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Abstract. We study projective surfaces X ⊂ Pr (with r ≥ 5) of maximal sectional reg-
ularity and degree d > r, hence surfaces for which the Castelnuovo-Mumford regularity
reg(C) of a general hyperplane section curve C = X ∩ Pr−1 takes the maximally possible
value d − r + 3. We use the classification of varieties of maximal sectional regularity
of [BLPS] to see that these surfaces are either particular divisors on a smooth rational
3-fold scroll S(1, 1, 1) ⊂ P5, or else admit a plane F = P2 ⊂ Pr such that X ∩ F ⊂ F is a
pure curve of degree d− r+3. We show that our surfaces are either cones over curves of
maximal regularity, or almost non-singular projections of smooth rational surface scrolls.
We use this to show that the Castelnuovo-Mumford regularity of such a surface X satis-
fies the equality reg(X) = d− r + 3 and we compute or estimate various cohomological
invariants as well as the Betti numbers of such surfaces.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of arbitrary charac-
teristic. We always write S := k[x0, x1, . . . , xr] and denote by Pr the projective r-space
Proj(S) over k.

There is a well-known conjecture concerning the upper bound of the Castelnuovo-
Mumford regularity reg(X) of a nondegenerate irreducible projective variety X ⊂ Pr in
terms of its degree d and codimension c:

Eisenbud-Goto’s conjecture [EG]. reg(X) ≤ d− c+ 1.

This conjecture has been proved only for irreducible curves by Gruson-Lazarsfeld-Peskine
[GLP] and for smooth complex surfaces by H. Pinkham [Pi] and R. Lazarsfeld [L]. But
it is still open, even for singular surfaces. In their fundamental paper [GLP], the authors
have also shown that if X is a curve then reg(X) = d−r+2 if and only if either d ≤ r+1
or else d ≥ r + 2 and X is a smooth rational curve having a (d− r + 2)-secant line. This
result was extended in several directions. We first define the integer ℓ(X) by

ℓ(X) := max{length(X ∩ L) | L = P1 * X}.
Obviously, it always holds that reg(X) ≥ ℓ(X).

By a result in [GLP], if X is a curve of degree d ≥ r + 2 and reg(X) = d − r + 2
then ℓ(X) = d − r + 2. Therefore it is natural to ask in general, whether the condition
reg(X) ≥ d− c+ 1 implies the existence of a (d− c+ 1)-secant line. In this direction, it
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seems worthwhile to mention that there are many examples of smooth varieties X with
reg(X) = d− c+ 1 which admit no trisecant line.

When X is a smooth variety, A. Bertin in [Be1] proves that ℓ(X) ≤ d − c + 1 and
if equality is attained then X must be the image of an isomorphic linear projection of a
smooth variety of minimal degree. She proves also that if ℓ(X) takes the possible maximal
value d− c+ 1 then X satisfies the regularity conjecture.

Now, suppose that X is a singular variety. From the regularity conjecture, we expect
that ℓ(X) satisfies the inequality ℓ(X) ≤ d − c + 1. In [Be2], A. Bertin claims that
equality holds only if X is a cone over a smooth variety having a (d− c+ 1)-secant line.
Unfortunately, it turns out that there are many non-conic singular varieties which have a
(d− c+1)-secant line. Up to now, to our best knowledge, the inequality ℓ(X) ≤ d− c+1
is verified when X is a locally Cohen-Macaulay variety. For details, we refer the reader
to [N, Theorem 1.1].

The extremal secant locus Σ(X) of X is defined as the closure of the set of all proper
(d − c + 1)-secant lines to X in the Grassmannian G(1,Pr) of lines in Pr. Obviously, if
Σ(X) is nonempty then reg(X) is at least d − c + 1. In [BLPS], the authors prove that
for c ≥ 3, the dimension of Σ(X) is at most equal to 2 dim(X)− 2. Moreover, equality is
attained if and only if X is a variety of maximal sectional regularity (VMSR), that is, the
regularity of a general linear curve section of X takes the possibly maximal value d−c+1.
The authors also classify all VMSR’s of codimension at least 3. But it is unknown yet if
they satisfy Eisenbud-Goto’s regularity conjecture.

Along this line, the main purpose of this paper is to study algebraic properties of
surfaces of maximal sectional regularity (SMSR). Let X ⊂ Pr, r ≥ 5, be a SMSR of
degree d ≥ r + 1. By [BLPS, Theorem 6.2], X falls under one of the following cases:

(i) (Type I) r = 5 and X is contained in the rational normal threefold scroll S(1, 1, 1)
as a divisor linearly equivalent to H + (d − 3)F where H and F are respectively
the hyperplane divisor and a ruling plane of S(1, 1, 1);

(ii) (Type II) X admits a plane, say F(X), such that X ∩ F(X) is of dimension one
and of degree ≥ d− r + 3.

It is a strong condition that a variety is a divisor of a smooth rational normal scroll.
Thus, the study of type I is much easier than of type II. For example we can compute
the whole Betti diagram of X of type I (cf. Theorem 2.1 and Remark 2.2). The present
paper concerns mainly the case where X is of type II. Note that a cone over a curve of
maximal regularity is included in type II. From now on, we suppose that X ⊂ Pr is of

type II and non-conic. Then X is determined by the triple (X̃, D, Λ) where

(a) X̃ ⊂ Pd+1 is a smooth rational normal surface scroll,

(b) D is an effective divisor of X̃ linearly equivalent to H +(3− r)F for a hyperplane

divisor H and a ruling line F of X̃, and
(c) Λ is a (d− r)-dimensional subspace of the (d− r+3)-dimensional linear span ⟨D⟩

of D such that the linear projection πΛ : ⟨D⟩ \ Λ → P2 is generically injective
along D.
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Namely, X = πΛ(X̃) and F(X) is the plane πΛ

(
⟨D⟩ \ Λ

)
. In particular, we can see that

X contains the plane curve πΛ(D) of degree d− r + 3. For details, we refer the reader to
[BLPS, Theorem 6.2]. This geometric description of X enables us to conclude that X has
the following two interesting properties (cf. Definition and Remark 3.1.(B) and Lemma
3.4):

(P1) X is an almost nonsingular projection of X̃ ⊂ Pd+1. That is, the morphism

πΛ : X̃ → X has only finitely many singular points.
(P2) The intersection X ∩ F(X) is a pure plane curve of degree d− r + 3.

The following main result is essentially a consequence of (P1) and (P2).

1.1. Theorem. Let 5 ≤ r < d and let X ⊂ Pr be a SMSR of degree d and of type II. Then

(1) reg(X) = d− r + 3.
(2) X is linearly normal.
(3) h1(X,OX(d− r)) = 1.
(4) e(X) ≥

(
d−r+2

2

)
where

e(X) :=
∑

x∈X,closed

length(H1
mX,x

(OX,x)).

The proofs of Theorem 1.1.(1) and (2) are respectively provided after Corollary 3.3 and
Lemma 3.4. Theorem 1.1.(1) says that X satisfies Eisenbud-Goto’s regularity conjecture.
Theorem 1.1.(2) is essentially induced by (P2).

For the proofs of Theorem 1.1.(3) and (4), see Proposition 3.6. By Theorem 1.1.(3),
we can say that X is (d− r + 2)-irregular since the cohomology group H1(X,OX(d− r))
does not vanish. Comparing with the curve case, this leads us naturally to ask whether
X fails to be (d − r + 1)-normal or not. It seems an interesting phenomenon that for
all our computational examples, X is (d − r + 1)-normal. In section 5.1, we find a few
interesting conditions which are equivalent to the (d−r+1)-normality of X (cf. Theorem
5.1). So, one of the most important open question about X is whether it satisfies the
(d− r + 1)-normality or not.

In Theorem 1.1.(4), note that the invariant e(X) counts the number of non-Cohen-
Macaulay points of X in a weighted way. Concerning the inequality e(X) ≥

(
d−r+2

2

)
,

there are examples such that e(X) is strictly bigger than
(
d−r+2

2

)
. For details, see Remark

5.5.(A). On the other hand, if the divisor D ⊂ X̃ in the above condition (b) is a smooth
irreducible curve and the projection center Λ ⊂ ⟨D⟩ is general enough, so that C = πΛ(D)
is a plane curve with

(
d−r+2

2

)
nodes, then we have e(X) =

(
d−r+2

2

)
. We can regard such

X as the general case among all SMSRs of type II. Along this line, section 5.2 is devoted
to show that the equality e(X) =

(
d−r+2

2

)
is closely related to the simplicity of the socle

of the second cohomology module H2
∗ (IX) of X (cf. Proposition 5.4).

In section 4, we study the arithmetic depth of X. Let Y be the union of X and F(X).
We determine all pairs τ(X) := (depth(X), depth(Y )). For d ≤ 2r − 4 it turns out
that Y is always arithmetically Cohen-Macaulay and X is arithmetically normal (hence
H1(Pr, IX(j)) = 0 for all j > 0). This allows to lift syzygetic information on the union
of a general linear curve section C of X with its extremal secant line to Y and to get
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information on X (see [BS2]). For details see Theorem 4.1. Moreover, we construct
explicit examples which illustrate that all the given pairs τ(X) occur.

2. Surfaces of Type I

Throughout this section, let X ⊂ P5 be a surface of degree d and of maximal sectional
regularity of type I. Thus X is contained in the threefold scroll W := S(1, 1, 1) and its
divisor class in W is H+(d−3)F . Let S, AW and AX denote the homogeneous coordinate
rings of P5, W and X, respectively.

2.1. Theorem. The minimal free resolution of AX is of the form

0 → S(−d− 2)β5 → S(−d− 1)β4 → S(−d)β3

→ S(−3)2 ⊕ S(−d+ 1)β2 → S(−2)3 ⊕ S(−d+ 2)β1 → S → AX → 0

with

β1 =

(
d− 1

2

)
, β2 = 2(d− 1)(d− 3), β3 = 3(d2 − 5d+ 5)

β4 = 2(d− 2)(d− 4) and β5 =

(
d− 3

2

)
.

In particular, it holds that reg(X) = d− 2.

Proof. First, note that as a consequence of [Pa, Remark 4.8 (2)], the resolution of AX

must have the shape given in our statement. This implies the following form of the
Hilbert series H(AX , t) :

H(AX , t) =
1

(1− t)6
(
1− 3t2 + 2t3 − β1t

d−2 + β2t
d−1 − β3t

d + β4t
d+1 − β5t

d+2
)
.

Now, let I(X/W ) denote the kernel of the natural map from AW to AX . Then

I(X/W )n ∼= H0(W,OW (−X + nH)) = H0(W,OW ((n− 1)H − (d− 3)F ))

and hence it follows that

dimk I(X/W )n =

{(
n+1
2

)
(n− d+ 3) if n ≥ d− 2, and

0 otherwise.

In particular, the Hilbert series of I(X/W ) is given by

H(I(X/W ), t) =
td−2

(1− t)4
((d− 1

2

)
− (d− 1)(d− 4)t+

(
d− 3

2

)
t2
)
.

Also, the Hilbert series of AW is given by H(AW , t) = (1+2t)/(1− t)4. Now, consider the
short exact sequence 0 → I(X/W ) → AW → AX → 0. By the additivity of the Hilbert
series on short exact sequences, we have

H(AX , t) =
1

(1− t)4
(
1 + 2t−

(
d− 1

2

)
td−2 + (d− 1)(d− 4)td−1 −

(
d− 3

2

)
td
)
.

By comparing the above two expressions for the Hilbert series of AX , we obtain the desired
values for β1, . . . , β5. �
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2.2. Remark. By using the short exact sequence 0 → IW → IX → OW (−X) → 0, one
can compute the values of h1(P5, IX(j)) for all j ∈ Z:

(a) h1(P5, IX(j)) =
(
j+1
2

)
(d− j − 3) for 1 ≤ j ≤ d− 4 and zero else.

In particular, this implies that the linearly normal embedding of X by the very ample
line bundle OX(1) is a surface of minimal degree in Pd+1. This enables us to describe
cohomological properties of X completely. Here we summarize them:

(b) h0(X,OX(j)) = (j + 1)(dj + 2)/2 for all j ≥ 0 and zero else.
(c) h1(X,OX(j)) = 0 for all j ∈ Z.
(d) h2(X,OX(−j)) = (j − 1)(dj − 2)/2 for all j ≥ 2 and zero else.

3. Surfaces of Type II

This section is aimed to investigate algebraic properties of SMSRs of type II and to give
proofs of the four statements of Theorem 1.1.

Let 5 ≤ r < d and let X ⊂ Pr be a surface of degree d and of maximal sectional
regularity of type II. That is, there is a plane F(X) such that the intersection X ∩ F(X)
is of dimension one and of degree ≥ d− r+3. Throughout this section, we will use freely

the triple (X̃, D, Λ) of section 1.

3.1. Definition and Remark. (A) We say that a morphism f : Y −→ Z is almost
non-singular if its singular locus Sing(f) defined by

Sing(f) := {z ∈ Z | length
(
f−1(z)

)
≥ 2}

is a finite set.
(B) Recall that X is obtained as the image of a birational linear projection morphism of

a rational normal surface scroll X̃ ⊂ Pd+1. To be precise, if X̃ is singular then X is a cone

over a curve of maximal regularity. On the other hand, if X̃ is smooth thenX is non-conic.
Note that X has only finitely many singular points since its general hyperplane section is

smooth. This implies that the linear projection f : X̃ → X is almost nonsingular.

Our first goal of this section is to prove Theorem 1.1(1), which addresses that X sat-
isfies the conjectural Eisenbud-Goto’s bound. Then we will prove the remaining three
cohomological properties of X in Theorem 1.1 by using the equality reg(X) = d− r + 3.

Now, we shall prove the main result of this section, which will allow us to establish
the announced regularity bound. Our proof is based on Definition and Remark 3.1.(B)
and the fact that the smooth rational normal surface scroll X ⊂ Pd+1 has a very nice

syzygetic property. Recall that a nondegenerate projective variety Ṽ ⊂ PN is said to
satisfy condition N2,p for some p ≥ 1, if its homogeneous ideal is generated by quadrics
and the syzygies among them are generated by linear syzygies until the (p − 1)th step.
In particular, any 2-regular variety satisfies condition N2,p for all p > 0. We obtain
the following general bounding result for the regularity of almost non-singular linear
projections of a variety satisfying condition N2,p for some p ≥ 2.

3.2. Theorem. Let Ṽ ⊂ PN be a nondegenerate projective variety which satisfies condition

N2,p for some p ≥ 2. If r > N − p and πΛ : Ṽ → Pr is an almost nonsingular projection,
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then the subvariety πΛ(Ṽ ) ⊂ Pr is max{reg(Ṽ ), N − r + 2}-regular and its homogeneous
ideal is generated by forms of degree ≤ N − r + 2.

Proof. Let S be the homogeneous coordinate ring of Pr. Also let Ã and A be respectively

the homogeneous coordinate ring of Ṽ in PN and πΛ(Ṽ ) in Pr. Then Ã is a finitely
generated graded S-module and it follows by [AK, Theorem 3.6] that the minimal free

presentation of Ã has the shape

· · · → Ss(−2)
v→ S ⊕ SN−r(−1)

q→ Ã → 0

for some s ∈ N. Moreover, A is the image q(S). Therefore

Ã/A ∼= Coker
(
u : Ss(−2) → SN−r(−1)

)
,

where u is the map naturally induced by v. As πΛ is an almost nonsingular projection,

we have dim(Ã/A) ≤ 1. So, it follows by [ChFN, Corollary 2.4] that reg(Ã/A) ≤ N − r.

Now, the short exact sequence 0 → A → Ã → Ã/A → 0 implies that

reg
(
πΛ(Ṽ )

)
= reg(A) + 1 ≤ max{reg(Ã) + 1, N − r + 2} = max{reg(Ṽ ), N − r + 2}.

To prove the second statement, consider the exact sequence

0 → Ker(u) → Ss(−2)
u→ SN−r(−1) → Ã/A → 0.

Then we get reg(Ker(u)) ≤ N − r + 2. In particular, the graded S-module Ker(u) is
generated by homogeneous elements of degree ≤ N−r+2. Finally, by a diagram chasing,

one can show that the homogeneous ideal of πΛ(Ṽ ) is isomorphic to Ker(u)/Ker(v), which
completes the proof. �

Clearly the above result works most effectively if Ṽ satisfies condition N2,p for a large
p.

3.3. Corollary. Let V ⊂ Pr be an almost nonsingular projection of a nondegenerate n-

dimensional projective variety Ṽ ⊂ PN of degree d.

(1) If Ṽ is a variety of minimal degree, then reg(V ) ≤ d− (r − n) + 1.

(2) If Ṽ is a del Pezzo variety and r < N , then reg(V ) ≤ d− (r − n).

Proof. (1) This is clear as Ṽ is 2-regular.

(2) If Ṽ is del Pezzo it satisfies condition N2,N−n−1 and reg(Ṽ ) = 3. Then the assertion
comes immediately from Theorem 3.2. �
Proof of Theorem 1.1.(1). We have reg(X) ≥ d−r+3 since X admits (d−r+3)-secant
lines. On the other hand, it holds by Corollary 3.3 that reg(X) ≤ d− r + 3. �

Next, we aim to show that the intersection X ∩ F(X) is a pure plane curve of degree
d − r + 3. This enables us to prove that X is linearly normal. Then, we will investigate
some cohomological properties of X in terms of four natural short exact sequences induced
from Definition and Remark 3.1.(B) and Lemma 3.4 below. For details, see Notation and
Remark 3.5.

3.4. Lemma. The intersection C := X ∩ F(X) is a plane curve of degree d− r + 3.
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Proof. For a general hyperplane H of Pr, the curve CH = X ∩H is of maximal regularity
and the line LH = F(X) ∩ H is (d − r + 3)-secant to CH. This shows that C contains a
plane curve of degree ≥ d − r + 3. On the other hand, if either the degree of the plane
curve is strictly bigger than d− r+ 3 or if C has a closed associated point, one can easily
see that X admits a proper multisecant line L such that length(X ∩L) > d− r+3. This
is impossible since reg(X) = d− r + 3 by Theorem 1.1. �
Proof of Theorem 1.1.(2). Assume h1(Pr, IX(1)) > 0. Then X is a regular projection
of a nondegenerate surface X ′ in Pr+1. Note that X ′ is again an almost nonsingular pro-
jection of a smooth rational normal surface scroll. Therefore we have reg(X ′) ≤ d− r+2
by Corollary 3.3. On the other hand, the pre-image of the plane curve X ∩ F(X) under
this regular projection is again a plane curve of degree (d− r+3). In particular, we have
reg(X ′) ≥ d− r + 3. This contradiction proves our claim. �

We now introduce four basic exact sequences which are obtained from Definition and
Remark 3.1.(B) and Lemma 3.4. They will play a crucial role in all what follows.

3.5. Notation and Remark. (A) On use of [AlB, Proposition 5.2] we see that e(X) =

h1(X,OX(n)) for all n ≤ 0. Now, consider the almost non-singular projection f : X̃ → X

from the rational normal surface scroll X̃ ⊂ Pd+1. Then we have the exact sequence

(3.1) 0 → OX → f∗OX̃ → F := f∗OX̃/OX → 0

with h0(X,F) = e(X), where the equality follows from the fact that Supp(F) = Sing(X)

is a finite set and X̃ is a Cohen-Macaulay variety. As an immediate consequence of (3.1),
we get

(3.2) h3(Pr, IX(j)) = h2(X,OX(j)) = h2(X̃,OX̃(j)) =

{
(j+1)(dj+2)

2
if j ≤ −2, and

0 if j ≥ −1.

(B) Let H be a general hyperplane of Pr. Then the intersection CH = X ∩H is an integral
curve of maximal regularity and the line LH = F(X) ∩H is (d− r + 3)-secant to CH. We
have the exact sequences

(3.3) 0 → IX(−1) → IX → ICH → 0

and

(3.4) 0 → IY (−1) → IY → ICH∪LH → 0

where Y = X ∪ F(X). In [BS1, Proposition 2.7(c),(d)], it is shown that

(3.5) H1(Pr−1, ICH∪LH(j)) = 0 if j ≤ 1 and H2(Pr−1, ICH∪LH(j)) = 0 if j ≥ 1.

So, by combining (3.4) with the second part of (3.5), we can easily show that

(3.6) H3(Pr, IY (j)) = 0 for all j ≥ 0.

(C) Note that the quotient sheaf IX/IY is isomorphic to the ideal sheaf of C in F(X).
Therefore, by Lemma 3.4, we have the exact sequence

(3.7) 0 → IY → IX → OP2(−d+ r − 3) → 0.
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3.6. Proposition. For all j ∈ Z, put aj := h2(Pr, IX(j)) and bj := h2(Pr, IY (j)). Then
it holds

(1) aj = e(X) for all j ≤ 0, a1 = e(X) = r− d− 1, ad−r = 1, aj = 0 for all j > d− r
and the sequence aj is strictly decreasing in the range 1 ≤ j ≤ d− r.

(2) b0 = b1 = e(X) −
(
d−r+2

2

)
, hence e(X) ≥

(
d−r+2

2

)
and the sequence of the bj is

increasing in the range j ≤ 0 and decreasing in the range j ≥ 1.

Proof. (1) As h1(X, f∗OX̃(n)) = H1(X̃,OX̃(n)) = 0 for all n ∈ Z it follows from the
sequence (3.1) that

aj = h2(Pr, IX(j)) = h1(X,OX(j)) = h0(X,F) = e(X) for all j ≤ 0

and

a1 = h2(Pr, IX(1)) = h1(X,OX(1)) = (r + 1)− (d+ 2) + e(X) = e(X) + r − d− 1.

We have aj = 0 for all j ≥ d − r + 1 since X is (d − r + 3)-regular. Now, consider the
exact cohomology sequence induced by (3.3):

H1(Pr−1, ICH(d− r + 1)) → H2(Pr, IX(d− r)) → H2(Pr, IX(d− r + 1)) = 0.

Thus ad−r is at most 1 since h1(Pr−1, ICH(d− r + 1)) = 1 ([GLP, Remarks in page 504]).
On the other hand, the equalities (3.6) and the sequence (3.7) enable us to show that ad−r

must be positive. This completes the proof that ad−r = 1. Now, from the exact sequence
0 → OX(−1) → OX → OCH → 0, we have⊕

j≥0

H0(CH,OCH(j)) →
⊕
j≥0

H1(X,OX(j − 1)) →
⊕
j≥0

H1(X,OX(j)) → 0.

Therefore h1(X,OX(j − 1)) ≥ h1(X,OX(j)) for all j ≥ 0. Let E denote the image of⊕
j≥0 H

0(CH,OCH(j)) in
⊕

j≥0H
1(X,OX(j−1)). Note that OCH is 0-regular as a coherent

sheaf on Pr. Thus E is generated by E1 as a graded S-module. This means that if Em = 0
for some m > 0 then Ej = 0 for all j ≥ m. So, if h1(X,OX(m− 1)) = h1(X,OX(m)) for
some m > 0 we have

h1(X,OX(m− 1)) = h1(X,OX(m)) = h1(X,OX(m+ 1)) = · · · ,
which happens only when H1(X,OX(m − 1)) = H1(X,OX(m)) = · · · = 0. This shows
that the sequence a0, a1, . . . , ad−r+1 must strictly decrease.
(2) The first formula is obtained immediately from (3.6) and (3.7). The second statement
about the sequence {bj}j∈Z can be shown by using (3.4) and the first part of (3.5). �

4. The arithmetic depth of SMSR of type II

This section is devoted to the study of the arithmetic depth of X and Y := X ∪ F(X),
where X is a SMSR of type II. Our main result is

4.1. Theorem. Let τ(X) denote the pair
(
depth(X), depth(Y )

)
. Then

(1) If r + 1 ≤ d ≤ 2r − 4, then τ(X) = (2, 3).
(2) If 2r − 3 ≤ d ≤ 3r − 7, then τ(X) is equal to (1, 1) or (2, 2) or (2, 3).
(3) If 3r − 6 ≤ d, then τ(X) is equal to (1, 1) or (2, 2).
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To prove this theorem we need some preparations. First we consider the exact sequence
of graded S-modules which is induced by (3.7):

(4.1) 0 → IY → IX → E → H1
∗ (IY ) → H1

∗ (IX) → 0

So, the degree j piece Ej of E is equal to H0(P2,OP2(j − d+ r − 3)).

4.2. Lemma. (1) The sequence 0 → IY → IX → E → 0 is exact.
(2) There exists a form g ∈ S of degree d− r + 3 such that IX = IY + ⟨g⟩.
(3) H1

∗ (IY ) ∼= H1
∗ (IX). In particular, depth(X) = 1 if and only if depth(Y ) = 1.

(4) reg(Y ) ≤ d− r + 3.

Proof. Note that IX has a form g of degree d − r + 3 whose restriction to k[F(X)], the
homogeneous coordinate ring of F(X), is a defining equation of the plane curve X∩F(X).
This element g maps to a nonzero element, say ĝ, of Ed−r+3 = H0(P2,OP2). Obviously,
E is generated by ĝ and hence the map IX → E is surjective. This proves (1) and (2).
Then (3) comes from (1) and (4.1). Now, (4) can be shown by (3), Proposition 3.6 and
Theorem 1.1.(1). �
4.3. Proposition. Set m := reg(Y ). Then the following statements hold:

(1) For all i ≥ 1 we have

βi,j(X) =


βi,j(Y ) for 1 ≤ j ≤ m− 1,

βi,j(Y ) = 0 for m ≤ j ≤ d− r + 1, and

βi,d−r+2(Y ) +
(
r−2
i−1

)
for j = d− r + 2

where βi,j(X) and βi,j(Y ) are respectively the (i, j)th graded Betti numbers of the
homogeneous coordinate rings of X and Y .

(2) m ≤ d− r + 2 if and only if βi,d−r+2(X) =
(
r−2
i−1

)
for all i ≥ 1.

Proof. The structure of the minimal free resolution of E =
(
S/IF(X)

)
(−d + r − 3) is

evident. Now, the assertion comes immediately from the long exact sequence of Tor
functors induced by the exact sequence 0 → IY → IX → E → 0. �
4.4. Proposition. Let C ⊂ Pr, r ≥ 4, be a curve of degree d ≥ 3r − 3 and of maximal
regularity. Also let L be a (d− r + 2)-secant line to C. Then depth(C ∪ L) = 1.

Proof. Note that S := Join(L, C) ⊂ Pr is a rational normal 3-fold scroll of type S(0, 0, r−2)
whose vertex S(0, 0) is exactly the line L. Let IC and IS be respectively the homogeneous
vanishing ideals of C and S in S. Then we have

dimk(IC)2 ≥ dimk(IS)2 =

(
r − 2

2

)
.

Assume now that depth(C ∪ L) ̸= 1, so that C ∪ L is arithmetically Cohen-Macaulay.
Then, by [BS1, Proposition 3.6] it follows that

dimk(IC)2 =

(
r + 1

2

)
− d− 1, whence

(
r − 2

2

)
≤

(
r + 1

2

)
− d− 1,

and this yields the contradiction that d ≤ 3r − 4. �
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Proof of Theorem 4.1. Note that depth(X) is at most 2 (cf. Proposition 3.6.(1)).
Furthermore, if depth(X) = 1 then depth(Y ) = 1, and if depth(X) = 2 then depth(Y ) is
2 or 3 (cf. Lemma 4.2.(3)). That is, τ(X) ∈ {(1, 1), (2, 2), (2, 3)}. This proves (2).
(1) If d ≤ 2r−4 = 2(r−1)−2, then the general hyperplane section Y ∩H = CH∪LH of Y
is arithmetically Cohen-Macaulay by [BS1, Proposition 3.5]. Thus we have depth(Y ) = 3
and hence depth(X) = 2.
(2) If d ≥ 3r − 6, then depth(CH ∪ LH) = 1 by Proposition 4.4 and hence Y is not
arithmetically Cohen-Macaulay. Therefore either τ(X) = (1, 1) or τ(X) = (2, 2). �

Next, we will construct a few examples, which show that τ(X) can take all possible
pairs listed in Theorem 4.1.

4.5. Construction and Examples. We assume that the characteristic of the base field

k is zero. Let X̃ := S(a, b) ⊂ Pa+b+1 be a rational normal surface scroll for some integers
a, b ≥ 3. Now, let Λ be a (b− 3)-dimensional subspace of ⟨S(b)⟩ = Pb which avoids S(b)

and let X ⊂ Pa+3 be the image of X̃ under the linear projection πΛ : Pa+b+1 \ Λ → Pa+1.
Observe that this linear projection maps ⟨S(b)⟩ onto a plane P2 = F. Suppose that this
projection maps S(b) birationally onto a plane curve Cb ⊂ F of degree b. Then, by [BLPS,
Theorem 6.3] we obtain:

(∗) X is a surface of maximal sectional regularity of type II and F is the extremal
secant variety of X.

(A) If b ≤ a+2, then deg(X) ≤ 2(a+3)− 4 and hence we get τ(X) = (2, 3) by Theorem
4.1(1).
(B) From now on, we assume that b ≥ a+3, and we will vary the projection center Λ. To
do so, we choose a homogeneous polynomial f ∈ k[s, t] of degree b which is not divisible
by s and by t. Let Λf = Pb−3 be a subspace of ⟨S(b)⟩ such that the plane curve Cb is
parametrized by [sb : f : tb]. Then, the surface

Xf := πΛf
(X̃) ⊂ Pa+3

can be written as

Xf = {[usa : usa−1t : . . . : usta−1 : uta : vsb : vf(s, t) : vtb] | (s, t), (u, v) ∈ K2 \ {(0, 0)}}.

After an appropriate choice of f , this latter presentation is accessible to syzygetic com-
putations. The occurring Betti diagrams have been computed by means of the Computer
Algebra System Singular [DGSch].

4.6. Example. Let (a, b) = (3, 8) and consider Xfi ⊂ P6 (i = 1, 2, 3) for the following
choices of f = fi:

(1) f1 = s7t+ s6t2 + s5t3 + s4t4 + s3t5 + s2t6 + st7,
(2) f2 = s7t+ s6t2 + s5t3 + s4t4 + s3t5 + s2t6, and
(3) f3 = s7t+ s6t2 + s5t3 + s4t4.

Then Xfi ⊂ P6 is of degree d = 11(= 2r− 1 = 3r− 7) for all i = 1, 2, 3. The graded Betti
diagrams of Xf1 , Xf2 and Xf3 are given respectively in the three tables below.
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i 1 2 3 4 5 6
βi,1 6 8 3 0 0 0
βi,2 0 0 0 0 0 0
βi,3 4 12 12 4 0 0

Xf1 βi,4 0 0 0 0 0 0
βi,5 1 4 6 4 1 0
βi,6 0 0 0 0 0 0
βi,7 1 4 6 4 1 0
βi,1 5 5 0 0 0 0
βi,2 1 0 1 0 0 0

Xf2 βi,3 1 9 11 4 0 0
βi,4 4 18 32 28 12 2
βi,5 0 0 0 0 0 0
βi,6 0 0 0 0 0 0
βi,7 1 4 6 4 1 0
βi,1 3 2 0 0 0 0
βi,2 10 27 24 7 0 0

Xf3 βi,3 0 0 0 0 0 0
βi,4 0 0 0 0 0 0
βi,5 0 0 0 0 0 0
βi,6 0 0 0 0 0 0
βi,7 1 4 6 4 1 0

By Proposition 4.3 (a) we can see from these tables that

τ(Xf1) = (2, 2), τ(Xf2) = (1, 1) and τ(Xf3) = (2, 3).

4.7. Example. Let (a, b) = (3, 9) and consider Xfi ⊂ P6, (i = 1, 2) for the two choices

(1) f1 = s8t+ s7t2 + s6t3 + s5t4 + s4t5 + s3t6 + s2t7 + st8 and
(2) f2 = s8t+ s7t2 + s6t3 + s5t4 + s4t5 + s3t6 + s2t7.

Then Xfi ⊂ P6 is of degree d = 12(= 3r − 6) for i = 1, 2. The graded Betti diagrams of
Xf1 and Xf2 are given respectively in the tables below.
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i 1 2 3 4 5 6
βi,1 6 8 3 0 0 0
βi,2 0 0 0 0 0 0
βi,3 2 4 0 0 0 0

Xf1 βi,4 1 4 10 6 1 0
βi,5 0 0 0 0 0 0
βi,6 1 4 6 4 1 0
βi,7 0 0 0 0 0 0
βi,8 1 4 6 4 1 0
βi,1 5 5 0 0 0 0
βi,2 0 0 1 0 0 0
βi,3 5 15 15 5 0 0

Xf2 βi,4 0 0 0 0 0 0
βi,5 5 23 42 38 17 3
βi,6 0 0 0 0 0 0
βi,7 0 0 0 0 0 0
βi,8 1 4 6 4 1 0

By Proposition 4.3 (a) we can verify that

τ(Xf1) = (2, 2) and τ(Xf2) = (1, 1).

5. Two more issues on SMSR’s of type II

This section is devoted to the discussion of two issues which come naturally from results
in our main Theorem 1.1.

For a projective variety V ⊂ PN , we define the index of normality N(V ) of V as the
largest integer j such that V fails to be j-normal. When V is arithmetically normal,
we define N(V ) = −∞ as convention. Now, let X ⊂ Pr be a SMSR of type II and
of degree d. Then Theorem Theorem 1.1.(1) and (3), it is possible that the value of
N(X) is strictly smaller than d − r + 1. Indeed, this happens for all our computational
examples (cf. Problem and Remark 5.2). Along this line, our first main result in this
section is about the relations among the index of normality, the Betti numbers of X and
the Castelnuovo-Mumford regularity of the union Y = X ∪ F(X).

5.1. Theorem. Let X ⊂ Pr, r ≥ 5, be a SMSR of type II and of degree d. Then the
following statements are equivalent:

(a) N(X) ≤ d− r.
(b) reg(Y ) ≤ d− r + 2.
(c) βi,d−r+2(X) =

(
r−2
i−1

)
for all i ≥ 1.

(d) βr,d−r+2(X) = 0.

Proof. (a) ⇒ (b): Since X is (d − r + 1)-normal, we have H1(Pr, IY (d − r + 1)) = 0 by
Lemma 4.2.(3). Then Proposition 3.6.(2) and (3.6) complete the proof that reg(Y ) ≤
d− r + 2.
(b) ⇒ (c): This follows immediately by Proposition 4.3.(2).
(c) ⇒ (d): This is obviously true.
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(d) ⇒ (a): If depth(X) > 1, then our claim is obvious. So, we assume that depth(X) = 1
and consider the exact sequence

0 → AX → B → F → 0

where AX = S/IX is the homogeneous coordinate ring of X, B =
⊕

n∈ZH
0(Pr,OX(n))

denotes the total ring of sections of X and F = H1
∗ (IX). In the long exact sequence

TorSr+1(B, k)d+2 → TorSr+1(F, k)d+2 → TorSr (AX ,k)d+2,

the first and the third module vanish since depth(B) is positive and βr,d−r+2(X) =
dimk Tor

S
r (AX ,k)d+2. Therefore we have Tor

S
r+1(F, k)d+2 = 0 and hence βr+1,d−r+1(F ) = 0.

This implies that Fj = H1(Pr, IX(j)) vanishes for all j ≥ d − r + 1 since F is a graded
Artinian module over S. �
5.2. Problem and Remark. (A) In Example 4.6, Xfi ⊂ P6, i = 1, 2, 3, is of degree 11.
Also we can see β6,7(Xfi) = 0 from their graded Betti diagrams. So, Xfi is 6-normal by
Theorem 5.1.
(B) In Example 4.7, Xfi ⊂ P6, i = 1, 2, is of degree 12. Also we can see β6,8(Xfi) = 0
from their graded Betti diagrams. So, Xfi is 7-normal by Theorem 5.1.
(C) For all our computational examples, it holds that βr,d−r+2(X) = 0. So we aim to pose
the following

Conjecture. For X ⊂ Pr in Theorem 5.1, it holds always that N(X) ≤ d− r.

Our next issue in this section is about the value of e(X) and the socle of the second
cohomology module H2

∗ (IX)) of X. To be precise, Theorem 1.1.(4) says that e(X) is

always greater or equal than
(
d−r+2

2

)
. Concerning the triple (X̃,D,Λ) of section 1, a

general situation will be that D ⊂ X̃ is a smooth irreducible curve and the projection
center Λ ⊂ ⟨D⟩ is general enough so that C = πΛ(D) is a plane curve with exactly

(
d−r+2

2

)
nodes. In this case, we get the equality e(X) =

(
d−r+2

2

)
. Along this line, we study the

’general case’ in which e(X) takes its minimally possible value
(
d−r+2

2

)
. We will show that

the condition e(X) =
(
d−r+2

2

)
is equivalent to the simplicity of the socle of the second

total cohomology module of IX . To formulate our result, we recall the following notation.

5.3. Notation and Reminder. Let T =
⊕

n∈Z Tn be a graded S-module. Then, we
denote the socle of T by Soc(T ), thus:

Soc(T ) := (0 :T S+) ∼= HomS(k, T ) = HomS(S/S+, T ).

Keep in mind that the socle of a graded Artinian S-module T is a k-vector space of finite
dimension, which vanishes if and only if T does.

5.4. Proposition. The following statements are equivalent:

(a) e(X) takes its minimally possible value
(
d−r+2

2

)
;

(b) h2(Pr, IY (j)) = 0 for all j ∈ Z;
(c) h2(Pr, IX(j)) =

(−j+d−r+2
2

)
for all j ≥ 0.

(d) dimk
(
Soc(H2

∗ (IX))
)
= 1.
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Proof. Proposition 3.6(2) shows the equivalence of (a), (b) and (c). So, it remains to show
the equivalence (b) ⇔ (d). Consider the exact sequence of graded S-modules

0 → H2
∗ (IY ) → H2

∗ (IX) → H2
∗
(
OP2(−d+ r − 3)

)
.

As

Soc
(
H3

∗ (IF(−d+ r − 3))
)
= k(d− r),

h2(Pr, IY (j)) = 0 for all j ≥ d− r, and

h2(Pr, IX(j)) = 0 for all j ≥ d− r + 1

we get an isomorphism of graded S-modules

Soc
(
H2

∗ (IY )
) ∼= Soc

(
H2

∗ (IX)
)
≤d−r−1

.

From this isomorphism, we see that

H2
∗ (IY ) = 0 if and only if Soc

(
H2

∗ (IX)
)
≤d−r−1

= 0.

By Proposition 3.6(2) the module H2
∗ (IY ) vanishes if and only if the number h2(Pr, IY )

does. So, condition (b) holds if and only if Soc
(
H2

∗ (IX)
)
is concentrated in degrees ≥ d−r.

By Proposition 3.6.(1) this is the case if and only if condition (d) holds. �
5.5. Remark. Let X be an arbitrary SMSR of type II.
(A) If Y is arithmetically Cohen-Macaulay and hence τ(X) = (2, 3), then the above
equivalent conditions (a) and (b) hold. On the other hand, if τ(X) = (2, 2) then e(X)
is strictly bigger than

(
d−r+2

2

)
. There exist such surfaces. See Example 4.6 and Example

4.7.
(B) From the exact sequence (3.1), we have

h0(X,OX(j)) = d

(
j + 1

2

)
+ j + 1 + h2(Pr, IX(j))− e(X) for all j ∈ N0.

Now, if X is general in the sense specified above, we have

h0(X,OX(j)) =


d
(
j+1
2

)
+ j + 1 +

(
d−r+2−j

2

)
−
(
d−r+2

2

)
for 0 ≤ j ≤ d− r,

d
(
j+1
2

)
+ j + 1−

(
d−r+2

2

)
for d− r < j.
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