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HOW BADLY ARE THE BURHOLDER-DAVIS-GUNDY

INEQUALITIES AFFECTED BY ARBITRARY RANDOM

TIMES?

ASHKAN NIKEGHBALI

Abstract. This note deals with the question: what remains of the
Burkholder-Davis-Gundy inequalities when stopping times T are re-
placed by arbitrary random times ρ? We prove that these inequalities
still hold when T is a pseudo-stopping time and never holds for ends of
predictable sets.

1. Introduction

Let
(
Ω,F , (Ft)t≥0 , P

)
be a filtered probability space. We recall the

Burkholder-Davis-Gundy inequalities (see [12]):

Proposition 1. Let p > 0. There exist two universal constants cp and
Cp depending only on p, such that for any (Ft) continuous local martingale
(Mt), with M0 = 0, and any (Ft) stopping time ρ, we have

(1.1) cpE

[
(< M >ρ)

p

2

]
≤ E

[(
M∗

ρ

)p] ≤ CpE

[
(< M >ρ)

p

2

]

where

M∗
ρ = sup

t≤ρ

|Mt|

One natural question is: does (1.1) still hold if ρ is replaced by an arbitrary
random time? In the sequel, given an arbitrary random time ρ, we shall say
that the BDG inequalities hold with ρ if (1.1) holds for every (Ft) continuous
local martingale (Mt), with M0 = 0.

This question has already been studied ([14], [6], [15]) and some partial
answers have been given (the title of this note is inspired by a Section of
M. Yor’s lecture notes ([15]), and more generally, the sequel owes a lot to
Marc Yor who introduced the techniques of enlargements of filtrations to
me). For example, taking the special case of Brownian motion, it can easily
be shown that there cannot exist a constant C such that:

E [|Bρ|] ≤ CE [
√

ρ]
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for any random time ρ. For if it were the case, we could take ρ = 1A, for
A ∈ F∞, and we would obtain:

E [|B1|1A] ≤ CE [1A]

which is equivalent to: |B1| ≤ C, a.s., which is absurd.

In the following, we shall consider two families of random times:

(1) pseudo-stopping times;
(2) honest times (or ends of optional sets).

Before proving our theorems, we need to recall a few basic facts and

definitions. Let
(
Ω,F , (Ft)t≥0 , P

)
be a filtered probability space, satisfying

the usual hypothese, and ρ : (Ω,F) → (R+,B (R+)) be a random time.
We assume further that the following conditions, which we call conditions

(CA), are satisfied:

• all (Ft)-martingales are continuous (e.g: in the Brownian filtration).
• the random time ρ avoids every (Ft)-stopping time T , i.e. P [ρ = T ] =

0.

We enlarge the initial filtration (Ft) with the process (ρ ∧ t)t≥0, so that

the new enlarged filtration (Fρ
t )t≥0 is the smallest filtration which contains

(Ft) and makes ρ a stopping time. A few related processes will play a crucial
role in our discussion:

• the (Ft)-supermartingale

(1.2) Z
ρ
t = P [ρ > t | Ft]

associated to ρ by Azéma (see [7] for detailed references); under
(CA), (Zρ

t ) is continuous;
• the (Ft)-dual predictable projection of the process 1{ρ≤t}, denoted

by A
ρ
t (which is also continuous under (CA));

The Doob-Meyer decomposition of (1.2) writes:

Z
ρ
t = µ

ρ
t − A

ρ
t ,

with (µρ
t ) a continuous (Ft) martingale, which is in BMO.

Finally, we recall that every (Ft)-local martingale (Mt), stopped at ρ, is
a (Fρ

t ) semimartingale, with canonical decomposition:

(1.3) Mt∧ρ = M̃t +

∫ t∧ρ

0

d < M,µρ >s

Z
ρ
s−

where
(
M̃t

)
is an (Fρ

t )-local martingale.

Pseudo-stopping times, which are natural extensions of stopping times,
have been introduced in [9]. Let us recall some results about them:
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Definition 1. We say that ρ is a (Ft) pseudo-stopping time if for every
bounded (Ft)-martingale (Mt), we have

(1.4) EMρ = EM0

Theorem 1 ([9]). Let ρ be a random time which satisfies P (ρ = ∞) = 0.
Then the following properties are equivalent:

(1) ρ is a (Ft) pseudo-stopping time, i.e (1.4) is satisfied;
(2) every (Ft) local martingale (Mt) satisfies

(Mt∧ρ)t≥0
is a local (Fρ

t ) martingale

When ρ is the end of a predictable set Γ, i.e

(1.5) ρ = sup {t : (t, ω) ∈ Γ}
it has been shown by Yor (see [14]) that there exists a universal constant C,
and Φρ an R+-valued random variable depending on ρ, such that, for every
(Ft) local martingale (Mt) :

(1.6) E
[
M∗

ρ

]
≤ CE

[
Φρ

√
< M >ρ

]
,

Moreover, for any q > 1, ‖Φρ‖q
≤ Cq, for a universal constant Cq, so that

from (1.6):
E

[
M∗

ρ

]
≤ C ′

q ‖< M >ρ‖p ,

where 1
p

+ 1
q

= 1, and C ′
q = CCq.

However, it was not clear that the ”strict” BDG inequalities (1.1) might
hold for some larger class of random times than the class of stopping times.

In this note, using techniques of progressive enlargement of filtrations,
we prove two theorems for the special, but important, cases when ρ is a
pseudo-stopping time ([9]) or the end of a predictable set. We show that the
BDG inequalities for continuous local martingales still hold when we stop
these processes at a pseudo-stopping time, whereas they never hold for ends
of predictable sets (under the conditions (CA).

2. The Burkholder-Davis-Gundy inequalities for local
martingales stopped at a pseudo-stopping time or at the end

of a predictable set

Theorem 2. Let p > 0. There exist two universal constants cp and Cp

depending only on p, such that for any (Ft) local martingale (Mt), with
M0 = 0, and any (Ft) pseudo-stopping time ρ, such that P (ρ = ∞) = 0, we
have

cpE

[
(< M >ρ)

p

2

]
≤ E

[(
M∗

ρ

)p] ≤ CpE

[
(< M >ρ)

p

2

]
.

Proof. It suffices, with the previous Theorem, to notice that in the enlarged
filtration (Fρ

t ), (Mt∧ρ) is a martingale and ρ is a stopping time in this
filtration; then, we apply the classical BDG inequalities. �
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Remark 1. The constants cp and Cp are the same as those obtained for
martingales in the classical framework; in particular the asymptotics are the
same (see [3]).

Remark 2. It would be possible to show the above Theorem, just using the
definition of pseudo-stopping times (as random times for which the optional
stopping theorem holds); but the proof is much longer.

There exists a version of the BDG inequalities for discontinuous martin-
gales, due to Meyer (see [5]), which involves the bracket [M ]t of the local
martingale M . The same proof as the proof of Theorem 2 also applies to
show that Meyer’s extension of the BDG inequalities holds for discontinuous
martingales stopped at a pseudo-stopping time. More precisely,

Proposition 2. Let p > 0. There exist two universal constants cp and
Cp depending only on p, such that for any (Ft) local martingale (Mt), with
M0 = 0, and any (Ft) pseudo-stopping time ρ we have

cpE

[
([M ]ρ)

p

2

]
≤ E

[(
M∗

ρ

)p] ≤ CpE

[
([M ]ρ)

p

2

]
.

Next, we give a negative result, which emphasizes the necessity of intro-
ducing other type of inequalities (see [14, 15]). Indeed, we show that the
BDG inequalities do not hold for ends of predictable sets.

Theorem 3. The BDG inequalities never hold for ends of predictable sets
under the conditions (CA).

Proof. Suppose BDG inequalities hold up to ρ, the end of a predictable set.
For any local martingale in the filtration (Ft), we have the decomposition
formula (1.3). We can apply the BDG inequalities (for the special case

p = 1) to the local martingales (Mt∧ρ) and
(
M̃t

)
in the filtration (Fρ

t ).

This leads to the fact that there exists a constant C such that

E

[
sup
t≥0

∣∣∣∣∣

∫ t∧ρ

0

d < M̃, µ̃ρ >s

Z
ρ
s

∣∣∣∣∣

]
≤ CE

[√
< M̃ >ρ

]

It is equivalent to prove that

(2.1) E



∫ ρ

0

∣∣∣d < M̃, µ̃ρ >s

∣∣∣
Z

ρ
s


 ≤ CE

[√
< M̃ >ρ

]

cannot hold to get a contradiction.
The inequality (2.1) means that

∫ ρ∧t

0

dµ̃
ρ
s

Z
ρ
s

∈ BMO

for the filtration
(
Fρ

t∧ρ

)
. Indeed, from the representation theorem for (Fρ

t )

martingales proved by Barlow in [2], we know that every continuous local

martingale in the filtration
(
Fρ

t∧ρ

)
is of the form M̃t.
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Now, from the following extension of Fefferman’s inequality: there exists
a universal constant K such that, if (Xt) and (Yt) are two continuous semi-
martingales (with respect to a certain filtration, which, here, we take to be
(Fρ

t )), then:

E

[∫ ∞

0

|d < X,Y >s|
]
≤ KE

[√
< X >∞ ρ2 (Y )

]

where
ρ2 (Y ) = ess suptE [< Y >∞ − < Y >t| Fρ

t ]

we deduce that

(2.2) ρ2 (Y ) = ess suptE

[∫ ρ

t

d < µρ >s

(Zρ
s )

2
| Fρ

t

]
≤ C

for t < ρ and some constant C.
Moreover, it was proved by Yor in [8] that:

ρ2 (Y ) = 2

(
1 + log

1

Iρ

)

where
Iρ = inf

u≤ρ
Zρ

u.

Hence, from (2.2):

log
1

Iρ
≤ C

must hold. But it is known (see [8] or [9]) that Iρ is uniformly distributed
on (0, 1), so this inequality cannot hold. Hence the BDG inequalities up to
ends of predictable sets do not hold in their original form. �

The theorems emphasizes once again the difference between stopping
times, or more generally pseudo-stopping times and ends of predictable sets
(see [10] for more discussions).

We have not been able to find a random time ρ which is not a pseudo-
stopping time or the end of a predictable set, and for which the BDG in-
equalities hold.
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