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Abstract. This explanatory note, based on the geometrical method by Ki-

jovski and Tulczyjew, describes the construction of the reduced phase space

of Lagrangian field theories, i.e., the correct space of initial conditions with
its symplectic structure. Several examples and, in particular, the case of four-

dimensional gravity in the coframe formalism (Palatini–Cartan theory) are

analyzed.
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1. Introduction

One useful description of a mechanical system is in terms of hamiltonian evo-
lution. This is given by a symplectic manifold and a hamiltonian function—the
evolution being given by the flow of its hamiltonian vector field. This description
is particulary interesting because it is, in principle, ready-made for quantization,
with the symplectic manifold being turned to a Hilbert space and the hamiltonian
function to a hamiltonian operator (how this is done, if anyway possible, is another
story).

Very often a fundamental system is however introduced via an action functional
and its associated Euler–Lagrange (EL) equations. Recasting it as a hamiltonian
system—in particular in the case of gravity—is the goal of this note.

The (reduced) phase space of the system refers to the symplectic manifold on
which one formulates the hamiltonian evolution of the system, whenever possible,
once one chooses a time axis. Roughly speaking, it is the space of Cauchy data for
the EL equations. The main issue is that the latter may have also a nonevolutionary
content, which then gives rise to constraints. This is typically the case of gauge
theories and of gravity.

The traditional way of proceding is due to Dirac [17]. This is an algebraic
method with the goal of extending the Legendre transform to the case of degenerate
Lagrangians. The method is iterative, with the construction of primary and a
sequence of secondary constraints, and can in principle break down at every step.

In this note we will focus on a more geometric approach due to Kijovski and
Tulczyjew (KT) [22] (we also rely on the presentation in [14]).1 The central idea is
to reformulate the space of solutions to the EL equations as an isotropic relation
between the spaces of initial and final field configurations naturally endowed with a
closed 2-form. The flow property is here replaced by the set-theoretic composition
of relations, which only in particular cases are graphs of a flow. The initial (or final)
space is then naturally endowed with a subset of Cauchy data—the points that can
belong to the relation for an arbitrary small interval of time. As the restriction2 of
the 2-form to the space of Cauchy data is usually degenerate, one has to consider an
appropriate quotient (by the null directions of the 2-form) to recover the reduced
phase space as a symplectic manifold. It may of course happen that the quotient
is singular. However, there is a natural way of doing this reduction in stages. In
most physical theories, the only problematic quotient turns out to be the last one:
the symplectic reduction of a coisotropic (i.e., defined by first-class constraints)
submanifold of a symplectic manifold of (appropriately defined) boundary fields.

1A related construction, which we will not discuss here, goes under the name of “covariant

phase space” (see [29, 4, 20, 23, 24], and also [25] for an overview). In this approach, the space
of solutions, equipped with its symplectic structure, is usually constructed via the bivariational

complex (see, e.g., [9] and references therein).
2Following the common terminology in symplectic geometry, by “restriction” we mean the

“pullback by the inclusion map.”
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To deal with the last reduction, there are appropriate techniques (e.g., the Batalin–
Fradkin–Vilkovisky formalism (BFV) [19, 18], which will not be discussed in this
note).

One advantage of the KT method is that it is rather flexible. One does not really
have to consider evolution between an initial and a final time, but one can focus on
the initial time only. One can even drop the condition that the initial submanifold
should be space-like—the formalism working in more general situations—and one
does not have to consider cylinders (a product of a manifold by an interval), but
one can consider more general manifolds with boundary. One further advantage is
that this method can be readily applied to the extension of the BV formalism [6, 7]
to manifolds with boundary (and possibly lower-dimensional strata), producing the
BV-BFV formalism discussed in [15].

We will start with a warm up dealing with simples cases. Next we will formulate
the general theory and will apply it to the already presented examples. Finally, we
will discuss gravity in the coframe (a.k.a. Palatini–Cartan) formulation.

Acknowledgment. I thank J. Huerta, M. Schiavina, S. Speziale, and M. Tecchiolli
for useful comments on a first draft.

2. Some preliminary examples

We start reviewing some simple examples that will motivate the general theory.
We will review in Section 6 how they are described within the general KT method.

2.1. Mechanics. Let us start with the familiar example of mechanics in one di-
mension. The action functional is

S[q] =

∫ b

a

(
1

2
mq̇2 − V (q)

)
dt,

where q (the “field”) is a path [a, b] → R, m is the mass, and V is the potential
energy. We want to compute a variation of S isolating in the integral variations of
q but not of its derivative(s). We can do this integrating by parts:

δS = −
∫ b

a

(mq̈ + V ′(q)) δq dt+mq̇ δq
∣∣∣b
a
.

The bulk term—i.e., the integral over the interval—contains the EL equations as
the coefficient of δq:

mq̈ + V ′(q) = 0.

The boundary term can be reinterpreted as the difference, at times b and a, of a
1-form, on the space of positions q and velocities v = q̇, that we denote by α and
call the Noether 1-form:3

α = mv δq.

3More precisely, we regard this 1-form as defined on the tangent bundle TR = R × R 3 (v, q)
of the space of fields at a (or b), so δ becomes the usual de Rham differential. The boundary term

in the variation of the action is more explicitly written as

mq̇ δq
∣∣∣b
a

= π∗bα− π
∗
aα,

where πa and πb are the maps from the space of paths to R×R that send the path q to (q̇(a), q(a))

and to (q̇(b), q(b)), respectively.
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We then take its differential

ω := δα = mδv δq,

which is an example of a symplectic form. This simply means that ω is closed (i.e.,
δω = 0) and nondegenerate (i.e., hamiltonian vector fields are uniquely determined).
We call the space TR of positions and velocities together with ω the phase space
of the theory.4 (Usually, one calls phase space the space T ∗R of positions q and
momenta p = mv with ω = δp δq, but this is just a change of variables.) As the EL
equations are of second order, the phase space TR is the space of possible initial
conditions, a.k.a. Cauchy data. Assuming the existence of global solutions, this
may also be regarded as the space of solutions to the EL equations.

The dynamics is then given by the Hamiltonian H = 1
2mv

2 + V (q) on TR (or,

as usual, H = p2

2m + V (q) on T ∗R) in the sense that the time evolution is governed

by the first-order ODE (v̇, q̇) = X where X = (−V
′

m , v) is the unique vector field
satisfying

ιXω + dH = 0

with ι denoting contraction. The vector field X is called the hamiltonian vector
field of H. The graph L[a,b] of the flow of X can be shown to be a lagrangian
submanifold of TR× TR, upon changing the sign of the symplectic form on one of
the two factors. This is an example of what we will in general call the evolution
relation of the system.

2.2. A degenerate example. Consider now, as action functional, the euclidean
length of a curve:

S[q] =

∫ b

a

‖q̇‖ dt =

∫ b

a

√
q̇ · q̇ dt,

where q : [a, b] → Rn is a path. The first, minor, remark concerning this example
is that, to avoid singularities, we have to restrict the space of paths to the regular
ones, i.e., those with nonvanishing speed everywhere (this is an open condition, not
a constraint). If we compute the variation of the action, we get

δS = −
∫ b

a

d

dt

q̇

‖q̇‖
δq dt+

q̇ · δq
‖q̇‖

∣∣∣∣∣
b

a

.

The EL equations are then
d

dt

q̇

‖q̇‖
= 0,

which are solved by straight regular paths, with an unspecified parametrization.
The Noether 1-form is

α = u · δq,
where we have introduced the notation u for the normalized velocity q̇

‖q̇‖ . The

corresponding 2-form
ω = δu · δq

is degenerate. To look for its kernel, consider a vector field

X = Xq ·
∂

∂q
+Xu ·

∂

∂u

4Note that the theory produces two copies of the phase space, one for the initial time a and
the other for the final time b.
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and compute the contraction

ιXω = Xu · δq −Xq · δu.

The first term may vanish only for Xu = 0 because the components δqi of δq are
independent. On the other hand, since u is normalized, we have u · u = 1 which,
differentiated, yields the relation u · δu = 0. Since δu is orthogonal to u, the last
term in ιXω vanishes exactly when Xq is parallel to u.

To formulate evolution in hamiltonian terms, we have to mod out the kernel of
the 2-form ω. This reduction then consists in modding q out along the u direction.
The reduced space is the union over u ∈ Sn−1, the (n − 1)-dimensional sphere, of
the spaces

Fu = {q ∈ Rn}/[q ∼ q + λu, λ ∈ R].

As a representative for each equivalence class, one can choose a vector orthogonal
to u. Therefore, we may identify Fu with

Tu := {q ∈ Rn : q · u = 0}.

But this is just the tangent space of the sphere (viewed as submanifold of Rn) at the
point u. We then have that the reduced phase space is ∪u∈Sn−1Tu = TSn−1, the
tangent bundle of the sphere. The symplectic structure is [δu] ·δq. Using the round
metric, one can actually identify TSn−1 with T ∗Sn−1. Under this transformation,
the symplectic form is mapped to the canonical one, δp · δq.

Finally note that the symplectic manifold TSn−1 constructed above can also be
regarded as the space of solutions to the EL equations, i.e., the space of oriented
straight lines in Rn: an oriented line is in fact specified by its direction (the unit
tangent vector u ∈ Sn−1) and by its position in space (a point q ∈ Rn modulo
translations along u). Also note that these data do not change along the line, so
the evolution on the reduced phase space TSn−1 is given by the identity map, and
the Hamiltonian vanishes.

2.3. The scalar field. Let us now consider one example from field theory in d
dimensions. To a d-dimensional Lorentzian manifold (M, g) we associate the space
of fields C∞(M) and the action functional

SM [φ] =
1

2

∫
M

gµν ∂µφ∂νφ
√
|det g| ddx,

where (gµν) are the components of the inverse of g. The EL equation is the wave
equation on (M, g):

∂µ(gµν∂νφ
√
|det g|) = 0.

We consider M = Σ × I, where Σ is space-like and I = [a, b] is a time interval.
We also assume for simplicity that near the boundary the metric splits as

g = −(dx0)2 + hijdx
idxj ,

where 0 denotes the time direction and (hij) is a euclidean metric. When we
compute the variation of SM , we get a boundary term—the Noether 1-form—on
each of the two boundary copies of Σ:

α∂Σ =

∫
Σ

φ0 δφ
√

deth dd−1x,

where φ0 denotes ∂0φ.
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In the symplectic setting, we consider φ and φ0 as two independent functions on
Σ: the initial configuration and the initial velocity. The space F ∂Σ , with coordinates
φ and φ0, can be identified with the space of solutions to the wave equation on
Σ×[a, b] with φ and φ0 as initial conditions at time a. The space F ∂Σ with symplectic
form

(1) ω∂Σ := δα∂Σ =

∫
Σ

δφ0 δφ
√

deth dd−1x

is then the phase space of the theory.

2.4. Electromagnetism. Electromagnetism on a d-dimensional lorentzian mani-
fold (M, g) is described by a 1-form5 A = Aµdxµ on M (called the potential) and
the action

SM [A] =
1

4

∫
M

gµνgρσ Fµρ Fνσ
√
|det g| ddx,

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field. The EL equations are in
this case the Maxwell equations

∂µ(gµνgρσ Fνσ
√
|det g|) = 0 ∀ρ.

Again we consider M = Σ×I, where Σ is space-like and I = [a, b] is a time inter-
val with split metric near the boundary. In this case, the boundary contribution—
the Noether 1-form—on each copy of Σ is

α∂Σ =

∫
Σ

hij F0i δAj
√

deth dd−1x,

where hij is the Euclidean metric on Σ obtained by restricting g, and 0 denotes the
time component. Again, in the symplectic formalism, we consider F0i and Aj as
independent fields. We denote by F ∂Σ the space with coordinates F0i and Aj and
with symplectic structure

ω∂Σ = δα∂Σ =

∫
Σ

hij δF0i δAj
√

deth dd−1x.

Remark 2.1. If we introduce the electric field Ej := hijF0i, then we get the usual
formula

ω∂Σ =

∫
Σ

δEj δAj
√

deth dd−1x,

which simply says that the electric field and the vector potential are canonically
conjugate variables.

The crucial point now is that, unlike in the case of the scalar field, the space F ∂Σ
is not the space of solutions. In fact, near the boundary, the EL equations read

∂0(gρjF0j

√
deth) + ∂i(h

ijgρσFjσ
√

deth) = 0 ∀ρ.
For ρ = k a space index, we get the evolution equation

hkjḞ0j

√
deth = ∂i(h

ijhklFjl
√

deth),

where we denoted the time derivative by a dot (assuming for simplicity that h is
time-independent). The equation for ρ = 0,

∂i(h
ijF0j

√
deth) = 0,

5More generally, a U(1) connection.
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is however not an evolution equation and instead defines a constraint on the vari-
ables on F ∂Σ . Note that, with the notations in Remark 2.1, this equation corresponds
to the Gauss law divE = 0. We then define C as the set of solutions to the Gauss
law or, equivalently, as the common zero set for all scalars λ of the functions

Jλ := −
∫

Σ

λ∂i(h
ijF0j

√
deth) dd−1x =

∫
Σ

∂iλh
ijF0j

√
deth dd−1x

The restriction of ω∂Σ to C is degenerate. Its kernel is generated by the hamiltonian
vector fields Xλ for all Jλs. We immediately get

Xλ(Ai) = ∂iλ, Xλ(F0j) = 0,

which can be interpreted as infinitesimal gauge transformations. The reduced phase
space C is then defined as the quotient of the space C of solutions to the Gauss law
by gauge transformations.

2.5. Conclusions. All the above examples have something in common: the evo-
lution can eventually be described in hamiltonian terms, and the symplectic form
is ultimately derived from the Noether 1-form that arises as boundary term of a
variation of the action.

On the other hand, there are also several differences. In the case of mechanics
or of the scalar field this is the end of the story. In the degenerate case of the
length functional, the 2-form arising from the the differential of the Noether 1-form
is degenerate, so one has to reduce by its kernel in order to get a symplectic form.
In the case of electromagnetism (and more generally of Yang–Mills theory), the
construction we have presented actually yields a symplectic form on an appropriate
space of boundary fields. However, some of the EL equations (the Gauss law) put
constraints on them. Imposing the constraints leads however to a degeneracy of
the restriction of the symplectic form, so one has now to reduce by its kernel.

In order to put more uniformity to these examples, but also to get ready to deal
with more intricated examples, like gravity, we need a more conceptual perspective,
which will be developed in the next sections.

3. Lagrangian field theory

In this and in the next two sections, we discuss the general method. We encour-
age the reader to apply each new construction to the examples of Section 2 (the
results will be briefly reviewed in Section 6).

A Lagrangian field theory on a manifold M , possibly with boundary, is specified
by a space of fields FM and a local action functional SM . The fields are local on
M (sections of some sheaf); typically:

• maps from M to some fixed target manifold,
• sections of some vector (or, more generally, fiber) bundle over M ,
• connections on M for some principal bundle.

The action functional is of the form SM =
∫
M
L, where the lagrangian density L is

a function of the fields and some of their derivatives (jets) at a point. In this note,
we assume M to be compact.6 To start with, we fix no boundary conditions for the
fields.

6If M is not compact, the fields are assumed to vanish fast enough to ensure convergence of
the integral. Alternatively, one considers the Lagrangian as a distribution to be applied to test

functions with compact support.



8 ALBERTO S. CATTANEO

Remark 3.1. The lagrangian density L may require some additional structure on
M . For example, to define a theory for spinors we need M to allow for spin bundles.
To define gravity we need M to allow for lorentzian metrics. For a given theory, we
call a manifold that admits the required structures a space–time manifold.

The EL equations are encoded in the variation δSM of the action. We think of
δ as the de Rham differential on FM . For this, we have to assume that FM has a
suitable structure of infinite-dimensional manifold that allows defining differential
forms and the de Rham differential.

Remark 3.2. In this note, we prefer to consider smooth fields and give FM the
structure of a Fréchet manifold. One may also prescribe a different regularity on
the fields and give FM the structure of a Banach manifold.

Digression 3.3 (A categorical approach). A different option, which is actually
closer to the physical viewpoint but which we will not explore in this note, consists
in regarding FM as an internal hom space in the category of smooth manifolds.
Let us explain this in the case of a sigma model where FM is the space of maps
from M to a fixed target manifold N (possibly R, as in scalar field theory). We
then regard FM as the functor that to a finite-dimensional manifold Z associates
the set of smooth maps from Z ×M to N . We think of this as a way of exploring
FM by manifolds Z (it is the notion of Grothendiek’s functor of points, but it is
also the usual textbook way of parametrizing the fields when computing functional
derivatives). The natural context is that of “presheaves” over the category Mfld
of finite-dimensional smooth manifolds, namely, of functors from Mfldop to the
category Set of sets. A finite-dimensional manifold X can also be regarded as a
presheaf X, namely, the functor that to a finite-dimensional manifold Z associates
the set of smooth maps from Z to X. We regard presheaves, e.g., FM or X, as
generalized manifolds. A natural transformation among the corresponding functors
is regarded as a map between the generalized manifolds. Particularly useful is the
generalized manifold Ωk, namely, the functor that to a finite-dimensional manifold Z
associates the set Ωk(Z) of smooth k-forms on Z. A k-form on X is now equivalently
described as a map from X to Ωk. One then defines k-forms on a generalized
manifold, e.g., FM , as maps to Ωk. For every k, we have the universal de Rham
differential δ, the natural transformation from Ωk to Ωk+1, which, when instantiated
on a given Z, is the usual de Rham differential d : Ωk(Z) → Ωk+1(Z). The action
functional SM is now a map from FM to Ω0, namely, the natural tranformation,
which, when instantiated on a given Z, is the smooth function on Z given by

∫
M
L

(recall that the fields are now parametrized by Z). The variational derivative δSM
is now just the composition of the universal de Rham differential δ with the map
SM , a generalized map from FM to Ω1, so a 1-form on FM .

3.1. Euler–Lagrange spaces. If M has no boundary, solutions to the EL equa-
tions are, by definition, the critical points of SM , viz., the fields at which δSM = 0.
If we introduce the Euler–Lagrange 1-form elM := δSM , then the solutions to the
EL equations are the zeros of elM . We denote by ELM the space of solutions.

Note that there is an ambiguity in writing elM , as there was already in writ-
ing SM , because of total derivatives, whose integral is zero. If M has nonempty
boundary, the different ways are no longer equivalent but differ by boundary terms.

We take the definition of SM as fixed (we will return to this later on), but in elM
we only want variations of the fields, and not of their derivatives, to appear. This
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requires integrating by parts (several times if necessary). Finally, we may write (in
a unique way)

(2) δSM = elM + αM ,

where αM , also a 1-form on FM , collects the boundary terms. It follows that

(3) αM =

∫
∂M

aM ,

where aM is a density on the boundary ∂M depending on the fields and their jets
(including transversal ones) at a point on ∂M .

We keep denoting by ELM the zero locus of elM . In this note, for simplicity,
we will assume that ELM is a submanifold of FM . Note that (2) has the following
consequences:

(i) The restriction of αM to ELM is an exact 1-form.

(ii) If we change the definition of SM to S̃M via the addition of total derivatives

to the Lagrangian LM , we have S̃M = SM + φM , where φM =
∫
∂M

fM
collects the boundary terms. Since our convention for elM is fixed (namely,

we write δS̃M = elM + α̃M ), we get

α̃M = αM + δφM .

Changing the action as in (ii) should be regarded as an equivalence (anyway, the
space ELM is does not change).7 We then define the 2-form

ωM := δαM

which has invariant meaning (δαM = δα̃M ). Point (i) above then becomes:8

The restriction of ωM to ELM is zero.

Borrowing the terminology of symplectic geometry, we say that ELM is an isotropic
submanifold of (FM , ωM ).

3.2. Reduction. The 2-form ωM is closed by construction but in general is degen-
erate, so it is not a symplectic form. We can remedy for this quotienting FM by the
kernel of ωM , i.e., by the distribution of vector fields X on FM satisfying ιXω = 0.9

We will assume that the quotient F ∂∂M has a smooth manifold structure such
that the canonical projection π : FM → F ∂∂M is a surjective submersion.10

The reason for the notation using the boundary symbol ∂ is that, because of
(3), a vector field X that changes the bulk fields preserving their boundary values
(including their transversal jets) is necessarily in the kernel of ωM . As a result,

7In the quantum theory, what matters is the Gibbs weight e
i
~SM , which, in view of this remark,

should be considered not as a function but as a section of a line bundle over FM : the change in

the definition of SM is the action of the gauge transformation e
i
~φM . From this point of view,

αM should be considered as a 1-form connection.
8Explicitly, this means that ωM evaluated on a solution and contracted with a solution of the

linearized equations vanishes. See footnote 2.
9Here ι denotes contraction. Namely, ιXω is the 1-form that satisfies ιXω(Y ) = ω(X,Y ) for

every vector field Y .
10We first have to assume that this distribution is regular, i.e., that the kernel distribution

consists of sections of a vector bundle. Since ω is closed, this distribution is automatically invo-

lutive (viz., ιXω = 0 and ιY ω = 0 imply ι[X,Y ]ω = 0), but, in the Fréchet context, the Frobenius
theorem does not hold, so we have to assume explicitly that the distribution is integrable. Finally,

we have to assume that the leaf space F∂∂M has smooth structure as in the text. All this turns

out to work in the case of usual field theories.
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F ∂∂M only depends on “boundary data.” We call an element of F ∂∂M a boundary
field.

By construction, there is a unique symplectic form ω∂∂M on F ∂∂M such that
π∗ω∂∂M = ωM .

A central concept is the space of boundary fields that arise from solutions to EL
equations:

(4) LM := π(ELM ).

Note that LM is automatically isotropic with respect to ω∂∂M . We will later re-
quire further structure on LM (viz., that it is a split lagrangian submanifold; see
Definition 5.2).

To make further structures clearer, but also to present a version that still works
when F ∂∂M is singular, it is convenient to perform the reduction in stages, with the

first reduction, which we will denote by F̃ ∂∂M , always possible. If also F ∂∂M is smooth,
we will then have the following commutative diagram of surjective submersions:

(5)

FM F̃ ∂∂M

F ∂∂M

π̃

π
p

We will call points of F̃ ∂∂M preboundary fields. We study them in the next section.

4. Preboundary fields

We already observed that a vector field X on FM that changes the bulk fields
preserving their boundary values (including their transversal jets, which encode the
inward-pointing derivative data of the fields at the boundary) is necessarily in the
kernel of ωM (actually, also in that of αM ).11 We now consider the distribution

consisting of only such vector fields and denote by F̃ ∂∂M its leaf space and by

π̃ : FM → F̃ ∂∂M

the canonical projection. This is a space of fields on ∂M (with the transversal

jets now being new fields). As already mentioned, we call an element of F̃ ∂∂M a
preboundary field.

Note that π̃ is a surjective submersion (corresponding to restricting fields and
their transversal jets to the boundary) and that there is a unique closed local 2-form

ω̃∂∂M on F̃ ∂∂M such that π̃∗ω̃∂∂M = ωM .
The 2-form ω̃∂∂M is in general still degenerate, so a further reduction will be

needed, leading again to F ∂∂M with canonical projection p : FM → F ∂∂M .

There is also a unique local 1-form α̃∂∂M on F̃ ∂∂M such that π̃∗α̃∂∂M = αM . More-
over, we have ω̃∂∂M = δα̃∂∂M and

(6) δSM = elM + π̃∗α̃∂∂M .

11Alternatively, we may consider vector fields that preserve germs of boundary values. Namely,

we require that, for every field φ, X evaluated at φ is compactly supported in the interior of M .

This construction produces a different version of the intermediate space F̃∂∂M , but of course the

final reduction F∂∂M is the same.
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We now define the analogue of (4), namely, the space of preboundary fields that
can be extended to a, not necessarily unique, solution to the EL equations:

L̃M := π̃(ELM ).

Note that L̃M is automatically isotropic with respect to ω̃∂∂M and that LM = p(L̃M ).

It is convenient to assume that L̃M is a submanifold of F̃ ∂∂M .

4.1. Composition of evolution relations. Note that F̃ ∂Σ is actually defined for
every manifold Σ that can arise as a boundary component of a space–time manifold
M . Moreover, if we denote by {∂sM}s=1,...,k the connected components of ∂M , we
have12

F̃ ∂∂M =

k∏
s=1

F̃ ∂∂sM

and

α̃∂∂M =

k∑
s=1

α̃∂∂sM .

Suppose now we cut the manifold M along a hypersurface Σ into two pieces M1

and M2, so we can recover M as the gluing of M1 and M2 along their common
boundary component Σ (we assume here that Σ does not cut the boundary of M).
We have

∂M = ∂1M t ∂2M, ∂M1 = ∂1M t Σ, ∂M2 = ∂2M t Σ,

where ∂iM denotes the component of the boundary of M that is also a component
of the boundary of Mi.

A solution to the EL equations on M is then uniquely given by a pair of solutions
to the EL equations on M1 and M2 that match on Σ. More precisely, denote by

π̃i : FMi
→ F̃ ∂Σ , i = 1, 2, the map that corresponds to restricting fields on Mi and

their transversal jets to the boundary component Σ. We then have the fiber product
formula

(7) ELM = ELM1
×F̃∂Σ ELM2

= {(φ1, φ2) ∈ ELM1
× ELM2

: π̃1(φ1) = π̃2(φ2)}.

Analogously, we have

(8) L̃M = {(ψ1, ψ2) ∈ L̃M1 × L̃M2 : πΣ,1(ψ1) = πΣ,2(ψ2)},

where πΣ,i is the canonical projection from F̃ ∂∂Mi
to F̃ ∂Σ .

It is more instructive to view the above formulae using the language of relations
and correspndences.

Definition 4.1. A relation from the set A to the set B is a subset of A × B. If
RAB is a relation from A to B and RBC is a relation from B to C, one defines the
composition

RBC ◦RAB := {(a, c) ∈ A× C : ∃b ∈ B (a, b) ∈ RAB (b, c) ∈ RBC}
as a relation from A to C.13 A correspondence from the set A to the set B is a
map C → A × B where C is some set. The composition of correspondences is

12Here
∏

denotes the cartesian product of the given spaces. In the second formula, the pulback
of α̃∂∂sM by the projection to the corresponding factor is understood.

13A particular example of a relation is the graph of a map. The composition of graphs, as

relations, is the same as the graph of the usual composition of maps.
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defined as their fibered product. The image of a correspondence is a relation, and
the composition of such images, as relations, is the image of the composition of the
correspondences.

In this setting we may view L̃M1
(ELM1

) as a relation (correspondence) from

F̃ ∂∂1M
to F̃ ∂Σ and L̃M2

(ELM2
) as a relation (correspondence) from F̃ ∂Σ to F̃ ∂∂2M

. In
this language, (8) is the composition of relations, whereas (7) is the composition of
correspondences.

For this reason, given a space–time manifold M and a decomposition of its

boundary into two components, we call L̃M (ELM ) the evolution relation (evolution
correspondence).

Remark 4.2 (Evolutionary flow). A particular case is M = Σ × [t1, t3], with Σ
having empty boundary and t1 < t3. We now pick t2 ∈ (t1, t3) and cut M along
Σ× {t2}. In this case, Mi = Σ× [ti, ti+1], and we have

L̃Σ×[t1,t3] = L̃Σ×[t2,t3] ◦ L̃Σ×[t1,t2].

This law may be thought of as the general version of time evolution (we will see that
in many cases there is a further reduction in which the evolution relation actually
becomes the graph of a flow).

Remark 4.3 (Relative structures). Suppose again we cut the manifold M along a
hypersurface Σ into two pieces M1 and M2. Since SM = SM1 + SM2 , equation (6)
for M , M1, and M2 implies

α̃∂Σ,1 = −α̃∂Σ,2,
where α̃∂Σ,i denotes the 1-form on F̃ ∂Σ viewed as a boundary component of Mi.
Therefore, with analogue notation, we have

ω̃∂Σ,1 = −ω̃∂Σ,2.
This shows that choosing a boundary component Σ as the target or the source of
the evolution relation yields opposite sign to the associated 2-form.14

4.2. Cauchy data. Let Σ be a manifold that can appear as a boundary of a space–
time manifold. We then consider the theory on Mε = Σ × [0, ε] with ε a positive

real number. We view L̃Mε as a relation from F̃ ∂Σ = F̃ ∂Σ×{0} to F̃ ∂Σ×{ε}. We define

C̃Σ := {c ∈ F̃ ∂Σ : ∃ε > 0 ∃u ∈ F ∂Σ×{ε} (c, u) ∈ L̃Mε
}.

The space C̃Σ consists of all the preboundary fields that can be extended to solutions

on some cylinder. Note that in general C̃Σ is not the whole of F̃ ∂Σ (in the examples

we will see that C̃Σ is determined by the constraints of the theory, viz., by those
EL equations that do not describe an evolution in the transverse direction). We

call C̃Σ the space of Cauchy data.

More generally, we denote by C̃∂M the product of the spaces of Cauchy data

associated to each boundary component of M , viewed as a subset of F̃ ∂∂M .

We may restrict the closed 2-form ω̃∂Σ to C̃Σ and denote this restriction by ω̃CΣ .

In general, it will be degenerate. In some good cases, C̃Σ is a submanifold and

14If our theory is defined on oriented space–time manifolds and the Lagrangian is viewed as a

top form, then we view aM in (3) also as a top form (now on the boundary). In this setting, αM
depends on a choice of orientation, and we choose the orientation of Σ in opposite ways depending

on its being viewed as the source or the target of the evolution relation.
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the leaf space CΣ of the distribution given by the vector fields in the kernel of

ω̃CΣ has a smooth structure such the the canonical projection p̃C : C̃Σ → CΣ is a

surjective submersion. In this case, there is a unique symplectic structure ωCΣ on CΣ

satisfying ω̃CΣ = p̃∗Cω
C
Σ . We call the symplectic manifold (CΣ, ω

C
Σ) the reduced phase

space associated to Σ. If this constuction works for every boundary component of
M , we write C∂M for the product of the symplectic manifolds associated to each

component. The evolution relation L̃M may be intersected with C̃∂M and projected
to C∂M giving rise to the reduced evolution relation LM . This describes the correct
evolution of the system. (In some particularly good cases, LΣ×[a,b] will be the graph

of a hamiltonian flow.)

5. Boundary fields

We now return to the full reduction FM → F ∂∂M mentioned in Section 3.2; see
the diagram (17) for reference.

We assume here that the quotient F ∂∂M has a smooth manifold structure such
that the canonical projection π : FM → F ∂∂M is a surjective submersion and recall
that an element of F ∂∂M is called a boundary field.

The excursus through the space of preboundary fields in Section 4 and the fact

that we can obtain F ∂∂M from F̃ ∂∂M by a further reduction allow us to see more
structure.

The first consequence is that, for every manifold Σ that can arise as a boundary

component of a space–time manifold M , we may define F ∂Σ := p(F̃ ∂Σ). This implies
that, if we denote by {∂sM}s=1,...,k the connected components of ∂M , we have

F ∂∂M =

k∏
s=1

F ∂∂sM

and

ω∂∂M =

k∑
s=1

ω∂∂sM .

The second consequence is that LM = π(ELM ) = p(L̃M ) is also a relation,
which we keep calling the evolution relation, once we choose a decomposition of ∂M
into two components. Moreover, the evolution relation of a manifold cut along a
hypersurface is the composition of the evolution relations of its parts. Remark 4.3
now implies that

ω∂Σ,1 = −ω∂Σ,2,

so F ∂Σ has opposite symplectic structure if it is regarded as target instead of source
space.

Digression 5.1 (Composition of isotropic relations). Following [30, 31], we can
give a better description of the composition of evolution relations, which we now
assume to be submanifolds, in terms of symplectic geometry. Observe that LM
can be obtained as follows: first, we consider LM1

× LM2
as a submanifold of

F ∂∂M1
×F ∂∂M2

= F ∂∂1M
×F ∂Σ×F ∂Σ×F ∂∂2M

; then we intersect it with F ∂∂1M
×∆F∂Σ

×F ∂∂2M
,

where ∆F∂Σ
denotes the diagonal in F ∂Σ ×F ∂Σ ; finally we project to F ∂∂M by the map
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π∆ : F ∂∂1M
×∆F∂Σ

×F ∂∂2M
→ F ∂∂M that forgets the middle factor. Therefore, we have

LM = π∆

(
LM1

× LM2
∩ F ∂∂1M ×∆F∂Σ

× F ∂∂2M

)
.

The point of this construction is that the map π∆ performs the symplectic reduction
of the restriction of ω∂

F∂∂M1
×F∂∂M2

to F ∂∂1M
×∆F∂Σ

× F ∂∂2M
. The crucial point here is

that ∆F∂Σ
is a lagrangian submanifold of F ∂Σ × F ∂Σ when the two factors are given,

as is the case here, opposite symplectic structures.

5.1. Boundary conditions. In this note we assume that there is a local 1-form
α∂∂M such that π∗α∂∂M = αM .15 It follows that

(i) α∂∂M is uniquely determined,
(ii) ω∂∂M = δα∂∂M , and
(iii) equation (2) yields

(9) δSM = elM + π∗α∂∂M .

In order to select solutions to the EL equations that could also be regarded
as critical points of SM , one may then choose a submanifold B of F ∂∂M with the
following two properties:

(i) The restriction of α∂∂M to B vanishes, so δSM = elM on π−1(B).
(ii) B intersects LM transversally, so each solution is isolated.

We will see that such submanifolds B are actually related to possible boundary
conditions of the theory.

The first condition implies that B should also be isotropic. The second condition
in particular entails that TuB and TuLM are complementary subspaces of TuF

∂
∂M ,

for every intersection point u (i.e., the boundary value in B of a solution). Note
that ω∂∂M at u defines a symplectic form on the vector space TuF

∂
∂M , and that TuB

and TuLM are isotropic with respect to it. We say that TuB and TuLM are split
lagrangian subspaces, according to the following

Definition 5.2. [13] An isotropic subspace of a symplectic vector space is called
split lagrangian if it admits an isotropic complement.

The motivation for this terminology is that an isotropic subspace of a finite-di-
mensional symplectic space is split lagrangian precisely when it is half-dimensional,
so lagrangian according to the usual definition. In the infinite-dimensional sym-
plectic case, there are several definitions, of different strength, of what lagrangian
should be, split lagrangian being the strongest.16

If we want that every point u of LM could be obtained by such an intersection,
we have to require that TuLM should be split lagrangian for every u ∈ LM : we say,
in this case, that LM is a split lagrangian submanifold.17

15This condition actually fails in some interesting examples (like a charged particle in a mag-

netic field or the WZW model). What still happens in these examples however is that α∂∂M exists

as a 1-form connection instead of a global 1-form.
16Note that, if L is split lagrangian in a symplectic vector space V , then its symplectic or-

thogonal L⊥ is equal to L, so the symplectic reduction of L is a point. The condition L = L⊥ is

usually taken to define lagrangian subspaces. In particular, split lagrangian implies lagrangian.
17The submanifolds B that select isolated solutions have also to be split lagrangian, but in

principle it is enough to require this in a neighborhood of the intersection points.
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By construction, LM is always isotropic. On the other hand, the condition that
LM should be split lagrangian is required for the theory to behave well when bound-
ary conditions are imposed and does not necessarily hold in general. Also note that
this may depend on the choice of space–time manifold M . For a Lagrangian theory
to be good, we have to require that there is a class of manifolds with boundary
for which the condition holds (this class should at least contain manifolds of the
form Σ× I, with I a time interval and Σ belonging to a physically interesting class,
e.g., being space-like). The theories encountered in physics (scalar or spinor field
theories and Yang–Mills theories, pure or coupled to the former) are good in this
sense.

In the case of gravity, we will see that one has to be a bit more careful in the
definition of FM in order for the theory to be well behaved on a large class of space–
time manifolds with boundary: namely, one has to impose some open condition for
the fields in FM on the boundary of M .18 We do not view this as a boundary
condition (such as the one imposed by the intersection with an isotropic B) which
would instead correspond to a closed condition.

Remark 5.3 (Coisotropic Cauchy spaces). One can show that, if LΣ×[0,ε] is la-
grangian for all ε > 0, then CΣ is coisotropic (i.e., the symplectic orthogonal of its
tangent bundle is contained in the tangent bundle itself). In this case, CΣ is locally
given by first-class constraints (using Dirac’s terminology). Moreover, the reduced
phase space CΣ is obtained modding out by the hamiltonian vector fields of the
constraints (which one can regard as gauge transformations). This is the typical
case we will analyze in the rest of this note.

6. Examples

We now briefly return to the examples discussed in Section 2, in light of the
general KT method.

In the case of mechanics, with target R as in Section 2.1, we have C = C =
F ∂ = TR, with coordinates interpreted as initial position q and initial velocity v.
The symplectic form is mδv δq. If we set p := mv, we identify these spaces with
T ∗R with canonical symplectic form δp δq. The evolution relation L[a,b] ⊂ C×C =
T ∗R× T ∗R is the graph of the hamiltonian flow from time a to time b.

In the degenerate example of Section 2.2, we have C = C = F ∂ = T ∗Sn−1 with
canonical symplectic structure. The evolution relation L[a,b] is just the graph of
the identity.

In the case of the scalar field of Section 2.3, we have CΣ = CΣ = F ∂Σ = C∞(Σ)⊕
C∞(Σ) 3 (φ, φ0) and symplectic form as in (1). The evolution relation LΣ×[a,b]

consists of pairs ((φa, φa0), (φb, φb0)) with (φb, φb0) the evaluation at time b of the
solution φ and its time derivative ∂0φ of the Cauchy problem with initial condition
(φa, φa0) at time a.

In the case of electromagnetism of Section 2.4, we have F ∂Σ = X(Σ) ⊕ X(Σ) 3
(A,E) and symplectic form as in Remark 2.1.19 The Cauchy space CΣ consists of
the pairs (A,E) with E satisfying the Gauss law divE = 0. The reduced phase
space CΣ is the quotient of CΣ by gauge transformations Ai 7→ Ai + ∂iλ. The evo-
lution relation LΣ×[a,b] consists of pairs (([A]a, Ea), ([A]b, Eb)) with ([A]b, Eb) the

18We call this the boundary metric nondegenerate PC theory in Section 7.
19X(Σ) denotes the vector fields on Σ.
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evaluation at time b of the solution of the Cauchy problem for the time-dependent
Maxwell equations with initial condition ([A]a, Ea) at time a.20

7. Gravity in the coframe formalism

We now come to the example of the reduced phase space we want to discuss in
this note: gravity. In its usual formulation, gravity is described by a Lorentzian
metric g and by the Einstein–Hilbert action. The construction of the reduced phase
space turns out to be more convenient and elegant in its formulation via (co)frames
(using ideas mainly stemming from Cartan and Weyl), usually called the Palatini–
Cartan (PC) theory or the first-order formulation of gravity (see, e.g., the reviews
[21] and [28] and references therein). We will mainly follow [11].21

The first dynamical field in this formulation is a smooth field of frames on our
space–time manifold M . The dynamical metric g is recovered using the frame
starting from some reference metric (whose choice is irrelevant). A frame field may
also be viewed as an isomorphism between a reference vector bundle V on M and
the tangent bundle TM . It turns out that the computations are handier if one
uses the inverse of a frame field, which we call a coframe (field). It turns out that
to construct the action one also needs a second dynamical field, a connection for
the orthogonal frame bundle. This construction renders gravity closer in spirit to
gauge theories. More precisely, given a d-dimensional manifold M , the data are

• a vector bundle V over M isomorphic to TM (over the identity map on
M), and

• a smooth family η of inner products with signature (1, d− 1) on the fibers
of V.22

The first dynamical field is an isomorphism e : TM → V (over the identity map
on M), called the coframe. The dynamical gravity field g is recovered pulling η back
by e. Namely, if we pick coordinates on M (we use Greek indices for them) and a
local basis for the fiber of V (we use the first lower case letters of the Latin alphabet
for its components), then the coframe e is locally specified by its components eaµ
(an invertible d× d matrix at each point of M).23 If we denote the components of
η by ηab, we get the components of the space–time metric g as

(10) gµν = eaµ e
b
ν ηab.

Note that g has only d(d+ 1)/2 independent components, so the d2 components of
e are d(d− 1)/2 too many. Essentially, we have to consider the internal orthogonal
group to mod out the extra components.

In particular, we have to introduce a connection A to compute the covariant
derivative D of sections of V. If we denote by φa the components of a section φ of
V, we have

(Dµφ)a = ∂µφ
a +Aaµbφ

b.

20[A] denotes the gauge equivalence class of A.
21For the treatment with Dirac’s method, see, e.g., [2, 5]. For the covariant phase space

formalism, see [26, 3].
22Note that this is possible if and only if M admits a Lorentzian structure.
23We denote by ē : V → TM , with components ēµa , the inverse of e. At each point x ∈ M ,

for each a we have a tangent vactor ēa(x) with components (ē1a(x), . . . , ēda(x)). The vectors
ē1(x), . . . , ēd(x) are linearly independent, so they yield a frame for the tangent space TxM . For

this reason, ē is called a frame and e a coframe.
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In particular we want this connection to be compatible with the metric η or, equiv-
alently, its inverse, whose components we denote by ηab. Namely,

0 = (Dµη)ab = ∂µη
ab +Aaµcη

cb +Abµcη
ac.

It is convenient to decompose

Aaµb = ηbc(α
ac
µ + ωacµ )

with α symmetric and ω antisymmetric in the upper indices. The above equations
then read

0 = ∂µη
ab + αabµ + αbaµ ,

which can be solved as

αabµ = −1

2
∂µη

ab.

Note that there are no further conditions on ω. The covariant derivative can then
be written as

(Dµφ)a = (Dµφ)a + ωabµ ηbcφ
c

with

(Dµφ)a = ∂µφ
a − 1

2
∂µη

ab ηbcφ
c.

The second field of the theory is ω. If we pick a reference ω0, then ω − ω0 is a
1-form taking values in Λ2V.

It is convenient to introduce the following piece of terminology. A k-form on
M taking values in ΛlV will be called a (k, l)-form or a form of type (k, l). In
particular, e is a (1, 1)-form and ω − ω0 is a (1, 2)-form. The operator D acts on
(k, l)-forms producing (k + 1, l)-forms by skew-symmetrizing the lower space–time
indices. We call this operation the covariant differential and denote it dω.

The curvature 2-form Fω is the (2, 2)-form defined via d2
ωφ = Fω · φ, for any

section φ of V, with (Fω · φ)a = ηbcF
ac
ω φb in local coordinates.

From now on, we focus on the four-dimensional case, d = 4, with cosmological
constant Λ. For a space–time manifold M , admitting V as above, we define the
action functional (the Palatini–Cartan action)

SM [e, ω] :=

∫
M

(
1

2
e2Fω +

Λ

24
e4

)
,

where ek denotes the (k, k)-form obtained by taking the wedge product of k factors
e. Here the wedge product is done both with respect to the form and to the
V-components.24 It can be checked [11] that (4, 4)-forms, in particular the integrand
in the action, are canonically identified with densities. By taking a variation of SM ,
as in (2), we get

αM =

∫
∂M

1

2
e2 δω

24In local coordinates, the integrand is then given, up to a normalization factor, by

εabcdε
µνρσ

(
1

2
eaµe

b
ν(Fω)cdρσ +

Λ

24
eaµe

b
νe
c
ρe
d
σ

)
.



18 ALBERTO S. CATTANEO

and the EL equations

eFω +
Λ

6
e3 = 0,(11a)

edωe = 0.(11b)

One can check that the second equation is actually equivalent to

dωe = 0,(11c)

as a consequence of the fact that e is nondegenerate. Moreover, for a given e,
there is a unique connection ω(e) satisfying this equation. The connection ω(e)
corresponds, via e, to the Levi-Civita connection for g as in (10). Finally, the
equation eFω(e) + Λ

6 e
3 = 0 corresponds to the Einstein equation, with cosmological

constant Λ, for g.

Notation 7.1. From now on we will put a tilde on the name of the bulk fields, so
we will write ẽ = ẽµdxµ and ω̃ = ω̃µdxµ (with µ running from 1 to 4). We will
reserve the notation without the tilde for the fields on the boundary: e = eidx

i

and ω = ωidx
i (with i running from 1 to 3 and x ∈ ∂M). Note that the fields

on the boundary take values in the restriction V|∂M of V to the boundary. The
nondegeneracy condition now says that the three components e1(x), e2(x), and
e3(x) are linearly independent in Vx for every x ∈ ∂M .

From the form of αM , it might seem that the space of boundary fields con-
sists of e and ω as 1-forms on the boundary (taking values in V|∂M and Λ2V|∂M ,

respectively). Let us denote this space by F̂ ∂∂M . It turns out however that the
2-form

(12) ωM = δαM =

∫
∂M

e δe δω

is degenerate, so some reduction is still needed in order to get the space F ∂∂M of

boundary fields. More precisely, if X is a vector field on F̂ ∂∂M with component u
along e and v along ω, we get that ιXωM = 0 iff eu = 0 and ev = 0. One can
check that nondegeneracy of e implies u = 0. However, v may be nonzero.25 In
conclusion, the space F ∂∂M of boundary fields consists of coframes e on the boundary
and equivalence classes [ω] of connections under the equivalence ω ∼ ω + v with

ev = 0. We denote by p̂ the canonical projection F̂ ∂∂M → F ∂∂M .
We now want to discuss the Cauchy data. We then assume M = Σ × [0, ε]

and consider the first boundary component Σ = Σ× {0}. We have to split the EL
equations (11a) and (11c) into constraints and evolution equations. The constraints
are just their restrictions, as differential forms, to the boundary; this way, using

Notation 7.1, we can define the space of Cauchy data ĈΣ inside F̂ ∂Σ as

ĈΣ =

{
(e, ω) ∈ F̂ ∂Σ : eFω +

Λ

6
e3 = 0, dωe = 0

}
.

The space of Cauchy data CΣ is then obtained as p̂(ĈΣ).

25One can check that, for each x ∈ ∂M , the space of v(x)s satisfying e(x) v(x) = 0 is
six-dimensional.
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Proceeding this way is however a bit difficult, since the constraint function dωe
is not invariant under the equivalence relation.26 It would indeed be simpler to
consider instead the space

(13) Ĉ ′Σ =

{
(e, ω) ∈ F̂ ∂Σ : eFω +

Λ

6
e3 = 0, edωe = 0

}
) ĈΣ.

Note that we have replaced the condition dωe = 0 with the strictly weaker condition

(14) edωe = 0,

and it is not difficult to show that this is invariant under the equivalence relation. It

turns out that replacing ĈΣ with Ĉ ′Σ is indeed possible under a simple assumption.

Definition 7.2. We say that e is metric nondegenerate if g∂ij := eai e
b
i ηab is nonde-

generate.

In order to get to this situation, we have to define the space of fields FM accord-
ingly. Namely, we have to put the condition that the coframe ẽ becomes metric
nondegenerate when restricted to the boundary. A stricter condition would be that
the coframe ẽ produces a riemannian metric on ∂M (i.e., ∂M is space-like). These
are open conditions on the space of fields, so they are part of the definition of the
theory.27 We call the PC theory with coframe field required to be metric nonde-
generate on the boundary the boundary metric nondegenerate PC theory. We then
have [16, 11] the

Theorem 7.3. In the boundary metric nondegenerate PC theory, CΣ = p̂(Ĉ ′Σ).

This means that in studying CΣ we can instead use Ĉ ′Σ and work up to the
equivalence relation. This turns out to be very convenient, e.g., in proving that CΣ

is coisotropic (see Theorem 7.4 below).

Proof. Instead of restricting (11c) to the boundary, it is more convenient to go back
to (11b) and separate the constraints and the evolution equations there. It is clear
that (14) is a constraint. On the other hand, there are more constraints hidden in
the transversal part of the equation. We get, using Notation 7.1 and denoting the
transversal index by n,

(15) ẽn(dω̃ ẽ) + ẽ(dω̃ ẽ)n = 0.

The transversal derivative of ẽ in the last term shows that this equation also de-
scribes evolution. The problem is that it is not in normal form. In particular, it
might happen that the first term is not of the form ẽ times something, which would
prevent the evolution equation to be solved. The condition for this not to happen
is also a constraint.

From now on we focus for simplicity on the case when the space of fields FM
is defined by the condition that the coframe ẽ produces a riemannian metric g∂

on ∂M (i.e., ∂M is space-like).28 This condition in particular implies that the
restriction V|∂M of V admits a global time-like section ε. We now fix such an ε.

26The other constraint function, eFω + Λ
6
e3, is instead invariant upon using dωe = 0. In fact,

upon sending ω to ω+v, it becomes edωv which is equal to dω(ev)−dωe v. The first term vanishes
by the condition on v and the second by the other constraint.

27Reference [12] studies the case when ∂M is light-like. For the treatment of this case with

Dirac’s method, see [1].
28The general case is treated in [11].
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By nondegeneracy, the three components of e together with ε form a basis of Vx at
every point x of the boundary. This means that on the boundary we can expand
ẽn = ρε + ξiei = ρε + ιξe, where ρ is a (nowhere vanishing) function and ξ is
interpreted as a vector field on Σ (ρ and ξ are uniquely determined). Inserting this
into (15) evaluated on points on the boundary yields, after some algebra,

ιξ(edωe) + ρεdωe+ e((dω̃ ẽ)n − ιξdωe) = 0.

The first term vanishes upon using the constraint (14), so we can ignore it. We
then see that the additional constraint, callled the structural constraint in [11], is

(16) εdωe = eσ

for some (1,1)-form σ.29 We then have, for whatever ε we chose,

ĈΣ =

{
(e, ω) ∈ F̂ ∂Σ : eFω +

Λ

6
e3 = 0, edωe = 0, ∃σ εdωe = eσ

}
.

The crucial observation now is Theorem 17 in [11] which asserts that, for every
metric nondegenerate e, there is a unique ω in each equivalence class satisfying the
structural constraint (16).30 This means that we can identify the quotient space
F ∂Σ with the subspace

F εΣ :=
{

(e, ω) ∈ F̂ ∂Σ : ∃σ εdωe = eσ
}

of F̂ ∂Σ . We therefore get the diagram

(17)

F εΣ F̂ ∂Σ

F ∂Σ

i

τε
p̂

where i is the inclusion map and τε is a diffeomorphism. We then obtain the space

of Cauchy data CΣ = p̂(ĈΣ) as τε(CεΣ) with

CεΣ := i(ĈΣ) =

{
(e, ω) ∈ F εΣ : eFω +

Λ

6
e3 = 0, edωe = 0

}
.

However, it is clear that CεΣ = i(Ĉ ′Σ), with Ĉ ′Σ defined in (13), so CΣ = τε(CεΣ) =

τε(i(Ĉ ′Σ)) = p̂(Ĉ ′Σ). �

We conclude this section with the following important

Theorem 7.4. In the boundary metric nondegenerate PC theory, CΣ is coisotropic.

Proof. Thanks to Theorem 7.3, we can work with Ĉ ′Σ which we can rewrite as the
common zero locus of the functions

Pc =

∫
Σ

c edωe,

Tµ =

∫
Σ

µ

(
eFω +

Λ

6
e3

)
,

29The evolution equation at boundary points can now be written in normal form as (dω̃ ẽ)n =

ιξdωe− ρσ.
30In [12] it is shown how to modify the result in the light-like case.
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with c a (0, 2)-form and µ a (0, 1)-form. We now compute their hamiltonian vec-
tor fields (Xc and Yµ) with respect to the degenerate 2-form ωM defined in (12):
ιXcωM = δPc, ιYµωM = δTµ. The nontrivial fact—a consequence of Theorem 7.3—
is that they exist. They are not unique, but their ambiguity lies in the direction of
the equivalence relation, along which the functions are invariant. As a consequence,
their Poisson brackets are well-defined. We will only compute their restrictions to
CεΣ and show that they vanish. This is enough to prove the theorem.

We present the hamiltonian vector fields and leave the rest of the computation
to the reader:

Xc(e) = c · e, Xc(ω) = dωc+ v,

Yµ(e) ≈ dωµ eYµ(ω) = µ

(
Fω +

Λ

2
e2

)
,

where (c·e)ai = ηrsc
aresi , v satisfies ev = 0, and ≈means upon restriction to CεΣ. �

Remark 7.5. Looking into the proof, we see that Xc generates the internal gauge
transformations. On the other hand, one can see that Yµ generates diffeomorphisms,
both tangential and transversal to Σ. To see this, it is better to expand µ = λε+ιξe,
with ε as in the proof to Theorem 7.3, where λ is a function and ξ a vector field on
Σ. We then have Tµ = Hλ + Pξ with

Hλ =

∫
Σ

λ ε

(
eFω +

Λ

6
e3

)
,

Pξ =

∫
Σ

ιξe eFω.

Computing the hamiltonian vector fields separately, one can see that that of Pξ
generates the tangential vector fields and that of Hλ the transversal ones. One can
also recognize Hλ and Pξ as the hamiltonian and momentum constraints. The full
structure of the Poisson brackets among PC , Hλ, and Pξ is described in [11].

Remark 7.6. In the computations in the proof of Theorem 7.4, several integration
by parts are involved. If one wants to extend this construction to the case when
Σ has a boundary, the boundary terms generate an interesting “corner” structure.
This is better studied using the BFV formalism [19, 18]; see [10]. An alternative
approach would consist in extending to the context of gravity the results of [27].

8. Conclusion

In this note, we have described the construction of the reduced phase space for
Lagrangian fields theories following the geometrical method by Kijowski and W. M.
Tulczyjew [22] and, in particular, we have applied it to the case of coframe gravity
in four dimensions.
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