
IDLE THOUGHTS ON LOCAL COHOMOLOGY AND RELATED TOPICS

MARKUS BRODMANN

Abstract. We collect a few thoughts related to local cohomology modules over Noetherian
rings. These came up when we tried in vain to prove some conjectures. We hope however,
that some of them may be useful – or at least worth not to be just thrown in the waste
bucket.

1. Introduction

Notation 1.1. (A) By Z we denote the set of integers. If c ∈ Z we set Z≤c := {n ∈ Z | n ≤ c}
and Z≥c := {n ∈ Z | n ≥ c}. We write N := Z≥1 and N0 := Z≥0. Moreover we use the
standard convention that sup∅ = −∞ and inf∅ = ∞. Concerning local cohomology, we use
without further mention the notations of [BS,1998] and [BS,2013].

(B) By R we always denote a commutative unitary Noetherian ring. By C(R) we denote
the category of R-modules. If a ⊆ R is an ideal we consider the (covariant, left exact)
a-torsion functor

Γa = Γa(•) := lim−→
n

HomR(R/an, •) : C(R) −→ C(R),

and – for each i ∈ N0 – the i-th local cohomology functor with respect to a, which we introduce
as the i-right derived functor of the a-torsion functor Γa, thus:

H i
a = H i

a(•) := RiΓa = RiΓa(•) : C(R) −→ C(R).

As usually, we identify Γa = H0
a . If M is an R-module, we call H i

a(M) the i-local cohomology
module of M with respect to a.

We also introduce the (covariant left exact) a-transform functor

Da = Da(•) := lim−→
n

HomR(an, •) : C(R) −→ C(R),

which is related to local cohomology by the natural four term exact sequence

0 −→ H0
a (•) −→ • −→ Da(•) −→ H1

a (•) −→ 0

and natural isomorphisms
RiDa

∼= H i+1
a for all i ∈ N.
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Definitions and Remarks 1.2. (A) Let the notations be as above. Then, the cohomological
dimension of the R-module M with respect to the ideal a ⊆ R is defined by

cda(M) := sup{i ∈ N0 | H i
a(M) 6= 0}.

Observe that

cda(M) ≤ ara(a) := min{r ∈ N0 | ∃x1, x2, . . . , xr ∈ R such that

√√√√ r∑
i=1

Rxi =
√
a}.

(B) Let the notations be as above, and assume in addition, that the R-module M is finitely
generated. Then, the cohomological finiteness dimension of M with respect to a is given by

fa(M) := inf{i ∈ N0 | the R-module H i
a(M) is not finitely generated }.

Notation 1.3. We now consider a Noetherian homogeneous ring

R =
⊕
n∈N0

Rn = R0[x1, . . . , xr] (r ∈ N and x1, . . . , xr ∈ R1)

with irrelevant ideal

R+ :=
⊕
n∈N

Rn = R1R =
r∑

k=1

Rxk.

Keep in mind, that in this situation, the base ring R0 is Noetherian. Let ∗C(R) denote the
category of graded R-modules, and for each i ∈ N0 let

H i
R+

(•) : C(R) −→ C(R)

denote the i-th local cohomology functor with respect to the irrelevant ideal R+. Keep in
mind that – by restriction – we get an induced functor of graded R-modules

H i
R+

(•) =
⊕
n∈Z

H i
R+

(•)n : ∗C(R) −→ ∗C(R)

Reminder 1.4. (A) Let the notations and hypotheses as in Notation 1.3 and let M :=⊕
n∈ZMn be a finitely generated graded R-module. Keep in mind that for each i ∈ N0

the n-th graded component H i
R+

(M)n of the graded local cohomology module H i
R+

(M) =⊕
n∈ZH

i
R+

(M)n is a finitely generated R0-module, which vanishes in addition for all n� 0.

Definitions and Remarks 1.5. (A) Let the notations be as above. Then, the cohomological
dimension of the graded R-module M is defined by

cd(M) := cdR+(M)

Observe that in view of Definition 1.2 (A) we have

cd(M) ≤ ara(R+) ≤ inf{n ∈ N0 | ∃x1, x2, . . . , xn ∈ R1 such that R1 =
n∑
i=1

Rxi}.
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If M is finitely generated, we have in addition

cd(M) = sup{dimRp0/p0Rp0

(
Mp0/p0Mp0

)
| p0 ∈ Spec(R0)} =

= sup{dimRm0/m0Rm0

(
Mm0/m0Mm0

)
| m0 ∈ Max(R0)}.

(B) Let the notations be as above, and assume again, that the graded R-module M is
finitely generated. Then, the cohomological finiteness dimension of M is given by

f(M) := fR+(M) = inf{i ∈ N0 | the R-module H i
R+

(M) is not finitely generated } =

= inf{i ∈ N0 | H i
R+

(M)n 6= 0 for infinitely many n ∈ Z}.

Moreover, the cohomological finite length dimension of M is defined by

g(M) := inf{i ∈ N0 | lengthR0

(
H i
R+

(M)n
)

=∞ for infinitely many n ∈ Z}.
Observe that

f(M) ≤ g(M) and – in case M does not vanish – g(M) ≤ cd(M).

(C) Finally, for each k ∈ N0 the Castelnuovo-Mumford regularity at and above level k of
the finitely generated graded R-module M is defined by

regk(M) := sup{end(H i
R+

(M) + i | i ≥ k} (<∞),

whereas the Castelnuovo-Mumford regularity of M is defined by

reg(M) := reg0(M) = sup{end(H i
R+

(M) + i | i ∈ N0}.

Reminder 1.6. (A) (We refer to [H,1977], Chapters II, III or [BS,2013], Chapter 20) Let

R =
⊕
n∈N0

Rn = R0[R1] be a Noetherian homogeneous ring ,

and let

X := Proj(R)

denote the projective scheme defined by R. If

S := R0[x0,x1, . . . ,xr]

is a standard graded polynomial ring, we set

PrR0
:= Proj(S).

and call PrR0
the projective r-space over R0. If there is a surjective homomorphism

R0[x0,x1, . . . ,xr]
π
� R

the graded ideal

IX := Ker(π)sat :=
⋃
n∈N

(Ker(π) :S (S+)n) ⊆ S
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is called the homogeneous vanishing ideal of X. Observe, that in this situation we have an
isomorphism of graded R-algebras

S/IX ∼= R/ΓR+(R) and Proj(S/IX) = Proj
(
R/ΓR+(R)

)
= X ⊆ PrR0

is a closed subscheme.

(B) Keep the notations and hypotheses of part (A). If M is a graded R-module, let M̃
denote the sheaf induced over X by M . Keep in mind, that the sheaf

OX := R̃

induced by the R-module R carries a natural structure of sheaf of R0-algebras, and is called
the structure sheaf of the scheme X. Moreover, for each graded R-module M , the induced

sheaf M̃ carries a natural structure of sheaf of OX-modules. The sheaves of OX-modules
F which are induced by some graded R-module M are precisely the quasi-coherent sheaves
of OX-modules. Those sheaves of OX-modules F which are induced by a finitely generated
graded R-module M , are precisely the coherent sheaves of OX-modules.

Now, let F = M̃ be the quasi-coherent sheaf induced by the graded R-module M and let

n ∈ Z. Then – up to isomorphism of sheaves of OX-modules – the sheaf M̃(n) induced by
the n-th shift of M does only depend on F and on n. Therefore, we may define the n-th
twist of F by

F(n) := M̃(n).

If X = Proj(R) ⊆ PrR0
is as in part (A), the coherent sheaf of ideals

IX := ĨX ⊆ OPr
R0

is called the sheaf of vanishing ideals of X.

(C) Keep the previous notations and hypotheses. Then, for each i ∈ N0 and each quasi-
coherent sheaf F of OX-modules, we consider the

i− th cohomology group H i(X,F) of X with coefficients in the quasi-coherent sheaf F .

Then H i(X,F) carries a natural structure of R0-module. Moreover if F = M̃ for some
graded R-module M , the Serre-Grothendieck Correspondence gives rise to isomorphisms of
R0-modules:

(a) H0(X,F(n)) ∼= DR+(M)n for all n ∈ Z and
(b) H i(X,F(n)) ∼= H i+1

R+
(M)n for all n ∈ Z and all i ∈ N.

If π : X −→ X0 := Spec(R0) is the induced projective morphism, if π∗ denotes the functor
of taking direct images with respect to π and if (M0)̃ denotes quasi-coherent sheaf of OX0-
modules induced by an R0-module M0, we also may write the above relations in the form:

(a*) π∗F(n) ∼=
(
DR+(M)n

)̃
for all n ∈ Z and

(b*) (Riπ∗)
(
F(n)

) ∼= (H i+1
R+

(M)n
)̃

for all n ∈ Z and all i ∈ N.
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If F is coherent, we may chose the graded R-module M to be finitely generated. So, it
follows from statements (a) and (b) by what we know about local cohomology:

(c) For all i ∈ N0 and all n ∈ Z, the R0-module H i(X,F(n)) is finitely generated.
(d) For all i ∈ N and all n� 0 it holds H i(X,F(n)) = 0.

(D) Keep the above notations and hypotheses. Let F = M̃ be a coherent sheaf of OX-
modules, induced by the finitely generated graded R-module M . Then the Castelnuovo-
Mumford regularity of the sheaf F is defined by

reg(F) := inf{r ∈ Z | H i(X,F(n− i)) = 0 for all i ∈ N}.

The Serre Grothendieck-Correspondence now yields that

reg(F) = reg2(M).

If X = Proj(R) ⊆ PrR0
is as in part (A), the Castelnuovo-Mumford regularity of X is defined

by

reg(X) := reg(IX).

On use of the Serre-Grothendieck Correspondence it is easy to see, that

reg(X) = reg(IX).

(E) Keep the above hypotheses, but assume in addition, that the base ring R0 is Artinian.
Assume that F is a coherent sheaf of OX-modules. Then, by statement (d) of part (D), we
may define

hi(X,F(n)) := lengthR0

(
H i(X,F(n))

)
for all i ∈ N0 and alln ∈ Z.

Let us also mention, that in this case we have

dim(X) = dim(R)− 1.

2. Functors Applied to Top Graded Local Cohomology Modules

Througout this section, let the notations and hypotheses be as in the introduction. Here,
we are interested in the behavior of local cohomology with respect to the irrelevant ideal of
finitely a generated graded modules over a homogeneous Noetherian ring.

Notation 2.1. We now always shall consider a Noetherian homogeneous ringR =
⊕

n∈N0
Rn =

R0[x1, . . . , xr] (r ∈ N and x1, . . . , xr ∈ R1) with irrelevant ideal R+ :=
⊕

n∈NRn = R1R =∑r
k=1Rxk.
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Remark and Definition 2.2. (A) Let

F = F (•) : C(R0) −→ C(R0)

be a covariant functor of R0-modules, which commutes with direct sums. Observe that for
each R-module M , the R0-module F (M) carries a natural structure of R-module with scalar
multiplication given by xm := F (xidM)(m) for all x ∈ R and all m ∈ F (M). Moreover, if
f : M −→ N is a homomorphism of R-modules, the homomorphism of R-modules F (f) :
F (M) −→ F (N) is a homomorphism of R-modules. So, there is an induced covariant functor
of R-modules F : C(R) −→ C(R). Finally, for each graded R-module M =

⊕
n∈ZMn, the

R-module F (M) =
⊕

n∈Z F (Mn) carries a natural grading with n-th graded Component
F (M)n := F (Mn) for all n ∈ Z, and for each homomorphism of graded R-modules f :
M −→ N , the homomorphism F (f) : F (M) −→ F (N) is a homomorphism of graded
R-modules. So, the functor F induces covariant functor of graded R-modules

F = F (•) : ∗C(R) −→ ∗C(R).

For later use, keep in mind that the graded R-module F (M) is R+-torsion, whenever M =⊕
n∈ZMn is a graded R-module such that Mn = 0 for all n� 0.

(B) Let the functor F : C(R0) −→ C(R0) be as in part (A). We say that F is an A-functor,
if turns finitely generated R0-modules in Artinian R0-modules and if the induced functor
of graded R-modules F : ∗C(R) −→ ∗C(R) turns graded Artinian R-modules in graded
Artinian R-modules. It is immediate, that then the functor F : C(R0) −→ C(R0) turns
Artinian R0-modules in Artinian R0-modules. We say that F is an F functor, if it turns
finitely generated R0-modules in R0-modules of finite length. If F is an A and a F-functor,
we call it an AF-functor.

(C) Let M is a graded R-module whose components Mn are all finitely generated R0-
modules, and assume that F : C(R0) −→ C(R0) is an A-functor. Then, all the components
F (M)n of the graded R-module F (M) are Artinian R0-modules. If F is an AF-functor,
these components are even R0-modules of finite length. Note, that this applies in particular
if M is a finitely generated graded R-module. If M is finitely generated and concentrated in
finitely many degrees, it follows that the graded R-module F (M) is Artinian, and even of
fine length over R0 (and hence over R) if F is an AF-functor.

(D) Let G = G(•) : C(R0) −→ C(R0) be a second covariant functor ot R0-modules, which
commutes with direct sums. We say, that (F,G) is a connected pair of functors, if there is
a natural assignement

δ(F,G)
• :

(
S : 0→ N

h→M
l→ P → 0

)
7→

(
F (P )

δ
(F,G)
S−→ G(N)

)
,

which to each short exact sequence of R0-modules S as above assigns a homomorphism of

R0-modules δ
(F,G)
S = δ such that there is en exact sequence

F (N)
F (h)−→ F (M)

F (l)−→ F (P )
δ−→ G(N)

G(h)−→ G(M)
G(l)−→ G(P ).
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Example 2.3. (A) Let U be an R0-module of finite length. Then, the functors

TorR0
i (U, •) : C(R0) −→ C(R0), (i ∈ N0)

are all AF-functors. Moreover, for each i ∈ N(
TorR0

i (U, •),TorR0
i−1(U, •)

)
is a connencted pair of functors.

(B) Let U be an R0-module of finite length. Then, the functors

ExtiR0
(U, •) : C(R0) −→ C(R0), (i ∈ N0)

are all AF-functors. Moreover, for each i ∈ N0(
ExtiR0

(U, •),Exti+1
R0

(U, •)
)

is a connencted pair of functors.

(C) Assume that the base ring (R0,m0) is local. Then, the local cohomology functors

H i
m0

(•) : C(R0) −→ C(R0), (i ∈ N0)

turn finitely generated R0-modules to Artinian R0-modules and m0-torsion modules to 0 if
i > 0 and hence are A-functors. Moreover H0

m0
(•) is an AF-functor. In addition, for each

i ∈ N0 (
H i

m0
(•), H i+1

m0
(•)
)

is a connencted pair of functors.

Proposition 2.4. Assume that the base ring (R0,m0) is local. Let F,G : C(R0) −→ C(R0) :
be two A-functors. Let M 6= 0 be a finitely generated graded R-module, set c := cdR+(M)
and g := g(M). Then it holds

(a) If F is a right exact, then F
(
Hc
R+

(M)
)

is a graded Artinian R-module.
(b) If g = c and (F,G) is a connected pair of functors, then the graded R-module

F
(
Hc
R+

(M)
)

is Artinian.

Proof. As M 6= 0, we have c ≥ 0. We prove both statements by induction on c. Assume
first, that c = 0. As H0

R+
(M) is finitely generated and concentrated in finitely many degrees,

we may conclude by Remark and Definition 2.2 (C).

So, let c > 0. As Hc
R+

(M) ∼= Hc
R+

(
M/ΓR+(M)

)
, we may assume that ΓR+(M) = 0, and

hence thatR+ is not contained in any of the associated primes ofM . As dimR/m0R(M/m0M) =
c > 0, none of the primes in the finite set S := {p ∈ AssR(M/m0M) | dim(R/p) = c} con-
tains R+. So, by homogeneous prime avoidance there is some t ∈ N and some x ∈ Rt which
avoids all p ∈ AssR(M) ∪ S. If follows that

cdR+(M/xM) = dimR/m0R

(
(M/xM)/m0(M/xM)

)
= dimR/m0R

(
M/(m0M + xM)

)
= c− 1

and that there is an exact sequence of graded R-modules

0 −→M(−t) x−→M −→M/xM −→ 0.
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Now, the induced exact sequences of graded R-modules

H i−1
R+

(M) −→ H i−1
R+

(M/xM) −→ H i
R+

(M)(−t) x−→ H i
R+

(M) −→ H i
R+

(M/xM)

show that gR+(M/xM) ≥ g − 1 and imply the exact sequence

(@) Hc−1
R+

(M) −→ Hc−1
R+

(M/xM) −→ Hc
R+

(M)(−t) x−→ Hc
R+

(M) −→ 0.

To prove statement (a), we apply the right exact functor F to this sequence and get the
exact sequence

F
(
Hc−1
R+

(M/xM)
)
−→ F

(
Hc
R+

(M)
)
(−t) x−→ F

(
Hc
R+

(M)
)
.

By induction, the first module in this sequence is Artinian, so that the graded R-module[
0 :F (Hc

R+
(M)) x

]
is Artinian. The graded components Hc

R+
(M)n of Hc

R+
(M) vanish for all n� 0, and hence

the R-module F
(
Hc
R+

(M)
)

is x-torsion (see Remark and Definition 2.2(A)). It follows by

Melkerssons Lemma that F
(
Hc
R+

(M)
)

is indeed Artinian.

In order to prove statement (b), we may again proceed as above and restrict ourselves to
show that the graded R-module [

0 :G(Hc
R+

(M)) x
]

is Artinian. The sequence (@) implies a short exact sequence of graded R-modules

0 −→ Hc−1
R+

(M/xM)/W −→ Hc
R+

(M)(−t) x−→ Hc
R+

(M) −→ 0,

in which W is a graded homomorphic image of Hc−1
R+

(M). We thus get an exact sequence of
graded R-modules

F
(
Hc−1
R+

(M/xM)/W
)
−→ F

(
Hc
R+

(M)
)
(−t) x−→ F

(
Hc
R+

(M)
)
.

It hence suffices to show that the R-module F
(
Hc−1
R+

(M/xM)/W
)

is Artinian. The exact

sequence of graded R-modules 0→ W → Hc
R+

(M/xM)→ Hc−1
R+

(M/xM)/W → 0 gives rise
to an exact sequence of graded R-modules

F
(
Hc−1
R+

(M/xM)
)
−→ F

(
Hc−1
R+

(M/xM)/W
)
−→ G(W ).

As M/xM 6= 0, we have c − 1 = g − 1 ≤ g(M/xM) ≤ cR+(M/xM) = c − 1 and hence
g(M/xM) ≤ cR+(M/xM) = c − 1. So, by induction the R-module F

(
Hc−1
R+

(M/xM)
)

is

Artinian. It thus remains to show that G(W ) is Artinian. As c−1 < g = g(M), there is some
r ∈ Z such that the graded R-module Hc−1

R+
(M)/Hc−1

R+
(M)≥r is Artinian (see [BRSa,2005],

Proposition 3.4). So, the gradedR-moduleW/W≥r is Artinian andW≥r is a finitely generated
graded R-module concentrated in finitely many degrees. The short exact sequence of graded
R-modules 0→ W≥r → W → W/W≥r → 0 implies an exact sequence

G(W≥r) −→ G(W )→ G(W/W≥r).

As G is an A-functor the graded R-modules G(W≥r) and G(W/W≥r) are both Artinian (see
also Remark and Definition 2.2(C)). So, the graded R-module G(W ) is indeed Artinian. �
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Corollary 2.5. Assume that the base ring (R0,m0) is local. Let M 6= 0 be a finitely generated
graded R-module, let U be an R0-module of finite length, set c := cdR+(M) and g := g(M).
Then it holds

(a) The graded R-module U ⊗R0 H
c
R+

(M) is Artinian with graded components of finite
length.

(b) If g = c and i ∈ N0, then
(1) The graded R-module TorR0

i

(
U,Hc

R+
(M)

)
is Artinian with graded components of

finite length.
(2) The graded R-module ExtiR0

(
U,Hc

R+
(M)

)
is Artinian with graded components of

finite length.
(3) The graded R-module H i

m0

(
Hc
R+

(M)
)

is Artinian.

Proof. (a): This follows by Proposition 2.4(a) and Example 2.3(A).

(b): Claim (1) follows by statement (a), Proposition 2.4(b) and Example 2.3(A).
Claim (2) follows by Proposition 2.4(b) and Example 2.3(B).
Claim (3) follows by Proposition 2.4(b) and Example 2.3(C). �

Remark 2.6. (A) Chosing U = R0/m0 in statement (a) of the previous result, we get back
Theorem 2.1 of [RotSeg,2005], (see also [BRoSa,2005] and [B,2005]).

(B) Claim (1) of statement (b) of the above corollary generalizes statement (a) if g = c.
Note that as a consequence of claims (1) and (2) of statement (b) there are are polynomials

P i
M,U(X), Qi

M,U(X) ∈ Q[X] such that

lengthR0

(
TorR0

i

(
U,Hc

R+
(M)n

))
= P i

M,U(n) and

lengthR0

(
ExtiR0

(
U,Hc

R+
(M)n

))
= Qi

M,U(n) for all n� 0.

(C) Observe that all three caims of statement (b) also can be obtained on use of the
Grothendieck spectral sequences for composed functors. Observe also, that statement claim
(3) is shown in [HasJZa,2009] – on use of the previously mentioned spectral sequence –
under the stronger hypotheses that c = f(M). As a consequence it is shown there, that
depthR0

(
Hc
R+

(M)n
)

is asymptotically stable for n→ −∞, provided that c = f(M). Observe
that claims (2) and (3) of statement (b) of the above corollary yield the same conclusion
under the weaker hypotheses that c = g(M).

3. Asymptotic Depth of Components of Graded Local Cohomology

Convention and Notation 3.1. (A) As in the previous Section, let R :=
⊕

n∈N0
Rn be a

standard graded Noetherian ring, with local base ring (R0,m0). So R0 is Noetherian, R1 is a
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finitely generated R0-module and we have R = R0[R1]. Again, let R+ :
⊕

n∈NRn = R1R ⊂ R
be the irrelevant ideal of R and let M =

⊕
n∈ZMn be a finitely generated graded R-module.

(B) As previously, for each i ∈ Z let H i
R+

(M) =
⊕

n∈ZH
i
R+

(M)n be the local cohomology
module of M with respect to R+, furnished with its natural grading. Keep in mind, that for
each i ∈ N0 the R0-module H i

R+
(M)n is finitely generated and vanishes for all n� 0.

(C) Keep in mind that the cohomological dimension, the cohomological finiteness dimen-
sion, and the cohomological finite length dimension of M are given respectively by (see
Definitions and Remarks 1.5)

cd(M) := sup{i ∈ Z | H i
R+

(M) 6= 0},
f(M) := inf{i ∈ Z | H i

R+
(M)n 6= 0 for infinitely many n ∈ Z} and

g(M) := inf{i ∈ Z | length(H i
R+

(M)n) =∞ for infinitely many n ∈ Z},

with the usual convention, that sup ∅ = −∞ and inf ∅ =∞.

Remark 3.2. (A) Keep the above notations and hypotheses. Then, clearly

0 < f(M) ≤ g(M) and f(M), g(M) ∈ {1, 2, . . . , cd(M),∞}.

In addition, we can say:

If cd(M) > 0, then f(M) ≤ cd(M).

Moreover, with the convention that the 0-module has dimension−∞, we have (see [BH,2005])

cd(M) = dim(M/m0M).

This implies in particular

If cd(M) > 0, then cd
(
M/Γm0R(M)

)
= cd(M).

(B) Keep the above hypotheses and notations. Following [BRSa,2005] we say, that a
graded R-module U =

⊕
n∈Z Un is K-Artinian, if U is Artinian and lengthR0

(Un) < ∞ for
all n ∈ Z. Using this terminology, we can say (see Proposition 4.2 of [BRSa,2005]:

If i ≤ g(M), then the graded R-module Γm0R

(
H i
R+

(M)
)

is K-Artinian.

Moreover, by Theorem 4.10 of [BRSa,2005] we it holds:

If i ≤ g(M), the set Ass
(
H i
R+

(M)n
)

is asymptotically stable for n→ −∞.

(C) Next, consider the canonical epimorphism of graded R-modules

π : M �M/Γm0R(M).

Then, the short exact sequence

0 −→ Γm0R(M) −→M
π−→M/Γm0R(M) −→ 0
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together with the fact, that the graded R-modules Hj
R+

(
Γm0R(M)

)
are K-Artinian for all

j ∈ Z yields:

The kernel and the cokernel of the induced homomorphism of graded R-modules

H i
R+

(π) : H i
R+

(M) −→ H i
R+

(
M/Γm0R(M)

)
are both K-Artinian for all i ∈ Z.

As an immediate consequence of this, we obtain the relation

g
(
M/Γm0R(M)

)
= g(M).

(D) Let (R0,m
′
0) be a local Noetherian flat R0-algebra, consider the standard graded

Noetherian R′0-algebra R′ := R′0 ⊗R0 R =
⊕

n∈N0
R′0 ⊗R0 Rn and the finitely generated

graded R′-module M ′ := R′0 ⊗R0 M =
⊕

n∈ZR
′
0 ⊗R0 Mn. Then, from the graded flat base

change property of local cohomology it follows

cd(M ′) = cd(M) and f(M ′) = f(M).

Moreover, we can say:

If dim(R′0/m0R
′
0) = 0, then g(M ′) = g(M).

Notation and Remark 3.3. For each R0-module V we use the notation

V := V/Γm0(V ).

So, if U =
⊕

n∈Z Un is a graded R-module, we have

U = U/Γm0R(U) =
⊕
n∈Z

Un =
⊕
n∈Z

Un.

Lemma 3.4. Let g := g(M) <∞. Then we have

(a) If j > 1, then

Hj
m0

(
Hg
R+

(M)n) ∼= Hj
m0

(
H i
R+

(M)n
)

for all n� 0.

(b) Either

H1
m0

(
Hg
R+

(M)n
)
6= 0 for all n� 0 or else

H1
m0

(
Hg
R+

(M)n
) ∼= H1

m0

(
Hg
R+

(M)n
)

for all n� 0.

Proof. According to Remark 3.2 (C) we have an exact sequence of graded R-modules

0 −→ K −→ Hg
R+

(M) −→ Hg
R+

(M) −→ C −→ 0

in which K =
⊕

n∈ZKn and C =
⊕

n∈ZCn are K-Artinian. Now, statement (a) follows
immediately from Notation and Remark 3.3 (B).
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Next, we prove statement (b). The above exact sequence also yields a short exact sequence
of graded R-modules

0 −→ D −→ H1
m0

(
Hg
R+

(M)
)
−→ H1

m0

(
Hg
R+

(M)
)
−→ 0

in which D =
⊕

m∈ZDm is a homomorphic image of C and hence K-Artinian.
Assume first, that Dm 6= 0 for infinitely many m ≤ 0. As D is K-Artinian, it follows that
Dn 6= 0 for all n� 0 and hence that

H1
m0

(
Hg
R+

(M)n
)
6= 0 for all n� 0.

In the remaining case, we have Dn = 0 for all n� 0, so that

H1
m0

(
Hg
R+

(M)n
) ∼= H1

m0

(
Hg
R+

(M)n
)

and all n� 0.

�

Definition and Remark 3.5. Keep the above notations. Let U =
⊕

n∈Z Un be a graded
R-modules, whose graded components Un are all finitely generated R0-modules. We define
the left inferior depth of U as the inferior limit of the depths of the R0-module Un if n tends
to −∞, thus

depth(U) := liminfn→−∞depth(Un)

= inf{c ∈ Z ∪ {∞} | depth(Un) = c for infinitely many n < 0}
= inf{j ∈ Z | Hj

m0
(Un) 6= 0 for infinitely many n < 0}.

Definition and Remark 3.6. Following [BJ,2012] we say that a graded R-module U =⊕
n∈Z Un is almost Artinian if there is a graded submodule T =

⊕
n∈Z Tn such that Tn = 0

for all n� 0 and T/N is Artinian. The property of being almost Artinian clearly is inherited
by graded subquotients. Moreover each almost Artinian module U is tame, so that

either Un 6= 0 for all n� 0, or else Un = 0 for all n� 0.

Proposition 3.7. Let g := g(M) <∞. Set c := depth
(
Hg
R+

(M)
)
. Assume that the graded

R-module H i−g−1
m0

(
H i
R+

(M)
)

is almost Artinian for all i ∈ Z with g < i < g + c. Then,

depth
(
(Hg

R+
(M)n

)
is asymptotically stable for n→ −∞.

Proof. Observe that c > 0. The case c =∞ follows immediately by the asymptotic stability
of Ass(Hg

R+
(M)n) for n→ −∞ (see Remark 3.2 (B)). So, let us assume that c <∞. Clearly,

our claim is clear if dim(Hg
R+

(M)n) ≤ 1 for all n� 0. Hence, by the previously mentioned

asymptotic stability we may assume that dim(Hg
R+

(M)n) > 1 for all n� 0.

We now proceed by induction on d := dim(M). If d = 0, our claim is obvious. So, let d > 0.

Let (R̂0, m̂0) be the completion of (R0,m0) and set

R̂ := R̂0 ⊗R0 R and M̂ := R̂0 ⊗R0 M.
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Then we have dim(M̂) = d and the Graded Flat Base Change and the Graded Base Ring
independence Property of local cohomology show that there are isomorphisms of graded

R̂-modules
H i
R̂+

(M̂)n ∼= R̂0 ⊗R0 H
i
R+

(M)n for all n, i ∈ Z.
From this it follows easily that neither our hypotheses nor one of the occurring invariants is

affected if we replace R and M respectively by R̂ and M̂ . This allows to hence assume that
the base ring (R0,m0) is complete.
K-Artinian (see Remark 3.2 (C)) we may replace M by M and hence assume that Γm0R(M) =
0. As R0 is complete, the Countable Prime Avoidance Principle of [SV, ] allows to chose an
element x0 ∈ m0 which avoids all members of the countable set of primes( ⋃

n∈Z

AssR0(Mn) ∪
⋃
i,n∈Z

AssR0(H
i
R+

(M)n)
)
\ {m0}.

As Γm0R(M) = 0 it follows that

x0 ∈ NZD(M), and dim(M/x0M) = d− 1.

Moreover, x0 is filter-regular with respect to H i
R+

(M)n for all i, n ∈ Z, so that for all i ∈ Z
we may say:

(1) (0 :Hi
R+

(M) x0) ⊆ Γm0R(H i
R+

(M));

(2) x0 ∈ NZD
(
H i
R+

(M)
)
.

For each i ∈ Z we have exact sequences of graded R-modules

(3) 0 −→ H i
R+

(M)/x0H
i
R+

(M) −→ H i
R+

(M/x0M) −→ (0 :Hi+1
R+

(M) x0) −→ 0;

(4) 0 −→ (0 :Hi
R+

(M) x0) −→ H i
R+

(M) −→ x0H
i
R+

(M) −→ 0.

As dim(Hg
R+

(M)n) > 1 for all n� 0 the sequences (3) first imply (see also Remark 3.2 (B))

g(M/x0M) = g and Γm0R

(
Hg
R+

(M/x0M)
)

is K-Artinian.

Moreover by the inclusion (1) and the sequence (3) we get exact sequences of graded R-
modules

(5) 0 −→ K −→ Hg
R+

(M)/x0H
g
R+

(M) −→ Hg
R+

(M/x0M) −→ C −→ 0,

(6) 0 −→ Hg
R+

(M)/x0H
g
R+

(M) −→ Hg
R+

(M/x0M) −→ D −→ 0,

in which

(5’) K is a graded homomorphic image of Γm0R

(
Hg
R+

(M/x0M)
)

– hence K-Artinian, and

(6’) C and D are both graded subquotients of H0
m0R

(
H i
R+

(M)
)
.

Applying (2) with i = g, we get exact sequences

0 −→ Hg
R+

(M)
n

x0−→ Hg
R+

(M)
n
−→ Hg

R+
(M)

n
/x0H

g
R+

(M)
n
−→ 0

for all n ∈ Z. Applying cohomology with respect to m0 we thus obtain for all n, j ∈ Z:
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(7) If Hj−1
m0

(
Hg
R+

(M)
n

)
= Hj

m0

(
Hg
R+

(M)
n

)
= 0, then we have

Hj−1
m0

(
Hg
R+

(M)
n
/x0H

g
R+

(M)
n

)
= 0;

(8) If Hj−1
m0

(
Hg
R+

(M)
n
/x0H

g
R+

(M)
n

)
= 0, then we have

Hj
m0

(
Hg
R+

(M)
n

)
= 0.

We now proceed by induction on c. Assume first, that c = 1. Then H1
m0

(
Hg
R+

(M)
n

)
6= 0

for infinitely many n ≤ 0. So, by (7), we have H0
m0

(
Hg
R+

(M)
n
/x0H

g
R+

(M)
n

)
6= 0 for infinitely

many n ≤ 0. Observe that the sequence (5) implies an isomorphism of graded R-modules

K ∼= H0
m0

(
Hg
R+

(M)/x0H
g
R+

(M)
)
.

As K is K-Artinian it follows that H0
m0

(
Hg
R+

(M)
n
/x0H

g
R+

(M)
n

)
6= 0 for all n � 0. As

H0
m0

(
Hg
R+

(M)
)

= 0 it follows by (7) that H1
m0

(
Hg
R+

(M)
n

)
6= 0 for all n� 0, and this proves

our claim if c = 1.

Now, let c > 1. Then, by our hypotheses and by (6’) the graded R-module D is almost
Artinian. Now, the sequence (6) implies a short exact sequence of graded R-modules

(9) 0 −→ D −→ H1
m0R

(
Hg
R+

(M)/x0H
g
R+

(M)
)
−→ H1

m0R

(
Hg
R+

(M/x0M)
)
−→ 0

and isomorphisms of graded R-modules

(10) Hj−1
m0R

(
Hg
R+

(M)/x0H
g
R+

(M)
) ∼= Hj−1

m0R

(
Hg
R+

(M/x0M)
)

for all j > 2.

Assume first, that Dn 6= 0 for all n� 0. Then by (9) we have

H1
m0

(
Hg
R+

(M)
n
/x0H

g
R+

(M)
n

)
6= 0 for all n� 0.

As c > 1 it follows by (7) that H2
m0

(
Hg
R+

(M)
n

)
6= 0 for all n � 0. This means that c = 2

and proves the required asymptotic stability.
So, we may assume that Dn = 0 for all n � 0. But now, it follows from (9) and (10), that
we have isomorphisms

(11) Hj−1
m0R

(
Hg
R+

(M)
n
/x0H

g
R+

(M)
n

) ∼= Hj−1
m0R

(
Hg
R+

(M/x0M)
n

)
, ∀j > 1 and ∀n� 0.

By (7) and (8) it now follows that Hc−1
m0R

(
Hg
R+

(M/x0M)
n

)
6= 0 for infinitely many n ≤ 0

and Hj−1
m0R

(
Hg
R+

(M/x0M)
n

)
= 0 for all j ∈ Z with 1 < j < c− 1. As Hg

R+
(M/x0M) has no

m0-torsion it follows that

depth
(
Hg
R+

(M/x0M)
n

)
= c− 1.

Now, for each i > g the inclusions (1) and the sequences (3) and (4) respectively imply
epimorphisms of graded R-modules

H i−g−1
m0R

(
H i
R+

(M)/x0H
i
R+

(M)
)
� H i−g−1

m0R

(
H i
R+

(M/x0M)
)
;
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H i−g−1
m0R

(
H i
R+

(M)
)
� H i−g−1

m0R

(
H i
R+

(M)/x0H
i
R+

(M)
)
.

These show, that

H i−g−1
m0R

(
H i
R+

(M/x0M)
)

is almost Artinian for all i ∈ Z with g < i < g + (c− 1)− 1.

Hence, the module M/xM satisfies again our hypotheses. So, we may apply induction on c
in order to see that indeed

Hc−1
m0R

(
Hg
R+

(M/x0M)
n

)
6= 0 for all n� 0.

But now, another use of the isomorphisms (11) and the implications (7) shows that

Hc
m0

(
Hg
R+

(M)
n

)
6= 0 for all n� 0,

and this proves our claim. �

Corollary 3.8. Let the notations and hypotheses be as in Proposition 3.7. Then depth(Hg
R+

(M)n)
is asymptotically stable for n→ −∞.

Proof. This is clear by Proposition 3.7 and Remark 3.2 (B). �

Corollary 3.9. Let the notations be as in Proposition 3.7. Then depth(Hg
R+

(M)n) is asymp-
totically stable for n→ −∞,provided that one of the following conditions holds:

(i) depth
(
H i
R+

(M)
)
≥ i− g for all i ∈ Z with g < i < g + c;

(ii) dim
(
H i
R+

(M)n
)
< i− g for all i ∈ Z with g < i < g + c and infinetely many n ≤ 0;

(iii) g = cd(M);

(iv) g = cd(M)− 1 and Γm0R

(
H

cd(M)
R+

(M)
)

is almost Artinian.

Proof. All these statemnt follow immediately from Corollary 3.8 and by standard vanishing
theorems of local cohomology. �

4. Asymptotic Prime Divisors of Components of Graded Local Cohomology

Notation 4.1. We keep all our previous notations and conventions, but we admit now,
that the Noetherian R0 base ring of our standard Noetherian ring R =

⊕
n∈N0

Rn is not
necessarily local. Keep in mind, that

dim
(
H i
R+

(M)n
)
≤ 0 for all i < g and all n ≤ n0,

for an appropriate n0 ∈ Z. We once for all fix such an integer n0 = n0(M).

Lemma 4.2. Let a0 ⊂ R0 be an ideal and let x0 ∈ R0. Then for each i ∈ N0 and each n ∈ Z
there is an exact sequence of R0-modules

0 −→ H1
x0R0

(
H i−1

a0+R+
(M)n

)
−→ H i

x0R0+a0+R+
(M)n −→ H0

x0R0

(
H i

a0+R+
(M)n

)
−→ 0.
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Proof. This is an immediate consequence of the graded version of the comparison sequence
[BS,2013] Proposition 8.1. �

Lemma 4.3. Assume that (R0,m0) is local. Let a0 ⊆ m0 be an ideal. Then

(a) For all i < g and for all n ≤ n0 we have dim
(
H i

a0+R+
(M)n

)
≤ 0.

(b) For all n ≤ n0 there is an isomorphism of R0-modules

Hg
a0+R+

(M)n ∼= H0
a0

(
Hg
R+

(M)n
)
.

(c) For all n ≤ n0 the R0 module Hg
a0+R+

(M)n is finitely generated.

Proof. (a): We proceed by induction on the number µ of generators of a0. If µ = 0 we have
a0 = 0 and our claim is clear by our choice of n0. So, let µ > 0 and write a0 = x0R0+b0 where
x0 ∈ m0 and b0 ⊆ m0 is an ideal generated by < µ elements. The comparison sequences of
Lemma 4.2 applied to the ideal b0 ⊆ R0 now read as

0 −→ H1
x0R0

(
H i−1

b0+R+
(M)n

)
−→ H i

a0+R+
(M)n −→ H0

x0R0

(
H i

b0+R+
(M)n

)
−→ 0.

By induction we have

dim
(
H i−1

b0+R+
(M)n

)
and dim

(
H i

b0+R+
(M)n

)
≤ 0 for all i < g and all n ≤ n0.

Therefore H1
x0R0

(
H i−1

b0+R+
(M)n

)
= 0 and dim

(
H0
x0R0

(
H i

b0+R+
(M)n

))
≤ 0, and this proves our

claim.

(b): We proceed again by induction on the number µ of generators of a0. If µ = 0, we have
a0 = 0 and our claim is obvious. If µ > 0, we write again a0 = x0R0 +b0, where x0 ∈ m0 and
b0 ⊆ m0 is an ideal generated by < µ elements. So, by induction we have a isomorphisms

Hg
b0+R+

(M)n ∼= H0
b0R0

(
Hg
R+

(M)n
)

for all n ≤ n0.

Now, we apply the comparison sequence of the proof of statement (a) with i = g and obtain
exact sequences

0 −→ H1
x0R0

(
Hg−1

b0+R+
(M)n

)
−→ Hg

a0+R+
(M)n −→ H0

x0R0

(
Hg

b0+R+
(M)n

)
−→ 0

for all n ≤ n0. By statement (a) we have H1
x0R0

(
Hg−1

b0+R+
(M)n = 0 for all n ≤ n0. We thus

get isomorphisms

Hg
a0+R+

(M)n ∼= H0
x0R0

(
Hg

b0+R+
(M)n

) ∼= H0
x0R0

(
H0

b0

(
Hg
R+

(M)n
))

= H0
a0

(
Hg
R+

(M)n
)

for all n ≤ n0, and our claim follows.

(c): This is an immediate consequence of statement (b) and the fact that the R0-modules
Hg
R+

(M)n are finitely generated. �
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Notation and Remark 4.4. According to Remark 3.2 (B) we know that there is some
integer n1 ≤ n0 such that

Ass
(
Hg
R+

(M)n
)

= Ass
(
Hg(M)n1

)
for all n ≤ n1

. We fix such an integer n1 = n1(M). In addition we write:

S = S(M) := Ass
(
Hg(M)n1

)
.

Proposition 4.5. Let (R0,m0) be local and let a0 ⊆ m0 be an ideal. Then

AssR0

(
Hg

a0+R+
(M)n

)
= S(M) ∩ Var(a0) for all n ≤ n1.

Proof. This is immediate by Lemma 4.3 (b). �

Lemma 4.6. Let V be an R0-module and let x0 ∈ R0. Then

Ass
(
H1
x0R0

(V )
)

= Ass
(
V/(Γx0R0(V ) + x0V )

)
.

Proof. Let p0 ∈ Spec(R0). We have to show, that

p0 ∈ Ass
(
H1
x0R0

(V )
)

if and only if p0 ∈ Ass
(
V/(Γx0R0(V ) + x0V )

)
.

By the Flat Base Change Property of local cohomology we my localize at p0 and hence
assume that (R0,m0) is local and p0 = m0. If x0 /∈ m0 our claim is obvious as both of the
occurring modules vanish. So, let x0 ∈ m0. We write W := V/Γx0R0(V ), so that H1

x0R0
(V ) ∼=

H1
x0R0

(W ). This allows to replace V by W and hence to assume that Γx0R0(V ) = 0 and
hence x0 ∈ NZD(V ). In particular, we have a canonical isomorphism H1

x0R0
(V ) ∼= Vx0/V .

If x0V = V our claim is obvious. So, we may assume that x0V ( V . Hence, for each

w ∈ Vx0 \ V there is a unique n(w) ∈ N such that x
n(w)
0 ∈ V and x

n(w)−1
0 /∈ V .

First, let m0 ∈ Ass
(
H1
x0R0

(V )
)

= Ass(Vx0/V ). Then m0w ⊆ V for some w ∈ Vx0 \ V . It

follows that m0x
n(w)
0 w ⊆ x

n(w)
0 V and x

n(w)
0 w ∈ V \ xn(w)

0 V . But this implies that m0 ∈
Ass(V/x

n(w)
0 V ) = Ass(V/x0V ). Conversely, let m0 ∈ Ass(V/x0V ). Then m0v ⊆ x0V for

some v ∈ V \ x0V . It follows, that m0
v
x0
∈ V and v

x0
∈ Vx0 \ V , hence m0 ∈ Ass(Vx0/V ) =

Ass
(
H1
x0R0

(V )
)
. �

5. Supports of Deficiency Modules, Pseudo-Supports and Canonical
Modules

We keep the previous notations. First we recall a few facts on deficiency modules.

Reminder 5.1. (As basic references we recommend [Sc,1982], [Sc,1996] and also [BrHe,1998].)
(A) Assume that our Noetherian ring R is local of dimension d and with maximal ideal m.
Let (R′,m′) be a local Gorenstein Ring of dimension d′ ≥ d and suppose that there is a
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surjective ring homomorphism f : R′ � R. For each i ∈ N0 consider the contravariant
functor

ExtiR′(•, R′) : C(R′) −→ C(R′).
Observe, that by means of scalar restriction with respect to the homomorphism f : R′ � R,
we get an induced contravariat functor

Ki
R(•) = Extd

′−i
R′ (•, R′) : C(R) −→ C(R) for all i ≤ d.

Up to natural equivalence, each of these functors is independent on the choice of the surjec-
tive homomorphism from a local Gorenstein ring to R, and it is called the i-th deficiency
functor. For each R-module M and each non-negative integer i ≤ d, the R-module Ki

R(M)
is called the i-th deficiency module of M .

(B) Keep the previous notations and hypotheses. Keep in mind, that the deficiency
functors constitute a strongly negative connected sequence of functors. More precisely, every
short exact sequence of R-modules

S : 0 −→ N
h−→M

l−→ P −→ 0

induces naturally an exact sequence

0 −→Kd
R(P )

Kd
R(l)
−→ Kd

R(M)
Kd

R(h)
−→ Kd

R(N)

δdS−→Kd−1
R (P )

Kd−1
R (l)
−→ Kd−1

R (M)
Kd−1

R (h)
−→ Kd−1

R (N)

δd−1
S−→Kd−2

R (P )
Kd−1

R (l)
−→ Kd−2

R (M) −→ · · ·
δ2S−→K1

R(P )
K1

R(l)
−→ K1

R(M)
Kd

R(h)
−→ K1

R(N)

δ1S−→K0
R(P )

K0
R(l)
−→ K0

R(M)
K0

R(h)
−→ K0

R(N) −→ 0,

the deficiency sequence associated to the short exact sequence S.

(C) Keep the previous notations and hypotheses, and let M be a finitely generated R-
module. Let i ≤ d be a positive integer and let p ∈ Spec(R). Then, the following statements
hold

(a) Ki
R(M) is finitely generated and vanishes if i > dim(M).

(b) dim
(
Ki(M)

){≤ i, if i < dim(M);

= i, if i = dim(M).

(c) If ER(N) denotes the injective envelope of the R-module N – by local duality – there
is an isomorphism of R-modules

H i
m(M) ∼= HomR

(
Ki
R(M), ER(R/m)

)
.
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(d) If i ≤ dim(R/p), there is a natural isomorhism of Rp-modules

Ki
R(M)p ∼= K

i−dim(R/p)
Rp

(Mp).

(e) If i = dim(R/p), then, the following statements are equivalent:
(i) p ∈ AssR(M);
(ii) p ∈ AssR

(
Ki
R(M)

)
;

(iii) p ∈ SuppR
(
Ki
R(M)

)
.

Proposition 5.2. Assume that R is a homorphic image of a local Gorenstein ring. Let
p ∈ SpecR and let i ≤ d be a non-negative integer with dim(R/p) ≤ i. Let M and N be two
finitely generated R-modules such that depthRp

(Mp) = depthRp
(Np). Then it holds

p ∈
⋃

dim(R/p)≤j≤i

SuppR
(
Kj
R(M)

)
if and only if p ∈

⋃
dim(R/p)≤j≤i

SuppR
(
Kj
R(N)

)
.

Proof. By Reminder 5.1(C)(d) we may assume that p = m. We show by induction on i the
implication

∃k ≤ i such that Kk
R(M) 6= 0⇒ ∃j ≤ i such that Kj

R(N) 6= 0.

We proceed by induction on i. Assume first, that i = 0. By Reminder 5.1(C)(e) it follows
that m ∈ AssR(M). By our hypothesis it follows that m ∈ AssR(N), whence another use of
Reminder 5.1(C)(e) yields that m ∈ SuppR

(
K0
R(N)

)
., thus K0(M) 6= 0.

Next, let i > 0. By induction we may assume that Ki
R(M) 6= 0. Assume first, that

depthR(M) = 0. Then, by our hypothesis we have depthN = 0, and hence Reminder 5.1(C)(b)
and (c) show that K0

R(N) is an R-module of dimension 0, whence K0
R(M) 6= 0, as re-

quested. Assume now, that depthR(M) > 0. Then depthR(N) > 0 and hence there is some
x ∈ m ∩ NZD(M) ∩ NZD(N). So by Reminder 5.1(B) the two short exact sequences

0 −→M
x−→M −→M/xM −→ 0

0 −→ N
x−→ N −→ N/xN −→ 0

imply exact sequences

(@M,j) Kj+1
R (M) −→ Kj

R(M/xM) −→ Kj
R(M)

x−→ Kj
R(M) −→ Kj−1

R (M/xM)

(@N,j) Kj+1
R (N) −→ Kj

R(N/xN) −→ Kj
R(N)

x−→ Kj
R(N) −→ Kj−1

R (N/xN)

for all j ≥ 0 – with the convention that the right-hand side modules vanish if j = 0. Applying
Nakayama in the sequence (@M,i) yields that Kj−1

R (M/xM) 6= 0. As depthR(M/xM) =
depthR(N/xN) it follows by induction that Kk

R(N/xN) 6= 0 for some k ≤ i − 1. By the
sequence (@N,k) it follows that either Kk+1

R (M) 6= 0 or Kk
R(M) 6= 0. �

As an immediate consequence of Proposition 5.2 we now get.
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Corollary 5.3. Assume that R is a homorphic image of a local Gorenstein domain. Let
i ∈ N0, and let M and N be two finitely generated R-modules such that depthRp

(Mp) =
depthRp

(Np) for all p ∈ Spec(R) with dim(R/p) ≤ i. Then⋃
0≤j≤i

SuppR
(
Kj
R(M)

)
=
⋃

0≤j≤i

SuppR
(
Kj
R(N)

)
.

As we shall see in a moment, the previous proposition ands corollary are totally non-
surprising, and both follow directly from a more general result, which is almost immediate.
In order to formulate this latter result, we introduce a few more notions.

Reminder 5.4. (As a basic reference we recommend [BS,2002].) (A) Assume that our
Noetherian ring R is local with maximal ideal m. Let M be a finitely generated R-module
and let i ∈ N0. Then, the i-th pseudo-support of M is defined by

Psuppi(M) := {p ∈ Spec(R) | H i−dim(R/p)
pRp

(Mp) 6= 0},
whereas the i-the pseudo-dimension of M is defined by

psdi(M) := sup{dim(R/p) | p ∈ Psuppi(M)}.

(B) Keep the notations and hypotheses of part (A). Observe the following general facts.

(a) Psuppi(M) ⊂ Supp(M).

(b) p ∈ Supp(M) | dim(R/p) = dim(M)} ⊆ Psuppdim(M)(M).
(c) If i > dim(M), then Psuppi(M) = ∅.
(d) psdi(M) ≤ i.

An easy, but important property of pseudo-supports is:

(e) For all p ∈ SpecR with dim(R/p) ≤ i it holds

depthRp
(Mp) ≤ i− dim(R/p) and only if p ∈

⋃
dim(R/p)≤j≤i

Psuppj(M).

Bearing in mind the previous statement (d), we get as an immediate consequence for all
i ∈ N0 the equality

(@@) {p ∈ SpecR | depthRp
(Mp) ≤ i− dim(R/p)} =

⋃
0≤j≤i

Psuppj(M).

(C) Some important properties of pseudo-supports depend on the nature of the local ring
R. So, for every i ∈ N0 we can say:

(a) If R is catenary, then Suppi(M) is closed under specialization. But there is an
example of a (non-catenary) Noetherian 3-dimensional local domain R for which
Psupp3(R) is not closed under specialisation and Psupp2(R) is not closed.

(b) If R is universally catenary, and all its formal fibers are Cohen-Macaulay, then
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(1) The i-th pseudo-support of M is closed, more precisely

Suppi(M) = Cosupport
(
H i

m(M)
) (

:=
⋃

p∈AttR(Hi
m(M))

Var(p)
)
;

(2) psdi(M) = dim
(
H i

m(M)
)
.

However, there is an example of a universally catenary Noetherain 3-dimensional local
domain R (wose formal fibers are not all Cohen-Macaulay) such that Psupp2(R) is
not closed.

(c) If R is a homomorphic image of a local Gorenstein ring, then

Psuppi(M) = Supp
(
Ki
R(M)

)
.

Remark 5.5. (A) Assume that (R,m) is local and let M and N be two finitely generated
R-modules. Then Reminder 5.4(B)(e) implies the following statement.

(a) For all p ∈ SpecR with dim(R/p) ≤ i and depthRp
(Mp) = depthRp

(Np) it holds

p ∈
⋃

dim(R/p)≤j≤i

Psuppj(M)if and only if p ∈
⋃

dim(R/p)≤j≤i

Psuppj(N).

Moreover, by the relation (@@) of Reminder 5.4(B) we get the following statement.

(b) Let i ∈ N0, and assume that depthRp
(Mp) = depthRp

(Np) for all p ∈ Spec(R) with
dim(R/p) ≤ i. Then ⋃

0≤j≤i

Psuppj(M) =
⋃

0≤j≤i

Psuppj(N).

But now, in view of Reminder 5.4 (C)(c) Proposition 5.2 is an immediate consequence of
statement (a), whereas Corollary 5.3 is an immediate consequence of statement (b).

(B) The example of universally catenary 3-dimensional Noetherian local domain R with
non-closed second pseudo-support Psupp2(R) mentioned in Reminder 5.4(C)(b) has the
property that Psuppi(R) = ∅ for i = 0, 1, that psd2(R) = 1 and that there are infin-
itely many minimal primes p ∈ Supp2(R) with dim(R/p) = 1 (see [BS,2002]). So, in this
case the union

2⋃
j=0

Suppj(R) = Supp2(R) is not closed .

(C) Now, fix i ∈ N0 and p ∈ Spec(R) with dim(R/p) ≤ i and depthRp
(Mp) ≤ i−dim(R/p).

Moreover, let q ∈ Var(p). Then we have the well known relations:

height(q/p) ≤ dim(R/p)− dim(R/q) and depthRq
(Mq) ≤ depthRp

(Mp) + height(q/p).
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These imply that depthRq
(Mq) ≤ i−dim(R/p). In view of statement (@@) of Reminder 5.4(B)

this implies: ⋃
0≤j≤i

Psuppj(M) is closed under specialization.

We now return to the deficiency module, more precisely there special case of canonical
module

Reminder 5.6. (As basic references we recommend [Sc,1982], [Sc,1996], [BrHe,1998] and
[BS,2013].) (A) Assume, as in Reminder 5.1, that our Noetherian ring R is local of dimension
d and with maximal ideal m. Let (R′,m′) be a local Gorenstein Ring of dimension d′ ≥ d
and suppose that there is a surjective ring homomorphism f : R′ � R. Let M 6= 0 be a
finitely generated R-module. The canonical module of M is defined by

K(M) := K
dim(M)
R (M).

Keep in mind that

(a) AssR
(
K(M)

)
= {p ∈ AssR(M) | dim(R/p) = dim(M)};

(b) K(M) ∼= K(M/UM(0)), where UM(0) = Γ∩p∈AssR(M)|dim(R/p)<dim(M)p(M) is (unique)
maximal submodule of M whose dimension is strictly less than the dimension of M.

Observe, that in the above notations we have

(c) AssR(M/UM(0)) = {p ∈ AssR(M) | dim(R/p) = dim(M)};
(d) UM(0) = 0 if and only if dim(R/p) = dim(M) for all p ∈ AssR(M).

(B) Keep the notations and hypotheses of part (A). We consider the natural map

ε : HomR(M,M) −→ HomR

(
K(M), K(M)

)
, h 7→ Kdim(M)(h)for all h ∈ HomR(M,M).

Assume that dim(R/p) = dim(M) for all p ∈ AssR(M), so that U0(M) = 0. Now,
chose h ∈ HomR(M,M) \ {0}. Then h(M) 6= 0 and hence dim

(
h(M)

)
= dim(M), thus

K
dim(M)
R

(
h(M)

)
= K

(
h(M)

)
6= 0. Now, the shoet exact sequence

0 −→ h(M)
j−→M −→M/h(M) −→M/h(M) −→ 0,

in which j denotes the inclusion map, induces the exact sequence

K(M)
K

dim(M)
R (j)
−→ K

(
h(M)

) δ−→ K
dim(M)−1
R

(
M/h(M)

)
.

By Reminder 5.1 (C)(b), the last module in this sequence has dimension < dim(M) =
dim

(
K(h(M))

)
. Therefore, the map δ is 6= 0. The short exact sequence

0 −→ Ker(h) −→M
h−→ h(M) −→ 0,
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with h = j ◦ h gives rise to a monomorphism

0 −→ K
(
h(M)

) Kdim(M)
R (h)
−→ K(M).

If follows that

ε(h) = K
dim(M)
R (h) = K

dim(M)
R (j ◦ h) = K

dim(M)
R (h) ◦Kdim(M)

R (j) 6= 0.

Now, the two exact sequences

0 −→ AnnR(M) −→ R
γ−→ HomR(M,M), (γ(x) := xIdM ,∀x ∈ R) and

0 −→ AnnR(K(M)) −→ R
γ−→ HomR(K(M), K(M)), (γ(x) := xIdK(M),∀x ∈ R),

together with the fact that ε ◦ γ = γ, show that AnnR(K(M)) = AnnR(M). Therefore, by
statements (b) and (c) of part (A) we can say:

(∗∗) AnnR(K(M)) = AnnR
(
M/UM(0)

)
.

6. Components of Graded Modules

Notation 6.1. (A) We keep the previous notations. Throughout this section, let

R =
⊕
n∈N0

Rn be a Noetherian homogenoeous ring

and let

M =
⊕
n∈Z

Mn ba a finitely generated graded R-module.

(B) We introduce the generating degree of M , which is defined by

gendeg(M) := inf{n ∈ Z |M = R
∑
m≤n

Mm}.

Keep in mind that

gendeg(M) ≤ reg(M).

Lemma 6.2. Let n0 ≥ max{end
(
ΓR+(M) + 1

)
, gendeg(M)}. Then

AnnR0(Mn) = AnnR0(Mn0) for all n ≥ n0.

Proof. Let p ∈ Spec(R0). Then, for each n ∈ Z we have AnnR0p
(Mnp) = AnnR0(Mn)Rp.

Moreover end
(
ΓRp+(Mp)

)
≤ end

(
ΓR+(M)

)
and gendeg(Mp) ≤ gendeg(M). This allows to

assume that R0 is local, with maximal ideal say m0.
There is a Noetherian local faithfully flat extension ring (R′0,m

′) of (R,m) such that R′/m′

is infinite. Now, by faithful flatness we may replace R and M respectively by R′0 ⊗R0 R and
R′0 ⊗R0 M and hence assume in addition that the residue field R0/m is infinite.
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Now, there is some x ∈ R1 such that the multiplication map x : Mm −→ Mm+1 is injective
for all m ≥ n0 > end

(
ΓR+(M)

)
. This shows that

AnnR0(Mm+1) ⊆ AnnR0(Mm) for all m ≥ n0.

On the other hand we have Mm+1 = R1Mm for all m ≥ n0 ≥ gendeg(M), and hence

AnnR0(Mm) ⊆ AnnR0(Mm+1) for all m ≥ n0.

�

In view of Notation 6.1 (B) we now immediately get.

Proposition 6.3. Let n0 > reg(M). Then

AnnR0(Mn) = AnnR0(Mn0) for all n ≥ n0.

As a further application we now get

Corollary 6.4. Assume that R is a homomorphic image of a local Gorenstein ring. Then,
there is a integer n0 such that

AnnR0

(
K(Mn)

)
= AnnR0

(
K(Mn0)

)
for all n ≥ n0.

Proof. For each n ∈ Z we set

Sn := {p0 ∈ AssR0 | dim(R0/p0) = dim(Mn)}.

As AssR0(Mn) is asymptotically stable for n→∞, there is some m0 ∈ Z such that Sn = Sm0

for all n ≥ m0. We consider the finitely generated graded R-module

M := M/Γ(
⋂

p∈Sm0
p)(M).

Then, we have Mn = Mn/UM(0) for all n ≥ m0. If we set n0 := max{m0, reg(M)} we get
our claim by Proposition 6.3 and statement (∗∗) of Reminder 5.6 (B). �

For our convenience we now reprove in a concise manner a result which is well known and
found in various versions at different places (see for example [B,1990,1]).

Proposition 6.5. Let b ⊆ R0 be an ideal. Then, there is some n0 ∈ Z such that gradeMn
(b) =

gradeMn0
(b) for all n ≥ n0.

Proof. Let δ := liminfn→∞gradeMn
(b) ∈ N0 ∪ {∞}. It remains to show that gradeMn

(b) = δ
for all n� 0.
Assume first, that δ =∞. Then gradeMn

(b) =∞, hence bMn = Mn and finally Mn/bMn = 0
for infinitely many n > 0. As the graded R-module MbM =

⊕
n∈ZMn/bMn is finitely

generated, it follows that Mn/bMn = 0, hence bMn = Mn and finally gradeMn
(b) = ∞, for
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all n� 0.
So, let δ ∈ N0. We proceed by induction on δ. If δ = 0, We have gradeMn

(b) = 0, hence

b ⊆
⋃

p∈AssR0
(Mn)

p for infinitely many n > 0

As AssR0(Mn) is asymptotically stable for n → ∞ the above inclusion holds for all n � 0,
so that gradeMn

(b) = 0 for all n� 0.
Finally, let δ ∈ N. Then gradeMn

(b) = δ > 0, hence

b \
[ ⋃
p∈AssR0

(Mn)

p
]
6= ∅ for infinitely many n > 0.

As AssR0(Mn) is asymptotically stable for n→∞, it follows that there is some x ∈ b, such
that x ∈ NZDR0(Mn) for all n� 0. So, we obtain

grade(M/xM)n(b) = gradeMn/xMn
(b) = gradeMn

(b)− 1 = δ − 1 for infinitely many n > 0.

In particular we have liminfn→∞gradeMn
(b) = δ− 1. Thus, by induction the previous equal-

ities hold for all n� 0, so that gradeMn
(b) = δ for all n� 0. �

We aim to extend this result to a situation, in which R is not homogeneous. To this end
we first recall a basic notion on graded rings.

Notation and Reminder 6.6. (A) (See [BSh,2013] 13.5.9) Let R =
⊕

n∈ZRn be a Z-graded
Ring, let r ∈ Nn and consider r-th Veronese subring

R(r) :=
⊕
n∈Z

Rrn, furnished with its natural grading.

Observe, that for each homogeneous element x ∈ R we have xr ∈ R(r), so that R is an
integral extension of R(r). Moreover, if R is of finite type over R0, the R is a finite integral
extension of R(r).
(B) Keep the above notations and hypotheses. Let M =

⊕
n∈ZMn be a graded R-module.

For each s ∈ Z consider the graded R(r)-module

M (r,s) :=
⊕
n∈Z

Mrn+s.

If • �R(r) : ∗C(R) −→ ∗C(R(r)) denotes the (exact) functor of taking scalar restriction with
respect to the inclusion homomorphism R(r) −→ R, we have a canonical isomorphism of
graded R(r)-modules

r−1⊕
i=0

M (r,i) ∼=−→M �R(r) .

Moreover, if R is of finite type over R0, The graded R(r)-module M �R(r) is finitely generated,
and so are the modules M (r,s), which are all direct summands of M �R(r) . (C) assume now,
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that R =
⊕

n∈N0
Rn is Noetherian and positively graded. Then R0 is Noetherian and of

finite type over R0. We thus may write

R = R0[xi | i = 1 . . . , t], with t ∈ andxi ∈ Rni
, with ni ∈ N for i = 1, . . . , t.

Then we have (see for example [Ma,2009] 3.25)

For r := t · lcm(n1, . . . , nt) it holds R(r) = R0[Rr], hence R(r) is homogeneous.

Corollary 6.7. Let R =
⊕

n∈N0
Rn be a Noetherian and positively graded ring. Let b ⊆ R0

be an ideal and let M =
⊕

n∈ZMn be a finitely generated graded R-module. Then, there is
some r ∈ N and some n0 ∈ Z such that for all s = 0, 1, . . . , r − 1 and all n ≥ n0 it holds
gradeMrn+s

(b) = gradeMrn0+s
(b)

Proof. According to Notation and Reminder 6.6 (C) we find some r ∈ N such that R(r)

is homogeneous. By Notation and Reminder 6.6 (B) the graded R(r)-modules M (r,s) :=⊕
n∈ZMrn+s (s = 0, 1, . . . , r − 1) are finitely generated. Now, our claim follows easily on

application of Proposition 6.5. �

7. Ideal Transforms of Rees Rings and Rees Modules

Notation and Remark 7.1. (A) Let R be a Noetherian ring, let a ⊆ R be an ideal, let
t be an indeterminate and let M be an R-module. The Rees ring of R with respect to a is
defined as the Z-graded subring of R[t, t−1] given by

R′(a) =
⊕
n∈Z

R′(a)n := R[at, t−1], with R′(a)n = amax{0,n}tn for all n ∈ Z.

The truncated Rees ring of R with respect to a is defined as the N0-graded subring of R[t]
given by

R(a) =
⊕
n∈N0

R(a)n := R[at], with R(a)n = antn for all n ∈ N0.

Observe that R(a) is a positively graded homogeneous Noetherian ring, that R(a) is a
graded subring of R′(a) and that – considering R′(a) as a graded R(a)-module – we have
R(a) = R′(a)≥0.

(B) We consider the Noetherian Z-graded ring R[t, t−1] and the Z-graded R[t, t−1]-module
M [t, t−1] := M ⊗R R[t, t−1]. Moreover, we identify M = M ⊗R R = M ⊗R R[t, t−1]0 =(
M [t, t−1t]

)
0
, so that

M [t, t−1] =
⊕
n∈Z

M [t, t−1]n, with M [t, t−1]n = Mtn for all n ∈ Z.
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We now consider M [t, t−1] as graded R′(a)-module and define the Rees module of M with
respect to a as the graded R′(a)-module of M [t, t−1] given by

R′M(a) =
⊕
n∈Z

R′M(a)n := MR′(a), with R′M(a)n = amax{0,n}Mtn for all n ∈ Z.

Accordingly, we define the truncated Rees module of M with respect to a as the graded
R(a)-sub-module of M [t, t−1] given by

RM(a) =
⊕
n∈N0

RM(a)n, with RM(a)n = anMtn for all n ∈ N0.

Observe that R′M(a) and RM(a) are generated over R′(a) respectively over R(a) by finitely
many elements of degree 0 if M is finitely generated over R. Moreover RM(a) is a graded
R(a)-submodule of R′M(a) and under this aspect we have RM(a) = R′M(a)≥0.

(C) Let N ⊂M be a submodule and observe that N [t, t−1] is a graded R[t, t−1]-submodule
of M [t, t−1] and hence carries natural structures of graded R(a)- and R′(a)-submodules. So
we may define the strict transform of N in M with respect to a as the graded R′(a)-
submodule of R′M(a) given by

S ′NM (a) =
⊕
n∈Z

S ′NM (a)n := R′M(a) ∩N [t, t−1], with S ′NM (a)n =
(
N ∩ amax{0,n}M

)
tn,
(
∀n ∈ Z

)
.

Correspondingly, the truncated strict transform of N in M with respect to a is defined of
the graded R(a)-submodule of RM(a) given by

SNM(a) =
⊕
n∈N0

SNM(a)n := RM(a) ∩N [t], with SNM(a)n =
(
N ∩ anM

)
tn,
(
∀n ∈ N0

)
.

Clearly, we may consider SNM(a) as a graded R(a)-submodule of S ′NM (a) and write SNM(a) =
S ′NM (a)n≥0. Observe that we have the canonical isomorphisms of graded R′(a) respectively
R(a)-modules

R′M/N(a) ∼= R′M(a)/S ′NM (a) and RM(a) ∼= R(a)/SNM(a).

(D) Observe that we have the canonical isomorphisms of graded R(a)-modules

R′(a)/t−1R′(a) ∼= R(a)/aR(a) ∼= GM(a),

where

GM(a) =
⊕
n∈N0

GM(a)n, with GM(a)n = an/an+1 for all n ∈ N0

is the associated graded module of M with respect to a.

Remark 7.2. (A) Keep the previous notations and hypotheses. We always consider R′M(a)
as a graded R(a)-module. Observe that

ΓR(a)+

(
R′M(a)

)
= S ′Γa(M)

M (a) and ΓR(a)+

(
RM(a)

)
= SΓa(M)

M (a).
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In particular we have

ΓR(a)+

(
R′M(a)

)
n

=
(
Γa(M) ∩ amax{0,n}M

)
tn for all n ∈ Z

and

ΓR(a)+

(
RM(a)

)
n

=
(
Γa(M) ∩ anM

)
tn for all n ∈ N0.

Moreover, the canonical isomorphisms of 7.1 (C) give rise to canonical homomorphisms of
graded R(a)-modules

R′M/Γa(M)(a) ∼= R′M(a)/ΓR(a)+

(
R′M(a)

)
and RM/Γa(M)(a) ∼= RM(a)/ΓR(a)+

(
RM(a)

)
.

As a consequence we get canonical isomorphisms of graded R(a)-modules

DR(a)

(
R′M/Γa(M)(a)

) ∼= DR(a)

(
R′M(a)

)
and DR(a)

(
RM/Γa(M)(a)

) ∼= DR(a)

(
RM(a)

)
.

(B) Observe, that in view of the observations made in part (A), the canonical exact
sequence of graded R(a)-modules

0 −→ RM(a) −→ R′M(a) −→ R′M(a)/RM(a) −→ 0

gives rise to exact sequences of R-modules

0 −→M/Γa(M) −→ H1
R(a)+

(
RM(a)

)
n
−→ H1

R(a)+

(
R′M(a)

)
n
−→ 0 for all n < 0,

to isomorphisms of R-modules

H1
R(a)+

(
RM(a)

)
n
∼= H1

R(a)+

(
R′M(a)

)
n

for all n ≥ 0

and to isomorphisms of graded R(a)-modules

DR(a)+

(
RM(a)

) ∼= DR(a)+

(
R′M(a)

)
and

H i
R(a)+

(
RM(a)

) ∼= H i
R(a)+

(
R′M(a)

)
for all i > 1.

Notation and Remark 7.3. (A) Keep the above notations and hypotheses. For all n ∈
Z ∪ {∞} and all m ∈ N0 Consider the R-module

UM(a)mn := HomR(am, amax{0,m+n}M).

Fix n ∈ Z ∪ {−∞}, let m,m′ ∈ N0 with m ≤ m′ and let h ∈ UM(a)mn . Then, h(am) ⊆
amax{0,m+n}M together with the inequality m′ − m + max{0,m + n} ≥ max{0,m′ + n}
implies that h(am

′
) ⊆ amax{0,m′+n}M . Hence, by restriction and coadstriction we get an

induced homomorphism of R-modules

ιm,m
′

n : UM(a)mn −→ UM(a)m
′

n .

The family of homomorphisms of R-modules(
ιm,m

′

n : UM(a)mn −→ UM(a)m
′

n

)
m,m′∈N0,m≤m′

is a direct system, and so we may form the direct limit

UM(a)n := lim −→
m∈N0
UM(a)mn ,
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together with the induced homomorphisms

ιmn : UM(a)mn −→ UM(a)n for all m ∈ N0.

Observe that

UM(a)−∞ = Da(M).

Now, fix m ∈ N0 and let n, n′ ∈ Z∪{−∞} with n ≤ n′. Then, the inclusion amax{0,m+n′}M ⊆
amax{0,m+n}M gives rise to a monomorphism of R-modules

εmn,n′ : UM(a)mn′ −→ UM(a)mn .

As the family
(
εmn,n′ : UM(a)mn′ −→ UM(a)mn

)
m∈N0

is a homomorphism of direct systems, we

get an induced monomorphism

εn,n′ : UM(a)n′ −→ UM(a)n.

In particular, for each n ∈ Z we have the monomorphism

εn := ε−∞,n : UM(a)n −→ UM(a)−∞ = Da(M).

If we view UM(a)n as a submodule of Da(M) by means of εn, we may write

UM(a)n′ ⊆ UM(a)n ⊆ Da(M) for all n, n′ ∈ Z ∪ {−∞} with n ≤ n′.

(B) Keep the above notations and hypotheses. Let ∅ 6= S ⊆ NZDR(M) be multiplicatively
closed such that S ∩ a 6= ∅. Let n ∈ Z ∪ {∞}, let m ∈ N0 and let h ∈ UM(a)mn :=
HomR(am, amax{0,m+n}M). We consider amax{0,m+n}M as a submodule of S−1M. Then, for

each s ∈ S ∩ a the element αmn (h) := h(sm)
sm
∈ S−1M is independent of our choice of s ∈ S ∩ a

and for each x ∈ am we have

xαmn (h) =
xh(sm)

sm
= h(x) ∈ amax{0,m+n}M, so that αmn (h) ∈

(
amax{0,m+n}M :S−1M am

)
and the assignment h 7→ αmn (h) defines a homomorphism of R-modules αmn : UM(a)mn −→(
amax{0,m+n}M :S−1M am

)
Conversely, for each y ∈

(
amax{0,m+n}M :S−1M am

)
, and each x ∈ a we have xy ∈ amax{0,m+n}M.

So the assignment x 7→ yx defines a homomorphism of R-modules βmn (y) ∈ UM(a)mn and fi-
nally the assignment y −→ βmn (y) defines a homomorphism

(
amax{0,m+n}M :S−1M am

)
−→

UM(a)mn . So, we have the isomorphisms

αmn : UM(a)mn −→
(
amax{0,m+n}M :S−1M am

)
for all n ∈ Z ∩ {−∞} and all m ∈ N0,

which allow to identify

UM(a)mn =
(
amax{0,m+n}M :S−1M am

)
for all n ∈ Z ∩ {−∞} and all m ∈ N0.

If we do so, the homomorphisms ιm,m
′

n of part (A) become the inclusion maps and so we may
write now

UM(a)mn ⊆ UM(a)m
′

n for all n ∈]Z ∪ {−∞} and all m,m′ ∈ N0 with m ≤ m′.
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As the family of isomorphisms
[
αmn : UM(a)mn −→

(
amax{0,m+n}M :S−1M am

)]
m∈N0

is an

isomorphism of direct systems, we get an induced isomorphism of R-modules

αn : UM(a)n
∼=−→

⋃
m∈N0

(
amax{0,m+n}M :S−1M am

)
for all n ∈ Z ∪ {−∞},

which allows to identify

UM(a)n =
⋃
m∈N0

(
amax{0,m+n}M :S−1M am

)
for all n ∈ Z ∪ {−∞}.

(C) Keep the above notations and hypotheses. We consider M := M/Γa(M) as a sub-
module of Da(M) = Da(M). Then, for all n ∈ Z ∪ {−∞} and all m ∈ N0 we have
amax{0,m+n}M ⊆ Da(M). Observe, that for all n and n as aboe, we have a canonical short
exact sequence

0 −→ Γa(M) ∩ amax{0,m+n}M −→ amax{0,m+n}M −→ amax{0,m+n}M −→ 0,

and hence an induced exact sequence

(@)

{
0 −→ HomR

(
am, amax{0,m+n}M

) πm
n−→ HomR

(
am, amax{0,m+n}M

)
−→

−→ HomR

(
am,Γa(M) ∩ amax{0,m+n}M

)
.

Now, let h ∈ HomR

(
am,Γa(M) ∩ amax{0,m+n}M

)
. Then h(am) is a finitely generated R-

submodule of Γa(M) ∩ amax{0,m+n}M. So, there is some m′ ∈ N0 such that m ≤ m′ and
am
′−mh(am) = 0, so that the restriction map h �∈ HomR

(
am
′
,Γa(M) ∩ amax{0,m′+n}M

)
vanishes. Therefore lim−→

m
HomR

(
am,Γa(M)∩ amax{0,m+n}M

)
= 0 and hence the above short

exact sequences (@) induce an isomorphism of R-modules

πn : UM(a)n
∼=−→ UM(a)n for all n ∈ Z ∪ {−∞},

which allows us to identify

(@@) UM(a)n = UM(a)n for all n ∈ Z ∪ {−∞}.

(D) Keep the previous notations and hypotheses. Assume that M is finitely generated
with Γa(M) = 0. Then NZDR(M) ∩ a 6= ∅ and M ⊆ Da(M) ⊆ NZDR(M)−1M. If we view
UM(a)n as a submodule of Da(M) by means of the monomorphism εn : UM(a)n −→ Da(M)
of part (A) and apply the isomorphism αn of part (B) with S = NZDR(M) we thus can say:

(@) If M is finitely generated with Γa(M) = 0 and n ∈ Z ∪ {−∞}, then it holds:
(a) UM(a)mn =

(
amax{0,m+n}M :Da(M) a

m
)

for all m ∈ N0;

(b) UM(a)mn ⊆ UM(a)m
′

n for all m,m′ ∈ N0 with m ≤ m′;
(c) UM(a)n =

⋃
m∈N0

UM(a)mn ;
(d)

⋃
n∈Z UM(a)n = Da(M).

Passing to direct limits one can avoid in the previous statements the hypothesis that M is
finitely generated.
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Remark 7.4. (A) Let R =
⊕

n∈N0
Rn be a homogeneous Noetherian ring with base ring

R0 = R. Let M =
⊕

n∈ZMn be a graded R-module and let S ⊆ NZDR(M) ∩
(⋃

n∈N0
Rn

)
be multiplicatively closed and such that S ∩R+ 6= ∅. Then (see )

DR+(M) =
⋃

m∈N0

(
M :S−1M (R+)m

)
=
⋃

m∈N0

(
M :S−1M Rm

)
is a graded R-submodule of S−1M such that

DR+(M)n =
⋃
m∈N0

(
Mm+n :(

S−1M
)
n

Rm

)
for all n ∈ Z.

Keep in mind the following observation:

If M is finitely generated and n ∈ Z, the R-module DR+(M)n is finitely generated.

(B) Now, let R be a Noetherian ring, let a ⊆ R be an ideal, let M be an R-module and
let s ∈ NZDR(M) ∩ a. Set

R := R(a), M := R′M(a), S := {sp | p ∈ N0} and S := {sptn | p, n ∈ N0} =
⋃
n∈N0

Stn.

Then, clearly S is multiplicatively closed and S ⊆ NZDR(M)∩
(⋃

n∈N0
Rn

)
with S∩R+ 6= ∅.

Now, obviously by Notation and Remark 7.3 (B) we have(
Mm+n :(

S−1M
)
n

Rm

)
=
(
amax{0,m+n}Mtn+m :S−1Mtn amtm

)
= U(a)mn t

n

and hence by part (A) and Remark 7.2 (B) it follows that

(@) DR(a)+

(
RM(a)

)
n

= DR(a)+

(
R′M(a)

)
n

= U(a)nt
n.

Let the notations and hypotheses be as above, assume in addition that M is finitely generated
and set M := M/Γa(M). Then, there is some s ∈ NZDR(M)∩a. So, if we apply what is said
above to the graded R-module M and observe Remark 7.2 (A) and Notation and Remark 7.3
(C), we see that the previous equalities hold, too.

Keep in mind, that from the above equalities and the last observation made in part (A)
it follows

If M is finitely generated, then UM(a)n is finitely generated for all n ∈ Z.

(C) Keep the notations and hypotheses of part (B) and consider the blowup morphism

π : X := Proj
(
R(a)

)
−→ Spec(R) := X0

and the coherent sheaf of OX-modules

F := R̃M(a).

Then by statement (B)(@) and by Reminder 1.6 (C) we can say:

Γ
(
X,F(n)

)
= H0

(
X,F(n)

) ∼= UM(a)n and π∗F(n) ∼=
(
UM(a)n

)̃
.
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Lemma 7.5. Let R be a Noetherian ring, let a ⊆ R be an ideal and let M be a finitely
generated R-module and let n ∈ Z. Then, it holds

UM(a)n−1 =
(
UM(a)n :Da(M) a

) ∼= HomR(a,UM(a)n).

Proof. According to Notation and Remark 7.3 (C) we may assume that Γa(M) = 0 so that
M ⊆ D := Da(M) and (see Notation and Remark 7.3 (D)(@)) UM(a)k =

⋃
m∈N0

UM(a)mk with

UM(a)mk ⊆ UM(a)m
′

k and UM(a)mk =
(
amax{m+k,0}M :D am

)
for all k ∈ Z and all m,m′ ∈ N0

with m ≤ m′. As the R-module UM(a)k is finitely generated for all k ∈ Z (see Remark 7.4
(B)) we may conclude from from Notation and Remark 7.3 (D)(@)(c) that there is some
m ∈ N0 with:

m+ n− 1 ≥ 0, UM(a)n−1 = UM(a)mn−1 and UM(a)n = UM(a)m−1
n .

It follows:

UM(a)n−1 = UM(a)mn−1 =
(
am+(n−1)M :D am

)
=

=
(
a(m−1)+nM :D a(m−1)a

)
=
((
a(m−1)+nM :D a(m−1)

)
:D a

)
=

=
(
UM(a)n :D a

)
=
(
UM(a)n :Da(M) a

)
.

Finally observe that with S := NZDR(M) we have S ∩ a 6= 0, and UM(a)n ⊆ Da(M) =(
Da(M) :S−1M a

)
, hence

(
UM(a)n :Da(M) a

)
=
(
UM(a)n :S−1UM (a)n a

)
. Now, on applica-

tion of the isomorphism α1
n−1 of Remark 7.3 (C) to the R-module UM(a)n get UM(a)n−1

∼=
HomR(a,UM(a)n). �

Proposition 7.6. Let R be a Noetherian ring, let a ⊆ R be an ideal, let M be a finitely
generated R-module and let n ∈ Z.. Set M := M/Γa(M) and D := Da(M). Then, it holds:

(a) The following statements are equivalent:
(i) UM(a)n−1 = UM(a)n
(ii) UM(a)n = D.

(iii) UM(a)k = D for all k ∈ Z ∪ {−∞} with k ≤ n.
(iv) UM(a)k = UM(a)n for all k ∈ Z ∪ {−∞} with k ≤ n.

(b) If n, r ∈ Z with n ≤ r, then UM(a)n =
(
UM(a)r+1 :D ar−n+1

)
.

(c) If n ∈ Z, then amax{0,n}M ⊆ UM(a)n with equality if and only if H1
R(a)+

(
R′M(a)

)
n

= 0.

(d) If r ≥ end
[
H1
R(a)+

(
R′M(a)

)]
and n ∈ Z we have

(1) UM(a)n =

{
amax{0,n}M if n > r(
amax{0,r+1}M :D ar−n+1

)
= UM(a)r−n+1

n if n ≤ r
.

(2) If 0 ≤ n ≤ r, then ar−n+1UM(a)n = ar+1M.
(e) If n, r ∈ Z with n ≤ r and H1

R(a)+

(
R′M(a)

)
r+1

= 0, then:

(1) H1
R(a)+

(
R′M(a)

)
n

= 0 if and only if amax{0,n}M =
(
amax{r+1.0}M :D ar−n+1

)
.

(2) ar−n+1D ⊆ amax{r+1.0}M if and only if UM(a)n = D.
(f) UM(a)n = D for all n� 0 if and only if H1

a (M) is finitely generated.
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Proof. (a): ”(i) ⇒ (ii)”: Assume that (i) holds. Then Lemma 7.5 yields that UM(a)n =(
UM(a)n :D a

)
. So, by induction we obtain that UM(a)n =

(
UM(a)n :D ak

)
for all k ∈ N0,

whence
UM(a)n =

⋃
k∈N0

(
UM(a)n :D ak

)
= Da

(
UM(a)n

)
⊆ D.

As amax{n,0}M ⊆ UM(a) we now obtain

D = Da(M) = Da(a
max{n,0}M) ⊆ Da

(
UM(a)n

)
= UM(a)n.

and hence UM(a)n = D.
”(ii) ⇒ (iii)”: This is clear by Notation and Remark 7.3 (A), (D)(@)(d).
”(iii) ⇒ (iv)”: This is clear by Notation and Remark 7.3 (A).
”(iv) ⇒ (i)”: This is obvious.

(b): This follows immediately from Lemma 7.5 by induction on r − n.
(c): This is immediate by the isomorphisms of R-modules:

UM(a)n/a
max{n,0}M ∼= DR(a)+

(
R′M(a)

)
n
/R′M(a)n ∼= H1

R(a)+

(
R′M(a)

)
n
.

(d): Claim (1) follows immediately from statements (b) and (c) and keeping in mind
the isomorphism αr−m1

n given in Notation and Remark 7.3 (B). Let 0 ≤ n ≤ r. Then, the
inclusion ar−n+1UM(a)n ⊆ ar+1M is immediate by claim (1). By the last observation of
Notation and Remark 7.3 (B) – applied to the module M – we have anM ⊆ UM(a)n, and it
follows ar+1M = ar−n+1anM ⊆ ar−n+1UM(a)n.

(e): This is clear by statements (b) and (c).

(f): This is clear by statements (a) and (e)(2) as H1
a (M) ∼= D/M is finitely generated if

and only if it is annihilated by some power of a. �

Remark 7.7. (A) (See [Ma,2009]) Let R be a Noetherian ring, let a, b ⊆ R be ideals and
let M be a finitely generated R-module. One of the questions which remained open in the
cited master thesis is, whether grade

DR(a)+

(
RM (a)

)
n

(b) is asymptotically stable for n→ −∞.

More precisely

(Q1) Is there some n0 ∈ Z such that for all n ≤ n0 it holds

grade
DR(a)+

(
RM (a)

)
n

(b) = grade
DR(a)+

(
RM (a)

)
n0

(b)?

Indeed, it suffices to treat the special case in which (R,m) is local and b = m (see
[BaB,2009]). So, as grade•(m) =: depth(•), we may ask

(Q2) Assume that (R,m) is local. Is there some n0 ∈ Z such that for all n ≤ n0 it holds

depth
[
DR(a)+

(
RM(a)

)
n

]
= depth

[
DR(a)+

(
RM(a)

)
n0

]
?

In view of Remark 7.4 (B)(@) we may reformulate the last question as follows:
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(Q3) Assume that (R,m) is local. Is there some n0 ∈ Z such that for all n ≤ n0 it holds

depth
(
UM(a)n

)
= depth

(
UM(a)n0

)
?

(B) Keep the previous notations and hypotheses. Then, in view of Proposition 7.6 (f) we
can say:

(PA) Assume that (R,m) is local and that the R-module H1
a (M) is finitely generated.

Then, there is some n0 ∈ Z such that for all n ≤ n0 it holds

UM(a)n = UM(a)n0 and hence depth
(
UM(a)n

)
= depth

(
UM(a)n0

)
.

In the special case, in which H1
a (M) is finitely generated (or – equivalently – D := Da(M)

is finitely generated), Question (Q3) of part (A) has a positive answer by (PA). But what
about the case in which H1

a (M) is not finitely generated? Here is a question which seems
particularly challenging in this respect:

(Q3’) Assume that (R,m) is local and that the functor Da(•) is exact (or – equivalently –
the quasi-affine scheme Spec(R) \ Var(a) is affine). Is there some n0 ∈ Z such that
for all n ≤ n0 it holds

depth
(
UM(a)n

)
= depth

(
UM(a)n0

)
?

In the special case, in which Spec(R) \ Var(a) is an elementary open affine subscheme of
Spec(R) (hence a is radically principal) (Q3’) and hence (Q3) clearly has an affirmative
answer.
Finally note, that (Q3) finds an affirmative answer if either dim(R) ≤ 1 or else if dim(R) = 2
and R is a finite integral extension of a domain or essentially of finite type over a field (see
[BFT,2003], [BFLi,2004] and [BaB,2009]).

(C) In view of Proposition 7.6 (d)(1) and setting M := M/Γa(M) and D := Da(M) we
may reformulate question (Q3) as follows:

(Q4) Assume that (R,m) is local. Is there some r0 ∈ N0 such that for all r ≥ r0 there is
some nr ∈ N0 with the property that for all n ≥ nr it holds

depth
(
arM :D an

)
= depth

(
arM :D anr

)
?

Instead of this last question, one also could look at the following question:

(Q5) Assume that (R,m) is local. Is there some n0 ∈ N0 such that for all n ≥ n0 it holds

depth
(
M :D an

)
= depth

(
M :D an0

)
?

Clearly, if (Q5) has an affirmative answer for each finitely generated R-module M, then so
has (Q4).
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8. A Finiteness Criterion for Ideal Transforms of Rees-Algebras

Notation and Reminder 8.1. (See Notation and Reminder 6.6 and [BSh,2013] 13.5.9)
Let R =

⊕
n∈ZRn be a Z-graded Noetherian Ring, let r ∈ Nn, and consider r-th Veronese

subring R(r) :=
⊕

n∈ZRrn. Let a ⊆ R be a graded ideal and consider the graded ideal

a(r) := a ∩R(r) =
⊕
n∈Z

arn = a(r,0) ⊆ R, with
√
a(r)R =

√
a.

In this situation we have natural isomorphism of graded R(r)-modules

H i
a(r)(M

(r,s)) ∼= H i
a(M)(r,s) and Da(r)(M(r,s)) ∼= Da(M)(r,s) (∀i ∈ N0,∀s ∈ Z).

So, we get an isomorphisms of graded R(r)-modules

H i
a(r)(M �R(r)) ∼= H i

a(M) �R(r) and Da(r)(M �R(r)) ∼= Da(M) �R(r) (∀i ∈ N0).

Lemma 8.2. Let R =
⊕

n∈ZRn be a Z-graded Noetherian Ring and let a ⊆ R be a graded
ideal. then, the following conditions are equivalent:

(i) aDa(R) = Da(R).
(ii) The a-transform functor Da : C −→ C is exact.

(iii) H i
a(R) = 0 for all i ≥ 2.

(iv) H2
a (M) = 0 for each finitely generated graded R-module M.

(v) H2
a (M) = 0 for each R-module M.

(vi) H i
a(M) = 0 for each R-module M and all i ≥ 2.

(vii) The scheme U := Spec(R) \ Var(a) is affine.

Moreover, if these equivalent conditions hold, then Da(R) is a finitely generated R-algebra
and Da(M) is a finitely generated (graded) Da(R)-module for each finitely generated (graded)
R-module M.

Proof. The equivalence “(i) ⇔ (ii)” is given in [BSh,2013] 6.3.5. The equivalences “(ii) ⇔
(iii) ⇔ (iv) ⇔ (v) ⇔ (ii) ” are clear by [BSh,2013] 6.3.1.

For each R-module M and all i ≥ 2 we have H i−1(U, M̃) ∼= RiDa(M) ∼= H i
a(M) (see

[BSh,2013] 2.2.6 and 20.3.11). So, the equivalence “ (vi) ⇔ (vii) ” is a consequence of the
Affineness Criterion of Serre (see [Ha, 1977], III, Theorem 3.7).
Also the implication “ (ii) ⇒ (vi) ” is again a consequence of the natural equivalences
RiDa(•) ∼= H i+1

a (•)(∀i ∈ N) (see [BSh,2013] 2.2.6). This proves that the conditions (i) -
(vii) are equivalent.
Assume that these equivalent conditions hold. Then, indeed Da(R) is a finitely generated
graded R-algebra by [BSh,2013] 6.3.4. Moreover the natural homomorphism of rings ηa :
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R −→ Da(R) respects gradings. Now, let M be a finitely generated (graded) R-module.
Then, there an epimorphism of (graded) R-modules H � M, where H is (graded) free
R-module. As the functor Da : C −→ C is exact (and respects gradings) we thus get an
epimorphism of (graded) R-modules Da(H) � Da(M). By the additivity of the functor
Da : C −→ C, the module is Da(H) a (graded) direct sum of finitely many co[pies of Da(R).
Therefore Da(M) is a finitely generated (graded) Da(R)-module. �

9. Bounding Arithmetic Genera of Curves

Notation and Reminder 9.1. (A) We keep the notations of the previous sections. Through-
out this section, let R0 := K be an algebraically closed field,

R =
⊕
n∈N0

Rn = K[R1] be a 2-dimensional Noetherian homogeneous integral K-algebra.

Moreover let

X := Proj(R) ⊆ Proj
(
SymK(R1)

)
= PrK

be the projective curve induced by R, where

r := dimK(R1)− 1 is the embedding dimension of X.

Moreover, let us consider

the degree d := degPr
K

(X) and the arithmetic genus p := h1(X,OX) of X.

Finally consider the first cohomological end of X, which is defined by

e := max
(
{0} ∪ {n ∈ Z | H1(X,OX(n)) 6= 0}.

(B) Keep the notations and hypotheses of part (A). Keep in mind, that the Hilbert poly-
nomial or characteristic function of X is given by

(a) χX(t) = h0(X,OX(t))− h1(X,OX(t)) = dt− p+ 1 for all t ∈ Z.

In particular, we have

(b) h0(X,OX(t)) = dt− p+ 1 for all t > e.

Moreover, for all l ∈ R1 \ {0} and all t ∈ Z we have

an injection 0 −→ H0(X,OX(t))
l−→ H0(X,OX(t+ 1))

and a surjection H1(X,OX(t))
l−→ H1(X,OX(t+ 1)) −→ 0.

Therefore, by [B,1987,2] we have

(c) h0(X,OX(t+ 1)) ≥ h0(X,OX(t)) + r for all t ∈ N0, and
(d) h1(X,OX(t+ 1)) ≤ max{0, h1(X,OX(t))− r} for all t ∈ Z.
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Proposition 9.2. Let the notations and hypotheses be as in Notation and Reminder 9.1.
Then it holds

min{1, e}+ er ≤ p ≤ (e + 1)(d− r).

Proof. By Notation and Reminder 9.1 (B)(b),(c) and as h0(X,OX(0)) = 1, we get

1 + (e + 1)r ≤ h0(X,OX(e + 1)) = d(e + 1)− p+ 1.

If e > 0 it follows from Notation and Reminder 9.1 (B)(b), that

1 + er ≤ h1(X,OX) = p.

Therefore we get indeed indeed

min{1, e}+ er ≤ p ≤ d(e + 1)− (e + 1)r = (e + 1)(d− r).

�

Corollary 9.3. Let the notations and hypotheses be as in Notation and Reminder 9.1. Then
it holds

p ≤ (d− r)2.

Proof. According to the regularity bound of Gruson-Lazarsfeld-Peskine (see [GruLaP,1983],
Theorem 1.1), the Castelnuovo-Mumford regularity of X satisfies the inequality

reg(R) + 1 = reg
(
Ker(SymK(R1)

can
� R)

)
=: reg(X) ≤ d− r + 2.

(See Definition 1.5 (C) for the notion of Castelnuovo-Mumford regularity of a finitely gener-
ated graded R-module.) As H1

R+
(R)n = H1(X,OX(n)) for all n ∈ Z, it follows in particular,

that

e = max
(
{0} ∪max{n ∈ N | H2

R+
(R)n 6= 0}

)
≤ reg(R)− 2 ≤ d− r − 1.

Now, we conclude by Proposition 9.2. �

Remark 9.4. Applying the previous estimate to a curve X ⊂ P3
K in three-space, we get

p ≤ (d−3)2. In the case, where X is smooth, Castelnuovo’s bound for the genus of a smooth
space curve indeed yields the sharper bound (see [C,1893] and [H,1977],IV,Theorem 6.4)

p ≤ 1

4

(
d2 − 1

2
(1− (−1)d)

)
− d+ 1.
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10. Sectionally Rational Surfaces, S2-Covers and Local Cohomology

In this section, we aim to preserve an argument given [BLePS, 2013], not published in the
final version [BLePS, 2017]. The argument hints a use of local cohomology in order to prove
a structural result on certain projective surfaces. Throughout this section, let r ∈ N≥4, let K
be an algebraically closed field, let S := K[x0, x1, . . . , xr] be a polynomial ring endowed with
its standard grading, let Pr := Proj(S) be the projective r-space over K, and let X ⊂ Pr be
a non-degenerate irreducible projective surface of degree d ≥ r with homogeneous vanishing
ideal I ⊂ S and let A := S/I denote the homogeneous coordinate ring of X.

Convention and Notation 10.1. (A) Let r′ ≥ r and let X ′ ⊂ Pr′ be an irreducible,
non-degenerate surface. If Λ = Pr′−r−1 ⊂ Pr′ is a linear subspace, such that X ′ ∩ Λ = ∅
and π′Λ : Pr′ \ Λ � Pr is a linear projection with center Λ, we write X ′Λ := π′Λ(X ′) for the
projected image π′Λ(X ′) ⊂ Pr of X ′ and πΛ : X ′ � X ′Λ for the finite morphism induced by
the projection π′Λ. If X = X ′Λ, we say that X is a projection of X ′ (from the center Λ) and
call X ′ ⊂ Pr′ a projecting surface of X.

(B) The singular locus Sing(π) of π is defined as the least closed subset Z ⊆ X such
that the induced morphism π �: X ′ \ π−1(Z) −→ X \ Z is an isomorphism. We say that
π is almost non-singular if Sing(π) is finite. If this is the case, we say that X is an almost
non-singular projection of X ′ (from the center Λ).

Next, we define the basic geometric concept of this section.

Definition 10.2. The surface X ⊂ Pr is said to be sectionally rational if X ∩ Pr−1 ⊂ Pr−1

is a (possibly singular) rational curve for a general hyperplane Pr−1 ∈ (Pr)∗ := G(r− 1,Pr).

Notation and Reminder 10.3. (A) (See [BS, 2012]) Let a ⊆ A+ = S+A be the graded
radical ideal which defines the non-Cohen-Macaulay locus X \ CM(X) of X. Observe that
height a ≥ 2, so that the ideal transform

B(A) := Da(A) = lim−→HomA(an, A) =
⋃
n∈N

(A :Quot(A) a
n) =

⊕
n∈Z

Γ(CM(X),OX(n))

of A with respect to a is a positively graded finite birational integral extension domain
of A. In particular B(A)0 = K. Moreover B(A) has the second Serre-property S2. As

X̃ := Proj(B(A)) is of dimension 2, it thus is a locally Cohen-Macaulay scheme.
If E is a finite graded integral extension domain of A which satisfies the property S2, we
have A ⊂ B(A) ⊂ E. So B(A) is the least finite graded integral extension domain which
has the property S2. Therefore, we call B(A) the S2-cover of A. We also can describe B(A)
as the endomorphism ring End(K(A), K(A)) of the canonical module K(A) = K3(A) =
Extr−2

S (A, S(−r − 1)) of A.

(B) Let the notations be as in part (A). Then, the inclusion map A→ B(A) gives rise to
a finite morphism

π : X̃ := Proj(B(A)) � X, with Sing(π) = X \ CM(X).
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In particular π is almost non-singular and hence birational. Moreover, for any finite mor-
phism ρ : Y � X such that Y is locally Cohen-Macaulay, there is a unique morphism

σ : Y → X̃ such that ρ = π ◦ σ. In addition σ is an isomorphism if and only if Sing(ρ) =

X \ CM(X). Therefore, the morphism π : X̃ � X is addressed as the finite Macaulayfica-
tion of X. Keep in mind, that – unlike to what happens with normalization – there may
be proper birational morphisms τ : Z � X with Z locally Cohen-Macaulay, which do not
factor through π (see [B,1986,2]).

(C) Let X ⊂ Pr be as in part (A). We introduce the invariants

ex(X) := length(H1
mX,x

(OX,x)), (x ∈ X closed ) and e(X) :=
∑

x∈X,closed
ex(X).

Note that the latter counts the number of non-Cohen-Macaulay points of X in a weighted
way. Keep in mind that

e(X) = h1(X,OX(n)) for all n� 0.

(D) Let X ⊂ Pr and A = S/I be as above. We denote the arithmetic depth of X by
depth(X), hence depth(X) := depth(A).

Now, we are ready to formulate and to prove the result we announced at the beginning of
this section. It makes part of the more extended result Theorem 3.8 of [BLePS, 2013] and
essentially is statement (c) of that theorem. We first remind an important notion.

Reminder 10.4. Let X ⊂ Pr be a non-degenerate irreducible projective surface. It is well-
known that d := deg(X) ≥ codim(X) + 1 = r − 1. In case equality holds, X is called a
surface of minimal degree. Surfaces of minimal degree were completely classified more than
hundred years ago by P. del Pezzo and E. Bertini. The variety X ⊂ PrK is of minimal degree
if and only if it is either P2 or a quadric hypersurface in P3 a Veronese surface in P5 or a
rational (possibly singular) normal surface scroll. In case X is a singular rational normal
scroll, it is a cone with a singleton vertex over a rational normal curve, hence over a curve
of degree d in Pd.

Proposition 10.5. Assume that X ⊂ Pr is sectionally rational and has finite non-normal
locus X \ Nor(X) and that d ≥ 5. Then
The S2-cover B = B(A) of A = S/I is the homogeneous coordinate ring a surface of minimal

degree X̃ ⊂ Pd+1 – which is a scroll if d ≥ 5 – and there is a subspace Λ = Pd−r ⊂ Pd+1 such

that X̃ ∩ Λ = ∅ and

(1) X = X̃Λ,

(2) Sing(πΛ : X̃ � X) = X \ CM(X).

Proof. Our first aim is to show that dimK(B1) = d+ 2. As h ∈ S1 \ {0} is general, we have√
(a, h) = A+. So, comparing local cohomology furnishes a short exact sequence of graded
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local cohomology modules (see Proposition 8.1.2 (ii) of [BSh,2013]).

0→ H1
(h)(H

1
a (A))→ H2

A+
(A)→ H0

(h)(H
2
a (A))→ 0.

Observe that with D := DA+(A) = lim−→HomA((A+)n, A) =
⊕

n∈Z Γ(X,OX(n)), the kernel of

the natural map B/A� B/D is S+-torsion. As
√

(a, h) = A+, it follows

H1
(h)(H

1
a (A)) = H1

A+
(H1

a (A)) = H1
A+

(B/A) = H1
A+

(B/D).

By Lemma 2.4 of [BS, 2012] we have dimK((B/D)n) = e(X) for all n � 0. Consequently
dimK(DA+(B/D)n) = e(X) for all n ∈ Z. As (B/D)0 = 0 it follows that

dimK(H1
(h)(H

1
a (A))0) + dimK(H1

A+
(B/D)0) = e(X).

By statement (b) we also have dimK(H2
A+

(A)0) = H1(X,OX) = e(X). So, the above

sequence shows that H0
(h)(H

2
a (A))0 = 0. Therefore the multiplication map h : H2

a (A)0 →
H2

a (A)1 is injective. Now, applying the functor Da(•) to the exact sequence 0 → A(−1)
h→

A→ A/hA→ 0 and observing once more that
√

(a, h) = A+, we get the exact sequence of
K-vector spaces

0→ Da(A)0 → Da(A)1 → DA+(A/hA)1 → H2
a (A)0

h→ H2
a (A)1.

As Da(A)0 = B0 = K and as, in addition, the last map in this sequence is injective, we end
up with dimK(B1) = dimK(Da(A)1) = dimK(DA+(A/hA)1) + 1. As Ch := Proj(A/hA) ⊂
Proj(S/hS) = Pr−1 is a non-degenerate smooth rational curve of degree d, the K-vector space
DA+(A/hA)1

∼= H0(Ch,OCh
(1)) has dimension d+ 1, so that indeed dimK(B1) = d+ 2.

Now, consider the non-degenerate closed subscheme X̃ := Proj(K[B1]) ⊂ Pd+1. As K[B1] is

a finite birational integral extension domain of A, the scheme X̃ ⊂ Pd+1 is a non-degenerate

irreducible and reduced surface of degree d. It follows in particular that X̃ ⊂ Pd+1 is a surface
of minimal degree – and hence a a (possibly singular) surface scroll if d ≥ 5. In particular
K[B1] is a Cohen-Macaulay ring which contains A and is contained in the S2-cover B(A) of
A. Thus K[B1] = B(A) (see Notation and Reminder 10.3 (A)) and hence B = B(A) is the

homogeneous coordinate ring of the surface X̃ ⊂ Pd+1.

Moreover, the inclusion map A → B(A) gives rise to a finite morphism πΛ : X̃ � X,
induced by a linear projection π′Λ : Pd+1 \Λ � Pr from a subspace Λ = Pd−r ⊂ Pd+1 disjoint

to X̃ ⊂ Pd+1, so that indeed X = X̃Λ. Finally, by Notation and Reminder 10.3 (B), we have

Sing(πΛ : X̃ � X) = X \ CM(X). So, statement (c) is shown. �
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