
GRADED POISSON ALGEBRAS
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Abstract. This note is an expanded and updated version of our entry with

the same title for the 2006 Encyclopedia of Mathematical Physics. We give a

brief overview of graded Poisson algebras, their main properties and their main
applications, in the contexts of super differentiable and of derived algebraic

geometry.
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1. Definitions

1.1. Graded vector spaces. By a Z-graded vector space (or simply, graded vector
space) we mean a direct sum A = ⊕i∈ZAi of vector spaces over a field k of character-
istic zero. The Ai are called the components of A of degree i and the degree of a ho-
mogeneous element a ∈ A is denoted by |a|. We also denote by A[n] the graded vec-
tor space with degree shifted by n, namely, A[n] = ⊕i∈Z(A[n])i with (A[n])i = Ai+n.
The tensor product of two graded vector spaces A and B is again a graded vector
space whose degree r component is given by (A⊗B)r = ⊕p+q=rAp ⊗Bq.

The symmetric and exterior algebra of a graded vector space A are defined
respectively as S(A) = T (A)/IS and

∧
(A) = T (A)/I∧, where T (A) = ⊕n≥0A

⊗n

is the tensor algebra of A and IS (resp. I∧) is the two-sided ideal generated by
elements of the form a ⊗ b − (−1)|a| |b|b ⊗ a (resp. a ⊗ b + (−1)|a| |b|b ⊗ a), with
a and b homogeneous elements of A. The images of A⊗n in S(A) and

∧
(A) are

denoted by Sn(A) and
∧n

(A) respectively. Notice that there is a canonical decalage
isomorphism Sn(A[1]) '

∧n
(A)[n].

1.2. Graded algebras and graded Lie algebras. We say that A is a graded
algebra (of degree zero) if A is a graded vector space endowed with a degree zero
bilinear associative product · : A⊗A→ A. A graded algebra is graded commutative
if the product satisfies the condition

a · b = (−1)|a| |b|b · a

for any two homogeneous elements a, b ∈ A of degree |a| and |b| respectively.
A graded Lie algebra of degree n is a graded vector space A endowed with

a graded Lie bracket on A[n]. Such a bracket can be seen as a degree −n Lie
bracket on A, i.e., as bilinear operation {·, ·} : A ⊗ A → A[−n] satisfying graded
antisymmetry and graded Jacobi relations:

{a, b} = −(−1)(|a|+n)(|b|+n){b, a}

{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+n)(|b|+n){b, {a, c}}

1.3. Graded Poisson algebra. We can now define the main object of interest of
this note:

Definition 1.1. A graded Poisson algebra of degree n, or n-Poisson algebra, is a
triple (A, ·, {, }) consisting of a graded vector space A = ⊕i∈ZAi endowed with a
degree zero graded commutative product and with a degree −n Lie bracket. The
bracket is required to be a biderivation of the product, namely:

{a, b · c} = {a, b} · c+ (−1)|b|(|a|+n)b · {a, c}.

Notation. Graded Poisson algebras of degree zero are called Poisson algebras, while
for n = 1 one speaks of Gerstenhaber algebras [7] or of Schouten algebras.

Sometimes a Z2-grading is used instead of a Z-grading. In this case, one just
speaks of even and odd Poisson algebras.

Example 1.1. Any associative algebra can be seen as a Poisson algebra with the
trivial Lie structure, and any graded Lie algebra can be seen as a Poisson algebra
with the trivial product.
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Example 1.2. The most classical example of a Poisson algebra is the algebra of
smooth functions on R2n endowed with usual multiplication and with the Poisson
bracket (already considered by Poisson himself) {f, g} = ∂qif∂pig−∂qig∂pif , where

the pi’s and the qi’s, for i = 1, . . . , n, are coordinates on R2n. The bivector field ∂qi∧
∂pi is induced by the symplectic form ω = dpi∧dqi. An immediate generalization of
this example is the algebra of smooth functions on a symplectic manifold (R2n, ω)
with the Poisson bracket {f, g} = ωij∂if∂jg, where ωij∂i ∧ ∂j is the bivector field
defined by the inverse of the symplectic form ω = ωijdx

i ∧ dxj ; viz.: ωijω
jk = δki .

A further generalization is when the bracket on C∞(Rm) is defined by {f, g} =
αij∂if∂jg, with the matrix function α not necessarily nondegenerate. The bracket
is Poisson if and only if α is skewsymmetric and satisfies

αij∂iα
kl + αil∂iα

jk + αik∂iα
lj = 0.

An example of this, already considered by Lie in [20], is αij(x) = f ijk x
k, where

the f ijk ’s are the structure constants of some Lie algebra.

Example 1.3. Example 1.2 can be generalized to any symplectic manifold (M,ω).
To every function h ∈ C∞(M) one associates the Hamiltonian vector field Xh which
is the unique vector field satisfying ιXh

ω = dh. The Poisson bracket of two functions
f and g is then defined by

{f, g} = ιXf
ιXg

ω.

In local coordinates, the corresponding Poisson bivector field is related to the sym-
plectic form as in Example 1.2.

A generalization is the algebra of smooth functions on a manifold M with bracket
{f, g} = 〈α,df ∧dg〉, where α is a bivector field (i.e., a section of

∧2
TM) such that

{α, α}SN = 0, where {·, ·}SN is the Schouten–Nijenhuis bracket (see subsection 2.1
below for details, and Example 1.2 for the local coordinate expression). Such a
bivector field is called a Poisson bivector field and the manifold M is called a Pois-
son manifold. Observe that a Poisson algebra structure on the algebra of smooth
functions on a smooth manifold is necessarily defined this way. In the symplectic
case, the bivector field corresponding to the Poisson bracket is the inverse of the
symplectic form (regarded as a bundle map TM → T ∗M).

The linear case described at the end of example 1.2 corresponds to M = g∗ where
g is a (finite dimensional) Lie algebra. The Lie bracket

∧2
g→ g is regarded as an

element of g⊗
∧2

g∗ ⊂ Γ(
∧2

Tg∗) and reinterpreted as a Poisson bivector field on
g∗. The Poisson algebra structure restricted to polynomial functions is described
at the beginning of subsection 2.1.

1.4. Batalin–Vilkovisky algebras. When n is odd, a generator for the bracket
of an n-Poisson algebra A is a degree −n linear map from A to itself,

∆: A→ A[−n],

such that

∆(a · b) = ∆(a) · b+ (−1)|a|a ·∆(b) + (−1)|a|{a, b}.
A generator ∆ is called exact if and only if it satisfies the condition ∆2 = 0, and
in this case ∆ becomes a derivation of the bracket:

∆({a, b}) = {∆(a), b}+ (−1)|a|+1{a,∆(b)}.
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Remark 1.1. Notice that not every odd Poisson algebra A admits a generator. For
instance, a nontrivial odd Lie algebra seen as an odd Poisson algebra with trivial
multiplication admits no generator. Moreover, even if a generator ∆ for an odd
Poisson algebra exists, it is far from being unique. In fact, all different generators
are obtained by adding to ∆ a derivation of A of degree −n.

Definition 1.2. An n-Poisson algebra A is called an n-Batalin–Vilkovisky algebra,
if it is endowed with an exact generator.

Notation. When n = 1 it is customary to speak of Batalin–Vilkovisky algebras, or
simply BV algebras; see [2, 9, 17].

There exists a characterization of n-Batalin–Vilkovisky algebras in terms of the
product and the generator only [9, 17]. Suppose in fact that a graded vector space
A is endowed with a degree zero graded commutative product and a linear map
∆: A→ A[−n] such that ∆2 = 0, satisfying the following “seven-term” relation:

∆(a · b · c) + ∆(a) · b · c+ (−1)|a|a ·∆(b) · c+ (−1)|a|+|b|a · b ·∆(c) =

= ∆(a · b) · c+ (−1)|a|a ·∆(b · c) + (−1)(|a|+1)|b|b ·∆(a · c).

In other words, ∆ is a derivation of order 2.
Then, if we define the bilinear operation {, } : A⊗A→ A[−n] by

{a, b} = (−1)|a|
(

∆(a · b)−∆(a) · b− (−1)|a|a ·∆(b)
)
,

we have that the quadruple (A, ·, {, },∆) is an n-Batalin–Vilkovisky algebra. Vice
versa, one easily checks that the product and the generator of an n-Batalin–
Vilkovisky algebra satisfy the above “seven term” relation.

2. Examples

2.1. Schouten–Nijenhuis bracket. Suppose g is a graded Lie algebra of degree
zero. Then A = S(g[n]) is an n-Poisson algebra with its natural multiplication
(the one induced from the tensor algebra T (A)) and a degree −n bracket, often
called the Schouten–Nijenhuis bracket, defined as follows [17, 18]: the bracket on
S1(g[n]) = g[n] is defined as the suspension of the bracket on g, while on Sk(g[n]),
for k > 1, the bracket is defined inductively by forcing the Leibniz rule

{a, b · c} = {a, b} · c+ (−1)|b|(|a|+n)b · {a, c}.

Moreover, when n is odd, there exists a generator defined as

∆(a1 · a2 · · · ak) =
∑
i<j

(−1)ε{ai, aj} · a1 · · · âi · · · âj · · · ak

where a1, . . . , ak ∈ g and ε = |ai|+(|ai|+1)(|a1|+ · · · |ai−1|+i−1)+(|aj |+1)(|a1|+
· · · |̂ai| + · · · |aj−1| + j − 2). An easy check shows that ∆2 = 0, thus S(g[n]) is an
n-Batalin–Vilkovisky algebra for every odd n ∈ N. For n = 1 the ∆-cohomology
on
∧
g is the usual Cartan–Chevalley–Eilenberg cohomology.

In particular, one can consider the Lie algebra g = Der(B) = ⊕j∈ZDerj(B) of

derivations of a graded commutative algebra B. More explicitly, Derj(B) consists
of linear maps φ : B → B of degree j such that φ(ab) = φ(a)b + (−1)j |a|aφ(b)
and the bracket is {φ, ψ} = φ ◦ ψ − (−1)|φ||ψ|ψ ◦ φ. The space of multiderivations
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S(Der(B)[1]), endowed with the Schouten–Nijenhuis bracket, is a Gerstenhaber
algebra.

We can further specialize to the case when B is the algebra C∞(M) of smooth
functions on a smooth manifoldM ; then X(M) = Der(C∞(M)) is the space of vector
fields on M and V(M) = S(X(M))[1]) is the space of multivector fields on M . It
is a classical result by Koszul [17] that there is a bijective correspondence between

generators for V(M) and connections on the highest exterior power
∧dimM

TM
of the tangent bundle of M . Moreover, flat connections correspond to generators
which square to zero.

2.2. Lie algebroids. A Lie algebroid E over a smooth manifold M is a vector
bundle E over M together with a Lie algebra structure (over R) on the space
Γ(E) of smooth sections of E, and a bundle map ρ : E → TM , called the anchor,
extended to a map ρ∗ between sections of these bundles, such that

{X, fY } = f{X,Y }+ (ρ∗(X)f)Y

for any smooth sections X and Y of E and any smooth function f on M . In
particular, the anchor map on sections ρ∗ : Γ(E) → X(M) is a morphism of Lie
algebras , namely ρ∗({X,Y }) = {ρ∗(X), ρ∗(Y )}.

The link between Lie algebroids and Gerstenhaber algebras is given by the fol-
lowing Proposition [13, 31]:

Proposition 2.1. Given a vector bundle E over M , there exists a one-to-one
correspondence between Gerstenhaber algebra structures on A = Γ(

∧
(E)) and Lie

algebroid structures on E.

The key of the Proposition is that one can extend the Lie algebroid bracket to
a unique graded antisymmetric bracket on Γ(

∧
(E)) such that {X, f} = ρ(X)f

for X ∈ Γ(
∧1

(E)) and f ∈ Γ(
∧0

(E)), and that for Q ∈ Γ(
∧q+1

(E)), {Q, ·} is a
derivation of Γ(

∧
(E)) of degree q.

Example 2.1. A finite dimensional Lie algebra g can be seen as a Lie algebroid
over a trivial base manifold. The corresponding Gerstenhaber algebra is the one of
subsection 2.1.

Example 2.2. The tangent bundle TM of a smooth manifold M is a Lie algebroid
with anchor map given by the identity and algebroid Lie bracket given by the usual
Lie bracket on vector fields. In this case we recover the Gerstenhaber algebra of
multivector fields on M described in subsection 2.1.

Example 2.3. If M is a Poisson manifold with Poisson bivector field α, then the
cotangent bundle T ∗M inherits a natural Lie algebroid structure where the anchor
map α# : T ∗pM → TpM at the point p ∈ M is given by α#(ξ)(η) = α(ξ, η), with
ξ, η ∈ T ∗pM , and the Lie bracket of the 1-forms ω1 and ω2 is given by

{ω1, ω2} = Lα#(ω1) ω2 − Lα#(ω2) ω1 − dα(ω1, ω2)

The associated Gerstenhaber algebra is the de Rham algebra of differential forms
endowed with the bracket defined by Koszul in [17]. As shown in [13], Γ(

∧
(T ∗M))

is indeed a BV algebra with an exact generator ∆ = [d, ια] given by the commutator
of the contraction ια with the Poisson bivector α and the de Rham differential d.
Similar results hold if M is a Jacobi manifold.
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It is natural to ask what additional structure on a Lie algebroid E makes the
Gerstenhaber algebra Γ(

∧
(E)) into a BV algebra. The answer is given by following

result, which is proved in [31]

Proposition 2.2. Given a Lie algebroid E, there is a one-to-one correspondence
between generators for the Gerstenhaber algebra Γ(

∧
(E)) and E-connections on∧rkE

E (where rkE denotes the rank of the vector bundle E). Exact generators
correspond to flat E-connections, and in particular, since flat E-connections always
exist, Γ(

∧
(E)) is always a BV algebra.

For the appearance of Gerstenhaber algebras in the theory of Lie bialgebras and
Lie bialgebroids, see [19].

2.3. Lie algebroid cohomology. A Lie algebroid structure on E →M defines a
differential δ on Γ(

∧
E∗) by

δf := ρ∗df, f ∈ C∞(M) = Γ(Λ0E∗)

and

〈 δσ , X ∧ Y 〉 := 〈 δ 〈σ , X 〉 , Y 〉 − 〈 δ 〈σ , Y 〉 , X 〉 − 〈σ , {X,Y } 〉 ,
X, Y ∈ Γ(E), σ ∈ Γ(E∗),

where ρ∗ : Ω1(M) → Γ(E∗) is the transpose of ρ∗ : Γ(E) → X(M) and 〈 , 〉 is
the canonical pairing of sections of E∗ and E. On Γ(

∧n
E∗), with n ≥ 2, the

differential δ is defined by forcing the Leibniz rule.
In example 2.1 we get the Cartan–Chevalley–Eilenberg differential on

∧
g∗; in

example 2.2 we recover the de Rham differential on Ω∗(M) = Γ(
∧
T ∗M), while in

example 2.3 the differential on V(M) = Γ(
∧
TM) is {α, }SN .

2.4. Lie–Rinehart algebras. The algebraic generalization of a Lie algebroid is a
Lie–Rinehart algebra. Recall that given a commutative associative algebra B (over
some ring R) and a B-module g, then a Lie–Rinehart algebra structure on (B, g)
is a Lie algebra structure (over R) on g and an action of g on the left on B by
derivations, satisfying the following compatibility conditions:

{γ, aσ} = γ(a)σ + a{γ, σ}
(aγ)(b) = a(γ(b))

for every a, b ∈ B and γ, σ ∈ g.
The Lie–Rinehart structures on the pair (B, g) bijectively correspond to the

Gerstenhaber algebra structures on the exterior algebra
∧
B(g) of g in the category

of B-modules. When g is of finite rank over B, generators for these structures

are in turn in bijective correspondence with (B, g)-connections on
∧rkBg
B g, and flat

connections correspond to exact generators. For additional discussions, see [8, 12].
Lie algebroids are Lie–Rinehart algebras in the smooth setting. Namely, if E →

M is a Lie algebroid, then the pair (C∞(M),Γ(E)) is a Lie–Rinehart algebra (with
action induced by the anchor and the given Lie bracket).
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2.5. Lie–Rinehart cohomology. Lie algebroid cohomology may be generalized
to every Lie–Rinehart algebra (B, g). Namely, on the complex is AltB(g, B) of
alternating multilinear functions on g with values in B, one can define a differential
δ by the rules

〈δa, γ〉 = γ(a), a ∈ B = Alt0
B(g, B), γ ∈ g,

〈δa, γ ∧σ〉 = 〈δ〈a, γ〉, σ〉− 〈δ〈a, σ〉, γ〉− 〈a, {γ, σ}〉, γ, σ ∈ g, a ∈ Alt1
B(g, B),

and forcing the Leibniz rule on elements of AltnB(g, B), n ≥ 2.

2.6. Hochschild cohomology. Let A be an associative algebra with product µ,
and consider the Hochschild cochain complex Hoch(A) =

∏
n≥0 Hom(A⊗n, A)[−n+

1]. There are two basic operations between two elements f ∈ Hom(A⊗k, A)[−k+ 1]
and g ∈ Hom(A⊗l, A)[−l + 1], namely a degree zero product

(f ∪ g)(a1 ⊗ · · · ⊗ ak+l) = (−1)klf(a1 ⊗ · · · ⊗ al) g(al+1 ⊗ · · · ⊗ ak+l)

and a degree -1 bracket {f, g} = f ◦ g − (−1)(k−1)(l−1)g ◦ f , where

(f ◦ g)(a1 ⊗ · · · ⊗ ak+l−1) =

=

k−1∑
i=1

(−1)i(l−1)f(a1 ⊗ · · · ⊗ ai ⊗ g(ai+1 ⊗ · · · ⊗ ail)⊗ · · · ⊗ ak+l−1).

It is well known from [7] that the cohomology HHoch(A) of the Hochschild complex
with respect to the differential dHoch = {µ, ·} has the structure of a Gerstenhaber
algebra. More generally, there is a Gerstenhaber algebra structure on Hochschild
cohomology of differential graded associative algebras [21] and of A∞ algebras.
Moreover, if A is endowed with a symmetric, invariant and non-degenerate inner
product, then HHoch(A) is also a BV algebra [28].

2.7. Graded symplectic manifolds. The construction of Example 1.3 can be
extended to graded symplectic manifolds; see [1, 9, 26]. Recall that a symplectic
structure of degree n on a graded manifold N is a closed nondegenerate two-form
ω such that LEω = nω where LE is the Lie derivative with respect to the Euler
field of N (see [24] for details). Let us denote by Xh the vector field associated to
the function h ∈ C∞(N) by the formula ιXh

ω = dh. Then the bracket

{f, g} = ιXf
ιXg

ω

gives C∞(N) the structure of a graded Poisson algebra of a degree n.
If the symplectic form has odd degree and the graded manifold has a volume

form, then it is possible to construct an exact generator defined by

∆(f) =
1

2
div(Xf )

where div is the divergence operator associated to the given volume form [9, 15].
An explicit characterization of graded symplectic manifolds has been given in

[24]. In particular it is proved there that every symplectic form of degree n with
n ≥ 1 is necessarily exact. More precisely, one has ω = d(ιEω/n).
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2.8. Shifted cotangent bundle. The main examples of graded symplectic man-
ifolds are given by shifted cotangent bundles. If N is a graded manifold then the
shifted cotangent bundle T ∗[n]N is the graded manifold obtained by shifting by
n the degrees of the fibers of the cotangent bundle of N . This graded manifold
possesses a non degenerate closed two-form of degree n, which can be expressed in
local coordinates as

ω =
∑
i

dxi ∧ dx†i

where {xi} are local coordinates on N and {x†i} are coordinate functions on the
fibers of T ∗[n]N . In local coordinates, the bracket between two homogeneous func-
tions f and g is given by

{f, g} = −(−1)|x
†
i | |f |

∂f

∂x†i

∂g

∂xi
− (−1)(|f |+n)(|g|+n)+|x†

i | |g|
∂g

∂x†i

∂f

∂xi

If in addition the graded manifold N is orientable, then T ∗[n]N has a volume form
too; when n is odd, the exact generator ∆(f) = 1

2divXf , already considered in [17],
is written in local coordinates as

∆ =
∂

∂x†i

∂

∂xi
.

In the case n = −1, we have a natural identification between functions on
T ∗[−1]N and multivector fields V(N) on N and we recover again the Gersten-
haber algebra of subsection 2.1. Moreover it is easy to see that, under the above
identification, ∆ applied to a vector field of N is the usual divergence operator.

2.9. Examples from algebraic topology. For any n > 1, the homology of the
n-fold loop space Ωn(M) of a topological space M has the structure of an (n− 1)-
Poisson algebra [22]. In particular the homology of the double loop space Ω2(M) is
a Gerstenhaber algebra, and has an exact generator defined using the natural circle
action on this space [9]. The homology of the free loop space L(M) of a closed
oriented manifold M is also a BV algebra when endowed with the “Chas–Sullivan
intersection product” and with a generator defined again using the natural circle
action on the free loop space. Recently it has been shown that the homology of the
space of framed embeddings of Rn into Rn+k is an n-Poisson algebra.

2.10. Shifted Poisson structures on derived stacks. In recent years, a vast
generalization of the notion of Poisson structure on a smooth manifold has been
introduced in the context of derived algebraic geometry by Calaque, Pantev, Töen,
Vaquié and Vezzosi who considered shifted Poisson structures on derived Artin
stacks [6]. Basic examples are the 1-shifted and 2-shifted Poisson structures on BG
given by elements in (∧3g)g and in (S2g)g, respectively, where G is a reductive
algebraic group and g is its Lie algebra. The corresponding notion for smooth
stacks presented by Lie groupoids has then been investigated by Bonechi, Ciccoli,
Laurent-Gengoux and Xu in [5], and by Ginot, Ortiz and Stefani in [10].

One starts by considering, for any m ∈ Z the differential graded commutative
algebra

MultiVect(X,m) =
⊕
p≥0

Γ(X,Sp(TX [−m])

of m-shifted multivector fields on X. Here TX denotes the tangent complex of the
stack X and Γ is the derived global sections (i.e., hypercohomology) functor. The
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algebra MultiVect(X,m) is bigraded, with one grading given by the cohomological
degree and the other, called the weight given by the exponent p. The main result is
then that MultiVect(X,m) carries a natural Pm+1-commutative differential graded
algebra structure, where Pm+1 is the dg-operad whose algebras are Poisson cdga’s
with a bracket of degree −m. Equivalently, (commutative) Pm+1-algebras can be in-
ductively defined as (commutative) associative algebras in Pm-algebras [25]. More-
over, the Poisson bracket on Pm+1 has weight −1. Therefore, MultiVect(X,m)[m]
is a dg-Lie algebra with a Lie bracket of weight −1, and one can define the space
Poiss(X,n) of n-shifted Poisson structures on X as

Poiss(X,n) = MapdgLiegr(K(2)[−1],MultiVect(X,n+ 1)[n+ 1]),

where MapdgLiegr is the Hom-space in the (∞, 1)-category of graded dg-Lie algebras
over the (characteristic zero) field of definition K of the stack X, and K(2)[−1] is the
graded dg-Lie algebra consisting of K in pure cohomological degree 1, pure weight 2,
and trivial bracket. When X is a smooth underived scheme, Poiss(X, 0) is the usual
set of Poisson bivectors on X. Moreover, one has a natural notion of nondegenerate
shifted Poisson strutures and an equivalence Poiss(X,n)nd ' Symp(X,n) between
the space of nondegenerate n-shifted Poisson structures on X and the space of
n-shifted symplectic structures on X as defined in [23]

3. Applications

3.1. BRST quantization in the Hamiltonian formalism. The BRST proce-
dure, after Becchi–Rouet–Stora and Tyutin [3, 4, 29], is a method for quantizing
classical mechanical systems or classical field theories in the presence of symme-
tries. We describe here its classical, Hamiltonian counterpart following [27]. The
starting point is a symplectic manifold M (the “phase space”), a function H (the
“Hamiltonian” of the system) governing the evolution of the system, and the “con-
straints” given by several functions gi which Poisson commute with H and among
each other up to a C∞(M)-linear combination of the gi’s.

Then the dynamics is constrained on the locus V of common zeroes of the gi’s.
When V is a submanifold, the gi’s are a set of generators for the ideal I of functions
vanishing on V . Observe that I is closed under the Poisson bracket. Functions in
I are called “first class constraints.” The Hamiltonian vector fields of first class
constraints, which are by construction tangential to V , are the “symmetries” of the
system.

When V is smooth, then it is a coisotropic submanifold ofM and the Hamiltonian
vector fields determined by the constraints give a foliation F of V . In the nicest case
V is a principal bundle with F its vertical foliation and the algebra of functions
C∞(V/F) on the “reduced phase space” V/F is identified with the I-invariant
subalgebra of C∞(M)/I.

From a physical point of view, the points of V/F are the interesting states at a
classical level, and a quantization of this system means a quantization of C∞(V/F).
The BRST procedure gives a method of quantizing C∞(V/F) starting from the
(known) quantization of C∞(M). Notice that these notions immediately generalize
to graded symplectic manifolds.

From an algebraic point of view, one starts with a graded Poisson algebra P
and a multiplicative ideal I which is closed under the Poisson bracket. The algebra
of functions on the “reduced phase space” is replaced by (P/I)I , the I-invariant
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subalgebra of P/I. This subalgebra inherits a Poisson bracket even if P/I does not.
Moreover the pair (B, g) = (P/I, I/I2) inherits a graded Lie–Rinehart structure.
The “Rinehart complex” AltP/I(I/I

2, P/I) of alternating multilinear functions on

I/I2 with values in P/I, endowed with the differential described in 2.5, plays the
role of the de Rham complex of vertical forms on V with respect to the foliation F
determined by the constraints.

In case V is a smooth submanifold, we also have the following geometric in-
terpretation: Let N∗V denote the conormal bundle of V (i.e., the annihilator of
TV in TV P ). This is a Lie subalgebroid of T ∗P if and only if V is coisotropic.
Since we may identify I/I2 with sections of N∗C (by the de Rham differential),
(P/I, I/I2) is the corresponding Lie–Rinehart pair. The Rinehart complex is then
the corresponding Lie algebroid complex Γ(

∧
(N∗V )∗) with differential described

in 2.3. The image of the anchor map N∗V → TV is the distribution determining
F , so by duality we get an injective chain map form the vertical de Rham complex
to the Rinehart complex.

The main point of the BRST procedure is to define a chain complex C• =∧
(Ψ∗ ⊕Ψ)⊗ P , where Ψ is a graded vector space, with a coboundary operator D

(the “BRST operator”), and a quasi-isomorphism (i.e., a chain map that induces
an isomorphism in cohomology)

π : (C•, D)→
(
AltP/I(I

2/I, P/I),d
)
.

This means in particular that the zeroth cohomology H0
D(C) gives the algebra

(P/I)I of functions on the “reduced phase space”. Observe that there is a natural
symmetric inner product on Ψ∗ ⊕ Ψ given by the evaluation of Ψ∗ on Ψ. This
inner product, as an element of S2(Ψ ⊕ Ψ∗) ' S2(Ψ) ⊕ (Ψ ⊗ Ψ∗) ⊕ S2(Ψ∗), is

concentrated in the component Ψ⊗Ψ∗, and so it defines an element in
∧2

(Ψ[1]⊕
Ψ∗[−1]) ' S2(Ψ)[2] ⊕ (Ψ ⊗ Ψ∗) ⊕ S2(Ψ∗)[−2], i.e., a degree zero bivector field
on Ψ[1] ⊕ Ψ∗[−1]. It is easy to see that this bivector field induces a degree zero
Poisson structure on S(Ψ∗[−1]⊕Ψ[1]). From another viewpoint this is the Poisson
structure corresponding to the canonical symplectic structure on T ∗Ψ[1]. Finally,
we have that S(Ψ∗[−1]⊕Ψ[1])⊗P is a degree zero Poisson algebra. Note that the
superalgebra underlying the graded algebra S(Ψ∗[−1] ⊕ Ψ[1]) ⊗ P is canonically
isomorphic to the complex C• =

∧
(Ψ∗⊕Ψ)⊗P . When P = C∞(M), we can think

of S(Ψ∗[−1]⊕Ψ[1])⊗C∞(M) as the algebra of functions on the graded symplectic
manifold N = (Ψ[1] ⊕ Ψ∗[−1]) × M (the “extended phase space”). In physical
language, coordinate functions on Ψ[1] are called “ghost fields” while coordinate
functions on Ψ∗[−1] are called “ghost momenta” or, by some authors, “antighost
fields” (not to be confused with the antighosts of the Lagrangian functional-integral
approach to quantization).

Suppose now that there exists an element Θ ∈ S(Ψ∗[−1]⊕Ψ[1])⊗ P such that
{Θ, ·} = D, that one can extend the “known” quantization of P to a quantization
of S(Ψ∗[−1]⊕Ψ[1])⊗P as operators on some (graded) Hilbert space T and that the
operator Q which quantizes Θ has square zero. Then one can consider the “true
space of physical states” H0

Q(T ) on which the adQ-cohomology of operators will

act. This provides one with a quantization of (P/I)I .
For further details on this procedure, and in particular for the construction of

D, we refer to [11, 16, 27] and references therein. Observe that some authors refer
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to this method as BVF [Batalin–Vilkovisky–Fradkin] and reserve the name BRST
to the case when the gi’s are the components of an equivariant moment map.

For a generalization to graded manifolds different from (Ψ[1]⊕Ψ∗[−1])×M we
refer to [24]. There it is proved that the element Θ exists if the graded symplectic
form has degree different from −1.

3.2. BV quantization in the Lagrangian formalism. The BV formalism is
a procedure for the quantization of physical systems with symmetries in the La-
grangian formalism, see [2, 11]. As a first step, the “configuration space” M of the
system is augmented by the introduction of “ghosts”. If G is the group of symme-
tries, this means that one has to consider the graded manifold W = g[1]×M . The
second step is to double this space by introducing “antifields for fields and ghosts”,
namely one has to consider the “extended configuration space” T ∗[−1]W , whose
space of functions is a BV algebra by subsection 2.8. The algebra of “observables”
of this physical system is by definition the cohomology H∗∆(C∞(T ∗[−1]W )) with
respect to the exact generator ∆.

4. Related topics

4.1. AKSZ. The graded manifold T ∗[−1]W considered in 3.2 is a particular ex-
ample of a QP -manifold, i.e., of a graded manifold M endowed with an integrable
(i.e., selfcommuting) vector field Q of degree 1 and a graded Q-invariant symplectic
structure P . In quantization of classical mechanical theories, the graded symplec-
tic manifold of interest is the space of fields and antifields with symplectic form of
degree 1, while Q is the Hamiltonian vector field defined by the action functional S;
the integrability of Q is equivalent to the classical master equation {S, S} = 0 for
the action functional. Quantization of the theory is then reduced to the computa-
tion of the functional integral

∫
L exp(iS/~), where L is a Lagrangian submanifold

of M . This functional integral actually depends only on the homology class of the
Lagrangian. Locally, a QP -manifold is a shifted cotangent bundle T ∗[−1]N and a
Lagrangian submanifold is the graph of an exact 1-form. In the notations of 2.8, a

Lagrangian submanifold L is therefore locally defined by equations x†i = ∂Φ/∂xi,
and the function Φ is called a fixing fermion. The action functional of interest is
then the gauge-fixed action S

∣∣
L = S(xi, ∂Φ/∂xi).

The language of QP -manifolds has powerful applications to sigma-models: if Σ
is a finite-dimensional graded manifold equipped with a volume element, and M
is a QP manifold, then the graded manifold C∞(Σ,M) of smooth maps from Σ
to M has a natural structure of QP -manifold which describes some field theory
if one arranges for the symplectic structure to be of degree 1. As an illustrative
example, if Σ = T [1]X, for a compact oriented 3-dimensional smooth manifold X,
and M = g[1], where g is the Lie algebra of a compact Lie group, the QP -manifold
C∞(Σ,M) is relevant to Chern-Simons theory on X. Similarly, if Σ = T [1]X, for a
compact oriented 2-dimensional smooth manifold X and M = T [1]N is the shifted
tangent bundle of a symplectic manifold, then the QP -structure on C∞(Σ,M) is
related to the A-model with target N ; if the symplectic manifold N is of the form
N = T ∗K for a complex manifoldK, then one can endow C∞(Σ,M) with a complex
QP -manifold structure, which is related to the B-model with target K; this shows
that, in some sense, the B-model can be obtained from the A-model by “analytic
continuation” [1]. If Σ = T [1]X, for a compact oriented 2-dimensional smooth
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manifold X and M = T ∗[−1]N with canonical symplectic structure, then the QP -
structure on C∞(Σ,M) is related to the Poisson sigma model (QP -structures on
T ∗[−1]N with canonical symplectic structure are in one-to-one correspondence with
Poisson structures on N). The study of QP manifolds is sometimes referred to as
“the AKSZ formalism”. In [24] QP -manifolds with symplectic structure of degree 2
are studied and shown to be in one-to-one correspondence with Courant algebroids.

4.2. Graded Poisson algebras from cohomology of P∞. The Poisson bracket
on a Poisson manifold can be derived from the Poisson bivector field α using the
Schouten–Nijenhuis bracket as follows [14]:

{f, g} = {{α, f}SN , g}SN .

This may be generalized [30] to the case of a graded manifold M endowed with a
multivector field α of total degree 2 (i.e., α =

∑∞
i=0 αi, where αi is an i-vector field

of degree 2 − i) satisfying the equation {α, α}SN = 0. One then has the derived
multibrackets

λi : A
⊗i → A,

λi(a1, . . . , ai) := {{. . . {{αi, a1}SN , a2}SN . . . }SN , ai}SN ,

with A = C∞(M). Observe that λi is a multiderivation of degree 2 − i. The
operations λi define the structure of an L∞-algebra on A. Such a structure is
called a P∞-algebra (P for Poisson) since the λi’s are multiderivations. If λ0 =
α0 vanishes, then λ1 is a differential, and the λ1-cohomology inherits a graded
Poisson algebra structure. This structure can be used to describe the deformation
quantization of coisotropic submanifolds and to describe their deformation theory.
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