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Abstract. Let X ⊂ Pr be a variety of almost minimal degree which is the
projected image of a rational normal scroll X̃ ⊂ Pr+1 from a point p outside
of X̃. In this paper we study the tangent spaces at singular points of X
and the geometry of the embedding scrolls of X, i.e. the rational normal
scrolls Y ⊂ Pr which contain X as a codimension one subvariety.

1. Introduction

Varieties of minimal degree, namely (irreducible non-degenerate) projective
varieties X ⊆ Pr with deg(X) = codim(X)+1 have been studied and classified
already in the 19th century by del Pezzo in the case of surfaces and by Bertini
in the general case. Varieties of almost minimal degree, e.g. projective varieties
X ⊆ Pr which satisfy the equality deg(X) = codim(X) + 2 are still an active
branch of projective algebraic geometry. These latter varieties were studied
and classified by Fujita (see [Fu1] or [Fu3]). A purely algebraic approach to
varieties of almost minimal degree was given by Hoa-Stückrad-Vogel [H-St-V]
in 1991. In [B-S] it was shown that varieties X ⊆ Pr of almost minimal degree
which are either non-linearly normal or non-normal are precisely the linear
projections of varieties X̃ ⊆ Pr+1 of minimal degree from a point p ∈ Pr+1\X̃.

So, understanding varieties of almost minimal degree which are either non-
linearly normal or else non-normal is equivalent to knowing the possible linear
projections πp : X̃ −→ Xp := πp(X̃) of a variety of minimal degree X̃ ⊆ Pr+1

from points p ∈ Pr+1\X̃. If X̃ is (a cone over) the Veronese surface in P5,
this is a task which can be solved easily. In the ”general case”, namely if the
projecting variety X̃ ⊆ Pr+1 is a (cone over) a smooth rational normal scroll
this same task turns out to be more demanding. The crucial point here consist
in knowing, how the so called secant locus

Σp(X̃) := {q ∈ X̃ | #(⟨p, q⟩ ∩ X̃) > 1}

of X̃ with respect to the center of projection p depends on p. In [B-P] we
have solved this problem, by making explicit the so called secant stratifica-
tion of X̃. One application of this is an extension of Fujita’s classification of
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normal del Pezzo varieties to possibly non-normal del Pezzo varieties (s.[B-P]).

In the present paper, we are concerned with local aspects of varieties of
almost minimal degree.

Our first aim is to determine the embedding dimension dim(TxX) and the
multiplicity mx(X) of a closed singular point x of a variety X ⊆ Pr of almost
minimal degree which is not normal. It turns out that for all such points x
which are not vertex points of X we have

dim(TxX) = 2 dim(X) + 2− depth(X) and mx(X) = 2,

where depth(X) denotes the arithmetic depth of X (s. Theorem 3.9). Clearly
the behavior of the tangent spaces TxX of a variety X ⊆ Pr of almost minimal
degree is closely related to the question how the tangent spaces Tq1X̃, Tq2X̃ of

the projecting variety X̃ ⊆ Pr+1 in two distinct points q1, q2 ∈ X̃ intersect.
Again, the case where X̃ ⊆ Pr+1 is a rational normal scroll is crucial here. We
treat this problem completely in the case where X̃ is smooth (s. Theorem 4.2)
and a cone (s. Corollary 4.4). Once more, the secant stratification of X̃ is the
basic tool we need to do this.

The final sections 5 and 6 are devoted to the study of the so called embedding
scrolls Y ⊆ Pr of a variety X ⊆ Pr of almost minimal degree ≥ 5, that is of
scrolls Y containingX and satisfying dim(Y ) = dim(X)+1. In [B-S] it is shown
that these embedding scrolls always exist. They are a very useful tool for the
study of Betti diagrams of varieties of almost minimal degree (s.[B-S],[N] and
in particular [P1]). Our aim is to give an account on all possible embedding
scrolls of a given variety X ⊆ Pr of almost minimal degree (which is not a
cone). We show that the singular embedding scrolls of X are always of the
shape Y = Join(Sing(X), X) and hence unique, and that in the case where
2 ≤ depth(X) ≤ dim(X) there are no smooth embedding scrolls (s. Theorems
5.5 and 5.8). We also describe the possible smooth embedding scrolls in the
case depth(X) = dim(X) + 1, that is if X is maximally del Pezzo. In this
situation we have (s. Theorem 6.10)

- a one-dimensional family of smooth embedding scrolls if X is a curve
- a unique smooth embedding scroll if the projecting scroll X̃ is a surface

without line sections
- no smooth embedding scroll in the remaining cases.

In the case where X is smooth, we show that all its embedding scrolls are
smooth (s. Theorem 5.5 (1)). But in this case, we are not able yet to describe
all possible embedding scrolls (which indeed occur in families now).
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2. Preliminaries

Notation and Remark 2.1. (A) Let K be an algebraically closed field, let
r be an integer ≥ 2 and let X̃ ⊆ Pr+1

K be a variety of minimal degree with

n := dim(X̃) and e := codim(X̃) ≥ 2.

So, X̃ ⊆ Pr+1
K is either a rational normal scroll or (a cone over) the Veronese

surface in P5
K . Keep in mind that X̃ is integral, non-degenerate, arithmetically

normal, arithmetically Cohen-Macaulay (CM) and of degree e+ 1.

(B) Now, let p ∈ Pr+1
K \X̃ be a closed point. We fix a projective space Pr

K

and a linear projection

πp : X̃ → X := πp(X̃) ⊆ Pr
K

of X̃ from p. We may consider Pr
K as a subspace of Pr+1

K with p /∈ Pr
K and πp

as given by the canonical projection of Pr+1
K from p onto Pr

K , so that π−1
p (x) =

X̃ ∩ ⟨x, p⟩ for all closed points x ∈ X. Keep in mind that πp is finite and
birational and that X is a variety of almost minimal degree, in the sense of
[B-S], so that deg(X) = codim(X) + 2.

(C) Keep the above notations and consider the secant cone of X̃ with respect
to p, defined by

Secp(X̃) :=
∪

q∈X̃:length(X̃∩⟨p,q⟩)≥2

⟨p, q⟩

if X̃ admits secant lines passing through p, and Secp(X̃) = {p} else. We furnish

Secp(X̃) with its reduced scheme structure. We also introduce the secant locus

of X̃ with respect to p, which is defined as the scheme theoretic intersection

Σp(X̃) := Secp(X̃) ∩ X̃.

Let us also consider the arithmetic depth of X, which we denote by t, thus

t := depth(X).

In these notations we have (s. [B-S, Theorem 1.3]):

(2.1) If t = 1, then X̃ and X are smooth, πp : X̃ → X is an isomorphism
and X is not linearly normal.

(2.2) If t ≥ 2, then Secp(X̃) = Pt−1
K ⊆ Pr+1

K , the secant locus Σp(X̃) ⊆ Pt−1
K

is a hyperquadric and πp(Σp(X̃)) = Pt−2
K is the non-normal locus of X.

In addition, if X is not arithmetically CM, then the generic point of the non
CM-locus of X is of Goto type. More precisely:

(2.3) If 1 ≤ t ≤ n, then πp(Σp(X̃)) is the non CM-locus of X and the generic
point x of this locus satisfies

H i
mX,x

(OX,x) ∼=

{
0, if i ̸= 1, dim(OX,x),

κ(x), if i = 1.



4 M. BRODMANN AND E. PARK

(D) According to [B-S] a maximal del Pezzo variety X ⊆ Pr
K is a variety of

almost minimal degree which is arithmetically CM. These are indeed the del
Pezzo varieties in the sense of Fujita [Fu3][Fu2] which are in addition linearly
normal. A del Pezzo variety is a projective variety which is the image of a
maximal del Pezzo variety under a linear isomorphic projection. Using this
terminology we can say (s. [B-S, Theorem 1.2], [Fu1] and [Fu3]):

(2.4) A variety X ⊆ Pr
K of almost minimal degree is either a normal maximal

del Pezzo variety, or obtained by a projection πp : X̃ � X of a variety

X̃ ⊆ Pr+1
K of minimal degree and codimension ≥ 2 from a closed point

p ∈ Pr+1
K \X̃.

In the latter case we call X̃ ⊆ Pr+1
K a projecting variety (of minimal degree)

for X. •

We now recall a few facts on smooth rational normal scrolls and fix some
further notation.

Notation and Reminder 2.2. (A) For a positive integer a, let σa : P1
K → Pa

K

be the a-uple embedding and let S(a) := σa(P1
K) ⊂ Pa

K be the rational normal
curve of degree a.

(B) Let a1, · · · , an be a non-decreasing sequence of positive integers such
that r+1 =

∑
ai + n− 1. Then we choose n complementary linear subspaces

Λi = Pai
K ⊂ Pr+1

K and rational normal curves S(ai) ⊂ Λi for all i ∈ {1, . . . , n}.
We may define the smooth n-fold rational normal scroll S(a1, · · · , an) as

X̃ = S(a1, · · · , an) :=
∪
x∈P1

⟨σa1(x), · · · , σan(x)⟩ ⊂ Pr+1
K .

Note that S(a1, · · · , an) is determined up to projective equivalence by the in-
tegers ai. Moreover, any smooth rational normal scroll X̃ ⊆ Pr+1

K of dimension
n is projectively equivalent to a scroll S(a1, . . . , an) with uniquely determined
positive integers a1 ≤ a2 ≤ . . . ≤ an.

(C) For each closed point x ∈ P1
K , we consider the linear (n− 1)-space

L(x) := ⟨σa1(x), · · · , σan(x)⟩,
called the ruling of X̃ over x. Moreover, let

φ : S(a1, · · · , an) → P1
K

be the natural projection morphism, so that φ−1(x) = L(x) for all x ∈ P1
K . •

Next, we recall a few facts on hyperplane sections of smooth rational normal
scrolls and their linear projections.

Remark 2.3. (A) (cf. [Ha, Theorem 8.29]) Let n > 1 and let X̃ :=
S(a1, · · · , an) ⊂ Pr+1 be a smooth rational normal n-fold scroll. For a hy-
perplane H̃ ⊂ Pr+1, the hyperplane section X̃ ∩ H̃ ⊆ H̃ is a smooth rational
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(n− 1)-fold scroll if and only if L(x) * H̃ for all x ∈ P1.

(B) Keep the notations of part (A) and let Ps
K = Λ ⊂ Pr+1

K be a linear

subspace such that dim(X̃ ∩ Λ) ≤ 0. Let H̃ := {H̃ ∈ (Pr+1
K )∗

Λ ⊆ H̃} be the

linear (r − s)-subspace of (Pr+1
K )∗ which consists of all hyperplanes H̃ ⊂ Pr+1

K

containing Λ. Moreover let G = {H̃ ∈ H̃
∃x ∈ P1

K : L(x) ⊆ H̃} be the family

of all hyperplanes in Pr+1
K which contain Λ and some ruling L(x) of X̃. Writing

G =
∪

x∈P1{H̃ ∈ (Pr+1
K )∗

⟨L(x),Λ⟩ ⊆ H̃} and observing that ⟨L(x),Λ⟩ = Pn+s
K

for generic x ∈ P1
K and ⟨L(x),Λ⟩ = Pn+s−1

K if L(x)∩Λ ̸= ∅ we see that the closed
set G ⊆ (Pr+1

K )∗ is of dimension ≤ (r+1)−(n+s+1)+1 = r−n−s+1 < r−s,

so that G & H̃ = Pr−s
K . According to the observation made in part (A) we

thus see that for a generic hyperplane H̃ ⊂ Pr+1
K containing Λ, the intersection

X̃ ∩ H̃ ⊆ H̃ = Pr
K is a smooth rational (n− 1)-fold scroll.

(C) Keep the above notations and let Pu
K = L ⊆ Pr+1

K be a linear subspace

with L ∩ X̃ = ∅. Let πL : X̃ → X := πL(X̃) ⊆ Pr−u
K be a linear projection of

X̃ from L. We may assume that Pr−u
K ⊆ Pr+1

K is disjoint to L and πL is given
by the canonical projection of Pr+1

K from L onto Pr−u
K . Now, let x ∈ X be a

closed point. Let Λ := ⟨x, L⟩. As the morphism πL : X̃ → X is finite, the fibre
X̃∩Λ = π−1

L (x) is of dimension 0. Moreover the assignment H 7→ H̃ := ⟨H,L⟩
yields an isomorphism between the space H ⊆ (Pr−u

K )∗ of all hyperplanes

H ⊆ Pr
K running through x and the space H̃ ⊆ (Pr+1

K )∗ of all hyperplanes

H̃ ⊆ Pr+1
K containing Λ. As π−1

L (X ∩H) = X̃ ∩ H̃ for all H ∈ H we conclude
from part (B) that X ∩ H is irreducible for a generic hyperplane H ⊆ Pr−u

K

running through x.

(D) Keep the previous notations and assume in addition that πL : X̃ → X is
birational. Then, there is a non-empty open set U ⊆ X such that πL induces
an isomorphism from Ũ := π−1

L (U) onto U . For generic H ∈ H we have

U ∩ (X ∩ H) = U ∩ H ̸= ∅ and the induced isomorphism Ũ ∩ (X̃ ∩ H̃) ∼=
U ∩ (X ∩ H) implies that U ∩ (X ∩ H) is smooth. So, if πL : X̃ → X is
in additional birational we conclude from part (C) that X ∩ H is not only
irreducible but also generically reduced for a generic hyperplane H ⊆ Pr−u

K

with x ∈ H. •

Before resuming the above observations we prove the following lemma.

Lemma 2.4. Let X ⊂ Pr
K be a nondegenerate irreducible projective variety of

degree d and codimension e ≥ 2. Let p be the minimal prime divisor of d. Then
for any linear space Pt

K = Λ ⊂ Pr
K with t ≤ ⌈e−1− d

p
⌉ and Λ∩X = ∅, the linear

projection πΛ : X → Pr−t−1
K of X from Λ is birational onto XΛ := πΛ(X).

Proof. Suppose that πΛ : X → XΛ is not birational. Then deg(πΛ) ≥ p since it
is a divisor of d. On the other hand, the codimension of XΛ in Pr−t−1

K is equal



6 M. BRODMANN AND E. PARK

to e− t− 1 and so we have deg(XΛ) ≥ e− t. Therefore

d = deg(πΛ) · deg(XΛ) ≥ (e− t)p,

which contradicts the assumption that t ≤ ⌈e− 1− d
p
⌉. �

Now we summarize the observations made in Remark 2.3 as follows:

Proposition 2.5. Let r > 2 and let X̃ ⊆ Pr+1
K be a smooth rational normal

scroll of degree d with dim(X̃) > 1. Let Pu
K = L ⊆ Pr+1

K be a linear subspace

such that L ∩ X̃ = ∅, and let πL : X̃ → X := πL(X̃) ⊆ Pr−u
K be a linear

projection of X̃ from L. Let x ∈ X be a closed point and let Pr−u−1
K = H ⊂ Pr−u

K

be a generic hyperplane running through x. Then

(a) X ∩H is irreducible.

(b) If u ≤ ⌈d − 2 − d
p
⌉, where p is the minimal prime divisor of d, then

X ∩H is in addition generically reduced.

Proof. Clear from Remark 2.3 (C), (D) and Lemma 2.4. �

3. Tangent spaces of varieties of almost minimal degree

The aim of this section is to calculate the dimension of the tangent space TxX
and the multiplicity mx(X) of an n-dimensional projective variety X ⊆ Pr

K

of almost minimal degree at a closed singular point x. We begin with a few
preparations.

First of all, let us recall that a noetherian ring R is said to satisfy the second
Serre condition S2, if for each p ∈ Spec(R) we have

depth(Rp) ≥ min{2, dim(Rp)}.
Correspondingly, a locally noetherian scheme X is said to be S2 at the point
x ∈ X if the local ring OX,x satisfies the property S2. Clearly, if X is CM at
x, then it is S2 at x.

Lemma 3.1. Let X be a locally noetherian scheme, let W ⊂ X be an effective
Cartier divisor and let x ∈ W be such that W is irreducible and generically
reduced at x. Let Z ⊆ X be a closed set such that X is S2 at all points
w ∈ W\Z and assume that either

(1) depth(OX,x) ≥ 2 and dimx(Z) ≤ 0

or

(2) depth(OX,x) > dimx(Z) > dimx(W ∩ Z) ≥ 0.

Then W is integral at x.

Proof. The statement is of local nature. So, we may assume that X = Spec(R)
and x = m, where (R,m) is a local noetherian ring. We then find a non-zero
divisor h ∈ m of R such that IW,x = hR and an ideal a ⊆ R such that

Z = Var(a). As W is irreducible (at x) we have p :=
√
hR ∈ Spec(R). As W

is generically reduced (at x) we have hRp =
√

hRp = pRp. It remains to show
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that the set AssR(R/hR) of primes associated to the R-module R/hR consists
only of p. So, let q ∈ AssR(R/hR). As q ∈ Var(hR) = Var(p) we have p ⊆ q.
Assume now that q ̸= p, so that p & q.

Suppose first that q ∈ Var(a) = Z. If dim(R/a) = dimx(Z) ≤ 0, we
have q = m and condition (1) implies that depth(R) ≥ 2. This leads to the
contradiction that q = m /∈ AssR(R/hR). Therefore dim(R/a) = dimx(Z) > 0
and so condition (2) yields that

depth(R) > dim(R/a) > dim(R/(a+Rh)) ≥ dim(R/q),

whence dim(R/q) < depth(R) − 1 = depth(R/hR). But this contradicts the
fact that q ∈ AssR(R/hR). Therefore q /∈ Var(a). As p & q and h ∈ p is a
non-zero divisor in R we have dim(Rq) > dim(Rp) > 0. As Rq is S2 it follows
depth(Rq) ≥ 2, whence depth(Rq/hRq) ≥ 1, which contradicts the fact that
q ∈ AssR(R/hR). So, q = p as requested. �
Lemma 3.2. Let f : X̃ → X be a finite morphism of integral locally noetherian
schemes and let x ∈ X be with n := dimx(X) ≥ 1 and such that

(1) f−1(x) consists of smooth points of X̃ and
(2) (f∗OX̃)x/OX,x is a simple OX,x-module.

Then

(a) The Hilbert-Samuel function of X at x is given by

HX,x(t) := length(OX,x/m
t+1
X,x) = 2

(
n+ t

n

)
− 1 for all t ∈ N0.

(b) The embedding dimension of X at x and the multiplicity of X at x are
given respectively by dim(TxX) = 2n and mx(X) = 2.

Proof. We write R = OX,x,m = mX,x and R̃ = (f∗OX̃)x. According to hy-

pothesis (2) the ring R̃ is a finite integral extension domain of R, that is the
semilocal ring of X̃ at the finitely many points of f−1(x). Now, by hypotheses
(2) we have m = mR̃ and lengthR(R̃/mR̃) = 2. In particular f−1(x) contains
at most two points. Moreover, by hypotheses (1) the ring R̃ is regular and
of dimension n with one or two maximal ideals, according to the number of
points in the set f−1(x).

(a): We first treat the case in which the set f−1(x) consists of a single point,
so that R̃ has a unique maximal ideal m̃. Assume first that m̃ = m. Then
(R̃,m) is a regular local ring of dimension n, so that lengthR̃(R̃/mt+1) =

(
n+t
n

)
for all t ∈ N0. As the field R̃/m is of degree 2 over the field R/m and as R̃/R is
a simple R-module it follows that lengthR(R/mt+1) = 2

(
n+t
n

)
− 1 for all t ∈ N0

and this is our claim.
Assume now that m̃ ̸= m, so that the residue fields R̃/m̃ and R/m are

isomorphic and m̃/m is a simple R-module. Choosing b ∈ m̃\(m̃2 ∪ m) we
thus get m̃ = m + bR = m + bR̃. As (R̃, m̃) is regular of dimension n and
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b /∈ m̃2 we find elements a1, . . . , an−1 ∈ m such that m̃ =
∑n−1

i=1 aiR̃+ bR̃. Now

a1, . . . , an−1, b is a regular system of parameters of R̃ and so R̃/
∑n−1

i=1 aiR̃ is a
regular local ring of dimension 1. We thus find some element a ∈ m such that
m/

∑n−1
i=1 aiR̃ ⊆ R̃/

∑n−1
i=1 aiR̃ is the principal ideal generated by a+

∑n−1
i=1 aiR̃.

Consequently m =
∑n−1

i=1 aiR̃ + aR̃. As a1, . . . , an−1, a form an R̃-sequence we

thus get the equality lengthR̃(R̃/mt+1) = lenghtR̃(R̃/m)
(
n+t
n

)
for all t ∈ N0.

As lengthR(R̃/m) = 2, lengthR(R̃/R) = 1 and R̃/m̃ ∼= R/m we get our claim.

So, let us assume now that f−1(x) consists of two points. Then R̃ has
precisely two maximal ideals m̃1 and m̃2. As m = mR̃ ⊆ m̃1 ∩ m̃2 & m̃1, m̃2

and dimK(R̃/m) = 2 we get m = m̃1 ∩ m̃2 = m̃1m̃2 and R̃/m̃1
∼= R̃/m̃2

∼= K.
Now, for each t ∈ N0 the Chinese Remainder Theorem yields an isomorphism
R̃/mt+1 ∼= R̃/m̃t+1

1 × R̃/m̃t+1
2 . As the rings R̃m̃i

are regular local of dimension

n, we get lengthR(R̃/m̃t+1
i ) = lengthR̃(R̃/m̃t+1

i ) = length(R̃m̃i
/(m̃iR̃m̃i

)t+1) =(
n+t
n

)
for all t ∈ N0 and for i = 1, 2. It follows that

lengthR

(
R̃/mt+1

)
= 2

(
n+ t

n

)
for all t ∈ N0.

Now, we get our claim as in the previous case.

(b): This is clear from statement (a) as dim(TxX) = HX,x(1) − 1 and
mx(X) = n! lim

t→∞
t−nHX,x(t). �

We now want to prove an intermediate result which concerns a more general
setting than what we are basically heading for in this paper. To do so, we
recall a few facts on projections of certain varieties.

Reminder 3.3. (A) Let X̃ ⊆ Pr+1
K be a smooth rational normal scroll. Then

according to Eisenbud-Green-Hulek-Popescu [E-G-H-P] the variety X̃ has the
syzygetic property N2,2, and hence in particular the condition K2 introduced
by Vermeire [V]. Thus, a natural extension of the program performed in this
paper would be to study simple exterior birational projections X ⊆ Pr

K of

varieties X̃ ⊆ Pr+1
K which satisfy the property N2,2 or even just the condition

K2. So, let πp : X̃ → X = πp(X̃) be a birational morphism induced by a

projection from a point p ∈ Pr+1
K \ X̃. Then by Vermeire [V] one knows that

the secant cone Secp(X̃) ⊆ Pr+1
K of X̃ with respect to p is a linear subspace

and the secant locus Σp(X̃) = Secp(X̃)∩ X̃ of X̃ with respect to p is a hyper-
quadric in this subspace. This implies in particular, that the singular locus
Sing(πp) = πp(Σp(X̃)) of the morphism πp is a linear subspace of dimension
s := dim(Sing(πp))−1 and the sheaf (πp)∗OX̃/OX has support Sing(πp) = Ps

K .

In the particular case in which X̃ is a rational normal scroll we know in addi-
tion that dim(Sing(πp)) = depth(X)− 2 (s. (2.1),(2.2)).
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(B) Keep the hypotheses and notations of part (A). Let x ∈ X be the generic
point of Sing(πp). We are interested in the local behavior of X at x, notably in
the dimension of the tangent space TxX ofX at x. To this end, we aim to apply
Lemma 3.2 and in order to do so, we should know that the sheaf (πp)∗OX̃/OX

is simple at x. This latter requirement is satisfied if X̃ satisfies the property
N2,2. In fact, in this case we can say even more. Namely, according to Ahn-
Kwak [A-K] we have an isomorphism (πp)∗OX̃/OX

∼= OSing(πp)(−1) ∼= OPs(−1)
so that indeed ((πp)∗OX̃)x/OX,x

∼= κ(x). •

Proposition 3.4. Let X̃ ⊆ Pr+1
K be a smooth nondegenerate variety which

satisfies the property N2,2, let p ∈ Pr+1
K \ X̃ and let πp : X̃ → X := πp(X̃) ⊆

Pr
K be a birational linear projection of X̃ from p. Set d := dim(Sing(πp)),

n := dim(X) and let x ∈ X be the generic point of Sing(πp). Then the local
ring OX,x is of dimension n− d and

(a) HX,x(t) := length(OX,x/m
t+1
X,x) = 2

(
n−d+t
n−d

)
− 1 for all t ∈ N0.

(b) dim(TxX) = 2(n− d) and mx(X) = 2.

Proof. By Reminder 3.3 (A) the singular locus Sing(πp) ⊆ X ⊆ Pr
k of πp is a lin-

ear subspace of dimension d and so, the local local ring OX,x has indeed dimen-
sion n−d. According to Reminder 3.3 (B) the OX,x-module

(
(πp)∗OX̃

)
x
/OX,x

is simple. Now, we may conclude by Lemma 3.2. �
Corollary 3.5. Let X ⊆ Pr

K be a variety of almost minimal degree with smooth

projecting variety X̃ ⊆ Pr+1
K of minimal degree. Let x ∈ Sing(X) be a closed

point and set n = dim(X). Assume that either n = 1 or depth(X) = 2 ≤ n.
Then

(a) HX,x(t) := lenght(OX,x/m
t+1
X,x) = 2

(
n+t
n

)
− 1 for all t ∈ N0.

(b) dim(TxX) = 2n and mx(X) = 2.

Proof. By our hypothesis we have a finite birational linear projection mor-
phism πp : X̃ � X such that the restriction πp �: X̃\Σp(X̃) → X\πp(Σp(X̃))
is an isomorphism (s. Notation and Remark 2.1).

Assume first that n = 1. Then X̃ ⊆ Pr+1
K is a rational normal curve and

Sing(X) ̸= ∅ yields that πp is not an isomorphism, whence X is arithmeti-
cally CM (s. Notion and Remark 2.1). So, by [B-S, Theorem 6.2] we have
h1(X,OX) = 1 and hence the Hilbert polynomial of X is given by pOX

(t) =

pX(t) = (r + 1)t, whereas for X̃ we have p(πp)∗OX̃
(t) = pX̃(t) = (r + 1)t + 1.

Therefore p(πp)∗OX̃/OX
(t) ≡ 1, and as x is in the support of (πp)∗OX̃/OX it

follows that ((πp)∗OX̃)x/OX,x is a simple OX,x-module. Now we conclude by
Lemma 3.2.

So, let depth(X) = 2 ≤ n. Observe that X is not arithmetically CM so that
X̃ cannot be the Veronese surface in P5 (s. [B-P, Remark 6.3]). Hence X̃ must
be a smooth rational normal scroll. So, according to the observations made in
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Reminder 3.3 (A) the variety X̃ satisfies N2,2 and Sing(πp) = {x}. Now, we
may conclude by Proposition 3.4. �

Lemma 3.6. Let X ⊆ P4
K be a surface of almost minimal degree, whose pro-

jecting variety X̃ ⊆ P5
K is the Veronese surface. Let x ∈ Sing(X) be a closed

point. Then

(a) HX,x(t) := length(OX,x/m
t+1
X,x) = (t+ 1)2 for all t ∈ N0.

(b) dim(TxX) = 3, mx(X) = 2 and depth(X) = 3.

Proof. Observe that X is a non-normal del Pezzo surface whose vanishing
ideal I ⊆ K[X0, . . . , X4] is generated by two quadrics (s. [B-P, Remark
6.3]); in particular depth(X) = 3. After an appropriate linear coordi-
nate transformation we may assume that x is the origin of an affine 4-
space A4

K = Spec
(
K
[
X1

X0
. . . X4

X0

])
. So, with yi = Xi

X0
we may write OX,x =(

k[y1, . . . , y4]/(f1, f2)
)
(y1,...,y4)

with two polynomials f1, f2 ∈ k[y1, . . . , y4] of de-

gree 2 vanishing at x = (0, 0, 0, 0). We claim that one of the two polynomials
fi satisfies µx(fi) = 1. Otherwise f1 and f2 would be homogeneous and so
infinitely many straight lines L ⊆ X would run through x. If L ⊆ X is a line
not contained in πp(Σp(X̃)), then π−1

p (L) = ⟨L, p⟩ ∩ X̃ = P2
K ∩ X̃ * Σp(X̃)

together with the fact that ⟨p, q⟩ ∩ X̃ = {q} for all q ∈ X̃ \ Σp(X̃) shows that
π−1
p (L) is a line. So there is a point x̃ ∈ π−1

p (x) contained in infinitely many

lines L̃ ⊆ X̃, a contradiction. Therefore we may assume that µx(f1) = 1.
As x ∈ Sing(X) we then must have µx(f2) = 2 whence the completion of
OX,x is the formal local ring of the vertex of a quadratic cone in in A3

K .
So, the Hilbert-Samuel function HX,x is of the requested type and our claim
follows. �

Proposition 3.7. Let X ⊆ Pr
K be a variety of almost minimal degree of di-

mension n and arithmetic depth t with smooth projecting variety X̃ ⊆ Pr+1
K of

minimal degree. Let x ∈ Sing(X). Then

dim(TxX) = 2n+ 2− t and mx(X) = 2.

Proof. If X̃ ⊆ P5
K is the Veronese surface we conclude by Lemma 3.6. So, we

may assume that X̃ ⊆ Pr+1
K is a smooth rational normal scroll of codimension

≥ 2. We now proceed by induction on t. According to (2.1) we have t ≥ 2. If
t = 2, we conclude by Corollary 3.5.

So, let t > 2 and let πp : X̃ → X be as in Notation and Remark 2.1. Again

we have x ∈ Z := πp(Σp(X̃)) = Pt−2
K . Now, let Pr−1

K = H ⊆ Pr
K be a generic

hyperplane containing x. Then, by Proposition 2.5 the hyperplane section
W := X ∩ H is irreducible and generically reduced. Observe that X is S2

at all points w ∈ W\Z (cf (2.2)). Moreover, by the genericity of H we have
W∩Z = H∩Z = Pt−3

K . As depth(X) = t > 2 it follows depth(OX,w) ≥ t−1 ≥ 2



SECANT LOCI OF RATIONAL NORMAL SCROLLS 11

for all closed points w ∈ W . But now, Lemma 3.1 yields that H ∩X = W is
an integral scheme. In particular, we have

x ∈ Sing(H ∩X), dim(X ∩H) = n− 1, depth(X ∩H) = t− 1

and the genericity of H also implies that dim(Tx(X ∩ H)) = dim(TxX) − 1
and mx(X ∩ H) = mx(X). Finally, in view of the isomorphism H ∼= H̃
of Remark 2.3 (C) we may consider H̃ := ⟨H, p⟩ as a generic hyperplane
running through ⟨x, p⟩ = Λ. So, by Remark 2.3 (B) the hyperplane section
X̃ ∩ H̃ ⊆ H̃ = Pr

K is a smooth rational (n − 1)-fold scroll. Restricting πp we

also have a projection π̃p : X̃ ∩ H̃ → πp(X̃ ∩ H̃) = X ∩H of X̃ ∩ H̃ ⊆ H̃ from

p ∈ H̃. So, by induction dimx(Tx(X ∩H)) = 2(n−1)+2− (t−1) = 2n+1− t
and mx(X ∩ H) = 2. In view of the previous observations this proves our
claim. �
Notation and Remark 3.8. (A) Assume that our variety X̃ ⊆ Pr+1

K of
minimal degree is not necessarily smooth and let h denote the dimension of

the vertex Vert(X̃) of X̃, so that Vert(X̃) ∼= Ph
K with the convention that

P−1
K = ∅. Thus X̃ is a smooth rational normal scroll if and only if h = −1.

If h ≥ 0, choose a linear subspace Λ = Pr−h
K ⊂ Pr+1

K which passes through p

and satisfies Λ ∩ Vert(X̃) = ∅. Then X̃0 := X̃ ∩ Λ ⊂ Pr−h
K is an (n − h − 1)-

dimensional smooth rational normal scroll and X̃ = Join(Vert(X̃), X̃0). As the
finite birational morphism πp : X̃ � X is induced by a linear projection, X is

a cone and the set of vertex points of X is given by Vert(X) = πp(Vert(X̃)).

Moreover X0 := πp(X̃0) ⊆ ⟨πp(X̃0)⟩ = Pr−h−1
K is a variety of almost minimal

degree without vertex points and with projecting variety X̃0 ⊆ Pr−h
K of minimal

degree. In particular
X = Join(Vert(X), X0).

(B) Now, let •0 : Pr
K\Vert(X) � Pn−h−1

K be the canonical projection. Then,
for each closed point x ∈ X\Vert(X) we have x0 ∈ X0 and moreover

TxX = ⟨Vert(X), Tx0X0⟩ and OX,x
∼= OX0,x0 [z1, . . . , zh+1](mX0,x0

,z1,...,zh+1)

with indeterminates z1, . . . , zh+1. •

Theorem 3.9. Let X ⊆ Pr
K be a variety of almost minimal degree which is not

a normal maximal del Pezzo variety. Let x ∈ Sing(X)\Vert(X) be a closed
point. Then

dim(TxX) = 2 dim(X) + 2− depth(X) and mx(X) = 2.

Proof. According to 2.4 and Notation and Remark 3.8 (A) we may consider X
as a cone over a variety X0 ⊆ Pr−h−1

K of almost minimal degree with vertex Ph
K

and smooth projecting variety X̃0 ⊆ Pr−h
K of minimal degree. Now, according

to Notation and Remark 3.8 (B) we have dim(TX0,x0) = dim(TX,x) − h − 1
and mx0(X0) = mx(X). As dim(X0) = dim(X) − h − 1 and depth(X0) =
depth(X)− h− 1 we get our claim by applying Proposition 3.7 to the closed
point x0 ∈ X0. �
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4. Intersection of tangent spaces of a rational normal scroll

We keep the notations and hypotheses of section 2.

Reminder 4.1. Let X̃ ⊆ Pr+1
K be a smooth rational normal scroll of codi-

mension ≥ 2 and let p ∈ Pr+1
K \X̃ be a closed point. Then according to [B-P,

Theorem 3.2] (and in the notation introduced in [B-P, (4.1) - (4.6)]) we have
the following six possibilities for the pairs Σp(X̃) ⊆ Secp(X̃):

(4.1) p ∈ SL∅(X̃) : Secp(X̃) = {p} and Σp(X̃) = ∅.
(4.2) p ∈ SLq1,q2(X̃) : Secp(X̃) = P1

K and Σp(X̃) ⊆ P1
K consists of two simple

points.

(4.3) p ∈ SL2q(X̃) : Secp(X̃) = P1
K and Σp(X̃) ⊆ P1

K consists of a double
point.

(4.4) p ∈ SLL1∪L2(X̃) : Secp(X̃) = P2
K and Σp(X̃) ⊆ P1

K consists of two
distinct lines, one of them being contained in a ruling L(x) for some
x ∈ P1

K, the other being a line section.

(4.5) p ∈ SLC(X̃) : Secp(X̃) = P2
K and Σp(X̃) ⊆ P2

K is a smooth conic curve.

(4.6) p ∈ SLQ(X̃) : Secp(X̃) = P3
K and Σp(X̃) ⊆ P3

K is a smooth quadric
surface.

Note also that the six strata SL∗(X̃) ⊆ Pr+1
K \X̃ (with ∗ running through the

above six suffixes) are described in geometric terms by [B-P, Theorem 4.2]. •

Theorem 4.2. Let X̃ ⊂ Pr+1 be a smooth rational normal scroll of codimen-
sion ≥ 2 and dimension n. Let q1, q2 be two distinct closed points of X̃. Also
let xi = φ(qi) for i = 1, 2.

(a) If x1 = x2, then Tq1X̃ ∩ Tq2X̃ = L(x1).

(b) If ⟨q1, q2⟩ ⊂ X̃ and x1 ̸= x2, then Tq1X̃ ∩ Tq2X̃ = ⟨q1, q2⟩.
(c) If ⟨q1, q2⟩ * X̃, then ⟨q1, q2⟩ ∩ X̃ = {q1, q2} and for each closed point p

in ⟨q1, q2⟩ \ X̃

dim (Tq1X̃ ∩ Tq2X̃) = dim Σp(X̃)− 1.

Proof. For the sake of simplicity we denote Tq1X̃∩Tq2X̃ by Λ. As for statement
(a) we refer the reader to Remark 7.4.(B) in [B-S]. Now, suppose that x1 ̸= x2.
Then L(x1)∩L(x2) = ∅ and as Pn−1

K = L(xi) ⊆ TqiX̃ = Pn
K for i = 1, 2 we have

dim⟨Tq1X̃, Tq2X̃⟩ ∈ {2n − 1, 2n, 2n + 1} whence dim(Λ) ∈ {−1, 0, 1}. From
this, statement (b) is obvious.

It remains to prove statement (c). As ⟨q1, q2⟩ * X̃ and as X̃ if defined by

quadrics, we have ⟨q1, q2⟩ ∩ X̃ = {q1, q2}. Moreover q ∈ ⟨q1, q2⟩ ∩ Λ\{q1, q2}
would imply the contradiction that ⟨q1, q2⟩ is a tangent line at X̃ in q1 and
q2. Therefore ⟨q1, q2⟩ ∩ Λ\{q1, q2} = ∅. Now, let p ∈ ⟨q1, q2⟩\{q1, q2}. Then
{q1, q2} ⊆ Σp(X̃) and so p must belong to one of the four strata SL∗(X̃) listed
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under (4.3) - (4.6).

Case (4.3). Suppose that p ∈ SLq1,q2(X̃). Then Σp(X̃) = {q1, q2}. If there

exists a point q ∈ Λ then either ⟨q1, q2, q⟩ is a 4-secant 2-plane to X̃ or else it
meets X̃ along a curve D. Obviously the first case does not occur as X̃ satis-
fies N2 (s. [E-G-H-P]). In the second case, D must be a line since otherwise
D ⊂ Σp(X̃). Moreover D passes through exactly one of the points q1 and q2,

say through q1. So for any r ∈ D \ {q1}, the line ⟨q2, r⟩ is trisecant to X̃ since
it is tangential to X̃ at q2. This is impossible since X̃ is cut out by quadrics.
Therefore Λ = ∅.

Case (4.4). Suppose that p ∈ SLC(X̃) so that C := Σp(X̃) is a smooth
plane conic. Obviously Tq1C and Tq2C meet at a point q ∈ ⟨C⟩ and so Λ
is non-empty. Assume that Λ is a line and let r ∈ Λ be a general point. If
Λ ⊂ ⟨C⟩, then the line ⟨q1, r⟩ is tri-secant to X̃, a contradiction. So Λ and
⟨C⟩ meet transversally. Note that either ⟨q1, q2, r⟩ is a 4-secant 2-plane to X̃
or else meets X̃ along a curve D. By the same argument as in the Case (4.3),
we see that these two situations cannot occur. Therefore Λ is a single point.

Case (4.5). Suppose that p ∈ SLL1∪L2(X̃) so that Σp(X̃) is the union of

a line L which is contained in a ruling L(x) ⊂ X̃ and a line section L′ of

X̃. We may assume that q1 ∈ L (and hence x = x1) and q2 ∈ L′. Let q be
the intersection point of L(x1) and L′. Obviously q ∈ Λ. Assume that Λ is
a line. As Λ and L(x2) = Pn−1

K are contained in Tq2X̃ clearly Λ and L(x2)

meet at a point q′. Note that ⟨q1, q′⟩ is a line section of X̃ since otherwise
it would be a trisecant line to X̃. As p ∈ ⟨q1, q2⟩ ⊆

⟨
⟨q1, q′⟩, ⟨q2, q′⟩

⟩
and

⟨q2, q′⟩ ⊆ L(x2) ⊆ X̃ it follows that ⟨q1, q′⟩ ⊆ Σp(X̃). As ⟨q1, q2⟩ * X̃ we have

q2 /∈ ⟨q1, q′⟩, whence ⟨q1, q′⟩ ̸= L′. So Σp(X̃) contains two line sections – a
contradiction. Therefore Λ cannot be a line, whence Λ = {q}.

Case (4.6). Suppose that p ∈ SLQ(X̃). So Q := Σp(X̃) is a smooth quadric
surface. Obviously Tq1Q and Tq2Q meet along a line and so Λ contains a line.
Since dim Λ ≤ 1, this proves that Λ is a line. �

Notation and Remark 4.3. (A) Let X̃ ⊆ Pr+1
K be a rational normal scroll

of dimension n and codimension ≥ 2 which is not necessarily smooth. We
write X̃ = Join(Vert(X̃), X̃0) with a smooth rational normal scroll X̃0 ⊆
Pr−h
K = ⟨X̃0⟩, where Pr−h

K ⊆ Pr+1
K is a linear subspace disjoint to the vertex

Ph
K = Vert(X̃) of X̃ (s. Notation and Remark 3.8 (A)). If φ0 : X̃0 → P1

K is
defined according to Notation and Reminder 2.2 (C) we now write

L(x) := ⟨Vert(X̃), φ−1
0 (x)⟩
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for all closed points x ∈ P1
K . So, L(x) = Pn−1

K and X̃ =
∪

x∈P1
K
L(x) with

L(x1) ∩ L(x2) = Vert(X̃) for all x1, x2 ∈ P1
K with x1 ̸= x2.

(B) Let the notations and hypotheses be as in part (A) and let

•0 : Pr+1
K \Vert(X̃) � ⟨X̃0⟩ = Pr−h

K

be the natural projection map. Observe that X̃0 = (X̃\Vert(X̃))0 and that

(4.7) TqX̃ = ⟨Vert(X̃), Tq0X̃0⟩ for all closed points q ∈ X̃\Vert(X̃).

Moreover (s. [B-P, Remark 5.4]):

(4.8) Secp(X̃) = Join(Vert(X̃), Secp0(X̃0)),

(4.9) Σp(X̃) = Join(Vert(X̃),Σp0(X̃0)) if p0 /∈ SL2q(X̃0),

and

(4.10) Σp(X̃) = 2⟨Vert(X̃), p0⟩ ⊆ ⟨Vert(X̃), p0⟩ if p0 ∈ SL2q(X̃0).

•

Corollary 4.4. Let X̃ ⊆ Pr+1
K be a rational normal scroll of codimension

≥ 2 and dimension n. Let q1, q2 ∈ X̃ be two distinct closed points such that
⟨q1, q2⟩ ∩ Vert(X̃) = ∅. Let x1, x2 ∈ P1

K be such that qi ∈ L(xi) for i = 1, 2.

(1) Suppose that ⟨q1, q2⟩ ⊆ X̃.

(a) If x1 = x2, then Tq1X̃ ∩ Tq2X̃ = L(x1).

(b) If x1 ̸= x2, then Tq1X̃ ∩ Tq2X̃ = ⟨Vert(X̃), q1, q2⟩.
(2) Supose that ⟨q1, q2⟩ * X̃. Then

⟨Vert(X̃), q1, q2⟩ ∩ X̃ = ⟨Vert(X̃), q1⟩ ∪ ⟨Vert(X̃), q2⟩

and for each closed point p ∈ ⟨Vert(X̃), q1, q2⟩\X̃ we have

dim(Tq1X̃ ∩ Tq2X̃) = dimΣp(X̃)− 1.

Proof. Observe (4.7) and (4.9) and apply Theorem 4.2 to the smooth rational
normal scroll X̃0 and the points (q1)0 and (q2)0 of X̃0. �

Theorem 4.5. Let X̃ ⊆ Pr+1
K be a rational normal scroll of codimension ≥ 2

and let X = πp(X̃) ⊆ Pr
K, where p ∈ Pr+1

K \X̃. If x is a closed singular point of

X with x /∈ Vert(X) such that π−1
p (x) consist of two distinct points x1, x2 ∈ X̃,

then

TxX = ⟨πp(Tx1X̃), πp(Tx2X̃)⟩.

Proof. Let n = dim(X̃) and t = depth(X). By Theorem 3.9 we have
dim(TxX) = 2n + 2 − t. As p ∈ ⟨x1, x2⟩ and x /∈ Vert(X) we have
⟨x1, x2⟩ ∩Vert(X̃) = ∅. So Corollary 4.4 (2) implies that dim(Tx1X̃ ∩Tx2X̃) =
t− 3 and hence

dim⟨Tx1X̃, Tx2X̃⟩ = 2n+ 3− t.
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As π−1
p (x) consists of the two distinct points x1 and x2 we have p /∈ Tx1X̃∪Tx2X̃

and this implies that πp(Txi
X̃) are defined for i = 1, 2 and

πp

(
⟨Tx1X̃, Tx2X̃⟩\{p}

)
⊆ ⟨πp(Tx1X̃), πp(Tx2X̃)⟩.

The left-hand side space now has dimension 2n + 3 − t − 1 = dim(TxX). As
πp(Txi

X̃) ⊆ TxX for i = 1, 2 we get our claim. �

5. Singular Embedding Scrolls

Notation and Reminder 5.1. (A) Throughout this section let X ⊆ Pr
K be

a variety of almost minimal degree, of dimension n and codimension e ≥ 2.
Assume that X admits a projecting rational normal scroll X̃ ⊆ Pr+1

K and let

πp : X̃ → X = πp(X) be the corresponding projection morphism.

(B) An embedding scroll of X is a rational normal scroll Y ⊆ Pr
K such that

X ⊆ Y and dim(Y ) = n+1. According to [B-S, Theorem 7.3] such embedding
scrolls of X exist. •

In this section we mainly focus on singular embedding scrolls.

Lemma 5.2. Let x be a closed point in X \ Vert(X). Then

Yx := Join(x,X) ⊂ Pr
K

is a non-degenerate irreducible subvariety of dimension n+ 1. Furthermore,

(a) If x is a smooth point of X, then deg(Yx) = e+ 1.
(b) If x is a singular point of X, then deg(Yx) = e and hence Yx is a variety

of minimal degree.

Proof. It is clear that Yx =
∪

x′∈X\{x}⟨x, x′⟩ is a non-degenerate irreducible

variety of dimension n + 1 in Pr
K . Therefore deg(Yx) ≥ e and the inner pro-

jection of X from x to a generic hyperplane section of Yx is birational. So
deg(Yx) = e+2−mx(X) where mx(X) denotes the multiplicity of X at x (cf.
[Ha, Chapter 20]). Now, we conclude by Theorem 3.9. �
Lemma 5.3. Let Y be an embedding scroll of X. Then

Vert(X) ⊆ Vert(Y ) ⊆ Sing(X).

Proof. For any x ∈ Vert(X), we have Pr
K = TxX ⊂ TxY . Therefore x is a sin-

gular point of Y . Since Sing(Y ) = Vert(Y ), it follows that Vert(X) ⊆ Vert(Y ).

Let y ∈ Vert(Y )\Vert(X). As Y ⊇ Join(y,X) % X and X is a codimension
one subvariety of Y we have Y = Join(y,X). If y /∈ X, then Lemma 2.4
guarantees that the linear projection ofX from y is a birational morphism from
X onto a general hyperplane section of Y . Thus deg(Y ) = deg(X) = e + 2,
which is impossible since deg(Y ) = e. Therefore y ∈ X. But now Lemma 5.2
says that y must be a singular point of X. �
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Lemma 5.4. Let X1 be a general hyperplane section of X. If Y is an embed-
ding scroll of X, then Y1 := Y ∩ ⟨X1⟩ is an embedding scroll of X1 and

Y = Join(Vert(X), Y1).

Conversely, if Y1 is an embedding scroll of X1 then Y := Join(Vert(X), Y1) is
an embedding scroll of X.

Proof. Suppose that Y is an embedding scroll of X. Since ⟨X1⟩ is a gen-
eral hyperplane, Y1 is an embedding scroll of X1. By Lemma 5.3, we have
Vert(X) ⊆ Vert(Y ) and so Y1 := Y ∩ ⟨X1⟩ is an embedding scroll of X1.
Since Y contains Join(Vert(X), Y1) and has the same dimension as this latter,
it follows that Y = Join(Vert(X), Y1). The second part of our statement is
obvious. �

Lemma 5.4 says that the problem of classifying all embedding scrolls of X is
reduced to that classifying the embedding scrolls of X1. So we concentrate to
the case where X is not a cone, or equivalently, where the projecting rational
normal scroll is smooth.

We first consider the cases in which X ⊆ Pr
K is not arithmetically CM.

Theorem 5.5. Let X ⊆ Pr+1
K be as in Notation and Reminder 5.1. Suppose

that X is not a cone. Let Y be an embedding scroll of X.

(a) If depth(X) = 1 (and hence X is smooth), then Y is smooth.

(b) If 2 ≤ depth(X) ≤ n (and hence X is singular but not arithmetically
Cohen-Macaulay), then Vert(Y ) = Sing(X) and

Y = Join(Sing(X), X).

In particular, X has a unique embedding scroll, which always is singu-
lar.

Proof. (a) : Since X is smooth, Lemma 5.3 implies that Vert(Y ) = ∅. There-
fore Y is a smooth rational normal scroll.

(b) : Let x be a singular point of X. Note that Sing(X) = NCM(X) since
depth(X) ≤ n. Therefore the local ring OX,x is not Cohen-Macaulay. In
particular, dimK TxX ≥ n+2. Since TxX is a subspace of TxY , it follows that
x is a singular point of Y and hence x ∈ Vert(Y ). By combining this fact with
Lemma 5.3, we conclude that Vert(Y ) = Sing(X). Thus we have

Y = Join(Vert(Y ), Y ) ⊇ Join(Sing(X), X) ⊇ Join(x,X)

where Y and Join(x,X) have the same dimension n + 1. This shows that
Y = Join(Sing(X), X). �
Remark 5.6. Theorem 5.5.(a) says that if depth(X) = 1 (and hence X is
smooth), then any embedding scroll Y of X is smooth. This was first proved
in [P1, Theorem1.2] by using [N, Theorem 5.10]. Our present proof is direct
and elementary. •
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We now consider embedding scrolls Y of X in the case where X is arithmeti-
cally CM. We begin with the case in which Y is singular. As previously we
restrict ourselves to non-conic varieties X. Moreover, we shall only consider
the case in which e := codim(X) > 2. If codim(X) = 2, the embedding scrolls
of X are precisely the quadrics of rank 3 or 4 which contain X, and so they
are covered by the investigation [L-P-S].

Reminder 5.7. Let X ⊆ Pr
K be as in Notation and Reminder 5.1. If

depth(X) = n + 1, then X is maximally del Pezzo and non-normal. As-
sume in addition that X is not a cone and that e := codim(X) ≥ 3 so that
deg(X) = deg(X̃) ≥ 5. Then, the possible pairs (X̃, p) with deg(X̃) ≥ 5 are
completely classified in [B-P, Theorem 6.2] as follows:

(5.1) X̃ = S(a) for some integer a > 4 and p ∈ Sec(X̃)\X̃.

(5.2) (i) X̃ = S(1, b) for some integer b > 3 and p ∈ Join(S(1), X̃)\X̃;

(ii) X̃ = S(2, b) for some integer b > 2 and p ∈ ⟨S(2)⟩\X̃;

(5.3) X̃ = S(1, 1, c) for some integer c > 2 and p ∈ ⟨S(1, 1)⟩\X̃. •

Theorem 5.8. Let X ⊆ Pr
K be as in Notation and Reminder 5.1. Suppose that

X is not a cone. If X is arithmetically Cohen-Macaulay and Y is a singular
embedding scroll of X, then Vert(Y ) = Sing(X) and

Y = Join(Sing(X), X).

In particular, X has a unique singular embedding scroll.

Proof. For each closed point x ∈ Vert(Y ), the embedding scroll Y contains
Join(x,X) and both are of dimension n + 1. Therefore Y = Join(x,X) and
hence Y ⊂ Join(Sing(X), X). So we need to verify that Join(Sing(X), X) has
dimension n+ 1. To this end, we use the classification given in Reminder 5.7.

Case (5.1). Suppose that X̃ = S(a) for some integer a > 3 and that
p ∈ Sec(X̃)\X̃. Since Vert(Y ) is non-empty and Sing(X) := {x} is a point,
Lemma 5.3 says that Vert(Y ) = Sing(X) = {x}. Therefore we have Y =
Join(Sing(X), X).

Case (5.2) (i). Suppose that X̃ = S(1, b) for some integer b > 3 and that
p ∈ Join(S(1), X̃)\X̃. Thus (cf Notation and Reminder 2.2 (A))

X̃ =
∪
λ∈P1

⟨σ1(λ), σb(λ)⟩

and Σp(X̃) = S(1) ∪ L(µ) for some µ ∈ P1. In particular S(1) ∩ L(µ) =
{σ1(µ)}. So, for each λ ̸= µ, the line L(λ) = ⟨σ1(λ), σb(λ)⟩ maps to
⟨πp(σ1(λ)), πp(σb(λ))⟩ where πp(σ1(λ)) is contained in the line Sing(X). There-
fore

X =
∪

λ∈P1\{µ}

⟨πp(σ1(λ)), πp(σb(λ))⟩.
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Let v be a general closed point in Join(Sing(X), X). Then there exist closed
points λ ∈ P1\{µ} and z ∈ ⟨πp(σ1(λ)), πp(σb(λ))⟩ such that v ∈ ⟨Sing(X), z⟩.
Since πp(σ1(λ)) is contained in Sing(X), it holds that

⟨Sing(X), z⟩ = ⟨Sing(X), πp(σb(λ))⟩.

In particular, v is contained in Join(Sing(X), S(b)) and hence

Join(Sing(X), X) = Join(Sing(X), S(b)).

This shows that Join(Sing(X), X) has dimension 3.

Case (5.2) (ii). Suppose that X̃ = S(2, b) for some integer b > 2 and
p ∈ ⟨S(2)⟩\X̃. Now,

X̃ =
∪
λ∈P1

⟨σ2(λ), σb(λ)⟩

and Σp(X̃) = S(2). Moreover,

X =
∪
λ∈P1

⟨πp(σ2(λ)), πp(σb(λ))⟩.

Let v be a general closed point in Join(Sing(X), X). Then there exist closed
points λ ∈ P1 and z ∈ ⟨πp(σ2(λ)), πp(σb(λ))⟩ such that v ∈ ⟨Sing(X), z⟩. Since
πp(σ2(λ)) is contained in Sing(X), we have ⟨Sing(X), z⟩ = ⟨Sing(X), π(σb(λ))⟩.
In particular, v is contained in Join(Sing(X), S(b)) and hence

Join(Sing(X), X) = Join(Sing(X), S(b)).

This proves that Join(Sing(X), X) has dimension 3.

Case (5.3). Suppose that X̃ = S(1, 1, c) for some integer c > 2 and p ∈
⟨S(1, 1)⟩\X̃. Then for the canonical ruling (Lλ := ⟨σ1(λ), σ1(λ)⟩ | λ ∈ P1) of
S(1, 1), we have

X̃ =
∪
λ∈P1

⟨Lλ, πp(σc(λ))⟩

and Σp(X̃) = S(1, 1). Moreover,

X =
∪
λ∈P1

⟨πp(Lλ), πp(σc)(λ)⟩.

Let v be a general closed point in Join(Sing(X), X). Then there exist closed
points λ ∈ P1 and z ∈ ⟨πp(Lλ), π3(σc(λ))⟩ such that v ∈ ⟨Sing(X), z⟩. Since
πp(Lλ) is a subset of Sing(X), it holds that ⟨Sing(X), z⟩ = ⟨Sing(X), σ3(λ)⟩.
In particular, v is contained in Join(Sing(X), S(c)) and hence

Join(Sing(X), X) = Join(Sing(X), S(c)).

This shows that Join(Sing(X), X) has dimension 4. �
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6. Smooth embedding scrolls

Finally, we consider the case where X is arithmetically CM and the embedding
scroll Y of X is smooth.

Notation and Remark 6.1. (A) Let X ⊆ Pr
K be as in Notation and Re-

minder 5.1 and assume, that X is arithmetically CM of degree ≥ 5 but not a
cone. So, we are in of the three cases (5.1), (5.2) or (5.3) listed in Reminder
5.7. Keep in mind, that then X is even arithmetically Gorenstein (see [B-S,
Theorem 6.2]). So the Betti diagram of X tells us that the homogeneous
vanishing ideal of X is generated by quadrics.

(B) Let Y ⊆ Pr
K be a smooth embedding scroll of X. Let H be a hyperplane

divisor of Y and let F be a fibre divisor of the natural projection map τ : Y →
P1
K . Keep in mind that the divisors of Y are all linearly equivalent to divisors

of the form aH + bF with a, b ∈ Z. •

Lemma 6.2. X is linearly equivalent to 2H + (e− 3)F as a divisor of Y .

Proof. Let aH + bF, a, b ∈ Z, be the divisor class of X in Y . Obviously a ≥ 1.
Suppose that a = 1. Then X is smooth since it is irreducible. So a ≥ 2 since
X is singular. For general η ∈ P1 the intersection X ∩ τ−1(η) ⊂ τ−1(η) = Pn

K

is a hypersurface of degree a. In particular, a general line in τ−1(η) is a-secant
to X. Since the homogeneous vanishing ideal of X is generated by quadrics,
we conclude that a = 2. Finally we obtain the value of b from the equality
deg(X) = 2 deg(Y ) + b. �
Notation and Remark 6.3. Let h be a hyperplane divisor of the smooth
projecting rational normal scroll X̃ ⊂ Pr+1

K of X and let f be a fibre of the

projection map φ : X̃ → P1
K . Consider the surjective morphism f = τ ◦ πp :

X̃ → P1
K where τ : Y → P1

K is defined as in Notation and Remark 6.1.(B),

and the line bundle L := f ∗OP1
K
(1) on X̃. •

Lemma 6.4. L = OX̃(2f).

Proof. We may write L = OX̃(ah + bf) with appropriate integers a, b ∈ Z.
If n = 1, the isomorphism φ : X̃ → P1

K yields that h ∼ deg(X)f so that
L = OX̃((adeg(X) + b)f). Assume now that n > 1. As L defines a map

X → P1
K it follows that deg(L) = 0. As hn−i · fi is equal to deg(X̃) for i = 0, 1,

and 0 otherwise, we get 0 = an−1(adeg(X̃)+nb). Moreover by Lemma 6.2 the
fibre f−1(x) ⊂ X̃ is mapped by πp : X̃ → X ⊂ Y to a quadratic hypersurface
in τ−1(x) = Pn

K for a generic point x ∈ P1
K . Therefore

2 = L · fn−1 = adeg(X̃) + b.

As deg(X̃) ≥ 5 (s. Notation and Remark 6.1) we now get our claim. �
Notation and Remark 6.5. (A) Let X and Y be algebraic varieties. If
f ∈ Mor(X, Y ) we write [f ] := Aut(Y ) ◦ f for the orbit of f under the natural
action of the automorphism group of Y . Correspondingly, for F ⊂ Mor(X,Y )
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we set [F ] := {[f ] | f ∈ F}.

(B) For two irreducible algebraic curves C and C ′ and a positive integer d,
let Mord(C, C ′) denote the set of all morphism f : C → C ′ of degree d and keep
in mind that [f ] ⊂ Mord(C, C ′) for all f ∈ Mord(C, C ′).

(C) Let ν : P1
K → P2

K , ((s : t) 7→ (s2 : st : t2)) be the Veronese embedding.
Then, for each f ∈ Mord(P1

K ,P1
K) there is a unique linear projection πf :

P2
K \ {qf} � P1

K from a point qf ∈ P2
K\Im(ν) such that f = πf ◦ ν. In

particular, we have a natural bijection

i : [Mor2(P1
K ,P1

K)] → P2
K \ Im(ν) given by [f ] 7→ qf .

•

Notation and Remark 6.6. : (A) Let C ⊂ Pr
K be a nondegenerate irreducible

projective curve, let f ∈ Mor2(C,P1
K) and let U ⊂ P1

K \ f(Sing(C)) be a
nonempty open set. We write

W :=
∪
t∈U

⟨f−1(t)⟩,

where ⟨f−1(t)⟩ denotes the tangent line to C in f−1(t), provided this fibre is a
double point.

(B) Keep the notations of part (A). It is easy to see that C ⊂ W , and that
W does not depend on the chosen nonempty open set U ⊂ P1

K \ f(Sing(C)).
So we may write W =: Wf . But now it is straight forward to check that for
f, g ∈ Mor2(C,P1

K) we have

[f ] = [g] ⇐⇒ Wf = Wg.

(C) We write S(C) for the set of all smooth rational surface scrolls S ⊂ Pr
K

with C ⊂ S. •

Lemma 6.7. Let r ≥ 3 and let C ⊂ Pr
K be either

(1) a rational normal curve or
(2) a singular curve of almost minimal degree with r ≥ 4.

Let f ∈ Mor2(C,P1
K). Then Wf ∈ S(C).

Proof. Consider on C the line bundles L := OC(1), L1 := f ∗OP1
K
(1) and L2 :=

L⊗L−1
1 so that L = L1 ⊗L2. Our first aim is to show that h0(C,L2) = r− 1.

To do so, assume that C ⊂ Pr
K is a rational normal curve. Then L1 and L2 are

line bundles on C of degree 2 and r − 2, respectively. Therefore h0(C,L2) =
h0(P1

K ,OP1
K
(r − 2)) = r − 1. Next assume that C ⊂ Pr

K is a singular curve of
almost minimal degree. Then L1 and L2 are line bundles on C of degree 2 and
r− 1 > 1, respectively. In particular, h1(C,L2) = 0 since ρa(C) = 1. Hence by
Riemann-Roch we have h0(C,L2) = r − 1.
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Now fix a basis b1, · · · , br−1 of the K-space H0(C,L2) and fix a basis a1, a2
of V := f∗H0(P1,OP1

K
(1)) ⊂ H0(C,L1). Then the bilinear map

V ×H0(C,L2) → H0(C,L) ∼= H0(Pr
K ,OPr

K
(1))

induces the 1-generic 2 × (r − 1) matrix [aibj | 1 ≤ i ≤ 2, 1 ≤ j ≤ r − 1] of
linear forms on Pr

K whose 2× 2 minors define a rational normal surface scroll
S ⊂ Pr

K which contains C. Moreover the general ruling of S is spanned by
a fiber of f and hence S = Wf . Also Castelnuovo’s base point pencil trick
enables us to show that the above bilinear map is surjective. This implies that
S is smooth since its vertex is defined as the common zero set of the entries of
the previous matrix. Consequently, S = Wf ∈ S(C). �
Lemma 6.8. Let r ≥ 4 and let X ⊂ Pr

K be a non-normal curve of almost
minimal degree. Then, we have a bijection

εX : [Mor2(X,P1
K)] → S(X); ([f ] 7→ Wf ).

Proof. According to Lemma 6.7 and Notation and Remark 6.6 the map εX is
indeed defined and injective. So, let S ∈ S(X) with projection map φ : S →
P1
K . We consider the restricted morphism f := φ|X : X � P1

K , which must be
of degree > 1, as X is singular. On the other hand X satisfies the condition N2

and thus admits no 4-secant plane (s. [E-G-H-P]) and hence no 3-secant line.
Therefore deg(f) < 3, whence f ∈ Mor2(X,P1

K). Now, clearly S = Wf . �
Notation and Remark 6.9. Let r ≥ 4, let X ⊂ Pr

K be a singular curve of

almost minimal degree with canonical projection πp : X̃ = S(r + 1) � X and

let σ : P1
K → X̃ be the Veronese map. Then, the assignment [f ] 7→ [f ◦ πp ◦ σ]

defines a bijection

κp : [Mor2(X,P1
K)] → Sp := [{f ∈ Mor2(P1

K ,P1
K) | ♯σ−1(Σp(X̃)) = 1}].

Moreover, by Notation and Remark 6.5, the assignment [f̃ ] 7→ qf̃ defines a
bijection

ip : Sp → Up := ⟨σ−1(Σp(X̃))⟩ \ σ−1(Σp(X̃)).

Choosing an isomorphism

λp : Up →

{
A1 \ {0}, if ♯|Σp(X̃)| = 2

A1, if ♯|Σp(X̃)| = 1

we finally get the bijection

δp = λp ◦ ip ◦ κp : [Mor2(X,P1
K)] →

{
A1 \ {0}, if ♯|Σp(X̃)| = 2

A1, if ♯|Σp(X̃)| = 1

•
Now, we are ready to formulate and to prove the conclusive result of this

section.

Theorem 6.10. Let X ⊂ Pr
K, X̃ ⊂ Pr+1

K and p ∈ Pr+1
K \ X̃ be as in Reminder

5.7.
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(a) In the case (5.1), that is if X̃ = S(a) for some integer a > 5 and p ∈
Sec(X̃), then X admits a one dimensional family of smooth embedding
scrolls. More precisely, we have the bijection

δp ◦ ε−1
X : S(X) →

{
A1 \ {0}, if p ∈ Sec(X̃) \ Tan(X̃)

A1, if p ∈ Tan(X̃) \ X̃
.

(b) In the case (5.2)(ii), that is if X̃ = S(2, b) for some b > 2 and p ∈
⟨S(2)⟩, then X admits a unique smooth embedding scroll Y . More
precisely Y = S(1, α, β) with S(1) = πp(⟨S(2)⟩), S(α, β) ∈ S(πp(S(b)))
and

(α, β) =

{
( b−1

2
, b−1

2
) if b is odd

( b−2
2
, b
2
) if b is even

.

(c) In the remaining cases (5.2)(i) and (5.3), X has no smooth embedding
scroll.

Proof. (a) : This is clear by Lemma 6.8, Notation and Remark 6.9 and by the
fact Σp(X̃) consists of a single point if and only if p ∈ Tan(X̃) \ X̃.

Before proving the remaining statements (b) and (c), we make a preliminary
remark. Let Y ⊂ Pr

K be a smooth embedding scroll of X, let φ : X̃ → P1
K and

τ : Y → P1
K be the canonical projection maps and consider the line bundle

L = f ∗OP1
K
(1) of Notation and Remark 6.3 (with f := τ ◦πp : X̃ → P1

K). Then

by Lemma 6.4 we may write L = φ∗OP1
K
(2). Therefore we have a commutative

diagram

(6.1) X̃ //

φ

��

X
� � // Y

π

��
P1
K

ν // P2
K\{q}

πq // P1
K

in which ν : P1
K → P2

K is the Veronese map and πq is a linear projection from
a point q ∈ P2

K \ Im(ν). So, there is a nonempty open set U ⊂ P1
K such that

(πq ◦ ν)−1(t) ⊂ P1
K consists of the two distinct points t1, t2, whence

f−1(t) = φ−1(πq ◦ ν)−1(t) = L(t1) ∪ L(t2)

for all closed points t ∈ U . As Pn−1
K = πp(L(ti)) ⊂ τ−1(t) = Pn

K it thus follows

(6.2) dim(πp(L(t1)) ∩ πp(L(t2))) ≥ n− 2, for all t ∈ U.

(c) : First we assume that we are in the case (5.2)(i). Then X̃ = S(1, b) for
some integer b > 3 and p ∈ Join(S(1), X̃)\ X̃. We then find some s ∈ P1

K such
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that p ∈ ⟨S(1),L(s)⟩. Choosing t ∈ U \ πq ◦ ν(s) we get that t1, t2 and s are
all different. As L(s) * ⟨L(t1),L(t2)⟩ it follows

⟨L(t1),L(t2), p⟩ = ⟨L(t1),L(t2),L(s)⟩ % ⟨L(t1),L(t2)⟩,

so that p /∈ ⟨L(t1),L(t2)⟩, whence πp(L(t1)) ∩ πp(L(t2)) = ∅. As n = 2 this
contradicts the above inequality and so Y cannot exist.

Assume now that we are in the case (5.3). Then X̃ = S(1, 1, c) for some
integer c > 2 and p ∈ ⟨S(1, 1)⟩ \ X̃. As L(ti) ∩ ⟨S(1, 1)⟩ (i = 1, 2) are two
disjoint lines and Σp(X̃) = S(1, 1), there is a unique line meeting p, L(t1)
and L(t2). This implies that the two planes πp(L(ti)) (i = 1, 2) intersect each
other, which again contradicts our previous observation.

(b) : Assume that we are in the case (5.2)(ii), so that X̃ = S(2, b) for some
integer b > 2 and let p ∈ ⟨S(2)⟩ \ X̃. Consider the map

ϱ := πp|S(2) : S(2) → πp(Σp(X̃)) = P1
K

and choose a non-empty open set V ⊂ πp(⟨
∑

p(X̃)) such that ϱ−1(s) consists
of two distinct points for each closed point s ∈ V . So, for each s ∈ V the
set φ−1(φ(ϱ−1(s)) ⊂ X̃ is the union of two distinct rulings of X̃ and hence
Zp(s) := πp(φ

−1(φ(ϱ−1(s)))) is the union of two distinct lines. In view of the
diagram (6.1) we have Zp(s) ⊂ τ−1(s) = P2

K , whence ⟨Zp(s)⟩ = τ−1(s) for all

s ∈ V . It follows that Y =
∪

s∈V ⟨Zp(s)⟩, and this proves the uniqueness of Y .
Our next aim is to show that there exists indeed a smooth embedding scroll

Y of X. As p /∈ ⟨S(b)⟩ the map η := πp|S(b) : S(b) → πp(S(b)) =: C is
an isomorphism and C ⊂ ⟨πp(S(b))⟩ = Pb

K is a rational normal curve. Let
σ1 : P1

K → ⟨S(2)⟩ = P2
K be the Veronese embedding with Im(σ1) = S(2).

Then

f := ϱ ◦ σ1 ◦ φ ◦ η−1 : C → πp(Σp(X̃)) = P1
K

is of degree 2. So, by Lemma 6.7 we get the smooth surface scroll S(α, β) :=
Wf ∈ S(C) = S(πp(S(b)). Now, for a general t ∈ P1

K the span ⟨f−1(t)⟩ ⊂ Pb
K

defines a ruling of Wf . From this it follows easily that for an appropriate

non-empty open set U ⊂ P1
K = πp(Σp(X̃)) the union

∪
t∈U⟨t, f−1(t)⟩ defines

a 3-dimensional scroll Y which has πp(Σp(X̃)) as a line section and thus is of

type S(1, α, β) with S(1) = π(Σp(X̃)).
It remains to show that α and β are as stated in (b). We do this in the

following lemma. �

Lemma 6.11. Let S ⊂ Pr
K be a smooth rational normal surface scroll which

contains a rational normal curve C = S(r) ⊂ Pr
K. Suppose that C is not a

section of the projection φ : S → P1
K. Then S = S(α, β) where

(α, β) =

{(
r−1
2
, r−1

2

)
if r is odd(

r−2
2
, r
2

)
if r is even .
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Proof. Without loss of generality we may assume that α ≤ β. Let C ∼ uC0 +
vF for some u ≥ 1 and v ∈ Z. Then u = 2 since C is not a section of φ and
admits no trisecant lines. Now the adjunction formula for C on S gives us
v = r − 2α. Thus we get the inequality

C·C0 = r − 2β = α− β + 1 ≥ 0

which means that β = α or α + 1. Therefore either β = α = r−1
2

or else
β = α+ 1 = r

2
. �
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CH-8057 Zürich Republic of Korea
Schwitzerland
email: brodmann@math.uzh.ch email: euisungpark@korea.ac.kr


