGICAL FIELD THEORY 53

• summation in (106) is over binary rooted trees Γ0 (oriented towards the
root) with n leaves and 1-loop connected 3-valent graphs Γ1 (with every ver-
tex having two incoming and one outgoing half-edge) with n leaves. Leaves
of the graph are decorated by faces e1, . . . , en (of arbitrary codimension) of
∆̄N .
• Jacobi Γ0

(Ae1 , . . . ,Aen) is the nested Lie bracket in g, associated to the tree
Γ0, evaluated on elements Ae1 , . . . ,Aen ∈ g.
• Jacobi Γ1(Ae1 , . . . ,Aen) is the number obtained by cutting the loop of Γ1

anywhere (resulting in a tree Γ̃1 with n+ 1 leaves, one of which is marked)
and taking the trace trg Jacobi

Γ̃1
(Ae1 , . . . ,Aen , •) of the endomorphism of

g corresponding to the tree.

Remark 8.2. The proof we present below differs from [27, 28] in its treatment of
S(1): here we avoid using regularized infinite-dimensional supertraces over the space
of forms Ω•(X) and instead construct S(1) by purely finite-dimensional methods,
using homological perturbation theory. The proof is constructive and, in particular,
we can make choices (the only ambiguity in the construction is the choice of in-
duction data in part (iv) in the proof below) that give rational structure constants

C∆N

Γl,e1,...,en
∈ Q, l = 0, 1.

Sketch of proof. We split SX as SX = S
(0)
X − i~S

(1)
X and treat the components S

(0)
X ,

S
(1)
X separately. Likewise, in (106) we split S̄∆N = S̄

(0)

∆N − i~S̄(1)

∆N . We break the

proof in several steps; we address the construction and properties of S(0) in (i–iii),
construction and properties of S(1) for a single simplex in (iv,v), and finally we put
everything together in (vi,vii).

(i) We construct S
(0)
X :=

∑
Γ0

ΦΓ0

X (AX ,BX) where the sum is over binary rooted

trees Γ0 and the contributions ΦΓ0

X (AX ,BX) are defined as follows, by putting
decorations on half-edges of Γ0 starting from leaves and going inductively to
the root.42

• Leaves of Γ0 are decorated by iX(AX).
• In the internal vertices of Γ0 one calculates the Lie bracket on Ω•(X, g)

(coming from the wedge product on forms and the Lie bracket in g)
applied to the decorations of the two incoming half-edges and puts the
result on the outgoing half-edge.

• On internal edges one evaluates −KX applied to the decoration of the
in-half-edge and puts the result on the out-half-edge.

• Finally, we define ΦΓ0

X (AX ,BX) := 1
|Aut(Γ0)| 〈BX , pX(RΓ0

X (AX))〉 where

RΓ0

X (AX) is the decoration of the root coming from the assignments
above.

By convention, the contribution of the “trivial tree” (with one leaf and no

internal vertices or edges) is Φtriv
X := 〈BX , dAX〉. We split S

(0)
X = S

(0),2
X +

S
(0),≥3
X where S

(0),2
X is another notation for Φtriv

X and the second term is the
contribution of non-trivial trees (the new superscripts 2, ≥ 3 denote the degree
in fields).

42Our convention is that the leaves and the root are loose half-edges of the graph.
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(ii) It follows from the fact that the data Ω•(X)
(iX ,pX ,KX)
 C•(X) are assembled

from the standard building blocks Ω•(∆̄N )
(i∆̄N ,p∆̄N ,K∆̄N )

 C•(∆̄N ), and from
the factorization Ω•(X, g) = Ω•(X) ⊗ g into a tensor product of a cdga and

a Lie algebra, that S
(0)
X has the form S

(0)
X (AX ,BX) =

∑
e⊂X S̄

(0)
e (AX |ē,Be)

where S̄
(0)

∆N satisfies the mod ~ part of the ansatz (106).
(iii) Using Leibniz rule in Ω•(X) and the identity dKX + KXd = id − iXpX , one

calculates the odd Poisson bracket

{Φtriv
X ,ΦΓ0

X } =
∑

edges e of Γ0

(
−Φ

Γ′0
X

←−
∂

∂AX

−→
∂

∂BX
Φ

Γ′′0
X + ΦΓ0,e

X

)

where on the r.h.s. we sum over edges e of Γ0; removing this edge splits Γ0

into trees Γ′0 and Γ′′0 . The term ΦΓ0,e
X is the contribution of Γ0 with edge e

contracted; such contributions cancel when we sum over trees Γ0 due to the
combinatorics of trees and Jacobi identity in C•(X, g). As a result, summing

over Γ0, we obtain {S(0),2
X , S

(0),≥3
X } = − 1

2{S
(0),≥3
X , S

(0),≥3
X } which together

with the obvious identity {S(0),2
X , S

(0),2
X } = 0 (a guise of d2 = 0 on cochains)

gives the classical master equation

(109) {S(0)
X , S

(0)
X } = 0

(iv) For N ≥ 0, denote by Q∆̄N = {S(0)

∆̄N , •} the cohomological vector field

generated by S
(0)

∆̄N (the fact that it squares to zero follows from (109) for

X = ∆̄N ); it is tangent to C•(∆̄N , g)[1] ⊂ F∆̄N . Observe that ∆S
(0)

∆̄N ∈
Fun1(C•(∆̄N , g)[1]) isQ∆̄N -closed, as follows from (109) and the fact that ∆ is
a bi-derivation of {•, •}. Using homological perturbation theory (Lemma 4.2),

one constructs a retraction Fun(C•(∆̄N , g)[1]), Q∆̄N

(ι,π,κ)
 Fun(g[1]), dCE

where the retract is the Chevalley-Eilenberg cochain complex of the Lie alge-
bra g. By definition of chain homotopy, one has Q∆̄N κ+ κQ∆̄N = id− ι ◦ π.

Applying both sides of this equation to ∆S
(0)

∆̄N , and noticing that ∆S
(0)

∆̄N is
annihilated by π (this follows from unimodularity of g) and is Q∆̄N -closed,

we obtain Q∆̄Nκ∆S
(0)

∆̄N = ∆S
(0)

∆̄N . Therefore, the element S
(1)

∆̄N (A∆̄N ) ∈
Fun0(C•(∆̄N , g)[1]) constructed as

(110) S
(1)

∆̄N := −κ∆S
(0)

∆̄N

is a solution of the equation

(111) ∆S
(0)

∆̄N + {S(0)

∆̄N , S
(1)

∆̄N } = 0

(v) One defines

(112) S̄
(1)

∆N (A∆̄N ) =
∑

e⊂∆̄N

(−1)codim(e)S
(1)
ē (A∆̄N |ē)

with summands as in (iv) for faces e of ∆N of arbitrary codimension. One

can check from the construction (110), that S̄
(1)

∆N satisfies the part of ansatz

(106) linear in ~; the property S
(1)

∆̄N =
∑
e⊂∆̄N S̄

(1)
e is obvious from (112).
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(vi) Assume that a simplicial complex X is given as union of two simplicial sub-
complexes X1 and X2 intersecting over Y = X1 ∩ X2 and assume that the
elements SX1 , SX2 , SY as defined by (107) satisfy the quantum master equa-
tion on FX1

, FX2
, FY respectively. Then it is straightforward to check that

SX = SX1
+ SX2

− SY (which indeed also satisfies the ansatz (107)) is a
solution of the quantum master equation on FX .43

(vii) We break the simplicial complex X into individual simplices e; on each of
them we have a “building block” solution of the quantum master equation of

form S∆̄N := S
(0)

∆̄N − i~S(1)

∆̄N as constucted in (i) (setting X = ∆̄N ) and (iv),
with N = dim(e). The fact that S∆̄N satisfies the quantum master equation is
(109) specialized to ∆̄N , put together with (111). Then, by (vi), the element
SX as defined by (107) satisfies the quantum master equation on FX . Finally,
property (b) is obvious from the construction.

�

Remark 8.3. Examples of values of structure constants C for a simplex ∆N in
Theorem 8.1:

Γ, {ei} C∆N

Γ,{ei}
e1

{
±1 if |e1| = N − 1
0 otherwise

e1

e2

{
± |e1|!|e2|!(N+1)! if |e1|+ |e2| = N and |e1 ∩ e2| = 0

0 otherwise

e3

e1

e2





± |e1|!|e2|!|e3|!
(|e1|+|e2|+1)·(N+2)! if |e1|+ |e2|+ |e3| = N + 1,

and |e1 ∩ e2| = 0,
and {|e1 ∩ e3|, |e2 ∩ e3|} = {0, 1}

0 otherwise

e1 e2

{
(−1)N+1

(N+1)2(N+2) if e1 = e2 and|e1| = 1

0 otherwise

Here the signs and nonvanishing conditions are formulated in terms of combina-
torics and orientations of the n-tuple of (arbitrary codimension) faces e1, . . . , en of
∆̄N ; | · · · | stands for dimension. The top two graphs correspond, upon summing
over the simplices, as in (107), to the cellular differential and the bracket [• ∗, •] (the
projected wedge product of forms tensored with the Lie bracket in g) on cochains
and thus to the first two terms of (108). The two bottom graphs give first nontrivial
contributions to R in (108).

Remark 8.4. Building block (106) for a 0-simplex ∆0 is simply S̄∆0 = 1
2

〈
B[0], [A[0],A[0]]

〉

where we denoted the only cell [0] := ∆0 (and we are suppressing the subscript g in

43 Indeed, we already know by (109) that {S(0)
X , S

(0)
X } = 0; we are left to check that ∆S

(0)
X +

{S(0)
X , S

(1)
X } = 0. We calculate ∆S

(0)
X = ∆X1

S
(0)
X1

+ ∆X2
S

(0)
X2
− ∆Y S

(0)
Y = −{S(0)

X1
, S

(1)
X1
}X1

−
{S(0)
X2
, S

(1)
X2
}X2

+ {S(0)
Y , S

(1)
Y }Y = −{S(0)

X , S
(1)
X1

+ S
(1)
X2
− S(1)

Y } = −{S(0)
X , S

(1)
X }. (Here we indicate

explicitly where we calculate the odd Poisson brackets and BV Laplacians; no index means X.)



56 ALBERTO S. CATTANEO, PAVEL MNEV, AND NICOLAI RESHETIKHIN

〈, 〉 and tr ). This corresponds to having a single nonvanishing structure constant

C∆0

,[0],[0]
= 1.

The nonvanishing structure constants C of Theorem 8.1 for the 1-simplex are as
follows. We denote the top 1-cell as [01] and the boundary 0-cells as [0] and [1].

Γ, {ei} C∆1

Γ,{ei}

en

· · ·

e0

e1
e2





(−1)n Bnn! if {e0, e1} = {[1], [01]}, e2 = · · · = en = [01]
−Bnn! if {e0, e1} = {[0], [01]}, e2 = · · · = en = [01]
0 otherwise

· · ·

e1

e2

en

{
Bn
n! if e1 = · · · = en = [01]

0 otherwise

Here Bn are the Bernoulli numbers, B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 =

− 1
30 , . . . In particular, the building block (106) for ∆1 is

(113)

S̄∆1 =
〈
B[01],A[1] − A[0]

〉
+

1

2

〈
B[01], [A[01],A[0] + A[1]]

〉
− 1

12

〈
B[01], [A[01], [A[01],A[1] − A[0]]]

〉
+· · · −

− i~
(

1

24
tr [A[01], [A[01], •]] + · · ·

)
=

=

〈
B[01],

1

2

[
A[01],A[0] + A[1]

]
+ F(adA[01]

) ◦ (A[1] − A[0])

〉
− i~ tr logG(adA[01]

)

where we introduced the two functions

(114) F(x) =
x

2
coth

x

2
, G(x) =

2

x
sinh

x

2

Remark 8.5. We have required X to be a simplicial complex rather than a general
CW complex because for the Theorem 8.1 we need retractions Ω•(ē)  C•(ē) for
cells e of X, compatible with restriction to cells of ∂e (if we want “standard building
blocks” as in Theorem 8.1, we should also require that the retraction depends only
on the combinatorial type of ē and is compatible with combinatorial symmetries of
the cell). In the case of simplices, such retractions are provided by Whitney forms
and Dupont’s chain homotopy operator (whereas Poincaré map works for cells of
any type). More generally, we can allow X to be a prismatic complex, with cells
e = σ1 × · · · × σr being prisms – products of simplices (of arbitrary dimension).
The respective retraction Ω•(ē)  C•(ē) is constructed from Whitney/Dupont re-
tractions for simplices by the tensor product construction of Section 4.2 (whenever
we have several simplices of same dimension in e, we average over the order in
which we contract the factors, in order to have the retraction compatible with the
symmetries of the prism). The special case when the prisms are cubes (products
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of 1-simplices) was considered in detail in [28]. As a result, one can allow X in
Theorem 8.1 to be a prismatic complex; the building blocks S̄e then depend on the
combinatorial type of the prism e (dimensions of the simplex factors) and the struc-
ture constants CeΓ0,e1,...,en

, CeΓ1,e1,...,en
depend on the combinatorics of an n-tuple

of faces of the prism e. In Section 8.2 we will construct a further generalization of
Theorem 8.1 to general regular CW complexes.

8.2. Case of general CW complexes. One can extend Theorem 8.1 to a general
regular CW complex, with cells not required to be simplices or prisms.

Theorem 8.6. Let X be a finite regular CW complex and g be a unimodular Lie
algebra. Then to every cell e ⊂ X one can associate an element (a local building
block) S̄e ∈ Fun(Fē)[[~]] of the form

(115) S̄e(Aē,Be; ~) =

=

∞∑

n=1

∑

Γ0

∑

e1,...,en⊂ē

1

|Aut(Γ0)|C
e
Γ0,e1,...,en 〈Be, Jacobi Γ0

(Ae1 , . . . ,Aen)〉g−

− i~
∞∑

n=2

∑

Γ1

∑

e1,...,en⊂ē

1

|Aut(Γ1)|C
e
Γ1,e1,...,enJacobi Γ1(Ae1 , . . . ,Aen)

with some real coefficients CeΓl,e1,...,en ∈ R for l = 0, 1, in such a way that the

element (the cellular action)

(116) SX(AX ,BX ; ~) =
∑

e⊂X
S̄e(AX |ē,Be; ~) ∈ Fun(FX)[[~]]

satisfies the quantum master equation ∆Xe
i
~SX = 0 and the following conditions:

(a) the property

(117) SX(AX ,BX ; ~) = 〈BX , dAX〉+ r

with r ∈ Ŝym≥3F∗X ⊕ ~ · Ŝym≥2F∗X ,
(b) for e any 0-cell of X, one has

(118) S̄e =

〈
Be,

1

2
[Ae,Ae]

〉

g

(c) For Y ⊂ X any subcomplex, SY (AY ,BY ; ~) :=
∑
e⊂Y S̄e ∈ Fun(FY )[[~]] satis-

fies the quantum master equation on FY .

Proof. Choose an ordering of the cells e1, . . . , eN of X in such a way that dim e1 ≤
· · · ≤ dim eN . Then X admits an increasing filtration by CW subcomplexes

(119) X1 ⊂ · · · ⊂ XN−1 ⊂ XN = X

with Xk := ∪i≤kei. Then Xk = Xk−1 ∪ ek. That is, Xk is Xk−1 with a single new
cell ek adjoined; its boundary ∂ek lies entirely in Xk−1.

Proceeding by induction in k, assume that a solution SXk−1
of the QME on FXk−1

is constructed and we want to extend it to FXk = FXk−1
[Ae,Be] (we temporarily

denote e := ek). Denote n = dim e. First, we look for a solution of the classical
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master equation S
(0)
Xk

of the following form

(120) S
(0)
Xk

= S
(0)
Xk−1

+
∑

j≥1

〈Be, σj(Ae,A∂e)〉
︸ ︷︷ ︸

S̄
(0)
e

where σj is of polynomial degree j in A-variables (we call this polynomial degree
weight to distinguish it from other gradings). We assume n ≥ 1 (otherwise we
simply set S̄e =

〈
Be,

1
2 [Ae,Ae]

〉
as prescribed by (b)).

We denote by

d∂e→e = e∗ · d∂e→e : Cn−1(∂e) → Cn(ē, ∂e) = Span(e∗)

the component of the cellular coboundary operator on Xk proportional to e∗ (and
d∂e→e : Cn−1(∂e) → R picks the coefficient of e∗). Thus, the cellular coboundary
operator on C•(ē) splits as dē = d∂e + d∂e→e with d∂e the cellular coboundary
operator on C•(∂e). Let us choose some induction data

(121) C•(ē), dē
(i,p,K)
 H•(ē) =

{
R, • = 0
0, • 6= 0

Consider the space

Ej := Sym j(C•(ē, g)[1])∗ 3 f(Ae,A|∂e)
The operator d∂e→e lifts to a weight zero operator44

D = (−1)n
〈
d∂e→e A∂e,

∂

∂Ae

〉
: E• → E•

Denote by Q∂e the differential on Sym (C•(∂e, g)[1]) induced by {S(0)
Xk−1

, •}; it

extends (via Q∂eAe = 0) to E•. We split Q∂e according to weight as Q∂e =
Q0
∂e+Q1

∂e+ · · · . In particular, Q0
∂e+D is simply the lift of the cellular coboundary

operator dē to E•. Thus, using the construction (19), one produces, out of the triple
(i, p,K) chosen above, the induction data

(122) E•, Q0
∂e +D

(iE ,pE ,KE)
 H•(E) ∼= Sym •(g[1])∗

Note that i in (121) is canonical: it has to represent H0(ē) by constant 0-cochains;
thus pE = i∗ is also canonical and is given by evaluation on constant 0-cochains.

We set in (120) the “initial condition” σ1 := d∂e→e A∂e, which is forced by

(117). The classical master equation {S(0)
Xk
, S

(0)
Xk
} = 0 is equivalent to a sequence of

equations for the functions σj for j ≥ 2:

(123) (D +Q0
∂e)σj = −

j−1∑

i=1

Qi∂eσj−i − (−1)n
j−1∑

i=2

〈
σj+1−i,

∂

∂Ae

〉
σi

Note that the r.h.s. of (123) depends only on σ1, . . . , σj−1. We solve (123), as an
equation for σj ∈ g⊗Ej , by induction in j. The r.h.s. is (D+Q0

∂e)-closed45 and is

44The sign is chosen in such a way that DA = d∂e→eA holds.
45 Indeed, using the induction hypothesis we calculate

(D + Q
0
∂e) (r.h.s. of (123)) =

j−1∑
i=1

i−1∑
l=0

Q
i−l
∂e

Q
l
∂eσj−i +

j−1∑
i=1

Q
i
∂eDσj−i − (−1)

n
j−1∑
i=1

〈
Q
i
∂eσ1,

∂

∂Ae

〉
σj−i−

− (−1)
n
j−1∑
i=2

〈
(D + Q

0
∂e)σj+1−i,

∂

∂Ae

〉
σi + (−1)

n
j−1∑
i=2

〈
σj+1−i,

∂

∂Ae

〉
(D + Q

0
∂e)σi =: a + b + c + d + e
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annihilated by pE .46 Therefore, it is exact, and one can construct the primitive as

σj := KE (r.h.s. of (123))

Thus we have constructed a solution of the classical master equation (120) on
Xk by extension of the known one (by induction hypothesis) on Xk−1.

Next, we want to construct S
(1)
Xk

= S
(1)
Xk−1

+ S̄
(1)
e (Ae,A∂e) in such a way that

SXk = S
(0)
Xk
− i~S(1)

Xk
satisfies the quantum master equation; we assume that S

(1)
Xk−1

is already constructed. We use the strategy of (iv) of the proof of Theorem 8.1: the
QME can be written as

(124) QēS
(1)
ē = −∆S

(0)
ē

where Qē = Q∂e + D + (−1)n
∑
j≥2

〈
σj ,

∂
∂Ae

〉
is the differential on E• induced by

{S(0)
Xk
, •} and S

(0,1)
ē :=

∑
e′⊂e S̄

(0,1)
e′ . We deform the induction data (122), using

Lemma 4.2, to

E•, Qē
(̃iE ,p̃E ,K̃E)
 Sym •(g[1])∗, dCE

The r.h.s. of (124) is Qē-closed, as follows from the classical master equation, and is
annihilated by p̃E (from unimodularity of g), thus we construct a solution of (124)

as S
(1)
ē := −K̃E∆S(0)

ē and set

S̄(1)
e := S

(1)
ē −

∑

e′⊂∂e
S̄

(1)
e′

This finishes the construction of a solution of the quantum master equation on

Xk of the form SXk =
∑
i≤k S̄ei with S̄ei = S̄

(0)
ei − i~ S̄(1)

ei ; taking k = N we obtain
the statement of the Theorem.

Property (c) follows from the possibility to choose the ordering of cells e1, . . . , eN
differently (preserving the nondecreasing dimension property) while preserving the
choice of induction data (121) for the cells. Each Y ⊂ X arises as Xk for some
ordering of cells and some k, which implies the QME on Y . �

Further, we have

a+b =

j−1∑
i=1

Q
i
∂e

(D +Q
0
∂e)σj−i +

j−i−1∑
l=1

Q
l
∂eσj−i−l

 = −(−1)
n
j−1∑
i=1

∑
r,s≥2,r+s=j−i+1

Q
i
∂e

(〈
σr,

∂

∂Ae

〉
σs

)

= −(−1)
n
j−1∑
i=1

∑
r,s≥2,r+s=j−i+1

〈
Q
i
∂eσr,

∂

∂Ae

〉
σs+(−1)

n
j−1∑
i=1

∑
r,s≥2,r+s=j−i+1

〈
σr,

∂

∂Ae

〉
Q
i
∂eσs =: f+g

Next we note that c + d + f =
∑

r,s,t≥2,r+s+t=j+2

〈〈
σr,

∂
∂Ae

〉
σs,

∂
∂Ae

〉
σt and e +

g = − ∑
r,s,t≥2,r+s+t=j+2

〈
σr,

∂
∂Ae

〉(〈
σs,

∂
∂Ae

〉
σt
)

, and thus c + d + f + e + g =∑
r,s,t≥2,r+s+t=j+2

〈
σrσs,

∂
∂Ae

∂
∂Ae

〉
σt = 0 – vanishes as a contraction of a symmetric and a skew-

symmetric tensor. Thus we proved that (D +Q0
∂e) (r.h.s. of (123)) = 0.

46 To see that the r.h.s. of (123) is annihilated by pE , note that in H•(E), the weight coincides

with the internal degree. On the other hand, the weight of (123) is j ≥ 2 while the internal degree
is 3− n ≤ 2. Thus pE(r.h.s. of (123)) is zero for degree reasons, except for the case n = 1 (i.e. e

is an interval) with j = 2, where one sees explicitly that −Q1
∂eσ1 = − 1

2

[
A[1],A[1]

]
+ 1

2

[
A[0],A[0]

]
vanishes on constant 0-cochains (we denoted the endpoints of the interval e by [0] and [1], as in
Remark 8.4).



60 ALBERTO S. CATTANEO, PAVEL MNEV, AND NICOLAI RESHETIKHIN

Lemma 8.7. Cellular action SX of the Theorem 8.6 is well-defined up to a canon-
ical BV transformation. More precisely, let SX and S′X be two cellular actions
fulfilling the conditions of Theorem 8.6 – the quantum master equation, the ansatz
(116,115) and properties (a)–(c). Then one can construct a family SX,t ∈ Fun0(FX)[[~]]
of solutions of QME for t ∈ [0, 1] together with a generator RX,t ∈ Fun−1(FX)[[~]]
such that

(i) SX,0 = SX , SX,1 = S′X ,

(ii) ∂
∂tSX,t = {SX,t, RX,t} − i~∆RX,t,

(iii) both SX,t and RX,t satisfy the ansatz (116,115), with t-dependent structure

constants CS,eΓ,e1,...,en
(t), CR,eΓ,e1,...,en

(t) for the action SX,t and the generator of

infinitesimal canonical transformation RX,t. Moreover, the trivial tree Γtriv
0

with a single leaf and no internal vertices has coefficient CR,e
Γtriv

0 ,e1
= 0).

Proof. Consider the filtration (119). We proceed by induction in Xk: assuming
that the Lemma holds for Xk−1, we aim to prove it for Xk. (Note that the Lemma
holds trivially for X1, since SX1

is fixed uniquely by (b) of Theorem 8.6.) Set

SXk :=
∑k
l=1 S̄el , S

′
Xk

:=
∑k
l=1 S̄

′
el

. By induction hypothesis, cellular actions SXk−1

and S′Xk−1
(defined as above, omitting the k-th term in the sums) are connected

by a canonical BV transformation, which we denote schematically by RXk−1
, i.e.

S′Xk−1
= RXk−1

◦ SXk−1
.

Define

(125) S′′Xk := R−1
Xk−1

S′Xk

We have then SXk = SXk−1
+ S̄e and S′′Xk = SXk−1

+ S̄′′e (for some S̄′′e (Aē,Be; ~)

satisfying the ansatz (115)). We can connect47 SXk and S′′Xk by a path of solutions

of QME on FXk of the form SXk,t = SXk−1
+ S̄e,t for t ∈ [0, 1], with S̄e,t =

S̄
(0)
e,t −i~ S̄(1)

e,t = 〈Be, σt(Aē)〉−i~ ρt(Aē) for some t-dependent functions σt ∈ g⊗E≥2,

ρt ∈ E≥2 of A-variables of weight ≥ 2. (We are borrowing the notations of the proof
of Theorem 8.6, in particular e := ek.)

Differentiating QME for SXt in t, we obtain

{S(0)
Xk,t

, ˙̄S
(0)
e,t } = 0(126)

{S(1)
Xk,t

, ˙̄S
(0)
e,t }+ {S(0)

Xk,t
, ˙̄S

(1)
e,t }+ ∆ ˙̄S

(0)
e,t = 0(127)

where the dot stands for the derivative in t.
Observe that:

(a) The cohomology of the differential {〈BXk , dAXk〉 , •} on the subcomplex Ξ(0) :=
{〈Be, f(Aē)〉 | f ∈ g⊗E≥2} ⊂ Fun(FXk) vanishes in internal degree zero.48 This
implies, by homological perturbation theory, that degree zero cohomology of

{S(0)
Xk,t

, •} on Ξ(0) vanishes as well.

47 Indeed, the most general construction of extension of a solution of QME from Xk−1 to
Xk is as in our proof of Theorem 8.6, where on each step of induction in j we can shift σj →
σj + (D + Q

(0)
∂e )(· · · ), also we can shift S̄

(1)
e → S̄

(1)
e + Qē(· · · ). This amounts to a contractible

space of choices. Thus the space of solutions of QME on Xk of form SXk−1
+ s̄e, with a fixed

solution SXk−1
of QME on Xk−1 and an indeterminate function s̄e satisfying ansatz (115), is

contractible; in particular, it is path-connected.
48 For this we assume dim e ≥ 1; in the case of dim e = 0 the induction step of the Lemma

works trivially as S̄e is fixed uniquely by (b) of Theorem 8.6.
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(b) By a similar argument, degree zero cohomology of {S(0)
Xk,t

, •} on Ξ(1) := {g(Aē) ∈
E≥2} ⊂ Fun(FXk) also vanishes.

Thus, by (126) and (a), we have ˙̄S
(0)
e,t = {S(0)

Xk,t
, r

(0)
e,t } for some degree −1 element

r
(0)
e,t ∈ Ξ(0). Substituting this into (127), we obtain, using Jacobi identity for {, } and

the QME on SXk,t, that
{
S

(0)
Xk,t

, ˙̄S
(1)
e,t − {S(1)

Xk,t
, r

(0)
e,t } −∆r

(0)
e,t

}
= 0. This implies,

by (b), that ˙̄S
(1)
e,t = {S(1)

Xk,t
, r

(0)
e,t }+ ∆r

(0)
e,t + {S(0)

Xk,t
, r

(1)
e,t } for some degree −1 element

r
(1)
e,t ∈ Ξ(1). Thus we have proven that

(128) ṠXk,t = {SXk,t, re,t} − i~∆re,t

with the generator re,t = r
(0)
e,t − i~ r(1)

e,t ∈ Ξ(0) − i~Ξ(1). One can use homological

perturbation theory to construct an explicit chain contractions of
(

Ξ(0), {S(0)
Xk,t

, •}
)

and
(

Ξ(1), {S(0)
Xk,t

, •}
)

and use them to construct r
(0)
e,t , r

(1)
e,t . By inspection of the con-

struction, the resulting generator re,t satisfies the ansatz (115) for some t-dependent
structure constants Cr,eΓ,e1,...,en

(t).

Combining (128) and (125), we obtain that SXk and S′Xk can be connected by a
canonical transformation (ii) with generator

RXk,t =

{
2re,2t, t ∈ [0, 1

2 )
2RXk−1,2t−1, t ∈ [ 1

2 , 1]

This proves the induction step Xk−1 → Xk. �

Remark 8.8. One can put together SX,t and RX,t of Lemma 8.7 into a single
non-homogeneous differential form on the interval,

S̃X := SX,t + dt ·RX,t ∈ Ω•([0, 1])⊗̂Fun(FX)[[~]]

Then the quantum master equation on SX,t together with (ii) can be packaged as

an extended quantum master equation for S̃X ,

(dt − i~∆) e
i
~ S̃X = 0

where dt = dt · ∂∂t – the de Rham differential in t. By the Lemma, S̃X satisfies the
ansatz (116,115) with structure constants C taking values in Ω•([0, 1]).

Remark 8.9. The building block (115) of the cellular action is defined uniquely
for dim e = 0 (fixed by (118)) and for dim e = 1 (as follows from Lemma 8.7: for
degree reasons, the generator of the canonical transformation has to vanish; S̄e in
this case is given by (113)). For cells of dimension ≥ 2, S̄e is not uniquely defined.

Remark 8.10. A different approach to the proof of Theorem 8.6 is to fix a sim-
plicial refinement W of X (i.e. cells of X are triangulated in W ). Then, proceed-
ing again by induction in Xk, as in (119), one constructs SXk as a BV pushfor-
ward of SWk

, as constructed in Theorem 8.1 (Wk here is the restriction of W to
Xk), using a choice of gauge-fixing compatible with one for the BV pushforward
Wk−1 → Xk−1 used in the previous step and involving a choice of induction data
for relative cochains C•(W |ek , ∂ek) C•(ēk, ∂ek).

Remark 8.11 (Standard building blocks for cells). Assume that we have fixed some
“standard” choice of the induction data (121) for all possible regular CW decompo-
sitions ē of a closed n-ball with single top cell, considered up to homeomorphisms,
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for n ≥ 1. Denote this collection of choices θ. Then, by the construction of The-
orem 8.6, we have a “standard building block” S̄θe satisfying ansatz (115) for any
possible combinatorics of ē. For any finite regular CW complex X, we then have a
“standard” cellular action SθX =

∑
e⊂X S̄

θ
e satisfying the quantum master equation

and properties (a–c) of Theorem 8.6. In particular, we can choose θ on simplices
(and, more generally, on prisms, see Remark 8.5) to give the building blocks (106)
of Theorem 8.1, coming from Whitney forms/Dupont’s chain homotopy.

Remark 8.12 (Rationality). We can choose the induction data (121) for cells to be

rational, i.e. to factor through induction data C•(ē,Q)
(iQ,pQ,KQ)
 H•(ē,Q). Then,

by inspection of the proof of Theorem 8.6, all the structure constants of the cellular
action – coefficients CeΓ0,e1,...,en

, CeΓ1,e1,...,en
in (115) – are rational as well.

8.2.1. Cellular BF action as a “generating function” of a unimodular L∞ algebra
on cochains.

Definition 8.13. 49 A unimodular L∞ algebra is a graded vector space V • endowed
with two sequences of skew-symmetric multilinear operations,

• classical operations ln : ∧nV → V for n ≥ 1 of degree 2− n and
• quantum operations qn : ∧nV → R for n ≥ 1 of degree −n,

such that the following two sequences of identities hold: homotopy Jacobi identities

(129)
∑

σ∈Σn

∑

r+s=n

± 1

r!s!
lr+1(xσ1

, . . . , xσr , ls(xσr+1
, . . . , σn)) = 0

and homotopy unimodularity relations
(130)
∑

σ∈Σn

(
± 1

n!
StrV ln+1(xσ1

, . . . , xσn , •) +
∑

r+s=n

± 1

r!s!
qr+1(xσ1

, . . . , xσr , ls(xσr+1
, . . . , xσn))

)
= 0

Here x1, . . . , xn is an n-tuple of elements of V and σ runs over permutations of this
n-tuple; ± are the Koszul signs.

Definition 8.14 ([28]). For V • a graded vector space, consider the odd-symplectic
space F = V [1] ⊕ V ∗[−2]. We say that an element f ∈ Fun(F)[[~]] satisfies the
“BF∞ ansatz” if

(131) f = 〈B, α(A)〉 − i~β(A)

where A ∈ Hom1(F, V ), B ∈ Hom−2(F, V ∗) are the superfields (projections to sum-

mands of F composed with shifted identity map) and α(A) ∈ Ŝym≥1(V [1]) ⊗ V ∗,
β(A) ∈ Ŝym≥1(V [1]) arbitrary elements.

We have the following properties (see [28] for details and proofs):

(i) If f and g satisfy the BF∞ ansatz then {f, g} and ∆f also satisfy it.
(ii) If S satisfies the BF∞ ansatz and is of internal degree zero, then one can write

(132) S(A,B; ~) =
∑

n≥1

1

n!
〈B, ln(A, . . . ,A︸ ︷︷ ︸

n

)〉 − i~
∑

n≥1

1

n!
qn(A, . . . ,A︸ ︷︷ ︸

n

)

49 This algebraic structure (and the example coming from Theorem 8.1) was introduced in
[27, 28] under the name of a quantum L∞ algebra. In [13] it was named a unimodular L∞
algebra and was studied as an algebra over a particular Merkulov’s wheeled operad.
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where ln : ∧nV → V and qn : ∧nV → R are certain multilinear operations
on V . They endow V with the structure of a unimodular L∞ algebra, as in
Definition 8.13. Relations (129,130) can be conveniently written in terms of
the superfield AX as

∑

r+s=n

1

r!s!
lr+1(A, . . . ,A︸ ︷︷ ︸

r

, ls(A, . . . ,A︸ ︷︷ ︸
s

)) = 0,

1

n!
Str ln+1(A, . . . ,A︸ ︷︷ ︸

n

, •) +
∑

r+s=n

1

r!s!
qr+1(A, . . . ,A︸ ︷︷ ︸

r

, ls(A, . . . ,A︸ ︷︷ ︸
s

)) = 0

and are equivalent to the quantum master equation satisfied by S.
(iii) If St, for t ∈ [0, 1], is a family of solutions of the QME satisfying the BF∞

ansatz such that St for different t are related by a canonical BV transformation

(133)
∂

∂t
St = {St, Rt} − i~Rt

then the degree −1 generator Rt has to satisfy the BF∞ ansatz as well.
(iv) One can introduce a natural notion of equivalence of unimodular L∞ struc-

tures on V : two structures {ln, qn}, {l′n, q′n} are called equivalent if the cor-
responding solutions (132) of QME on F can be related by a canonical BV
transformation (133).

In particular, for V = C•(X, g), the action SX constructed in Theorem 8.6 can
be expanded as

(134) SX(AX ,BX ; ~) =
∑

n≥1

1

n!
〈BX , lXn (AX , . . . ,AX︸ ︷︷ ︸

n

)〉 − i~
∑

n≥2

1

n!
qXn (AX , . . . ,AX︸ ︷︷ ︸

n

)

where lXn : ∧nC•(X, g) → C•(X, g) and qXn : ∧nC•(X, g) → R are multilinear
operations on g-valued cochains, endowing the space of cochains C•(X, g) with the
structure of a unimodular L∞ algebra.

We can split operations lXn , q
X
n into contributions of individual cells:

lXn =
∑

e⊂X
e∗ · len(Aē, . . . ,Aē), qXn =

∑

e⊂X
qen(Aē, . . . ,Aē)

where len : ∧nC•(ē, g) → g and qen : ∧nC•(ē, g) → R are the terms of the Taylor
expansion in A-fields of the building block (115),

(135) S̄e =
∑

n≥1

1

n!
〈Be, len(Aē, . . . ,Aē)〉g − i~

∑

n≥2

1

n!
qen(Aē, . . . ,Aē)

Example 8.15 (From [27, 28]). The explicit answer for the action SX for X = I
the interval (113) corresponds to the following unimodular L∞ algebra structure on
g-valued cochains C•(I, g) = Spang(ε0, ε1, ε01) of the interval (we denote e0, e1, e01
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the basis cochains associated to the left/right endpoints and the bulk):

l2(α1 ⊗ ε0, α2 ⊗ ε0) = [α1, α2]⊗ ε0
l2(α1 ⊗ ε1, α2 ⊗ ε1) = [α1, α2]⊗ ε1

ln+1(α1 ⊗ ε01, . . . , αn ⊗ ε01, β ⊗ ε1) =
B+
n

n!

∑

σ

adασ1
· · · adασn (β)⊗ ε01

ln+1(α1 ⊗ ε01, . . . , αn ⊗ ε01, β ⊗ ε0) = −B
−
n

n!

∑

σ

adασ1
· · · adασn (β)⊗ ε01

qn(α1 ⊗ ε01, . . . , αn ⊗ ε01) =
Bn
n · n!

∑

σ

trg(adασ1
· · · adασn )

Here we wrote out all the nonvanishing operations; n ≥ 0 for ln+1 and n ≥ 2 for qn;
σ runs over permutations of numbers 1, . . . , n; αi and β are arbitrary elements in g;
B±n are Bernoulli numbers with B±1 = ± 1

2 (and B±0 = 1, B±2 = 1
6 , . . . the standard

Bernoulli numbers). Forgetting about the quantum operations qn, we have an L∞
algebra on g-valued cochains of the interval – the Lie version of the “algebra of the
interval”50 in Lawrence-Sullivan [21] (more precisely, the L∞ algebra C•(I, g), {ln}
is the C∞ algebra of Lawrence-Sullivan on C•(I) tensored with g).

Remark 8.16. Theorem 8.6 possesses a straightforward generalization whereby
one replaces the unimodular Lie algebra (g, [, ]) of coefficients of cochains/chains
by any finite-dimensional unimodular L∞ algebra (g, {lgn}, {qgn}). In this case,

instead of (118), for e a 0-cell, we have S̄e =
〈
Be,

∑
n≥1

1
n! l

g
n(Ae, . . . ,Ae)

〉
g
−

i~
∑
n≥1

1
n! q

g
n(Ae, . . . ,Ae); instead of (117) we have SX =

〈
BX , (d+ lg1)AX

〉
+ r.

In (115), we then allow Γ0 to be any rooted tree with in-valencies ≥ 2 at vertices
(not necessarily binary), with JacobiΓ0 defined as an nested composition of opera-
tions lgn (with n the in-valence of a vertex of the tree) associated to Γ0. Graph Γ1

can be either a 1-loop graph with every vertex having out-valency 1 and in-valency
≥ 2 (and then JacobiΓ1

is a supertrace of a nested classical operation), or a rooted
tree with the root vertex decorated by qgn, with n the valency of the root vertex.

8.3. BV pushforward to cohomology, simple-homotopy equivalence, cel-
lular aggregations. Similarly to Section 5.2, we consider the BV pushforward of

the half-density e
i
~SX (µ~

FX
)1/2 ∈ Dens

1
2 ,Fun

C (FX) to residual fields Fres = H•(X, g)[1]⊕
H•(X, g∗)[−2]. The factor (µ~

FX
)1/2 = ξ~ ·µ

1
2

FX
is the normalized cellular half-density

on the space of fields as in Section 5.2 (for cochains with coefficients in a trivial
local system with fiber g).51 Explictly, we define the partition function by the fiber
BV integral

(136) Z(Ares,Bres) :=

∫

L⊂Ffluct

e
i
~SX (µ~

FX )1/2 ∈ Dens
1
2 ,Fun

C (Fres)

50This algebraic structure appeared independently and nearly simultaneously in [21], in the

preprint of [8] and, in its Lie form, in the preprint of [27].

51 Half-density µ
1
2
FX

is constructed using an a priori fixed density (i.e. a fixed normalization of

the Lebesgue measure) µg on g, instead of the standard density on Rm as in Section 5.2.
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where the gauge fixing data – the splitting FX = Fres ⊕ Ffluct and the Lagrangian
L ⊂ Ffluct – are constructed, as in Section 5.2, from a choice of induction data
C•(X) H•(X) (tensored with identity in g).

By the general properties of BV pushforwards and by Theorem 8.6, we have
∆resZ = 0 and a change of the data C•(X) H•(X) changes Z 7→ Z+∆res(· · · ).52

More precisely, a change of induction data induces a canonical BV transformation,53

i.e. if Z and Z ′ are constructed using two different gauge-fixings, we can construct
a family Zt, t ∈ [0, 1], such that Z0 = Z, Z1 = Z ′ and

(137)
∂

∂t
Zt = ∆res(Zt ·Rt)

for some t-dependent generator Rt ∈ Fun−1(Fres)[[~]] of form Rt = 〈Bres, αt(Ares)〉−
i~βt(Ares).

Computing the BV pushforward yields the result of the following form:

Z(Ares,Bres) = e
i
~Sres(Ares,Bres;~) ξ

H•(X,g)
~ τ(X, g)︸ ︷︷ ︸

∈Dens
1
2 Fres

where the factor ξH
•

~ and the torsion τ(X, g) are for a trivial local system on X
of rank dim g. The effective action on residual fields Sres is computed as a sum of
Feynman diagrams and satisfies the BF∞ ansatz (132) for some multilinear oper-
ations lres

n : ∧nH•(X, g)→ H•(X, g) and qres
n : ∧nH•(X, g)→ R which endow the

cohomology H•(X, g) with the structure of a unimodular L∞ algebra. In particular,
the classical operations {ln} determine the rational homotopy type of X.54

Remark 8.17. Some comments on the L∞ algebra H•(X, g), {ln}n≥2 and its re-
lation to the rational homotopy type:

(a) Factorization. One has the following factorization property: the space of g-
valued cochains, viewed as an L∞ algebra (disregarding the quantum operations
qn), can be written as

(138) C•(X, g) = C•(X)⊗ g

52By an abuse of notations, throughout Sections 8 and 9 we are suppressing the superscript

can for the BV Laplacian on half-densities. Similarly, in Section 9 we will suppress this superscript

for the operator Ŝ∂ acting on half-densities.
53This is a general property of BV pushforwards for a change of gauge-fixing data in a smooth

family, cf e.g. [5], Section 2.2.2. Note that by the discussion of Section 4.3, in our case the space of
gauge-fixing data is contractible and in particular path-connected, thus any two choices of gauge-

fixing can be connected by a smooth family. We are slightly abusing the term “canonical BV

transformation”: for us it has two related meanings – for ∆-closed half-densities, as in (137), and
for actions (functions solving QME), as in (133). These meanings are equivalent for half-densities

satisfying exponential ansatz Z = e
i
~Sµ1/2.

54 Here we mean that we need to know ln’s (Massey-Lie brackets) for a general Lie alge-

bra of coefficients g, which is tantamount to knowing the C∞ operations (Massey products)
on H•(X), see (139) below. In fact, one can recover the n-ary C∞ operation mn on H•(X)

from ln with g = b+
n+1 the algebra of upper-triangular matrices of size n + 1, simply from

ln(w1 ⊗ t12, . . . wn ⊗ tnn+1) = mn(w1, . . . , wn) ⊗ t1n+1 with wi ∈ H•(X) and tij the matrix

with entry 1 at (ij)-th place and all other entries being zero. We stress that one does not recover
the C∞ structure on H•(X) by plugging g = R into the formulae for operations ln on H•(X, g)

– that would just kill all the operations.
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– the Lie algebra of coefficients g tensored with the C∞ algebra55 C•(X) of
cochains with coefficients in R or Q. This follows by inspection of (115). Sim-
ilarly, one has

(139) H•(X, g) = H•(X)⊗ g

– the L∞ algebra of g-valued cohomology equals the coefficient Lie algebra g
tensored with the cohomology C∞ algebra, regarded as a homotopy transfer of
the C∞ algebra C•(X) given by Kontsevich-Soibelman sum-over-trees formula
[20]. See also [8] for the fact that the sum-over-trees formula transfers C∞
algebras into C∞ algebras.56

(b) Uniqueness of the C∞ structure:
• The C∞ algebra structure on C•(X) appearing in the r.h.s. of (138) is in-

ductively unique up to C∞ isomorphism (cf. Lemma 8.7). The C∞ struc-
ture on H•(X) appearing in the r.h.s. of (139) is C∞ quasi-isomorphic to
it.

• For X a simplicial complex, C•(X) and H•(X) are both C∞ quasi-isomorphic
to Sullivan’s algebra Ω•poly(X) of piecewise-polynomial differential forms on
X.

• Also, for X a cellular decomposition of a manifold M , C•(X,R) and
H•(X,R) are both C∞ quasi-isomorphic to de Rham algebra of smooth
differential forms Ω•(M).

(c) Massey products and rational homotopy type. For X a simply-connected
CW complex, the C∞ algebra structure on H•(X,Q) determines the rational
homotopy type of X by a theorem of Kadeishvili [18], [17]. In particular, this
C∞ algebra is quasi-isomorphic (in the category of C∞ algebras) to Sullivan’s
minimal model cdga [33] of the space X, from which the rational homotopy
groups Q⊗ π∗(X) can be directly recovered.

Definition 8.18 (Whitehead [35], see also [9]). (i) Let Y be a CW complex con-
taining an n-cell e and an (n− 1)-cell e′ ⊂ ∂e for some n ≥ 1, such that e′ is
a free face of e, i.e. e′ is cobounded only by e. Let X ⊂ Y be the subcomplex

55Recall, see e.g. [8] for details, that an A∞ algebra is a Z-graded vector space W together

with a sequence of multilinear operations mn : W⊗n → W , n ≥ 1, satisfying the quadratic
associativity-up-to-homotopy identities. An A∞ algebra (W, {mn}) is called a C∞ algebra if in

addition operations mn vanish on shuffle-products. We refer the reader to Appendix B on how to

construct the tensor product L∞ structure on W ⊗ g, with W a C∞ algebra and g a Lie algebra.
The C∞ structure on C•(X), for X a simplicial complex, coinciding with the one read off of

the tree part of (106) and constructed via homotopy transfer from piecewise-polynomial forms by

Kontsevich-Soibelman formula using Dupont’s chain homotopy operator was considered in [8].

56 Here the remark (see [27, 28]) is that the perturbative evaluation of the integral (136) in the
lowest order in ~ corresponds to the homotopy transfer formula for L∞ algebras to a subcomplex

as a sum over (non-planar) rooted trees. This is the L∞ version of Kontsevich-Soibelman formula

for homotopy transfer of A∞ algebras where the sum is over planar rooted trees. Also, one has
that the homotopy transfer commutes with tensoring with a Lie algebra g:

W, {mn} ⊗g−−−−−→ W ⊗ g, {ln}y y
W ′, {m′n}

⊗g−−−−−→ W ′ ⊗ g, {l′n}
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obtained by removing the pair e, e′ from X. Then one calls X an elementary
collapse of Y and Y an elementary expansion of X. The customary notation
is X ↗ Y or Y ↘ X.

(ii) Two CW complexes X and Y are called simple-homotopy equivalent if they
can be connected by a sequence of elementary expansions and collapses.57

Let us assume that the collection θ of standard induction data on cells is chosen,
as in Remark 8.11, so that we have standard cellular actions SθX . We will omit
the superscript θ, implying that SX always stands for SθX (and similarly for the
building block S̄e) throughout this section.

Lemma 8.19. Let X and Y be two regular CW complexes such that Y is an
elementary expansion of X obtained by adjoining a pair of cells e, e′ ⊂ ∂e. Then
the BV pushforward PY→X∗ from FY to FX relates the standard cellular actions
(116) as follows:

(140) PY→X∗
(
e
i
~SY (µ~

FY )1/2
)

= e
i
~SX (µ~

FX )1/2 + ∆X(ρ)

There is a preferred (canonical) choice of gauge-fixing for the BV pushforward

PY→X∗ , for which the half-density ρ ∈ Dens
1
2 ,Fun

C (FX) above attains the form

(141) ρ = −i~ r · e i~SX (µ~
FX )1/2

with r ∈ Fun−1(C•(∂e− e′, g)[1]) – a function of the A-field on ∂e− e′.
Proof. Define h := ∂e − e′ ⊂ X. Let k := dim(e′) = dim(e) − 1. Our preferred
gauge-fixing for the BV pushforward PY→X∗ is associated to the induction data

C•(Y ) ' C•(X)⊕ Span(e∗, (e′)∗)
(i,p,K)
 C•(X) with

(142) p =

{
id on C•(X)
0 on e∗, (e′)∗

, i : ε∗ 7→
{
ε∗ − (e′)∗ if ε is a k−cell of h
ε∗ otherwise

,

K :

{
e∗ 7→ (e′)∗

C•(X)⊕ Span((e′)∗) 7→ 0

Here ε is a cell of X. The map i is the pullback by the projection C•(Y )→ C•(X)
which sends e′ 7→ −h and e 7→ 0. The result of the BV pushforward has the

form e
i
~S
′
X (µ~

FX
)1/2 with S′X that can be different from the standard action SX .

However the difference S′X − SX is a function of the form −i~φ(Ah) depending
only on the field A on cells of h. Thus we have two solutions of the quantum master
equation Sh (standard) and Sh − i~φ (obtained by BV pushforward from e) on
Fh. One can connect them by a path of solutions of the quantum master equation
Sh,t = Sh − i~ t · φ with t ∈ [0, 1] such that Sh,0 = Sh, Sh,1 = Sh − i~φ. Similarly
to the argument in the proof of Lemma 8.7, the fact that ∂tSh,t can be written as
an infinitesimal canonical BV transformation

(143) ∂tSh,t = {Sh,t, Rt} − i~∆Rt

for some generator Rt ∈ Fun−1(Fh)[[~]] of form Rt = −i~χ(Ah), follows from the

computation of the zeroth cohomology of Qh = {S(0)
h , •} on functions of field A:

H0
Qh

(Fun(C•(h, g)[1])) ' H0
CE(g) = R(144)

57For example, Pachner’s moves of triangulations of an n-manifold can be realized as a se-
quence of elementary expansions followed by a sequence of elementary collapses. Also, cellular
subdivisions and aggregations can be realized as sequences of expansions and collapses.



68 ALBERTO S. CATTANEO, PAVEL MNEV, AND NICOLAI RESHETIKHIN

where we use the contractibility of h.58 Equation (143) is equivalent to ∂
∂te

i
~Sh,t =

∆
(
e
i
~Sh,tRt

)
; integrating over t ∈ [0, 1], we obtain e

i
~ (Sh−i~φ)−e i~Sh = ∆

(∫ 1

0
dt e

i
~Sh,tRt

)
=

∆
(
e
i
~Sh e

φ−1
φ (−i~χ)

)
. Therefore, returning to the pair of complexes X,Y , we have

obtained that the BV pushforward e
i
~SY (µ~

FY
)1/2 to FX differs from e

i
~SX (µ~

FX
)1/2

by ∆X(· · · ) with (· · · ) given by (141) with r = eφ−1
φ χ. By general properties of BV

pushforwards, another choice of gauge-fixing for PY→X∗ preserves the result (140)
but may change the ansatz for ρ. �

Proposition 8.20. Assume that two regular CW complexes X and Y are simple-
homotopy equivalent. Let ZX and ZY be the respective partition functions on Fres

X
∼=

Fres
Y . Then

(145) ZY − ZX = ∆res(· · · )
More precisely, ZX and ZY can be connected by a canonical transformation, as in
(137).

Proof. We can assume without loss of generality that Y is an elementary expansion
of X obtained by attaching a pair of cells e, e′ ⊂ ∂e. Since the value of the BV
pushforward from FY to residual fields is independent of the gauge-fixing data when
considered modulo canonical transformations, one can choose the gauge-fixing cor-
responding to first pushing forward from FY to FX and then to Fres (using the
construction of composition of induction data (16)). On the other hand, by Lemma

8.19, the pushforward FY → FX , ζ1 := PY→X∗
(
e
i
~SY (µ~

FY
)1/2

)
, differs from ζ0 :=

e
i
~SX (µ~

FX
)1/2 by a canonical transformation, i.e. we have a family of half-densities

ζt on FX with ∂
∂tζt = ∆X(ζtRX,t). Hence, PX→res

∗ PY→X∗
(
e
i
~SY (µ~

FY
)1/2

)
=

PX→res
∗ ζ1 is connected to PX→res

∗ ζ0 by a family Zt = PX→res
∗ ζt satisfying ∂

∂tZt =

∆res(ZtRt) with Rt := Z−1
t PX→res

∗ (ζtRX,t). We used here the property of BV push-
forward that it commutes with BV Laplacians. This proves the Proposition. �

Remark 8.21. As we remarked above, in the case of simply-connected X, the
partition function (if we know it for all g) determines the rational homotopy type
of X. One might ask, what kind of topological information is contained in the
partition function for X non-simply connected? The partition function Z contains
the following:

(a) The deformation-theoretic model (given by the homotopy Maurer-Cartan equa-
tion for the L∞ algebra on cohomology, or on cochains) for the singularity of
the moduli space of flat connections at zero connection (or at the chosen local
system, if we twist the construction by it, as explained in Section 9).

(b) A formal infinitesimal thickening of the moduli space - its graded/supermanifold
part, corresponding to writing the homotopy Maurer-Cartan equation above
without requiring the unknown (the tangent vector to the moduli space) to be in
degree 1 and allowing it to be an inhomogeneous element (and also allowing the

58 In more detail, the quantum master equation for Sh and for Sh − i~φ implies Qhφ = 0.
Function φ vanishes at A = 0 (this is the point where we use the normalization of the half-densities

(µ~FY )1/2, (µ~FX )1/2) which implies, together with (144), that the obstruction to Qh-exactness of

φ vanishes, i.e. we have φ = Qhχ for some χ, a function of Ah of degree −1. Thus we have proved
(143) for the generator Rt = −i~χ.
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generators of gauge transformations to be inhomogeneous rather than in degree
0).

(c) The part coming from unimodular/quantum operations qn on cohomology – they
encode the singular behavior of R-torsion as a function on the moduli space,
near (not just at) the zero connection (or, more generally, a given local system
if we twist by it).

In the case π1(X) = 0, only (b) survives and gives the rational homotopy type. In
the case π1(X) 6= 0, (c) pertains to the simple-homotopy type, (a) is (a local model
for) the character variety of the group π1(X) and one expects (b) to be again related
to the rational homotopy type.

Proposition 8.22. Let X,Y be two regular CW complexes such that X is a cel-
lular aggregation of Y (or, equivalently, Y is a subdivision of X). Then the BV
pushforward PY→X∗ from FY to FX relates the standard cellular actions SY and SX
by

(146) PY→X∗
(
e
i
~SY (µ~

FY )1/2
)

= e
i
~SX (µ~

FX )1/2 + ∆X(· · · )

More precisely, the r.h.s. of (146) has the form e
i
~S
′
X (µ~

FX
)1/2 and for special “geo-

metric” choices of gauge-fixing for the BV pusforward PY→X∗ , we have a canonical
transformation

(147) S′X = SX − i~{SX , R(1)}
with the generator R(1)(AX) ∈ Fun−1(C•(X, g)[1]) given by the linear in ~ term of
the ansatz (115,116) with coefficients CeΓ1,e1,...,en

for a cell e ⊂ X depending on the

combinatorics of Y |e and the particular choice of geometric gauge-fixing. In this

case, the ∆X(· · · ) term in (146) is in fact ∆X

(
eφ−1
φ · (−i~R(1)) · e i~SX (µ~

FX
)1/2

)

where we denoted −i~φ(AX) := S′X − SX .

Proof. Let us write Y � X if X an aggregation of Y . We can always decompose
Y � X as a sequence

(148) Y = Xm � Xm−1 � · · · � X0 = X

where for each 0 ≤ k < m, Xk+1 is a subdivision of Xk where only a single cell e
of Xk is subdivided and others (including cells of ∂e) are untouched.59

First consider the case when Y is a subdivision of a single cell e of X. Then we
can represent the aggregation Y � X as a simple-homotopy equivalence – a single
elementary expansion (given by adjoining to Y the pair of cells ẽ, e ⊂ ∂ẽ) followed
by a sequence of collapses

(149) Y ↗ (W = W0) ↘W1 ↘ · · · ↘ (Wp = X)

Here one can regard W as (Y ∪X−eX)∪ẽ; the boundary of the cell ẽ is ∂ẽ = ē∪∂e ēY ,
where eY = Y |e is a copy e subdivided in Y , which is glued to a non-subdivided
copy of e along the equator ∂e = ∂eY in the sphere ∂ẽ.

Consider the standard cellular action SW for W . We have the standard induction

data (142) for the collapsesW ↘ · · · ↘ X which compose to C•(W )
(iW→X ,pW→X ,KW→X)

 

59 To obtain such a decomposition, order the cells e1, . . . , em ofX in the order of non-decreasing

dimension, as in the proof of Theorem 8.6. Then set Xk :=
(⋃

i≤k Y |ei
)
∪
(⋃

i>k ei
)
.
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ẽ

Figure 5. Example of a single-cell aggregation presented as an
expansion followed by a sequence of collapses.

C•(X) and also a standard induction data C•(W )
(iW→Y ,pW→Y ,KW→Y )

 C•(Y ) for
the collapse W ↘ Y . By Lemma 8.19, we have

PW→X∗
(
e
i
~SW (µ~

FW )1/2
)

= e
i
~SX (µ~

FX )1/2 + ∆X

(
−i~ rW→X · e

i
~SX (µ~

FX )1/2
)
,(150)

PW→Y∗
(
e
i
~SW (µ~

FW )1/2
)

= e
i
~SY (µ~

FY )1/2 + ∆Y

(
−i~ rW→Y · e

i
~SY (µ~

FY )1/2
)

(151)

for some degree −1 functions rW→X(AX |ē) and rW→Y (AY |ēY ). Here for the BV
pushforwards we use the gauge-fixing associated with the standard induction data
above. For the pushforward PY→X∗ corresponding to the aggregation Y → X, we
will use the induction data

(152) C•(Y )
(pW→Y ◦iW→X ,pW→X◦iW→Y ,pW→Y ◦KW→X◦iW→Y )

 C•(X)

– this is the “geometric” gauge-fixing mentioned in the Proposition; it depends on
choosing a particular presentation (149) of an aggregation as a simple-homotopy
equivalence.60

Composition of this data with C•(W ) C•(Y ) above yields the data C•(W ) 
C•(X) above. Thus with these choices one has PY→X∗ PW→Y∗ = PW→X∗ (a precise

identity, not modulo canonical transformations); applying this to e
i
~SW (µ~

FW
)1/2

and using (150,151), we obtain

(153) PY→X∗
(
e
i
~SY (µ~

FY )1/2
)

=

= e
i
~SX (µ~

FX )1/2 + ∆X

(
−i~ rY→X · e

i
~SX (µ~

FX )1/2
)

=: e
i
~S
′
X (µ~

FX )1/2

with rY→X(AX |ē) := rW→X−e−
i
~SXPY→X∗

(
rW→Y · e

i
~SY (µ~

FY
)1/2

)
∈ Fun−1(C•(ē, g)[1]).

We then define R(1)(AX |ē) as R(1) := rY→X · φ
eφ−1

with φ(AX |ē) := i
~ (S′X − SX) ∈

Fun0(C•(ē, g)[1]). Then, by a calculation similar to the one in the proof of Lemma

60 Note also that induction data (152) factors through integral cochains, C•(Y,Z) C•(X,Z).



A CELLULAR TOPOLOGICAL FIELD THEORY 71

8.19, (153) is equivalent to (147). This proves the Proposition in the case when Y
is a single-cell subdivision of X.

In the case of a general (non single-cell) aggregation (148), we notice that S′X , de-

fined via e
i
~S
′
X (µ~

FX
)1/2 := PY→X∗

(
e
i
~SY (µ~

FY
)1/2

)
, with PY→X∗ = PX1→X∗ · · ·PY→Xm−1

∗ ,

satisfies the assumptions of Lemma 8.7 and thus is connected to SX by a canonical
transformation with generator satisfying the ansatz (115,116). From the single-cell
aggregation case we infer that the generator has only the linear in ~ part (while the
~-independent part vanishes). Such a transformation with a t-dependent generator

−i~R(1)
t , t ∈ [0, 1] is equivalent to a transformation with constant (t-independent)

generator −i~R(1) = −i~
∫ 1

0
dtR

(1)
t . �

8.4. Remarks. In this section we comment on the BV cohomology defined by the
theory. We also prove that the theory converges in an appropriate sense, in the
limit of dense triangulation (here we restrict to the simplicial case), to the standard
continuum BF theory on a manifold.

8.4.1. BV cohomology.

Definition 8.23. Let F, ω be an odd-symplectic space and S ∈ Fun0(F)[[−i~]] a
solution of the quantum master equation on F. We define the perturbative BV
cohomology at S61 as the cohomology of the differential δS = {S, •} − i~∆ =

e−
i
~S∆e

i
~S on Fun(F)[[−i~]].

In particular, cohomology of δS in degree zero controls infinitesimal deformations
of S as a solution of QME modulo canonical transformations (or, in other words,

gives observables O ∈ Fun0(F)[[−i~]] such that ∆(O e
i
~S) = 0 considered modulo

infinitesimal equivalence O e
i
~S ∼ O e i~S + ε∆(−i~Re i~S)).

Assume that we are in the setting of Section 8.2.1, with F = V [1] ⊕ V ∗[−2] for
V = V • a graded vector space and S satisfying the BF∞ ansatz (131). We note
the following.

(i) Cohomology of ∆ on Fun(F) is a line spanned by the element ν ∈⊗k Det(V 2k)∗⊗⊗
k DetV 2k+1 = Det(Fodd)∗ given by the product of all components of A ,B

of odd internal degree, H∆(Fun(F)) = ν · R, with ν having internal degree
|ν| = ∑k(1−2k) dimV 2k+

∑
k(−2+(2k+1)) dimV 2k+1.62 This cohomology

was considered in [15].
(ii) We have

(154) Hk
{S(0),•}(Fun(F)) = Hk

CE(V,SymV [2])

where on the r.h.s. we have the Chevalley-Eilenberg cohomology of the L∞
algebra V, {ln} (with ln the L∞ operations corresponding to the O(~0) term
in S via (132)) with coefficients in the sum of symmetric powers of the adjoint

61We introduce this term to avoid confusion with the cohomology of the BV Laplacian ∆ itself

which is quite different (perturbative BV cohomology contains more information), see (i) vs. (vii)
below.

62This follows from writing F as an odd cotangent bundle T ∗[−1]N of an evenly graded vector
space N =

⊕
k V

2k+1 ⊕⊕k(V 2k)∗ spanned by even components of A, B. Then Fun(F),∆
is identified with the space of polyvector fields on N with differential given by the divergence

operator; this complex in turn is isomorphic to the de Rham complex of N via odd Fourier
transform [31]. Since N is a vector space, its de Rham cohomology is given by constant 0-forms
on V ; their odd Fourier transform gives ν · R.
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module. We denote the cohomology (154) by H – one can view it as the
“classical” (~-independent) counterpart of perturbative BV cohomology.

(iii) The operator {S(1), •}+ ∆ can be viewed as a perturbation of the differential
{S(0), •} on Fun(F) and thus induces, by homological perturbation theory
(HPT) a differential D on H. We then have

(155)
H•δS (Fun(F)[[−i~]]) = H•−i~D(H[[−i~]]) = (H• ∩ kerD)⊕ (−i~) ·H•D(H)[[−i~]]

This means that the perturbative BV cohomology in the order O(~0) is given
by D-closed elements of classical BV cohomology (154), whereas in positive
orders in ~ it is given by copies of cohomology of D, one copy per order.

(iv) Consider the “abelian BF” action Sab := 〈B, dA〉 on F, for d = l1 the differen-
tial on V , – it is the quadratic ~-independent term of the full BF∞ action S.
We have H•{Sab,•}(Fun(F)) = Fun(Fres) with Fres = H•(V )[1]⊕ (H•(V ))∗[−2]

and the perturbation of the differential {Sab, •} 7→ {Sab, •} + ∆ produces,
as the induced differential, the standard BV Laplacian ∆res on Fun(Fres). In
particular, we have

(156)
H•{Sab,•}−i~∆ = H•−i~∆res

(Fun(Fres)[[−i~]]) = (Fun(Fres) ∩ ker ∆res)⊕(−i~)νres·R[[−i~]]

with νres as in (i), with V replaced by H•(V ).
(v) Assume that V ′, d′ is a retract of the complex V, d and assume that S′ is the

effective action on F′ = V ′[1]⊕(V ′)∗[−2] induced from S via BV pushforward.
Note that S′ automatically satisfies BF∞ ansatz. Then, treating δS via HPT
as a perturbation of the differential {Sab, •} − i~∆ on Fun(F)[[−i~]], one can
prove that the induced differential on Fun(F′)[[−i~]] is precisely δS′ , with S′

given by Feynman diagrams for the BV pushforward (a version of this observa-
tion was made in [16]; this statement is not specific to BF∞ ansatz).Therefore,
we have

(157) H•δS (Fun(F)[[−i~]]) = H•δS′ (Fun(F′)[[−i~]])

(vi) Let Sres = S
(0)
res − i~S(1)

res ∈ Fun(Fres)[[−i~]] be the effective action induced on

Fres from S. Denote w := Sres|~=i = S
(0)
res + S

(1)
res ∈ Fun(Fres). Using (v) and

(iv), we see that the cohomology

(158) H•D(H) = H•{w,•}+∆res
(Fun(Fres)) = e−wνres · R

has rank 1 and is concentrated in degree |νres| =
∑
k(1 − 2k)(dimH2k(V ) −

dimH2k+1(V )).
(vii) Putting together (iii) and (vi), we obtain that

(159) H•δS (Fun(F)[[−i~]]) = (H• ∩ kerD)⊕ (−i~)e−wνres · R[[−i~]]

Summarizing the observations above and applying to the case of cellular action
of Theorem 8.6, and using Proposition 8.20, we have the following.

Proposition 8.24. For X a regular CW complex, perturbative BV cohomology
associated to the cellular action (116) has the form

(160) H•δSX (Fun(FX)[[−i~]]) = (H•X ∩ kerDX)⊕ (−i~) · R[−p][[−i~]]

where
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• H• = H•CE(C(X, g),SymC(X, g)[2]) ∼= H•CE(H(X, g),SymH(X, g)[2]) –
Chevalley-Eilenberg cohomology of cellular cochains and cellular cohomol-
ogy, understood as L∞ algebras, with coefficients in the sum of symmetric
powers of the adjoint module.
• DX is the differential on H• induced by homological perturbation theory from

the perturbation {S(0), •} 7→ {S(0), •}+{S(1)
X , •}+∆X of the differential on

Fun(FX). Equivalently, DX is induced from the perturbation {S(0)
res , •} 7→

{S(0)
res , •}+ {S(1)

res , •}+ ∆res of the differential on Fun(Fres).
• Perturbative BV cohomology in higher orders in ~ has rank 1 and is con-

centrated in degree

p =
∑

k

(1− 2k)
(
dimH2k(X, g)− dimH2k+1(X, g)

)

• The generator 1 ∈ R of perturbative BV cohomology in positive degree in ~
is represented in Fun(FX) by the element p∗(e−wνres) where p : FX → Fres

is the projection to residual fields used as a part of gauge-fixing in (136),
νres ∈

⊗
k Det(H2k(X, g))∗ ⊗⊗k Det(H2k+1(X, g∗))∗ = Det(Fodd

res )∗ is the
product of all components of fields Ares,Bres of odd internal degree; w =

S
(0)
res + S

(1)
res is the effective action on residual fields evaluated at ~ = i.

If the complexes X and Y are simple-homotopy equivalent, the respective BV coho-
mology is canonically isomorphic,

H•δSX (Fun(FX)[[−i~]]) ∼= H•δSY (Fun(FY )[[−i~]])

Example 8.25. For X contractible, perturbative BV cohomology is the same as for
X a point, and thus we have H•δSX

= (H•CE(g,Sym g[2])∩kerD)⊕(−i~)R[−dim g][[−i~]].

One can understand H•CE(g,Sym g[2])∩kerD as the subspace of unimodular classes
in Lie algebra cohomology. For example, in degree zero we have H0

δSX
=
⊕

kH
2k
CE(g,Sym kg)∩

kerD. Contribution of k = 1 here is the space of unimodular deformations of the Lie
bracket on g modulo inner automorphisms (note that for g semi-simple, it vanishes
since H2

CE(g, g) vanishes as a whole).

Example 8.26. For X arbitrary and g an abelian Lie algebra, perturbative BV
cohomology is given by (156). If we identify Fun(Fres) with polyvector fields on
H•(X, g)[1], then Fun(Fres) ∩ ker ∆res is the subspace of divergence-free polyvector
fields.

Returning to the setup of Section 8.2.1, we can introduce a subspace

Ξ :=

:= {〈B, α(A)〉 − i~β(A)
∣∣∣ α(A) ∈ Ŝym≥2(V [1])∗ ⊗ V ∗, β(A) ∈ Ŝym≥1(V [1])∗}

= Ξ(0) ⊕ (−i~) · Ξ(1) ⊂ Fun(F)[[−i~]]

– elements satisfying the BF∞ ansatz (131) with terms bi-linear in A and B pro-
hibited. Note that Ξ is a subcomplex w.r.t. δS . Repeating the argument above, we
obtain that the cohomology of δS on Ξ is

H•δS (Ξ) = H•{S(0),•}(Ξ
(0)) ∩ kerD

with D as above; note that this cohomology does not have O(~≥1) terms.
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Remark 8.27. Note that −i~ · 1 is a δS-exact element in Fun(F)[[−i~]]. By in-
specting the HPT argument above, one can construct an explicit primitive φ(A,B)
with δS(φ) = −i~ · 1; this element necessarily contains a component bi-linear in A
and B. Therefore, for any c ∈ R one can connect S and S − i~ · c (or, equivalently,

half-densities e
i
~S(µ~

F)1/2 and ec ·e i~S(µ~
F)1/2) by a canonical transformation. But if

the generator of the canonical transformation is prohibited to have a term bi-linear
in A, B, then such transformation is prohibited. Thus our rigid normalization of

half-densities e
i
~SX (µ~

FX
)1/2 and Z (as defined by (136)) is meaningful, since the

restriction above for canonical transformations holds in all cases of relevance for
us: in Lemmata 8.7, 8.19, in (137) and Propositions 8.20 and 8.22.

8.4.2. Continuum limit. Simplicial BF action (107) approximates the standard ac-
tion of non-abelian BF theory defined on differential forms on a manifold, in the
limit of “dense” triangulation, in the following sense.

Let M be a smooth compact oriented n-dimensional manifold endowed with a
Riemannian metric g. Let {XN} for N = 1, 2, . . . be a sequence of triangulations of
M with the property that metric diameters of simplices of XN are bounded from
above by c/N for c a constant. Fix (A,B) ∈ Ω•(M, g)[1] ⊕ Ω•(M, g)[n − 2] a pair
of smooth non-homogeneous differential forms. We project this pair to an element
of the cellular space of fields, (AN ,BN ) ∈ FXN , with AN :=

∑
e⊂XN e

∗ ·
(∫
e
A
)
,

BN :=
∑
e⊂XN

(∫
M
B ∧ χe

)
· e where χe is a piecewise-linear form on M of degree

dim e – the Whitney form associated to e.

Lemma 8.28. We have the following asymptotics for the value of the ~-independent

part of the simplicial action S
(0)
XN

on (AN ,BN ):

(161) S
(0)
XN

(AN ,BN ) ∼
N→∞

∫

M

〈
B ∧, dA+

1

2
[A ∧, A]

〉

g

+O

(
1

N

)

The first term on the r.h.s. is the standard action of non-abelian BF theory in
BV formalism, see e.g. [7, 27, 4].

Proof. Let iN : C•(XN ) → Ω•(M) be the inclusion of cellular cochains of the
triangulation into piecewise-polynomial forms given by Whitney forms, and let
pN : Ω•(M)→ C•(XN ) be the Poincaré projection, as in Section 8.1. Then, for α
any smooth form on M , we have

(162) α− iN ◦ pN (α) = O

(
1

N

)

In particular, A− iN (AN ) = O
(

1
N

)
and [A ∧, A]− iN ([AN , ∗, AN ]) = O

(
1
N

)
.

Note that components of the cellular field (AN ,BN ) on simplices of XN behave
in the asymptotics N →∞ as Ae = O(N− dim e), Be = O(N−n+dim e). The number
of simplices e of XN of any fixed dimension behaves as O(Nn). Thus, we can
estimate the term

S(0),k :=
∑

e⊂XN

∑

Γ0

∑

e1,...,ek⊂ē

1

|Aut(Γ0)|C
e
Γ0,e1,...,ek

〈Be, JacobiΓ0(Ae1 , . . . ,Aek)〉

in the cellular action SXN as O(Nn ·N−n+dim e−dim e1−···−dim ek) = O(N2−k) (where
we use the relation dim e − dim e1 − · · · − dim ek = 2 − k between dimensions of
the k-tuple of faces of e, which arises from the fact that the associated monomial
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in components of fields, 〈Be, JacobiΓ0
(Ae1 , . . . ,Aek)〉, should have internal degree

zero). In particular, we have63

(163)
∑

k≥3

S(0),k(AN ,BN ) = O

(
1

N

)

On the other hand, by (108) we have S
(0)
XN

= 〈BN , dAN 〉 + 1
2 〈BN , [AN ∗, AN ]〉 +∑

k≥3 S
(0),k(AN ,BN ) and

(
〈BN , dAN 〉+

1

2
〈BN , [AN ∗, AN ]〉

)
−
∫

M

〈
B ∧, dA+

1

2
[A ∧, A]

〉

g

=

∫

M

〈
B ∧, (iN ◦ pN − id)

(
dA+

1

2
[A ∧, A]

)〉

g

= O

(
1

N

)

where we used (162). Together with the estimate (163), this finishes the proof of
the Lemma.

�

Remark 8.29. For the linear in ~ part of the simplicial action S
(1)
XN

, similar esti-

mates yield S(1),k(AN ) = O(Nn−k) (for the part of homogeneous degree k in AN )

and S
(1)
XN

(AN ) = O(Nn−2) for the whole.

Remark 8.30. In Lemma 8.28, one can allow XN to be a sequence of prismatic
cellular decompositions of M instead of triangulations (with the same bound c/N
on the diameters of prisms), according to Remark 8.5.64

9. Non-abelian cellular BF theory, II: case of a cobordism

In this section we address the construction of non-abelian cellular BF theory in
the formalism of Section 6.

Fix G a Lie group with bi-invariant Haar measure µG. The Lie algebra g =
Lie(G) is automatically unimodular and carries the induced density µg.

Let M be a compact oriented piecewise-linear n-manifold with boundary ∂M =
MintMout. Let (P,∇P ) be a flat G-bundle over M and (E,∇E) the vector bundle
associated to P via adjoint representation, E = Ad(P ) = P ×G g; by construction
it carries a horizontal fiberwise density µE induced from µG. Let X be a cellular
decomposition of M ; we assume that X is a regular CW complex of product type
near the boundary Xout (see Definition 2.4). We call such X an admissible cellular
decomposition of M .

We import directly from Section 6, without changes, the construction of:

• The space of fields F = C•(X,E)[1] ⊕ C•(X∨, E∗)[n − 2]. (By a slight
abuse of notation, we omit subscripts in EX and E∗X∨ .)

63For this, we observe that the bound above can be improved to be uniform in k: structure

constants C∆m

Γ0,e1,...,ek
(for a simplex of fixed dimension m) have at most exponential growth in k,

as follows from analyzing the explicit integral expressions for the structure constants arising from
the construction (i) of the proof of Theorem 8.1. Thus, one has |S(0),k| < γkN2−k for some γ

depending on (A,B) but independent of k.
64 The argument we used to prove Lemma 8.28 uses Whitney forms, and it is not clear how

to extend it to CW decompositions with arbitrary cells.
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• The superfields

A =
∑

e⊂X
e∗ ·Ae : F → C•(X,E), B =

∑

e∨⊂X∨
Be∨ · (e∨)∗ : F → C•(X∨, E∗)

Note that B is again a cochain, unlike in the formalism of Section 8.1.
• The presymplectic 2-form ω = 〈δB, δA〉.
• The boundary fields F∂ = C•(X∂ , E)[1]⊕ C•(X∨∂ , E∗)[n− 2].
• The symplectic form ω∂ and its primitive 1-form α∂ .
• The projection π : F � F∂ . Later we will need to deform it, see (168)

below.

We define the action S(A,B; ~) ∈ Fun(F)0[[~]] as follows:

(164) S(A,B; ~) :=
∑

e⊂X−Xout

S̄e(A|ē, Bκ(e); ~) + 〈B,A〉in

=
∑

e⊂X−Xout

∑

k≥1

1

k!

〈
Bκ(e), l

e
k (A|ē, · · · , A|ē)

〉
−i~

∑

e⊂X−Xout

∑

k≥2

1

k!
qek (A|ē, · · · , A|ē)+〈B,A〉in

with S̄e the building blocks (115) of Theorem 8.6 and lek, q
e
k the corresponding

components of the operations of the unimodular L∞ algebra coming from (135).
In (164) we use the parallel transport E(e > e′) to trivialize the coefficient local
system over the cell e (see (7)) and we set

(165) A|ē :=
∑

e′⊂e
(e′)∗ ·AdE(e>e′)Ae′ : F → C•(ē)⊗ g

We also use a shorthand notation 〈B,A〉in := 〈(ι∨)∗B, ι∗A〉in =
∑
e⊂Xin

〈
Bκin(e), Ae

〉

for the boundary term of the action, as in (64). As in Section 8, the action has the
structure S = S(0) − i~S(1).

We also define S∂ = Sout − Sin ∈ Fun1(F∂) by
(166)

S∂(A∂ , B∂) :=
∑

e⊂Xout

∑

k≥1

1

k!

〈
Bκout(e), l

e
k (A|ē, · · · , A|ē)

〉
−
∑

e⊂Xin

∑

k≥1

1

k!

〈
Bκin(e), l

e
k (A|ē, · · · , A|ē)

〉

Further, we introduce the vector field Q(0) ∈ X(F)1,

(167) Q(0) =
∑

e⊂X

∑

k≥1

(−1)dim e 1

k!

〈
lek(A|ē, · · · , A|ē),

∂

∂Ae

〉
−

−
∑

e⊂X−Xout

∑

k≥0

1

k!

〈
Bκ(e), l

e
k+1

(
A|ē, · · · , A|ē,

∑

e′⊂ē−Xout

(e′)∗ ·AdE(e>e′)
∂

∂Bκ(e′)

)〉

+
∑

e⊂Xin

∑

k≥0

1

k!

〈
Bκin(e), l

e
k+1

(
A|ē, · · · , A|ē,

∑

e′⊂ē
(e′)∗ ·AdE(e>e′)

∂

∂Bκin(e′)

)〉

−
∑

e⊂Xin

〈
Bκin(e),

∂

∂Bκ(e)

〉
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Introduce the algebra homomorphism Π∗ : Fun(F∂) → Fun(F) deforming the
pullback by the standard projection π∗, defined on the generators as follows:
(168)

Π∗ :





Ain 7→ Ain

Bin 7→ Bin

Aout 7→ Aout

〈Bout, a〉out 7→
∑
e⊃e′

∑
k≥0

1
k!

〈
Bκ(e), l

e
k(A|ē, · · · , A|ē, (e′)∗ ·AdE(e>e′)ae′)

〉

where a =
∑
e⊂Xout

e∗ · ae ∈ C•(Xout) is a test cochain; the sum is over pairs of

cells e ⊃ e′ such that e′ ⊂ Xout while e ⊂ X −Xout.
The following is proven by a straightforward (but lengthy) computation, using

the mod ~ part of the result of Theorem 8.1.

Proposition 9.1. The data (F , ω,Q(0), S(0),Π∗), (F∂ , α∂ , S∂) define a classical
BV-BFV theory [4], i.e. the following relations hold:

(a) (Q(0))2 = 0.
(b) ιQ(0)ω = δS(0) + Π∗α∂ .

(c) Q(0)Π∗ = Π∗Q∂ where Q∂ ∈ X(F∂)1 is the Hamiltonian vector field generated
by S∂ , i.e. is defined by ιQ∂ω∂ = δS∂ .

The space of states H∂ = FunC(B∂) 3 ψ(Bin, Aout) is defined as in Section 7,

with the base of polarization B∂ the same as in (69).It splits as H∂ = H(B)
in ⊗̂H

(A)
out ,

as in (72).65

We define the degree 1 operator Ŝ∂ = Ŝout + Ŝin on H∂ as the quantization of
S∂ , obtained by replacing Bκout(e) 7→ −i~(−1)dim e ∂

∂Ae
for e ⊂ Xout and Ae 7→

−i~ ∂
∂Bκin(e)

for e ⊂ Xin in (166) and putting all derivatives in A or B to the right.

Explicitly, for Ŝout, Ŝin we have

Ŝout =
∑

e⊂Xout

∑

k≥1

1

k!

〈
lek (A|ē, · · · , A|ē) ,−i~ (−1)dim e ∂

∂Ae

〉
(169)

Ŝin =
∑

e⊂Xin

∑

k≥1

1

k!

〈
Bκin(e), l

e
k

(
Â|ē, · · · , Â|ē

)〉
(170)

where Â|ē := −i~∑e′⊂ē(e
′)∗ ·AdE(e>e′)

∂
∂Bκin(e′)

.

It is convenient to introduce, alongside Ŝout, its version acting on out-states from
the right,

(171)
←−̂
S out =

∑

e⊂Xout

∑

k≥1

1

k!

〈
−i~

←−
∂

∂Ae
, lek (A|ē, · · · , A|ē)

〉

It satisfies Ŝoutψ = (−1)|ψ|+1ψ
←−̂
S out for any ψ = ψ(Aout) ∈ H(A)

out .

Remark 9.2. For Y a cellular decomposition of a closed (n − 1)-manifold, the

operators
←−̂
S

(A)
Y and Ŝ

(B)
Y defined by formulae (171,170) on Y , are mutually adjoint

65 Recall from Section 7 that we have, in fact, two models for the space of states, H∂ (functions
on B∂) and Hcan

∂ (half-densities on B∂). The two models are isomorphic and the comparison goes

via multiplication by the (appropriately normalized) reference half-density ψ 7→ (µ~B∂ )1/2ψ.
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w.r.t. the pairing (73):

(φ ◦
←−̂
S

(A)
Y , ψ) = (φ, Ŝ

(B)
Y ◦ ψ)

for φ(AY ) ∈ H(A)
Y and ψ(BY ) ∈ H(B)

Y .

Proposition 9.3. (a) The operator Ŝ∂ defined as above squares to zero.
(b) The action (164) on a cobordism M endowed with an admissible cellular de-

composition X satisfies the modified quantum master equation:

(172)

(
i

~
Ŝ∂ − i~∆bulk

)
e
i
~S = 0

Proof. Part (a) is an immediate consequence of the classical L∞ relations (129) for
the boundary complex X∂ , which in turn follow from Theorem 8.1 applied to X∂ .66

Let us prove part (b). First, observe from (164) that S depends on Bin only via

the boundary term 〈B,A〉in. This implies that Ŝin ◦ e
i
~S = Sin · e

i
~S .67 Also note

that Ŝout is a first order differential operator. Therefore, we have the following

(173)

− i~ e− i
~S

(
i

~
Ŝ∂ − i~∆bulk

)
e
i
~S =

1

2
{S, S}ωb −

i

~
S ◦
←−̂
S out + Sin − i~∆bulkS

Here {, }ωb is the same Poisson bracket as in the proof of Lemma 7.3. We calculate

1

2
{S(0), S(0)}ωb = −

∑

e⊂X−Xout

S(0)

〈 ←−
∂

∂Ae
,

−→
∂

∂Bκ(e)

〉
S(0)

= −
∑

e,e′⊂X−Xout, e⊂ē′

∑

r,s≥1

1

r!s!

〈
Bκ(e′), l

e′
r+1(A|ē′ , · · · , A|ē′ , e∗ ·AdE(e′>e)l

e
s(A|ē, · · · , A|ē))

〉

−
∑

e⊂Xin

〈
Bκin(e),

−→
∂

∂Bκ(e)

〉
S(0)

︸ ︷︷ ︸
Sin

Last term on the right is the contribution of the in-boundary term in S to the
Poisson bracket. If the first sum above were over all pairs of e′ – a cell of X −Xout

and e its (arbitrary codimension) face (which can be on Xout), the sum would

66 Note that in our case the cochains on X∂ are twisted by a local system but the action
(116) still satisfies the master equation, with the new definition (165) of A|ē, as can be seen by

inspecting the proof of Theorem 8.6: we have quantum master equations on cells, where the local

system is trivialized and this implies (by the gluing procedure (vi) of the proof of Theorem 8.1)
that (116) is a solution of the master equation.

67 In more detail, we have

Ŝin ◦ e
i
~S =

 ∑
e⊂Xin

∑
k≥1

1

k!

〈
Bκin(e), l

e
k

(
Â|ē, · · · , Â|ē

)〉 ◦ e i~S
=

 ∑
e⊂Xin

∑
k≥1

1

k!

〈
Bκin(e), l

e
k

(
Â|ē ◦

i

~
S, · · · , Â|ē ◦

i

~
S

)〉 · e i~S
=

 ∑
e⊂Xin

∑
k≥1

1

k!

〈
Bκin(e), l

e
k (A|ē, · · · , A|ē)

〉 · e i~S = Sin · e
i
~S .
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vanish by classical L∞ relations on X following from Theorem 8.6. Therefore, we
continue:

(174)
1

2
{S(0), S(0)}ωb =

=
∑

e′⊂X−Xout

∑

e⊂ē′∩Xout

∑

r,s≥1

1

r!s!

〈
Bκ(e′), l

e′
r+1(A|ē′ , · · · , A|ē′ , e∗ ·AdE(e′>e)l

e
s(A|ē, · · · , A|ē))

〉
−Sin

=
∑

e⊂Xout

S(0)

〈 ←−
∂

∂Ae
,

−→
∂

∂Bκout(e)

〉
Sout − Sin =

i

~
S(0) ◦

←−̂
S out − Sin

Similarly, we have

{S(1), S(0)}ωb = −
∑

e⊂X−Xout

S(1)

〈 ←−
∂

∂Ae
,

−→
∂

∂Bκ(e)

〉
S(0)

= −
∑

e,e′⊂X−Xout, e⊂ē′

∑

r,s≥1

1

r!s!
qe
′
r+1(A|ē′ , · · · , A|ē′ , e∗·AdE(e′>e)l

e
s(A|ē, · · · , A|ē))

Which, by the unimodular L∞ relations (130) on X, and the argument as above,
yields

(175) {S(1), S(0)}ωb = −∆bulkS
(0) +

i

~
S(1) ◦

←−̂
S out

Putting (174) and (175) into (173), we obtain the modified quantum master equa-
tion (172).

�

Example 9.4. Consider M an interval viewed as a cobordism between an in-point
and an out-point, with X a cellular decomposition with N ≥ 1 1-cells which we
denote [01], [12], . . . , [N − 1, N ] and N + 1 0-cells denoted [0], [1], . . . , [N ]. The dual
CW complex X∨ has 0-cells [0]∨, . . . , [N ]∨ and 1-cells [01]∨, . . . , [N − 1, N ]∨.

X∨

[N − 1, N ]

[0]∨ [1]∨ [N ]∨

[N − 1, N ]∨[01]∨

κ κκin
κout

· · ·
X

[0] [1] [N ][N − 1]

[01]

The data of the local system EX is a collection of group elements

uk := E([k, k + 1] > [k]) ∈ G, vk+1 := E([k, k + 1] > [k + 1]) ∈ G

for k = 0, 1, . . . , N − 1. The superfields are:

A =

N∑

k=0

[k]∗A[k]+

N−1∑

k=0

[k, k+1]∗A[k,k+1], B =

N∑

k=0

([k]∨)∗B[k]∨+

N−1∑

k=0

([k, k+1]∨)∗B[k,k+1]∨
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where A[k], A[k,k+1] ∈ g have degrees 1 and 0, respectively; degrees of B[k]∨ , B[k,k+1]∨ ∈
g∗ are −1 and −2, respectively. We have

S =

N−1∑

k=0

〈
B[k,k+1]∨ ,

1

2
[A[k], A[k]]

〉
+

+

N∑

k=1

〈
B[k]∨ ,

[
A[k−1,k],

Aduk−1
A[k−1] + AdvkA[k]

2

]
+ F(adA[k−1,k]

) ◦ (AdvkA[k] −Aduk−1
A[k−1])

〉

− i~
N∑

k=1

tr logG(adA[k−1,k]
) +

〈
B[0]∨ , A[0]

〉

with functions F and G as in (114). The nontrivial component of the map Π∗ (168)
is

Π∗ : B[N ]∨ 7→
∂

∂A[N ]
S = Ad∗

v−1
N

H(ad∗A[N−1,N]
)B[N ]∨

where H(x) := −x2 + F(−x) = x
ex−1 . Boundary action is

S∂ =

〈
B[N ]∨ ,

1

2
[A[N ], A[N ]]

〉
−
〈
B[0]∨ ,

1

2
[A[0], A[0]]

〉

The space of states

H∂ = Fun(g∗[−1])⊗ Fun(g[1]) = CCE−• (g)⊗ C•CE(g) 3 ψ(B[0]∨ , A[N ])

can be identified with the Chevalley-Eilenberg cochain complex tensored with its
dual (Lie algebra chains with opposite grading). The differential on states is

Ŝ∂ = −i~
〈

1

2
[A[N ], A[N ]],

∂

∂A[N ]

〉
− i~

〈
B[0]∨ ,

1

2

[
∂

∂B[0]∨
,

∂

∂B[0]∨

]〉

– the sum of standard Lie algebra cochain and chain differentials (up to normaliza-
tion). Its cohomology is Hi

Ŝ∂
(H∂) =

⊕
−j+k=iH

CE
j (g)⊗Hk

CE(g).

9.1. Perturbative partition function on a cobordism: pushforward to co-
homology in the bulk. We proceed as in Sections 7.1, 7.2 to define the pertur-
bative partition function as the BV pushforward of the non-abelian BF theory on
a cobordism M endowed with admissible cellular decomposition X from “cellular
bulk fields” Fb = C•(X,Xout)[1]⊕C•(X∨, X∨in)[n− 2] to F res

b = H•(M,Mout)[1]⊕
H•(M,Min)[n − 2], with gauge-fixing inferred from a choice of induction data

C•(X,Xout)
(i,p,K)
 H•(M,Mout). Namely, we define Z(Bin, Aout;Ares, Bres) ∈

Hcan
∂ ⊗̂Dens

1
2 ,Fun

C (F res
b ) – thought of as a boundary state with coefficients in half-

densities of bulk residual fields – by formula (80), for the non-abelian cellular action
(164).

The following statement generalizes (81) to the non-abelian setting and is the
result of a straightforward perturbative computation of the fiber integral defining
Z.

Proposition 9.5. For a cobordism M endowed with an admissible cellular decom-
position X and a G-local system E in adjoint representation, we have the following.
Explicitly, the partition function Z has the form

(176) Z = e
i
~Seff (Bin,Aout;Ares,Bres) ξ

H•(M,Mout)
~ · τ(M,Mout) · (µ~

B∂ )1/2
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with the constant factor as in (81) and with

(177) Seff =
∑

Γ

(−i~)loops(Γ)+V q(Γ)

|Aut(Γ)| ϕΓ(Bin, Aout;Ares, Bres)

where the sum runs over connected oriented graphs Γ on M with:

• Oriented edges, with source and target half-edge placed68 at cells e∨ ⊂ X∨−
X∨in and e ⊂ X − Xout respectively, decorated with minus the propagator
−K(e, e∨) ∈ Eė ⊗ E∗ė∨ (see Remark 7.7).
• Vout univalent vertices (with outgoing half-edge), placed at cells e ⊂ Xout

with the adjacent half-edge placed at κout(e); such a vertex is decorated with
AdE(κ−1κout(e)>e) ◦ (Aout)e.
• Vin univalent vertices (with incoming half-edge), placed at cells e∨ ⊂ X∨in

with the adjacent half-edge placed at κ−1
in (e∨); such a vertex is decorated

with (Bin)e∨ .
• V l bulk vertices placed at cells e ⊂ X −Xout, with one outgoing half-edge

also placed at e and with k ≥ 2 incoming half-edges placed at faces of
arbitrary codimension e1, . . . , ek ⊂ e; the decoration is:

lek,e1,...,ek ◦ (AdE(e>e1) ⊗ · · · ⊗AdE(e>ek)) ∈ Hom(

k⊗

j=1

Eėj , Eė)
∼= Eė ⊗

k⊗

j=1

E∗ėj

with lek,e1,...,ek ∈ Hom(g⊗k, g) a local component of the k-ary L∞ operation

on C•(X, g) determined by (115).
• V q ∈ {0, 1} bulk vertices placed at cells e ⊂ X − Xout, with no outgoing

and k ≥ 2 incoming half-edges placed at faces of arbitrary codimension
e1, . . . , ek ⊂ e; the decoration is:

qek,e1,...,ek ◦ (AdE(e>e1) ⊗ · · · ⊗AdE(e>ek)) ∈ Hom(

k⊗

j=1

Eėj ,R) ∼=
k⊗

j=1

E∗ėj

with qek,e1,...,ek ∈ Hom(g⊗k,R) a local component of the k-ary unimodular

L∞ operation on C•(X, g) determined by (115).
• V Ares leaves (loose half-edges), oriented towards the vertex and placed at a

cell e. Decoration: (iAres)e,
• V Bres leaves, oriented from the vertex and placed at a cell e∨. Decoration:

(p∨Bres)e∨ ,

The value of ϕΓ in (177) is the sum over all placements of half-edges and vertices of
the graph at cells of X (subject to restrictions to boundary strata and local relations
between placement of half-edges and vertices as above), of products of all decorations
(with tensors in the fibers of the local system contracted in the way prescribed by
the graph Γ).69

68We talk here about “placing” elements of the graph Γ at cells and decorating them with
particular tensors depending on the placement. In the end, to obtain the Feynman weight of the

graph ϕΓ, we sum over placements the contraction of the respective tensors. Sum over placements
here is a cellular analog of configuration space integrals defining the weights of Feynman graphs

in [5].
69 Note that ϕΓ is a polynomial in the variables (Bin, Aout, Ares, Bres) of degree

(Vin, Vout, V Ares, V
B
res).
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Remark 9.6. Graphs contributing to (177) fall into four types (we provide each
type with a picture of a typical example):

(I) Rooted trees with the root decorated with Bin and leaves either decorated by
Ares or by Aout.

in out
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Bin

Ares
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Aout

(II) Rooted trees with the root decorated with Bres and leaves decorated by Ares or
Aout.
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(III) Rooted trees with the root decorated with a quantum operation qek and leaves
decorated by Ares or Aout.
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q

(IV) One-loop graphs (a cycle with several trees attached to the cycle at the root)
with leaves decorated by Ares or Aout.
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This classification of graphs yields the following ansatz for Seff :

Seff =
〈
Bin, ϕ

I(Aout, Ares)
〉

in
+
〈
Bres, ϕ

II(Aout, Ares)
〉

res
− i~ ϕIII+IV(Aout, Ares)

with ϕI, ϕII, ϕIII+IV generally of unbounded degree in the variables Aout, Ares.

Theorem 9.7.

(i) The partition function (176) satisfies the modified quantum master equation70

(
i

~
Ŝ∂ − i~∆res

)
Z = 0

70 Note that operators Ŝ∂ ,∆res here act on half-densities. So, in the conventions of Section 7,

we should be writing Ŝcan
∂ ,∆can

res . We omit here the superscript can to lighten the notation.
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(ii) A change of gauge-fixing data (i,p,K) changes Z by a
(
i
~ Ŝ∂ − i~∆res

)
-exact

term.

(iii) Considered modulo
(
i
~ Ŝ∂ − i~∆res

)
-exact terms, Z is independent of the cel-

lular decomposition X of M , provided that the cellular decomposition of the
boundary is fixed.

(iv) Assume, as in Proposition 7.8 that the cobordism (M1, X1)
(M,X)

====⇒ (M3, X3)

is obtained by composing (gluing) cobordisms (M1, X1)
(MI ,XI)

======⇒ (M2, X2) and

(M2, X2)
(MII ,XII)

=======⇒ (M3, X3). Then the partition function (176) for the glued
cobordism can be recovered from the partition functions for the constituent
cobordisms by the same gluing formula (96), as in abelian case.

Proof. Items (i), (ii) are an immediate consequence of (172) and the general prop-
erties of finite-dimensional BV puhforwards (that the “family over B version” of BV
pushforward is a chain map w.r.t.

(
i
~ΩB − i~∆

)
and that a change of gauge-fixing

induces a change of the pushforward of a closed element by an exact element, see

Theorem 2.14 in [5]; in our case ΩB = Ŝ∂).
To prove (iii), we (partially) switch back to the formalism of Section 8.1. Let

us regard the cellular action (164) as a function on FX,Xout
:= C•(X,Xout)[1] ⊕

C•(X,Xout)[−2] (which is canonically symplectomorphic to C•(X,Xout)[1]⊕C•(X∨, X∨in)[n− 2])
with Aout and Bin as external parameters – this point of view allows us to forget
about the dual CW complex in the bulk. Then we can perform elementary ex-
pansions and collapses on X − X∂ and by Lemma 8.19, together with the chain
map property of BV pushforwards “in a family” quoted above, we obtain (iii) for
a change of X by a simple-homotopy relative to X∂ . Since such simple-homotopy
allows one to pass between any two CW decompositions of M restricting to X∂ at
the boundary, this proves (iii).

For the item (iv), we note that the entire discussion of gluing of Section 7.3,
starting with the gluing formula (85) for the exponential of cellular action, works
in non-abelian case exactly as in abelian case. �

9.1.1. Reduction of the spaces of states (passage to the cohomology of the abelian

part of BFV operators). Let us split the boundary BFV operator as Ŝ∂ = Ŝab
∂ +Ŝpert

∂

with Ŝab
∂ the abelian part (i.e. n = 1 term in (170,169)). We can pass to the reduced

space of states

Hr
∂ := H•

Ŝab
∂

(H∂) = Fun (H•(Mout, E)[1]⊕H•(Min, E
∗)[n− 2])

as in Section 7.4; i.e., reduced states are functions [ψ] of cohomology classes [Aout]
and [Bin].

Unlike in abelian case, we have a nonzero BFV operator Ŝr
∂ = Ŝr

out + Ŝr
in on Hr

∂

induced from Ŝ∂ via homological perturbation theory, with Ŝr
out, Ŝ

r
in satifying the

ansatz

Ŝr
out =

∑

k≥2

1

k!

〈
lr,out
k ([Aout], . . . , [Aout]),−i~

∂

∂[Aout]

〉
,(178)

Ŝr
in =

∑

k≥2

1

k!

〈
[Bin], lr,ink ([̂Ain], . . . , [̂Ain])

〉
(179)
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with [̂Ain] := −i~ ∂
∂[Bin] . Here lr,out

k are the L∞ algebra operations on H•(Mout, E)

induced, via homotopy transfer, from the cellular L∞ structure on C•(Xout, E)
produced by Theorem 8.6. It can also be viewed as induced by homotopy transfer
from dg Lie version of de Rham algebra Ω•(Mout, E); case of L∞ opertaions on

in-boundary is similar. In particular, note that the cochain complex (Hr
∂ , Ŝ

r
∂),

regarded modulo chain isomorphisms, is independent on the cellular decomposition
of the boundary.

Remark 9.8. Reduced BFV differential Ŝr
∂ can be viewed as a generating func-

tion for Massey operations on cohomology of the boundary and thus determines the
rational homotopy type of the boundary (at least, in the case of simply-connected
boundary).

Remark 9.9. One can consider the total reduction of the space of states – the

cohomology of Ŝr
∂ on Hr

∂ which coincides, by homological perturbation lemma, with

cohomology of the total BFV differential Ŝ∂ on H∂ . This total reduction is isomor-
phic to

Htot. red.
∂

∼= H•CE
(
H•(Mout, E), {lr,out

k }
)
⊗
(
H•CE

(
H•(Min, E

∗), {lr,ink }
))∗

– the Chevalley-Eilenberg cohomology of the L∞ structure on the de Rham coho-
mology of the out-boundary, tensored with the Chevalley-Eilenberg homology of the
respective L∞ structure associated to the in-boundary.

Theorem 9.7 holds for the reduced partition function Zr([Bin], [Aout];Ares, Bres) ∈
Hr,can
∂ ⊗̂Dens

1
2 ,Fun(F res

b ) (defined by evaluating the partition function Z on repre-
sentatives of classes [Aout], [Bin] in cellular cochains of the boundary, as in Section

7.4. Here we replace the BFV operator by its reduced version Ŝr
∂ . In part (ii) of

the Theorem in addition to changes of (i,p,K) we are now also allowing changes
of (iB, pB,KB) – the HPT induction data from cellular cochains of the boundary to
cohomology, as in Remark 7.16.71

In part (iii) of the Theorem we can now allow changes of cellular decomposition
of X that change the decomposition of the boundary.72

Appendix A. Determinant lines, densities, R-torsion

A.1. Determinant lines, torsion of a complex of vector spaces. In what
follows, line stands for an abstract 1-dimensional real vector space.

71Note that only iB (choice of cellular representatives for cohomology classes) is relevant for
the construction of Zr = i∗BZ whereas pB and KB are manifestly irrelevant for Zr; however, the

whole package (iB, pB,KB) is involved in the construction of Ŝr
∂ .

72Sketch of proof: for Y an arbitrary cell decomposition of the cylinder Σ × [0, 1] (regarded

as a cobordism from Σ to Σ) the reduced partition function Zr : Hr
Σ → Hr

Σ is chain homotopic
to identity (proven from the gluing property – (iv) of Theorem 9.7). Now let X and X′ be two

cellular decompositions of M . We can attach two cylinders at in- and out-boundaries of X′ to

obtain a cell decomposition X̃ of M̃ – a copy of M with collars attached at in- and out-boundary,

such that X̃in ' Xin and X̃out ' Xout. By the previous observation about cylinders yielding

identity up to homotopy, and by gluing formula, we have Zr
X̃
∼ Zr

X′ (where ∼ stands for equality

up to ( i~ Ŝ
r
∂ − i~∆res)-exact terms). On the other hand, we can view X̃ and X as two cellular

decompositions of M coinciding on the boundary, thus (iii) of Theorem 9.7 applies and we have

Zr
X̃
∼ Zr

X . Thus, we have Zr
X ∼ Zr

X′ .
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Definition A.1. For V a finite-dimensional real vector space, the determinant line
is defined as the top exterior power Det V = ∧dimV V . For V • a Z-graded vector
space, one defines the determinant line as

Det V • =
⊗

k

(Det V k)(−1)k

where for L a line, L−1 = L∗ denotes the dual line.

Here are several useful properties of determinant lines.

(i) The determinant line of the dual graded vector space is

Det V ∗ ∼= (Det V )
−1

(with the grading convention (V ∗)k = (V −k)∗). In the case of a vector space
concentrated in degree 0, the pairing between Det V ∗ and Det V is given by

〈v∗n ∧ · · · ∧ v∗1 , v1 ∧ · · · ∧ vn〉 = det〈v∗i , vj〉
with vi ∈ V , v∗i ∈ V ∗ for i = 1, . . . , n = dimV . Extension to the graded case
is straightforward.

(ii) Determinant line of the degree-shifted vector space is

Det V •[k] ∼= (Det V •)(−1)k

(iii) Given a short exact sequence of graded vector spaces 0→ U• → V • →W • →
0, one has

(180) Det V • ∼= Det U• ⊗Det W •

In the case of non-graded vector spaces, the isomorphism sends

(u1 ∧ · · · ∧ udimU )︸ ︷︷ ︸
∈ Det U

⊗ (w1 ∧ · · · ∧ wdimW )︸ ︷︷ ︸
∈ Det W

7→ u1 ∧ · · · ∧ udimU ∧ w′1 ∧ · · · ∧ w′dimW︸ ︷︷ ︸
∈ Det V

where on the right, w′i is some lifting of the element wi to V . Extension to
the graded case is, again, straightforward.

(iv) If V •, d is a cochain complex with cohomology H•(V ), there is a canonical
isomorphism of determinant lines

(181) T : Det V •
∼=−→ Det H•(V )

Indeed, one applies property (180) to the two short exact sequences

V •closed ↪→ V •
d−→ V •+1

exact, V •exact ↪→ V •closed → H•(V )

to obtain isomorphisms

Det V • ∼= Det V •closed ⊗ (Det V •exact)
−1, Det V •closed

∼= Det V •exact ⊗Det H•(V )

which combine to (181).

All isomorphisms above are canonical (functorial).
It is convenient to work with determinant lines modulo signs, so that one can

ignore the question of orientations and Koszul signs. We will use the notation
Det V •/{±1} for non-zero elements of the determinant line considered modulo
sign; so the precise notation should have been (Det V • − {0})/{±1}.
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Definition A.2. For V •, d a cochain complex and µ ∈ Det V •/{±1} a preferred
element of the determinant line, defined up to sign, the torsion is defined as

τ(V •, d, µ) = T(µ) ∈ Det H•(V )/{±1}
with T as in (181).

The following Lemma has important consequences in the setting of R-torsion
(Section A.3).

Lemma A.3 (Multiplicativity of torsions with respect to short exact sequences).
Let 0 → U• → V • → W • → 0 be a short exact sequence of complexes, equipped
with elements µU , µV , µW in respective determinant lines, such that µV = µU ·µW .
Then for the torsions we have

TLES(TU (µU ) · TV (µV )−1 · TW (µW )) = 1 ∈ R/{±1}
where TU ,TV ,TW are the maps (181) for U•, V •,W •. We denoted LES the in-
duced long exact sequence in cohomology · · · → Hk(U) → Hk(V ) → Hk(W ) →
Hk+1(U)→ · · · viewed as an acyclic cochain complex, and

TLES : Det H•(U)⊗ (Det H•(V ))−1 ⊗Det H•(W )→ R

is the corresponding isomorphism (181).

See [25] for details; cf. also [29] for discussion in the language of determinant
lines.

A.2. Densities.

Definition A.4. For α ∈ R and V a finite-dimensional real vector space, the space
Densα(V ) of α-densities on V is defined as the space of maps φ : F (V )→ R+ from
the space of bases (frames) in V to positive half-line satisfying the equivariance
property: for any automorphism g ∈ GL(V ) and any frame v = (v1, . . . , vdimV ) ∈
F (V ), one has

φ(g · v) = |det g|α · φ(v)

Densα(V ) is a torsor over R+ (viewed as a multiplicative group), and in the setting
of Z-graded vector spaces, one defines

Densα(V •) =
⊗

k

(
Densα(V k)

)(−1)k

(tensor product is over R+); α is called the weight of the density.

By default a “density” has weight α = 1 (and then we write Dens instead of
Dens1), and a “half-density” has, indeed, α = 1/2.

If φα, φβ are two densities on V • of weights α, β, then the product φα · φβ is an
(α+ β)-density. Also, φα can be raised to any real power γ ∈ R to yield a density
(φα)γ of weight α · γ. In particular, one has mutually inverse maps

Dens1/2V •
(∗)2

−−→ Dens V •, Dens V •
√∗−−→ Dens1/2V •

Evaluation pairing (Det V •/{±1})⊗Dens V • → R+ induces a canonical isomor-
phism of R+-torsors

Det V •/{±1} ∼= Dens V •[1]
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A.3. R-torsion. Let X be a finite CW-complex and Y ⊂ X a CW-subcomplex.
Let

(182) h : π1(X) = π1 → SL±(m,R)

be some representation of the fundamental group of X by real matrices of deter-
minant ±1. It extends to a ring homomorphism h : Z[π1] → Mat(m,R) from the

group ring of π1 to all real matrices of size m. Let p : X̃ → X be the universal

cover of X and denote Ỹ = p−1(Y ) ⊂ X̃. Consider the cochain complex of vector
spaces

(183) C•(X,Y ;h) = Rm ⊗Z[π1] C
•(X̃, Ỹ ;Z)

where on the right we have integral cellular cochains of the pair (X̃, Ỹ ), which is a

complex of free Z[π1]-modules with elements of π1 acting on cells of X̃ by covering
transformations, tensored with Rm using the representation h. In C•(X,Y ;h) one
has a preferred basis of the form

(184) {vi ⊗ (ẽ)∗}1≤i≤m, e⊂X−Y
where {vi} is the standard basis on Rm (or any unimodular basis, i.e. such that
the standard density on Rm evaluates on it to ±1) and ẽ are some liftings of cells e
of X not lying in Y to the universal cover; (ẽ)∗ is the corresponding basis cochain.

Associated to the basis (184) by construction (29) is an element µ ∈ Det C•(X,Y ;h)/{±1},
independent of the choices of liftings of cells e 7→ ẽ and independent of the choice
of unimodular basis in Rm.

Definition A.5. The R-torsion of the pair (X,Y ) of CW-complexes, associated to
the representation (182), is defined as the torsion (in the sense of Definition A.2)
of the complex C•(X,Y ;h) equipped with element µ:

τ(X,Y ;h) = T(µ) ∈ Det H•(X,Y ;h)/{±1}
Torsion of a single CW-complex X is defined as τ(X;h) := τ(X,∅;h).

Of particular importance (and historically the most studied) is the acyclic case,
when H•(X,Y ;h) = 0. Then the torsion takes values in the trivial line and thus is
a number (modulo sign).

Instead of choosing a representation h of π1, one can choose a cellular local
SL±(m)-system E on X, in the sense of Section 3, and define h as the holonomy
of E. Cochain complex C•(X,Y ;E) (dual to the chain complex C•(X,Y ;E∗)
constructed in Section 3) is isomorphic to (183). When we prefer to think in terms
of a local system E rather than a representation h of π1 (e.g. when we consider
restriction to a CW-subcomplex, or gluing of two complexes along a subcomplex),
we will write the torsion as τ(X,Y ;E).

The following two properties are consequences of the multiplicativity of the al-
gebraic torsion with respect to short exact sequences of cochain complexes (Lemma
A.3).

(A) For X ⊃ Y a pair of CW-complexes, one has

(185) τ(X;E) = τ(X,Y ;E) · τ(Y ;E|Y )

The formula makes sense because Det H•(X;E) ∼= Det H•(X,Y ;E)⊗Det H•(Y ;E|Y ),
since the determinant line of the long exact sequence in homology of the pair
(X,Y ) (regarded itself as a complex) is Det H•(X,Y ;E)⊗(Det H•(X;E))−1⊗
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Det H•(Y ;E|Y ) and, on the other hand, is the trivial line, by (181) applied to
the long exact sequence.

(B) For Z = X ∪ Y a CW-complex represented as a union of two intersecting
subcomplexes, one the gluing (inclusion/exclusion) formula

(186) τ(X ∪ Y ;E) = τ(X;E|X) · τ(Y ;E|Y ) · τ(X ∩ Y ;E|X∩Y )−1

The reason why l.h.s. and r.h.s. can be at all compared is as in (A), but one
replaces the long exact sequence of a pair by Mayer-Vietoris sequence.73

In the acyclic case (i.e. when all relevant cohomology spaces vanish), (185,186) are
equalities of numbers.

Theorem A.6 (Combinatorial invariance of R-torsion). If (X ′, Y ′) is a cellular
subdivision of the pair (X,Y ), then

τ(X ′, Y ′;h) = τ(X,Y ;h)

For the proof, see e.g. [25]. The case Y = Y ′ = ∅ is due to Reidemeister, Franz
and de Rham.

The combinatorial invariance theorem implies in particular that, for M a com-
pact PL manifold with two different cellular decompositions X and Y , one has
τ(X;h) = τ(Y ;h). Thus in this case it makes sense to talk about the R-torsion of
a manifold M , τ(M ;h), forgetting about the cellular subdivision.

Theorem A.7 (Milnor, [24]). If M is a piecewise-linear compact oriented n-
manifold with boundary ∂M = ∂1M t ∂2M , one has

τ(M,∂1M ;h) = (τ(M,∂2M ;h∗))(−1)n−1

where h∗ is the dual representation to h.

Note that the l.h.s. belongs to Det H•(M,∂1M ;h) while the r.h.s. belongs to

(Det H•(M,∂2M ;h∗))(−1)n−1

(modulo signs); these determinant lines are canoni-
cally isomorphic due to Poincaré-Lefschetz dualityHk(M,∂1M ;h) ∼= (Hn−k(M,∂2M ;h∗))∗.
Thus it does make sense to compare the two torsions.

Corollary A.8. For M a closed even-dimensional manifold and h such that H•(M ;h) =
0, the torsion is trivial, τ(M ;h) = 1.

Appendix B. Two points of view on “C∞ ⊗ Lie = L∞”

In connection with Remark 8.17, we recall two ways to see the L∞ algebra
structure on the tensor product of a C∞ algebra and a Lie algebra.

Given a C∞ algebra W with multlinear operations mn : W⊗n → W , and given
a Lie algebra g, one can construct the tensor product L∞ algebra structure on the
graded vector space W ⊗ g by defining

(187) ln(w1 ⊗ α1, . . . , wn ⊗ αn) =
∑

σ∈Sn
±mn(wσ1

, . . . , wσn)⊗ (ασ1
· · ·ασn)

73 More pedantically, (185) should be written as TLES(τ(X,Y ;E) ·τ(X;E)−1 ·τ(Y ;E|Y )) = 1,

with TLES the isomorphism (181) between the determinant line of the long exact sequence of

cohomology of the pair and the standard line R. Likewise, (186) should be written as TMV(τ(X ∪
Y ;E) · τ(X;E|X)−1 · τ(Y ;E|Y )−1 · τ(X ∩ Y ;E|X∩Y )) = 1 with TMV the isomorphism (181) for

the Mayer-Vietoris long exact sequence.



A CELLULAR TOPOLOGICAL FIELD THEORY 89

with w1, . . . , wn ∈W and α1, . . . , αn ∈ g arbitrary elements. The sum on the r.h.s.
is over permuations σ of 1, . . . , n. Here the product of αi’s is seen as a product
in the universal enveloping algebra Ug. The C∞ property of the operation mn

(vanishing on shuffle-products) implies that the result lands in W ⊗ g ⊂W ⊗ Ug.
Another way to present the same tensor product L∞ structure on W ⊗ g is as

follows. The C∞ operations mn can be written in the form

(188) mn(w1, . . . , wn) =
∑

T,π

mT
n ◦ π−1(w1 ⊗ · · · ⊗ wn)

where the sum runs over binary rooted trees T with n leaves (viewed up to graph
automorphism; for each T we fix arbitrarily a “standard” planar realization) and
their planar realizations π; mT

n ∈ Hom(W⊗n,W )Aut(T ) are some multilinear op-
erations invariant w.r.t. automorphisms of T acting by permutations of factors in
W⊗n (with appropriate signs); w1, . . . , wn ∈ W are arbitrary vectors; π−1(· · · ) is
understood as a permutation of factors in W⊗n corresponding to going from the
planar representative π to the “standard” representative of T . Then the tensor
product L∞ algebra structure on W ⊗ g is given by

(189) ln(w1 ⊗ α1, . . . , wn ⊗ αn) =

=
∑

σ∈Sn

∑

T

± 1

|Aut(T )|m
T
n (wσ1 , . . . , wσn)⊗ JacobiT (ασ1 , . . . ασn)

with JacobiT (· · · ) the nested commutator determined by the tree T .
Here the first point of view on the tensor product (187) is more direct and does

not require splitting mn into pieces mT
n possessing different symmetries. However,

we wanted to also present the second point of view (189) since it compares directly
to the tree part of (115) and explains how to construct the corresponding C∞
algebra (via (188)).

References

[1] M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master

equation and topological quantum field theory, Int. J. Mod. Phys. A12 (1997) 1405–1430.
[2] A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory, Commun. Math. Phys. 307.1

(2011) 185–227.
[3] A. S. Cattaneo, P. Mnev, Remarks on Chern-Simons invariants, Commun. Math. Phys. 293.3

(2010) 803–836.

[4] A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary,

Commun. Math. Phys. 332.2 (2014) 535–603.
[5] A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative quantum gauge theories on manifolds

with boundary, Commun. Math. Phys. 357 (2018) 631–730.
[6] A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative BV theories with Segal-like gluing,

arXiv:1602.00741 (math-ph).

[7] A. S. Cattaneo, C. Rossi, Wilson surfaces and higher dimensional knot invariants, Commun.
Math. Phys. 256.3 (2005) 513–537.

[8] X. Z. Cheng, E. Getzler, “Transferring homotopy commutative algebraic structures,” Journal

of Pure and Applied Algebra 212.11 (2008) 2535–2542.
[9] M. M. Cohen, A course in simple-homotopy theory, Springer (2012).

[10] J. Dupont, Curvature and characteristic classes, Lecture Notes in Math., no. 640, Springer-

Verlag, Berlin-New York (1978).
[11] E. Getzler, Lie theory for nilpotent L-infinity algebras, Ann. Math. 170.1 (2009) 271–301.

[12] A. L. Gorodentsev, A. S. Khoroshkin, A. N. Rudakov, On syzygies of highest weight orbits,

arXiv:math/0602316.
[13] J. Gran̊aker, Unimodular L-infinity algebras, arXiv:0803.1763 (math.QA).



90 ALBERTO S. CATTANEO, PAVEL MNEV, AND NICOLAI RESHETIKHIN

[14] V. K. A. M. Gugenheim, L. A. Lambe, J. Stasheff, Perturbation theory in differential homo-

logical algebra. I, Illinois J. Math. 33.4 (1989) 566–582.

[15] O. Gwilliam, Factorization algebras and free field theories, Ph.D. diss., Northwestern Uni-
versity (2012) http://people.mpim-bonn.mpg.de/gwilliam/thesis.pdf

[16] O. Gwilliam, Th. Johnson-Freyd, How to derive Feynman diagrams for finite-dimensional

integrals directly from the BV formalism, in “Topological and Geometric Methods in Quantum
Field Theory,” AMS (2018) 175–185.

[17] T. Kadeishvili, “A∞-algebra structure in cohomology and rational homotopy type,” (in Rus-

sian), Proc. A. Razmadze Math. Inst, vol. 107 (1993) 1–94.
[18] T. Kadeishvili, “Cohomology C∞-algebra and Rational Homotopy Type,” Banach Center

Publications 85, no. 1 (2009) 225–240.

[19] H. Khudaverdian, Semidensities on odd symplectic supermanifolds, Commun. Math. Phys.
247.2 (2004) 353–390.

[20] M. Kontsevich, Y Soibelman, “Homological mirror symmetry and torus fibrations,”
arXiv:math/0011041 [math.SG].

[21] R. Lawrence, D. Sullivan, “A free differential lie algebra for the interval,”

arXiv:math.AT/0610949.
[22] Yu. I. Manin, Gauge field theory and complex geometry, Springer 1988.

[23] J. E. McClure, On the chain-level intersection pairing for PL manifolds, Geometry & Topol-

ogy 10.3 (2006) 1391–1424.
[24] J. Milnor, A duality theorem for Reidemeister torsion, Ann. Math. 76 (1962) 137–147.

[25] J. Milnor, Whitehead torsion, Bull. AMS 72.3 (1966) 358–426.

[26] P. Mnev, Towards simplicial Chern-Simons theory, I, unpublished draft (2005),

https://www3.nd.edu/~pmnev/Towards_simplicial_CS.pdf

[27] P. Mnev, Notes on simplicial BF theory, Moscow Math. J. 9.2 (2009) 371–410.
[28] P. Mnev, Discrete BF theory, Ph.D. thesis, arXiv:0809.1160 (hep-th).

[29] P. Mnev, Lecture notes on torsions, arXiv:1406.3705 (math.AT).

[30] A. S. Schwarz, The partition function of a degenerate functional, Commun. Math. Phys. 67.1
(1979) 1–16.

[31] A. S. Schwarz, Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155

(1993) 249–260.
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