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Abstract. We study an equivariant extension of the Batalin-
Vilkovisky formalism for quantizing gauge theories. Namely, we
introduce a general framework to encompass failures of the quan-
tum master equation, and we apply it to the natural equivariant ex-
tension of AKSZ solutions of the classical master equation (CME).
As examples of the construction, we recover the equivariant exten-
sion of supersymmetric Yang-Mills in 2d and of Donaldson-Witten
theory.

1. Introduction

One cannot overlook the role played by equivariant methods in quan-
tum field theory in the last thirty years. Different versions of equi-
variant localization played central role in obtaining the exact results
for supersymmetric field theories. One prominent example is the con-
struction of N = 2 4d supersymmetric theory in Ω-background [17] (the
equivariant version of the Donaldson-Witten theory). Later these ideas
were implemented and generalized to other field theoretical examples,
mainly within supersymmetric field theory context. In any calculation
using supersymmetric localisation for supersymmetric gauge theories,
it is inevitable that the BRST transformation is combined with su-
persymmetry. The BRST transformation, which is a special case of
the BV algebra, squares to zero, while the supersymmetry transforma-
tions square to infinitesimal actions of isometries (plus possible global
symmetries). From this point of view, there seems to be some tension
between the two. The problem is further compounded by the pres-
ence of ghost zero modes which forces us to treat the constant gauge
transformation also equivariantly. This means that the BRST trans-
formation will now also square to constant gauge transformation, and
must be treated as equivariant differential. Here we would like to ad-
dress the equivariance from a more systematic gauge theoretical point
of view, namely within the the Batalin-Vilkovisky formalism.

Many of the above examples of gauge theories whose equivariant
extension proved to be so fruitful have a very simple description in
terms of the Batalin-Vilkovisky (BV) formalism and in particular can
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be formulated as AKSZ actions [1] (also see [22] for an introduction).
Namely, in order to construct the BV extension of a given action one
has to double the fields and the ghosts by adding the antifields; in this
way one gets an odd symplectic manifold with induced odd Poisson
bracket denoted by {, }1 and the BV action is a degree zero solution of
the classical master equation (CME) [3, 4, 5]

(1) {S, S} = 0 ,

such that the original gauge invariant action is recovered from S by
putting the antifields to zero. Provided S is extended to solve the
quantum master equation (2), the path integral of the gauge fixed the-
ory is then recovered by integrating exp(iS/~) over a Lagrangian sub-
manifold obtained by fixing the antifields in a way that the action is
now nondegenerate; invariance under the change of gauge fixing is in-
terpreted as invariance of the BV integration under the deformation of
the Lagrangian submanifold.

The AKSZ construction provides a solution S of the CME (1) in
terms of a very trasparent geometrical procedure. Indeed, it is very
easy extend the AKSZ solution to an action satisfying the equivariant
version (10) of (1). On the other hand, since the CME is not anymore
satisfied, the BV formalism must be modified, in particular one has to
understand how to guarantee the invariance of the path integral under
the change of Lagrangian submanifold. This paper is devoted to devel-
oping the proper setting to deal with equivariance in the framework of
the Batalin-Vilkovisky method. Our main goal is to suggest the sys-
tematic derivation of the equivariant odd transformations (the mixture
of supersymmetry and BRST symmetry) which appear in the localiza-
tion literature in a rather ad hoc fashion. Moreover, we hope that in
the future the suggested framework can be extended to manifolds with
boundaries (in analogy with [10]) and that we can understand better
the structural questions behind the ”localizable” theories.

In Section 2 we discuss how we can encompass actions that fail to
solve the quantum master equtions still keeping the spirit of the BV
formalism, i.e. invariance of the integral under deformations of the
Lagrangian submanifold. This is in principle possible provided we ac-
cordingly restrict the class of observables and of Lagrangian submani-
folds in a way that is compatible with the failure T of the QME. Apart
from some additional conditions, this setting is equivalent to working
in the symplectic reduction defined by the zero locus CT of T (see Re-
mark 2.1). In Section 3 we apply this formalism to the equivariantly

1In the literature, the notation ( , ) is also common.
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extended AKSZ solution. The formalism leads us to consider a com-
plex that is a quantum version of the Cartan model for the equivariant
cohomology of the g-differential algebra defined on the space of AKSZ
fields. In Section 4 we consider as an example SUSY Yang-Mills in two
dimensions. The equivariant extension was considered in [19]. Here
we prove that BV complex of fields contains the supersymmetric mul-
tiplet in the Ω-background considered in [19]. Moreover, we study the
equivariant observables by using a method that was introduced in [6].
In Section 5 we study the AKSZ version of the topological twist of
N = 2 supersymmetric 4d Yang-Mills theory considered in [23] and its
equivariant extension [17, 18].
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2. Relaxing the Quantum Master Equation

The fundamental fact of the BV formalism is that, given a family Lt
of Lagrangian submanifolds of the BV space and a half density ρ, one
has

d

dt

∫
Lt
ρ = 0,

if ∆ρ = 0 with ∆ being the canonical BV Laplacian on half densities2.
Typically we fix a reference ∆-closed half density ρ and on the algebra

A of functions we define ∆f := (∆(ρf))/ρ, for any f ∈ A, where in
the r.h.s. we use the canonical BV Laplacian on half densities. By

∫
L f

from now on we mean
∫
L fρ. The above statement now becomes

d

dt

∫
Lt
f = 0,

if ∆f = 0.
The main application of this is that the integral of a ∆-closed func-

tion is invariant under deformations of the Lagrangian submanifold

2The discussion in this section is properly rigorous in finitely many dimensions.
The canonical BV Laplacian on half densities was introduced by Khudaverdian in
[15] and cannot be extended to the infinite dimensional context. To apply this
discussion to field theory we have to assume a regularization as usual.
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on which we integrate. More generally, the integral of f is invariant
under deformations if we restrict ourselves to the class of Lagrangian
submanifolds on which ∆f vanishes. We will pursue this idea here.

In quantum field theory, one usually considers functions of the form

e
i
~S, where S is a function of even degree. From the properties of the

BV Laplacian on functions, it follows that ∆e
i
~S = 0 if and only if S

satisfies the quantum master equation

(2)
1

2
{S, S} − i~∆S = 0.

In this case, the “gauge fixed partition function”
∫
L e

i
~S is invariant

under deformations of L. One is also interested in inserting a sec-
ond function O, called a preobservable, in the integral. One then has

that also
∫
L e

i
~SO is invariant under deformations of L if, in addition,

∆SO = 0, where ∆S is the e
i
~S twisted coboundary operator defined as

∆SO := e−
i
~S∆(e

i
~SO) = ∆O +

i

~
QO

with Q := {S, }. One calls a ∆S-closed preobservable an observable.
More generally, without assuming the quantum master equation, we

define

(3) T :=

(
~
i

)2

e−
i
~S∆e

i
~S =

1

2
{S, S} − i~∆S

and note that now

(4) ∆S,TO := e−
i
~S∆(e

i
~SO) = ∆O +

i

~
QO +

(
i

~

)2

TO.

In particular, since T is proportional to ∆S,T1 we get ∆S,TT = 0, which,
using the fact that T is odd and hence satisfies T 2 = 0, gives

(5) ∆T +
i

~
QT = 0.

As remarked above,
∫
L e

i
~S is invariant under deformations of L if we

restrict ourselves to the class of Lagrangian submanifolds on which T
vanishes. We will call them T -Lagrangian submanifolds and from now
on we restrict our attention to this class of Lagrangian submanifolds.
We then observe the following:

(1)
∫
L e

i
~SO = 0 if O is proportional3 to T , and

(2)
∫
L e

i
~SO is invariant under deformations of L if ∆S,TO is pro-

portional to T .

3The proportionality is defined by some functional, not necessarily constant. As
indicated below, “proportional to T” means in the ideal IT generated by T .



EQUIVARIANT BATALIN-VILKOVISKY FORMALISM 5

This suggests working modulo the ideal IT generated by T . Note how-
ever that

(6) ∆S,T (TO) = −T∆S,TO − {T,O}.
This means that IT becomes a ∆S,T -differential ideal only after restrict-
ing to the subalgebra NT of functions that Poisson commute with T ,
possibly up to a term proportional to T :

(7) NT = {O ∈ A | {T,O} ∈ IT} .
Note that T is contained in NT , since by degree reasons {T, T} = 0.

Actually, NT is the Lie normalizer of IT (i.e., the largest Lie subalge-
bra of (A, { , }) that contains IT as a Lie ideal). As a consequence,
AT := NT/IT inherits the structure of a Poisson algebra, whose ele-
ments we call the quantum preobservables. Moreover, ∆S,T descends to
a coboundary operator on AT by

∆S,T [O] := [∆S,TO] =

[
∆O +

i

~
QO

]
.

We call a ∆S,T -closed quantum preobservable a quantum observable.
Note in particular that the unit 1 belongs toNT and that its equivalence
class [1] is a unit in AT and an observable.

We may finally summarize the above discussion by observing that

(1) for every observable [O] we may define
∫
L e

i
~S[O] as

∫
L e

i
~SO

where O is any representative in [O], and

(2)
∫
L e

i
~S[O] is invariant under deformations of T -Lagrangian L if

[O] is a quantum observable.

Remark 2.1. The Poisson algebra AT may also be interpreted as the
algebra of {T, }-invariant elements in A/IT , which in turn may be
interpreted as the algebra of functions on the zero locus CT of T . Thus,
we may interpret AT as the algebra of functions on the symplectic
reduction CT of CT . Moreover, the condition that T vanishes on a
Lagrangian submanifold L geometrically means that L is contained in
CT . We may then be tempted to interpret the whole theory as the

usual BV formalism but on CT . This is correct if e
i
~S is in NT . Notice

however that a gauge fixing Lagrangian submanifold contained in CT
necessarily contains the characteristic foliation generated by {T,−} so
that this cannot be a full gauge fixing. For this reason we have to
assume that the leaves are compact. �

Remark 2.2. By (5) the condition that e
i
~S is in NT occurs if and only

if ∆T is in the ideal generated by T . One simple, but rather common,
case when this happens is when S is a solution of the classical master



6 F. BONECHI, A. S. CATTANEO, J. QIU, AND M. ZABZINE

equation {S, S} = 0, which implies T = −i~∆S and hence ∆T = 0.
This may give the impression that we have an amenable way of treating
anomalous theories, i.e., theories in which the action S is a solution to
the classical master equation that cannot be deformed to a solution
of the quantum one. The problem, apart from having to consider an
algebra of preobservables different from A, is that it might be difficult
to find a natural gauge fixing Lagrangian L in CT .

In the rest of the paper we will specialize to the case of an AKSZ
theory where we deform the de Rham differential in the source manifold
to the equivariant differential w.r.t. the infinitesimal action of some Lie
algebra. In this case, several pleasant facts occur. First, ∆T = 0.
Second, there are natural choices of L in CT . Finally, we will see that
AT contains an interesting subalgebra, related to the Cartan model, in
which T generates again a Lie differential ideal.

3. Equivariant AKSZ

We now discuss the equivariant extension of the AKSZ construction.
We follow the standard notations and ideas, e.g. see [8, 22] for the
review of some basic concepts and notations. Let Σ be a d-dimensional
manifold with a Lie algebra g acting on it via the vector fields vX for
any X ∈ g. Let M be a graded manifold with a symplectic form of
degree d − 1 and a homological Hamiltonian Θ ∈ Cd(M); we denote
with DΘ its Hamiltonian vector field. Let FΣ = Map(T [1]Σ,M) be
the AKSZ space of fields. The BV vector field is given by

QBV = d̂Σ + D̂Θ = {SBV ,−},

where SBV = S0 +SΘ and S0 and SΘ are the Hamiltonians of d̂Σ (which

is associated with de Rham differential dΣ on Σ.) and D̂Θ, respectively.
Here we denote with v̂ the vector field of FΣ obtained from a vector
field v either of the source T [1]Σ or of the target M by composing
it with maps. Since D2

Θ = 0, Q2
BV = 0 and SBV solves the classical

master equation {SBV , SBV } = 0.
The space of functionals A = C(FΣ) is a g-dg algebra with dif-

ferential QBV = d̂Σ + Q̂, contraction ι̂vX and Lie derivative L̂vX for
any X ∈ g. They are all Hamiltonian vector fields with Hamiltonians
SBV , Sι̂vX and SL̂vX

respectively (see Appendix A for notations). We

recall that A[u] = C(FΣ)⊗ Sg∗. We denote with 〈ea〉 a basis of g.
Let us define the equivariant extension of the BV action in the Cartan

model as

(8) ScBV = SBV − uaSι̂va ,
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so that

(9) Qc
BV = {ScBV ,−} = d̂Σ + D̂Θ − uaι̂va

is the differential of the Cartan model of equivariant cohomology. If
for X ∈ g we denote LX = −Xaf cabu

b ∂
∂uc

and LX = LX + L̂vX , then we
have that

LXScBV = 0 ,

i.e. ScBV ∈ A[u]g; moreover ScBV satisfies the modified Classical Master
Equation

(10)
1

2
{ScBV , ScBV }+ uaSL̂va

= 0 .

As in (3), we define

(11) T :=
1

2
{ScBV , ScBV } − i~∆ScBV = −uaSL̂va

− i~∆ScBV ,

so that

(12) T = −ua(SL̂va
+ i~∆Sι̂va )− i~∆SBV .

Since S0 and Sι̂va are quadratic in the fields, then ∆ applied to them
will produce constant functionals so that

(13) {∆S0,−} = {∆Sι̂vX ,−} = 0 , X ∈ g .

These functionals should be thought of as regularized traces of the
corresponding operators d̂Σ and ι̂vX ; since these operators are odd a
reasonable definition of the trace should be 0, but it is enough to assume
from now on that our regularization of ∆ satisfies (13) (see the footnote
in section 2).

Equations (13) have the following interesting consequences. The first
one is that, consistent with the rules of the BV algebra, ∆SL̂vX

= 0 for

all X ∈ g; in fact

∆SL̂vX
= ∆{S0, Sι̂vX } = {∆S0, Sι̂vX } ± {S0,∆Sι̂vX } = 0 .

This in particular implies that ∆T = 0,

(14) [∆, L̂vX ] = 0

and by equation (5) also that

(15) Qc
BV T = 0,

so that ScBV ∈ NT . We are then in the situation discussed at the end
of Remark 2.1. Applying ∆ to {SL̂va

, Sι̂vb} we get the relations

(16) f cab∆Sι̂vc = 0 .
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The last consequence of (13) is that

{T,O} = {T ′,O} ,
where

T ′ = −uaSL̂va
− i~∆SΘ .

Following the general discussion of the previous section, we can now
write

NT = {O ∈ A[u], {T ′,O} ∈ IT}
where IT is the ideal generated by T in A[u].

We can now define an interesting subalgebra of NT . A stronger
condition than {T ′,O} ∈ IT is given by the conditions

(17) LaO = 0 = {∆SΘ,O} ∀a .

In fact the conditions LaO = 0 for all a imply ua{SL̂va
,O} = uaL̂vaO =

0 (note that uaLa = 0). We then define

(18) N ′T = {O ∈ A[u], LXO = 0 = {∆SΘ,O} ∀X ∈ g} ⊂ NT .
Recall that ∆S,T is the twisted BV laplacian defined in (4).

Proposition 3.1. Under the hypothesis (13), N ′T is a Poisson subal-
gebra that is invariant under both Qc

BV and ∆S,T . Moreover, T ∈ N ′T .

Proof. A direct computation shows that [LX , Qc
BV ] = 0, for all X ∈

g. Moreover, we have that

{∆SΘ, S
c
BV } = {∆ScBV , ScBV } = { i

~
(T + uaSL̂va

), ScBV }

=
i

~
(Qc

BV (T ) + uaLaScBV ) =
i

~
Qc
BV (T ) = 0 ,

where we used (13) in the first equality, (11) in the second one and (15)
in the last one. We then proved invariance under Qc

BV .
Invariance under ∆S,T follows from iv) of the two following Lemmas;

the last statement follows from iii) of those Lemmas. �

Lemma 3.2. The following relations are valid for all X ∈ g:

i) [LX ,∆] = 0;
ii) [LX , Qc

BV ] = 0;
iii) LX(T ) = 0;
iv) [LX ,∆S,T ] = 0.

Proof. Property i) follows from (14) and the fact that ∆ clearly
commutes with La. To prove property ii), we first observe that La
clearly commutes with Q̂ and d̂Σ; moreover

[La, ubι̂vb ] = [L̂va , u
bι̂vb ] + [La, u

bι̂vb ] = ub[L̂va , ι̂vb ] + [La, u
b]ι̂vb = 0 .
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To prove property iii), we write T = T0 + C − i~∆SBV , where

T0 = −uaSL̂va

and C is the constant functional +i~ua∆Sι̂va . We prove first that
La(T ) = 0. Indeed,

L̂va(T0) = −ubL̂va(SL̂vb
) = −ubf cabSL̂vc

= −La(T0)

so that La(T0) = 0. Moreover, L̂va(C) = 0 since C is constant and

equation (16) implies LaC = 0. Finally L̂va∆SBV = ∆L̂vaSBV = 0
from (14) and obviously La∆SBV = 0.

Property iv) is an immediate consequence of the previous ones. �

Lemma 3.3. Let V∆SΘ
be the Hamiltonian vector field of ∆SΘ. We

have that

i) [V∆SΘ
,∆] = 0;

ii) [V∆SΘ
, Qc

BV ] = 0;
iii) V∆SΘ

(T ) = 0;
iv) [V∆SΘ

,∆S,T ] = 0.

Proof. Property i) follows since, being ∆ a derivation of the odd
bracket, [∆, V∆SΘ

] = V∆2SΘ
= 0. In order to prove ii), let us write

{∆SΘ, S
c
BV } = {∆ScBV , ScBV } =

1

2
∆{ScBV , ScBV } = −ua∆SL̂va

= 0 ,

where the second equality holds because ∆ is a derivation of the odd
bracket, the third follows from the modified classical master equation
(10) and the fourth one from (14).

Let us prove iii). From the obvious equation {T, T} = 0 we finally
get

0 = {uaSL̂va
+ i~∆SΘ, T} = uaLa(T ) + i~{∆SΘ, T} = i~{∆SΘ, T} ,

where we used iii) of Lemma 3.2. Property iv) is a consequence of
i− iii). �

Remark that Qc
BV squares to zero when restricted to N ′T ; we call

(N ′T , Qc
BV ) the algebra of classical equivariant BV preobservables. A

classical equivariant BV observable is a classical equivariant BV ob-
servable that is closed under Qc

BV .

Lemma 3.4. The ideal I ′T in N ′T generated by T is a ∆S,T -invariant
Poisson ideal.

Proof. Let OT ∈ I ′T and U ∈ N ′T . We then compute

{U,OT} = {U,O}T ±O{U, T} = {U,O}T ,



10 F. BONECHI, A. S. CATTANEO, J. QIU, AND M. ZABZINE

where {U, T} = {U, T ′} = 0 since U ∈ N ′T . Moreover, {U,O} ∈ N ′T
since U,O ∈ N ′T and Proposition 3.1, so that {U,OT} ∈ I ′T . We then
see that

∆S,T (OT ) = (∆S,TO)T ± {O, T} = (∆S,TO)T ,

as a consequence of (6). Finally, as a consequence of points iv) of
Lemmata 3.2 and 3.3 we check that ∆S,TO ∈ N ′T so that I ′T is ∆S,T -
invariant. �

We define the algebra of quantum equivariant preobservables as A′T =
N ′T/I ′T with its induced differential:

(19) ∆S,T [O] := [∆S,TO] =

[(
∆ +

i

~
Qc
BV

)
O
]
.

A quantum equivariant observable is an equivariant preobservable which
is ∆S,T closed, for instance the equivalence class of the constant func-
tional.

It is customary to regularize ∆Sι̂va and ∆S0 as zero, see the comment
after (13). Moreover, one may also often assume ∆SΘ = 0 (for instance
this is the case for the Poisson Sigma Model with unimodular Poisson
structure, see [7]). In this case, we have

T = T ′ = T0 = −uaSL̂va

and
N ′T = {O ∈ A[u],LXO = 0 ∀X ∈ g} = A[u]g .

Remark that the complex (A[u]g, Qc
BV ) is the Cartan model for the

equivariant cohomology of the g-differential algebra A = C(FΣ).
Finally, let us discuss gauge fixing when the target manifoldM is a

graded vector space V , so that the space of BV fields is FΣ = ΩΣ ⊗
V . Let us introduce an invariant metric on Σ and let us define L =
Ωco(Σ)⊗ V , where Ωco(Σ) stands for coexact forms. In general, due to
harmonic forms of Σ, L is only isotropic, but let us ignore this issue
at the present level of discussion. Since the invariance of the metric
implies that [LvX , d

†] = 0, we have that SL̂vX
|L = 0. The characteristic

foliation defined by {T,−} coincides with the infinitesimal g-action so
that we have to require that G is compact (see the discussion in Remark
2.1).

Remark 3.5. Some instances of the construction of this paper for an
equivariant extension of a BV action with a term that breaks the master
equation have appeared before. For example, in [9] an S1-equivariant
version of the Poisson sigma model on a disk is studied; the equivariant
extension of the BV action is hinted at in Example 2 and an invariant
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gauge fixing is behind the choice of propagator of Section 5.3; the whole
Feymnan diagram expansion, which is at the core of that paper, is the
one corresponding to the equivariant BV theory. Another example is
Geztler’s paper [13] where the special case of classical BV-equivariance
under source diffeomoprhisms for one-dimensional systems is consid-
ered (as this paper only focuses on classical aspects, no discussion of
allowed gauge fixings appears there). The present paper includes these
two examples, and introduces more (see Sections 4 and 5), in a general
conceptual framework. To the best of our knowledge the first discussion
about the relation between BV formalism and equivariant localization
can be found in [20]. For a recent general overview of the dependency
of a BV theory on the gauge-fixing Lagrangian see [16].

4. Equivariant two dimensional SYM

We discuss here the equivariant extension of two dimensional super-
symmetric Yang-Mills theory; we use version of the AKSZ approach
developed in [6].

Let Σ2 be a two dimensional closed manifold4 and g a Lie algebra
acting on it. Let us consider the AKSZ theory with target T ∗[1](k[1]×
k[2]), where k is a Lie algebra (not to be confused with g). The index
α appearing in the following formulas runs over a basis of k and a over
a basis of g. If c, φ are the Lie algebra coordinates of k of degree 1, 2
respectively and ξ, ξ̃ the momenta of degree 0,−1 respectively, then
the homological Hamiltonian on T ∗[1](k[1]× k[2]) reads

(20) Θ =
1

2
ξα[c, c]α+ξ̃α[c, φ]α + ξαφ

α ,

so that D(·) = {Θ, ·} reads:

(21)

Dc = φ+
1

2
[c, c] ,

Dφ = [c, φ] ,

Dξ = [c, ξ]− [φ, ξ̃] ,

Dξ̃ = ξ + [c, ξ̃] .

4We may relax this condition if we can guarantee that Stokes theorem works
by imposing the appropriate boundary conditions or appropriate decay at infinity.
This comment is applicable to AKSZ construction in general.
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The superfields are defined as different degree components of a map
T [1]Σ2 → T ∗[1](k[1]× k[2])

(22)
c = c+ A+ ξ∨ , Ξ = ξ + A∨ + c∨ ,

Φ = φ+ ψ + ξ̃∨ , Ξ̃ = ξ̃ + ψ∨ + φ∨ ,

where we use the same letters for the lowest component of superfields
as the coordinates on T ∗[1](k[1] × k[2]). The equivariant AKSZ action
in the Cartan model is
(23)

ScBV =

∫
T [1]Σ2

ΞαΦ
α +

1

2
Ξα[c, c]α +

1

2
Ξ̃α[Φ, c]α + ΞαdGcα + Ξ̃αdGΦα

where dG = dΣ − uaιva is the equivariant differential. We compute the
equivariant extension of the BV differential in the Cartan model as

(24)

Qc
BV (A) = ψ′ + dAc

Qc
BV (ψ′) = +dAφ+ [c, ψ′] + uaιvaF (A)

Qc
BV (φ) = [c, φ]− uaιvaψ′

Qc
BV (c) = φ+

1

2
[c, c]− uaιvaA ,

Qc
BV (H) = [c,H]− [φ, ξ̃] + uaιvadAξ̃ ,

Qc
BV (ξ̃) = H + [c, ξ̃] ,

where ψ′ = ψ − uaιvaξ
∨, H = ξ − uaιvaψ

∨ and dA = dΣ + [A,−].
As explained in Section 5.2 of [6] for the non equivariant case, after
the gauge fixing of the AKSZ model all fields can be identified with
the components of the full N = 2 vector supersymmetric multiplet5.
Here after the gauge fixing procedure we identify all fields and the
supercharge of the topologically twisted N = 2 supersymmetric gauge
theory in the so called Ω-background.

Let us fix an arbitrary invariant metric on Σ2 and assume the stan-
dard Hodge decomposition of differential forms on Σ2 as a sum of
harmonic, exact and co-exact parts6 We consider the standard gauge
fixing Lagrangian defined by selecting the subspace of coexact forms
(zero modes given by cohomology can be ignored for what concerns
the present discussion). The two-form fields are then put to zero, i.e.

5For mathematically friendly review of supersymmetric one can consult [11].
6More precisely, a metric and an orientation define the Hodge ? operator, which

in turn allows defining the co-differential d† := − ? d? in even dimensions. A form
in the image of d† is called co-exact. Harmonic forms may be identified with forms
lying in the intersection of the kernels of d and d†.
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ξ∨ = ξ̃∨ = c∨ = φ∨ = 0; in order to fix the one-form fields A and ψ we
add two sets of equivariant trivial pairs {c̄, b} and {λ, ρ}, respectively.

Namely the first one is given by λ, ρ ∈ Ω0(Σ2; k) of ghost number
−2 and −1 respectively with momenta λ∨, ρ∨ ∈ Ω2(Σ2; k∗) of ghost
degree 1 and 0 . The second one is given by c̄, b ∈ Ω0(Σ2, k) of degree
−1, 0 respectively, with momenta c̄∨, b∨ ∈ Ω2(Σ2, k

∗) of degree 0,−1.
The gauge fixing fermion is defined as

Ψ =

∫
T [1]Σ2

λ dΣ ? ψ + c̄ dΣ ? A ,

where ? is Hodge star and A is a one form, since we expand around
the zero connection. In general we have to fix a background connection
and analyse the expansion around this connection. But in this paper
we consider only trivial background.

The Lie algebra g acts in the direction of the trivial pair with Hamil-
tonians

Strι̂va =

∫
T [1]Σ2

ρ∨αLvaλ
α + b∨αLva c̄

α ,

Str
L̂va

=

∫
T [1]Σ2

λ∨αLvaλ
α + ρ∨αLvaρ

α + c̄∨αLva c̄
α + b∨αLvab

α .

The BV action (23) will be shifted by a term

ScBV =

∫
T [1]Σ2

λ∨αρ
α + c̄∨αb

α − ua
∫
T [1]Σ2

ρ∨αLvaλ
α + b∨αLva c̄

α

and the full BV action will be

Sfull
BV = SBV + ScBV

Next we have to guarantee that our gauge fixing corresponds to T -
Lagrangian. For this we need to check that

{SBV , SBV } = 0

on our Lagrangian. Some terms vanish identically and for some terms
we need to use integration by parts with Lva (this is true only when we
use invariant metric).

The BV transformations of the trivial pair (λ, ρ) then read

Qc
BV (λ) = ζ + [c, λ] ,(25)

Qc
BV (ζ) = −[φ, λ] + [c, ζ] + uaιvadAλ ,

where ζ = ρ− [c, λ]. By a direct comparison, one can check that Qc
BV

restricted to the multiplet {A, φ, ψ′, H, ξ̃, λ, ζ} acts as

Qc
BV = δBRST + δsusy ,
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where δsusy is the supercharge in [19] and δBRST the usual BRST oper-
ator.

Remark 4.1. In [6] the susy multiplet was recovered with a slightly
different procedure. Indeed, the trivial pair (λ, ρ) appeared with an
ad hoc procedure, without performing the actual gauge fixing. In this
way we missed the fact the they appear in the standard gauge fixing
procedure as the antighost and Lagrange multiplier needed for imposing
the gauge fixing condition d ? ψ = 0.

Let us now discuss the classical equivariant BV observables. Follow-
ing [6] we look for a map ev : FΣ2 ⊗ T [1]Σ2 → T [1]k[1] such that for
each ω ∈ C(T [1]k[1])

(26) (Qc
BV − dΣ + uaιva)ev∗ω = ev∗Dω.

A straightforwad computation shows that

(27) ev∗(c) = c+ A , ev∗(φ) = φ+ ψ′ − F (A)

satisfies (26). From (27) we see that

(L̂va + La − Lva)ev∗ω = 0 .

Let now Dω = 0 and let γ[u] ∈ (C ⊗Sg∗)g be an equivariant cycle as
discussed at the end of Appendix A; we define Oγω ≡

∫
γ[u]

ev∗ω. From

(26) we see that

Qc
BVOγω =

∫
γ[u]

(dΣ − uaιva)ev∗ω =

∫
∂Gγ[u]

ev∗ω = 0 .

Moreover, from (27) it follows that

LaOγω = (L̂va + La)Oγω = −
∫
γ[u]

Lvaev∗ω =

∫
Lvaγ[u]

ev∗ω = 0,

so that Oγ
ω ∈ A[u]g is an equivariant classical BV observable.

5. Equivariant Donaldson-Witten theory

We analyze here the AKSZ approach to Donaldson-Witten theory
[23]. We start with a discussion of the non equivariant case. Our
derivation will differ from [14] in the gauge fixing procedure.
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5.1. DW from AKSZ. Let k be a Lie algebra. In the previous section
we could use the Weil model W (k) as the target of a 2d AKSZ model
only after embedding it in the bigger dGA (21) that has a natural
symplectic form of degree 1. If k admits an invariant non degenerate
symmetric pairing 〈 , 〉, then W (k) admits a natural symplectic form
of degree 3 and can be used as a target of a 4d AKSZ theory.

Indeed the graded vector space

k[1]⊕ k[2](28)

is equipped with the symplectic structure of degree 3

ω = 〈δc, δφ〉 ,(29)

where c is the coordinate of degree 1 and φ is the coordinate of degree
2. The Hamiltonian function of degree 4

Θ =
1

2
〈φ, φ〉+

1

2
〈φ, [c, c]〉 ,(30)

has the Weil differential as Hamiltonian vector field

(31)
dW c = φ+

1

2
[c, c] ,

dWφ = [c, φ] .

Let us consider now the 4D AKSZ model with this target and source
the four dimensional manifold Σ4. The superfields are defined as map
T [1]Σ4 → k[1]⊕ k[2]

(32)
c = c+ A+ χ+ ψ∨ + φ∨ ,

Φ = φ+ ψ + χ∨ + A∨ + c∨ ,

where we use the same letter for lowest component as for the coordi-
nates on k[1]⊕ k[2]. The BV symplectic form is

ωBV =

∫
T [1]Σ4

d4xd4θ 〈δc, δΦ〉(33)

and the AKSZ action is

SBV =

∫
T [1]Σ4

(
〈Φ, dΣc〉+

1

2
〈Φ,Φ〉+

1

2
〈Φ, [c, c]〉

)
.(34)

In terms of the components, the BV symplectic structure can be written
as follows

ωBV =

∫
Σ4

(δc ∧ δc∨ + δA ∧ δA∨ + δχ ∧ δχ∨ + δψ∨ ∧ δψ + δφ∨ ∧ δφ) .
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The BV action in components reads

SBV =

∫
Σ4

(
〈ψ, dAχ〉+

1

2
〈φ, [χ, χ]〉+ 〈ψ∨, (dAφ+ [c, ψ])〉+

〈χ∨, (F + [c, χ])〉+ +〈A∨, (ψ + dAc)〉+ 〈φ∨, [c, φ]〉

+〈c∨, (φ+
1

2
[c, c])〉+

1

2
〈χ∨, χ∨〉

)
(35)

Remark 5.1. The linear terms in anti-fields give us familiar BRST-
transformations of the fields. The quadratic term in anti-fields is telling
us that they close only on-shell. It can be fixed by introducing the cou-
ple of two forms (H,H∨), even and odd correspondently with degH = 0
and degH∨ = −1. The last quadratic term in the action can be re-
placed as follows

1

2
〈χ∨, χ∨〉 → −〈χ∨, H〉 − 1

2
〈H,H〉 .(36)

In this way we get an action linear in anti-fields and this is just canon-
ical embedding of DW BRST-transformations into BV.

The BV transformations on the superfields are

(37)
QBV c = dΣc + Φ +

1

2
[c, c] ,

QBV Φ = dΣΦ + [c,Φ] ,

and on the components become

(38)

QBV c = φ+
1

2
[c, c] ,

QBVA = ψ + dAc ,

QBV χ = χ∨ + F (A) + [c, χ] ,

QBV ψ
∨ = dAχ+ A∨ + [c, ψ∨] ,

QBV φ
∨ = dAψ

∨ + c∨ + [c, φ∨] ,

QBV φ = [c, φ] ,

QBV ψ = dAφ+ [c, ψ] ,

QBV χ
∨ = dAψ + [c, χ∨] + [χ, φ] ,

QBVA
∨ = dAχ

∨ + [c, A∨] + [ψ∨, φ] + [χ, ψ] ,

QBV c
∨ = dAA

∨ + [c, c∨] + [φ∨, φ] + [ψ∨, ψ] + [χ, χ∨] ,

where dA = dΣ + [A, ] and F (A) = dΣA+ 1
2
[A,A].
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Let us now discuss the gauge fixing. Let us introduce a metric on
Σ4; we split the two-forms into self-dual and anti-self-dual components

χ = χ+ + χ− ,

χ∨ = χ+∨ + χ−∨ .(39)

As gauge fixing we impose χ− = 0 and χ∨+ = 0 and we require that the
other forms are co-exact (as before we use the Hodge decomposition
to define our Lagrangian). Co-exactness in sectors (c, c∨) and (φ, φ∨)
implies that c∨ = 0 and φ∨ = 0. To impose the co-exactness in sectors
(A,A∨) and (ψ, ψ∨) we use the standard procedure of introducing extra
trivial sectors. To impose the co-exactness on (A,A∨) we introduce
zero forms (c̄, b) with deg c̄ = −1, deg b = 0 and their antifields (c̄∨, b∨)
which are top forms with deg c̄∨ = 0 and deg b∨ = −1. To the BV
action (34) we can add the following terms of degree zero

Str,1 =

∫ (
〈c̄∨, (b+ [c, c̄])〉+ 〈b∨, ([c, b]− [φ, c̄])〉

)
.(40)

With this choice, b and c̄ transform correctly under the gauge trans-
formations. It is easy to check that the standard BV trival pair is
recovered by a simple field redefinition. Now we have to repeat the
same trick for (ψ, ψ∨) sector. Let us introduce zero forms (ϕ, η) with
degrees degϕ = −2, deg η = −1 and their top forms anti-fields (ϕ∨, η∨)
with degϕ∨ = 1, deg η∨ = 0. To the BV action we add the following
term of degree zero

Str,2 =

∫ (
〈ϕ∨, (η + [c, ϕ])〉+ 〈η∨, ([c, η] + [ϕ, φ])〉

)
(41)

Finally

S ′BV = SBV + Str,1 + Str,2

satisfies the master equation. The gauge fixing fermions will be

Ψ =

∫
〈c̄, d ? A〉+

∫
〈ϕ, d ? ψ〉 ,(42)

where A is assumed to be a one-form and we expand around zero
connection.
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After the gauge fixing we get the following residual gauge transfor-
mations

δc = φ+
1

2
[c, c] ,(43)

δA = ψ + dAc ,

δχ+ = F+ + [c, χ+] ,

δφ = [c, φ] ,

δψ = dAφ+ [c, ψ] ,

δχ−∨ = dAψ + [c, χ−∨] ,

δc̄ = b+ [c, c̄] ,

δb = [c, b]− [φ, c̄] ,

δϕ = η + [c, ϕ] ,

δη = [c, η] + [ϕ, φ] .

Here the bosonic field χ−∨ is auxilary field of degree 0 and it can be
integrated out. The above transformations square to zero except for
χ+

δ2χ+ = (dAψ)+ + [φ, χ+] ,(44)

which is equation of motion. Actually this is easily seen from the full
BV action (35) which has linear and quadratic terms in anti-fields.
It is clear that the multiplet (A, φ, ψ, χ+, ϕ, η) reproduces the vector
multiplet appearing in [23]

5.2. Equivariant DW theory. Let us now consider that the Lie al-
gebra g acts on Σ4 with vector fields vX , X ∈ g. The equivariant
extension is obtained by replacing dΣ by dG = dΣ− uaιva in the AKSZ
action.

ScBV =

∫
T [1]Σ4

(
〈Φ, dGc〉+

1

2
〈Φ,Φ〉+

1

2
〈Φ, [c, c]〉

)
.

= SBV − ua
∫ (

ψιvaφ
∨ + χ∨ιvaψ

∨ + A∨ιvaχ+ c∨ιvaA
)
.(45)

The BV transformations are

Qc
BV c = dGc + Φ +

1

2
[c, c] ,(46)

Qc
BV Φ = dGΦ + [c,Φ] .(47)
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which in components are written as (we list only relevant fields)

Qc
BV c = φ+

1

2
[c, c]− uaιvaA ,(48)

Qc
BVA = ψ + dAc− uaιvaχ ,

Qc
BV χ = χ∨ + F + [c, χ]− uaιvaψ∨ ,

Qc
BV φ = [c, φ]− uaιvaψ ,

Qc
BV ψ = dAφ+ [c, ψ]− uaιvaχ∨ ,

We should stress that in writing A we are expanding round the triv-
ial connection. Round an instanton background the formula will be
modified.

The procedure of gauge fixing can be done in the same way of the
non equivariant case, provided we choose an invariant metric on Σ4.
The solution of the equivariant master equation is now

Sc
′

BV = ScBV +

∫ (
〈c̄∨, (b+ [c, c̄])〉+ 〈b∨, (Lv c̄+ [c, b]− [φ, c̄])〉

)
+

∫ (
〈ϕ∨, (η + [c, ϕ])〉+ 〈η∨, (Lvϕ+ [c, η] + [ϕ, φ])〉

)
.(49)

As before the we impose χ− = 0 and χ∨+ = 0 and for the other fields
we choose the fermonic gauge fixing (42). As before we have to check
that we deal with T -Lagrangian gauge fixing and this is guaranteed by
choosing the invariant metric for the gauge fixing.

To match with the standard gauge theory we need to do some field
redefinitions, e.g. ψ̃ = ιvχ + ψ etc. One can immediately recognize
the transformations for the equivariant Donaldson-Witten theory (also
known as topologically twisted N = 2 supersymmetric gauge theory in
Ω-background) [17, 18]. To state the relation between our formalism
and the Ω-background or equivariant Donaldson-Witten theory, one
can take va to be the two rotations of C2 and evaluate ua at εa. Assum-
ing that evaluating ua at εa commutes with the path integral (provided
εa are not in the support of the equivariant cohomology class produced
by the path integral), we will recover the Ω-background calculation.
Our assumption about the commutativity is only demonstrated for fi-
nite dimension compact manifolds, see section 5 of [2]. It is beyond the
scope of this paper to address this issue for infinite dimension. We will
also leave for a future paper the question of utilising our equivariant
BV framework to treat ghost zero modes and problems the like.

Let us point out that the present 4D equivarint AKSZ construc-
tion can be generalized in different directions. For example we can
adopt alternative decomposition (39) of the two-forms into self-dual
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and anti-self dual parts following ideas presented in [12]. This will
lead to alternative gauge fixing and the resulting theory corresponds
to cohomological theory which appeared in the Pestun’s localization
calculation [21] (see [12] for the corresponding cohomological descrip-
tion).

Appendix A. Equivariant cohomology and homology

Let g be a Lie algebra. A g-differential algebra A is a differential
graded algebra (A, d) with LX ∈ Der0A and ιX ∈ Der−1A, depending
linearly on X ∈ g and satisfying the rules of Cartan’s calculus:

[LX , d] = 0 , [LX , LY ] = L[X,Y ] , [ιX , d] = LX , [ιX , ιY ] = 0 , [ιX , LY ] = ι[X,Y ]

The basic subalgebra is defined as Abas = {a ∈ A, LXa = ιXa =
0, ∀ X ∈ g}.

Let {ta} be a basis of g. We denote with W (g) = (Λg∗ ⊗ Sg∗, dW )
the Weil g-differential algebra defined as

dW θ
a = ua +

1

2
[θ, θ]a(50)

dWu
a = [θ, u]a(51)

where deg θ = 1 and deg u = 2 and ιa = ∂
∂θa

and La = {ιa, dW}.
The complex (W (g), dW ) is acyclic; the basic subcomplex is given by
C[u]g = S(g∗)g the invariant polynomials in u with the restriction of
dW to the basic subcomplex.

We can define on A⊗W (g) the obvious tensor product structure of
g-differential algebra. We denote with HG(A) the cohomology of the
basic subcomplex AG = (A⊗W (g))basic, that is called the Weil model
for HG(A).

We can also consider the graded algebra A[u] = A⊗S(g∗) equipped
with dG = d−uaιva and the diagonal g-action. Since d2

G = uaLva , then
(A[u]g, dG) where A[u]g = {A ∈ A[u] | LXA = 0, ∀X ∈ g}, is a dg
algebra. We call it the Cartan model for HG(A). In order to prove that
its cohomology is isomorphic to HG(A) it is enough to check that

(52) I = exp [−(ιva ⊗ θa)] : A⊗W (g)→ A⊗W (g)

restricts to an isomorphism of dg-algebras I : AG → (A[u])g.
Let g act on the smooth manifold Σ; the dg algebra of forms (Ω(Σ), dΣ)

is a g-differential algebra with LvX , ιvX being the Lie derivative and
contraction by the fundamental vector field vX of X ∈ g. We denote
with HG(Σ) the G-equivariant cohomology. In particular we have that
HG(∗) = S(g∗)g.
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Let (C•(Σ), ∂) denote the complex of de Rham currents where Ck(Σ) =
(Ωn−k(Σ))∗ and the differential is defined by duality. By duality (C•(Σ), ∂)
inherits the structure of g-differential algebra. We can then define the
Cartan model (C(Σ) ⊗ Sg∗)g and the Weil model (C(Σ) ⊗W (g))basic;
we call their cohomology the equivariant homology of Σ.
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