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Preface

Castelnuovo-Mumford regularity is one of the most fundamental invariants in
Commutative Algebra and Algebraic Geometry. In fact, already in the late 19th
century this invariant was tacitly present, a long time before it was properly
defined.

One of its first hidden appearances may be found in Castelnuovo’s work on
linear systems on smooth projective space curves of 1893 [C]. Castelnuovo’s
result gives a sharp upper bound on the largest degree r such that the complete
linear system of the r-fold plane sections on the given curve is not cut out by
surfaces of degree r. Although this result is of fairly geometric appearance,
Castelnuovo’s method of proof has a rather algebraic flavour.

Another early invisible occurrence of Castelnuovo-Mumford regularity was ini-
tiated by Hilbert’s Syzygientheorie of 1890 [Hi1], and comes up notably in the
work of Hentzelt-Noether (1923) [Hen-Noe] and of Hermann (1926) [Herm]. In
fact based on the ideas of Hentzelt-Noether, Grete Hermann did answer in an
affirmative way the problem of the finitely many steps (“Problem der endlich
vielen Schritte”), which at that time was a much controversal issue caused by
Hilbert’s syzygy theory. The results of Hermann show that the minimal free
resolution of an ideal generated by finitely many homogeneous polynomials
“can be computed” in a (finite) number of steps which depends only on the
number of indeterminates of the ambient ring and the maximal degree of the
given polynomials.

Hermann’s work is not at all constructive, and so it does not give rise to an
explicit algorithm. It was indeed only around 1980, when such algorithms
became practicable, based on Gröbner base techniques, implemented in Com-
puter Algebra Systems like Macaulay, Cocoa, Singular and powered by high
performance computers. And indeed: Castelnuovo-Mumford regularity pro-
vides the ultimate bound of complexity for these algorithms (see for example
[Bu] or [Ma-Me]).

It was only in 1966, when Mumford gave a first proper definition of Castelnuovo-
Mumford regularity (see [Mu1]), which he called Castelnuovo regularity. In
fact, Mumford did define the notion of being m-regular in the sense of Casteln-
uovo for a coherent sheaf of ideals over a projective space and a given integer m.
More precisely, a sheaf of ideals over a projective space is called m-regular if for
all positive values of i the i-th Serre cohomology group of the (m− i)-fold twist
of this sheaf vanishes. The minimal possible value of m is what today usually
is called the Castelnuovo-Mumford regularity of the sheaf of ideals in question.
Moreover Mumford (loc.cit) did prove a fundamental bounding result, namely:

The Castelnuovo-Mumford regularity of a coherent sheaf of ideals over a pro-
jective space is bounded by the Hilbert polynomial of this ideal.
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In fact Mumford’s arguments allow to make this bound explicit. Hence his
ideas paved the way for a new kind of algorithmic considerations in Algebraic
Geometry, notably in the theory of Hilbert schemes. Now, with the powerful
machinery of sheaf cohomology for algebraic varieties (introduced 1955 by Serre
[Se]) at hands on had a good chance to link algorithmic and geometric aspects
of projective varieties in a new way. Although Castelnuovo-Mumford regularity
was originally defined in terms of sheaf cohomology, it may be expressed in
terms of degrees of syzygies and hence is of basic significance in “classical”
Projective Algebraic Geometry. So, it is not surprising, that the seminal article
“ What can be computed in Algebraic Geometry?” of Bayer-Mumford [B-Mu]
(published in 1993, but known in preliminary form a number of years earlier)
emphasizes a lot upper bounds for the Castelnuovo-Mumford regularity.

Castelnuovo-Mumford regularity also found much interest in Commutative Al-
gebra. In 1982 Ooishi [O] did define the Castelnuovo-Mumford regularity of
a graded module in terms of certain local cohomology modules. His definition
essentially corresponds to Mumford’s via the Serre-Grothendieck Correspon-
dence between local cohomology and sheaf cohomology. In 1984 Eisenbud-Goto
[E-G] made explicit the link between this “algebraic” Castelnuovo-Mumford
regularity of a graded module over a polynomial ring and its minimal free
resolution.

In their same paper, Eisenbud and Goto made the conjecture (or rather did ask
the corresponding question), that the Castelnuovo-Mumford regularity reg(X)
(of the homogeneous vanishing ideal) of a projective variety X cannot exceed
the value deg(X) − codim(X) + 1. What Castelnuovo did show in his paper
of 1893 is precisely, that for smooth curves in projective 3-space this conjec-
ture holds. Forever he characterized in geometric terms the curves for which
reg(X) = deg(X)−codim(X)−1. In 1983 it was shown by Gruson-Lazarsfeld-
Peskine [Gru-La-P] that an irreducible curve in a projective space of arbitrary
dimension satisfies the requested inequality, and that also in this more general
setting the curves for which equality holds can be characterized geometrically.
For smooth projective surfaces in characteristic 0 the conjecture has proved
to be true by Pinkham 1986 [Pi] and Lazarsfeld 1987 [La], the latter paper
containing again an investigation on the surfaces for which “equality holds”.
Meanwhile the conjecture of Eisenbud-Goto has become one of the great chal-
lenges of classical Projective Algebraic Geometry, which yet waits to find its
general answer. The particularity of this conjecture is, that arbitrary graded
polynomial ideals may have very large Castelnuovo-Mumford regularity (com-
pared with the degree of generators) (see [Ma-Me]), whereas for graded prime
ideals this invariant is expected to be very small.

In this course, we shall attack the subject of Castelnuovo-Mumford regularity
from the algebraic side, starting with Ooishi’s definition. So we expect the
reader to have a sound background in basic Commutative Algebra (as found
in [Br-Bo-Ro], [Sh], [Kun1], [E1] or [Mat] for example). Clearly we also have
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to expect a solid footing in Local Cohomology Theory consisting at least of the
material presented in [Br-Fu-Ro] or (even better) in [Br-Sh1]. This includes
also some basic notions of sheaf cohomology, at least over projective schemes
as they are presented in [Br-Fu-Ro](Chapters 11,12) or [Br-Sh1](Shaper 20).
Clearly we also shall discuss a number of results which refer to Algebraic
Geometry. So, some basic (see [Br0] for example) or more advanced (see [H1])
knowledge of this field will make this course more profitable. But for the
understanding of the course, these perquisites are optional.

We allow ourselves to present a number of results, which we do not prove.
When we give proves, they usually will only rely on the mentioned prerequi-
sites. We first will present a number of basic results about local cohomology,
which are not given in [Br-Fu-Ro] but only in [Br-Sh1]. We will proceed in
a way that may be seen as a direct continuation of our fairly self-contained
approach [Br-Fu-Ro], but we also shall rely on a number of eside entries” from
[Br-Sh1], which we do not prove. In the cases, where we reprove a result which
is already proved in [Br-Sh1], we use a different approach in this course. So,
in this respect we also continue the policy pursued in [Br-Fu-Ro].

According to the nature of the subject, many results of this course shall give
upper bounds for the Castelnuovo-Mumford regularity, as such bounds are
the driving force of the whole theory. In addition we shall restrict ourselves
to consider only standard graded rings and modules. Indeed, during the last
decade, multi-graded local cohomology has seen a fast development, mainly
driven by the investigation of Toric Varieties and Toric Schemes (see [Ro] for
example) and correspondingly there are versions of multi-graded Castelnuovo-
Mumford regularity. But at the moment, these matters seem not yet to be at
the state of maturity to teach them in a regular Master course.

Acknowledgement: I thank all participants of the course for their attention,
their contributions to our discussions in the “exercise sessions”, their hints to
mistakes in the lecture notes and the personal gift presented to me in the last
lecture: Roberto Boldini, Andri Cathomen, Simon Kurmann, Matey Mateev,
Thomas Preu, Fred Rohrer, Maria-Helena Seiler. I thank Fred Rohrer for his
extended contribution to the exercise session, which tended to become a course
on its own at times, and for the written presentation of his contribution. I also
thank Franziska Robmann for her typing of a preliminary version of Section 8.



1. Some Prerequisites from Local Cohomology

In this section we recall a few facts about Local Cohomology Theory. Our
basic references for this are [Br-Fu-Ro] and [Br-Sh1]. In our reminders we
primarily shall quote the corresponding results of [Br-Fu-Ro]. Concerning
basic notions of Commutative Algebra, we recommend to consult [Br-Bo-Ro],
or alternatively [Sh], [Kun1], or also [E1] or [Mat]. As a basic reference in
Homological Algebra we recommend [Rot].

1.1. Notation and Reminder. (Local Cohomology and Torsion Functors) A)
Throughout this section let R be a commutative unitary Noetherian ring and
let a ⊆ R be an ideal of R. For each n ∈ N0 let Hn

a = Hn
a (•) denote the n-th

local cohomology functor with respect to a (see [Br-Fu-Ro](2.14)).

B) Let Γa = Γa(•) denote the a -torsion-functor (see [Br-Fu-Ro](1.15)). Keep
in mind that this functor is left exact and that for each R-module M we have
(see [Br-Fu-Ro] (1.19), (1.2))

Gammaa(M) =
⋃
n∈N

(0 :M an).

Moreover for each n ∈ N the n-th local cohomology functor Hn
a = Hn

a (•)
is nothing else than the n-th right derived functor RnΓa = RnΓa(•) of the
torsion functor Γa = Γa(•) (see [Br-Fu-Ro] (2.14)). In particular all functors
Hn

a (•) are linear functors of R-modules and we may identify H0
a (•) = Γa(•)

(see [Br-Fu-Ro] (3.4),(2.13)C)).

1.2. Exercise and Definition. (Quasi-Divisible Modules) A) For an element
s ∈ R let

(•)s : {sn|n ∈ N0}−1(•) : (M
h−→ N) p (Ms

hs−→ Ns)

denote the (exact) functor of R-modules to Rs-modules given by taking up
powers of s as denominators and consider the natural transformation

ηs : Id→ (•)s : M p (M
ηs,M−−→Ms),

where ηs,M : M →Ms,m 7→ 1/m is the canonical map. Fix the element s ∈ R
and show, that for an R-module M the following statements are equivalent:

(i) The natural map ηs,M : M →Ms is surjective.

(ii) The multiplication map s : M/Γ〈s〉(M)→M/Γ〈s〉(M) is an isomorphism.

(iii) H1
〈s〉(M) = 0.

(Observe that s ∈ NZDR(M/Γ〈s〉(M)) and that H1
〈s〉(M) ∼= H1(M/Γ〈s〉(M)).)

B) Keep the previous notations. An R-module M which satisfies the equivalent
conditions (i),(ii) and (iii) of part A) is said to be quasi-divisible with respect
to s. If S ⊆ R, the R-module M is said to be quasi-divisible with respect to
S if it quasi-divisible with respect to all s ∈ S. The R-module M is said to

1
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be quasi-divisible at all, if it is quasi-divisible with respect to R. Prove the
following statements:

a) The set of all all elements s ∈ R with respect to which M is quasi-divisible
is closed under multiplication and contains all s ∈ R for which sM = M
or snM = 0 for some n ∈ N.

b) Each injective R-module I is quasi-divisible.

c) If M is quasi-divisible with respect to S ⊆ R and h : M → P is an
epimorphism of R-modules, then P is quasi-divisible with respect to S.

1.3. Reminder. (Triads and their Derived Sequences) (See [Br-Fu-Ro] (4.13))
Let R′ be a second ring and let F,G,H be three additive functors from R-
modules to R′-modules. Let µ : F → G and ν : G → H be two natural
transformations. We then call

∆ : F
µ−→ G

ν−→ H

a triad of functors, if for each injective R-module I the sequence

0→ F (I)
µI−→ G(I)

νI−→ H(I)→ 0

is exact. In this case, for each R-module M there is a natural exact sequence

0→ R0F (M)
R0µM−−−→ R0G(M)

R0νM−−−→ R0H(M)

δ0,∆
M−−→ R1F (M)

R1µM−−−→ R1G(M)
R1νM−−−→ R1H(M)

δ1,∆
M−−→ R2F (M)

R2µM−−−→ R2G(M)
R2νM−−−→ ...

where for each n ∈ N0 the n-th right derived transformations of µ and ν
are denoted respectively by Rnµ and Rnν. We call this sequence the right
derived sequence of (the triad) ∆ associated to M (see [Br-Fu-Ro] (4.13)) and
we sometimes denote it by R∆(M).

1.4. Construction and Exercise. (The Comparison Sequences) A) Fix an
element b ∈ R. Observe that we have a natural transformation

ηa,b : Γa(•)→ Γa(•)b,
given by

M p (ηa,bM = η
Γa(M)
b : Γa(M)→ Γa(M)b).

In addition consider the natural transformation

ι = ιa,b : Γa+〈b〉(•)
ι=ιa,b−−−→ Γa(•),

given by

ι = ιa,b : M p (Γa+〈b〉(M)
ιM=ιa,bM−−−−→ Γa(M)),

where ιM = ιa,bM denotes the inclusion map. Observe that for each R-module

M we have Ker(ιa,bM ) = Γa+〈b〉(M) and hence an exact sequence

0→ Γa+〈b〉(M)
ιa,bM−−→ Γa(M)

ηa,bM−−→ Γa(M)b.
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Now, use [Br-Fu-Ro] (3.14) and (1.2) B) to show that we have the triad of
functors

∆ = ∆a,b : Γa+〈b〉(•)
ι−→= ιa,bΓa(•)

ηa,b−−→ Γa(•)b,
the so called comparison triad of a with respect to b.

B) Keep the above notations and hypotheses, fix an R-module M and con-
sider the right derived sequence R∆(M) = R∆a,b(M) of the triad ∆ = ∆a,b

associated to M , which clearly takes the shape

0→ H0
a+〈b〉(M)

R0ιM−−−→ H0
a (M)

R0ηM−−−→ R0(Γa(•)b)(M)

δ∆,0
M−−→ H1

a+〈b〉(M)
R1ιM−−−→ H1

a (M)
R1ηM−−−→ R1(Γa(•)b)(M)

δ∆,1
M−−→ H2

a+〈b〉(M)
R2ιM−−−→ H2

a (M)
R2ηM−−−→ ...

Now, observe that the functor Γa(•)b is nothing else than the composition
(•)b ◦ Γa of the exact functor (•)b with the torsion functor Γa. So for each
n ∈ N0 we have a natural equivalence of functors (see [Br-Fu-Ro] (5.3))

γn = γn,(•)b,Γa : Hn
a (•)b = (•)b ◦RnΓa

∼=−→ Rn((•)b ◦Γa) = Rn(Γa(•)b) =: Un(•).

In particular, for each n ∈ N0 and each R-module M as above, we have a
natural isomorphism

γnM =: Hn
a (M)b

∼=−→ Rn(Γa(•)b)(M) = Un(M).

Conclude that multiplication with b yields an isomorphism

b : Un(M)
∼=−→ Un(M),

that

Γ〈b〉(U
n(M)) = 0

and that Un(M) is quasi-divisible with respect to b. Use the fact thatHn
a+〈b〉(M)

is 〈b〉-torsion to show that in the right derived sequence R∆(M) = R∆a,b(M)
of part B), we have

Im(RnιM) = Ker(RnηM) = Γ〈b〉(H
n
a (M))

for all n ∈ N0 all R-modules M .

C) Keep the previous notations and hypotheses, let n ∈ N0 and let M be
an R-module. Observe that the derived sequence R∆(M) together with the
equalities obtained at the end of part B) gives rise to an exact sequence

0→ Un−1(M)/Im(Rn−1ηM)
εnM−→ Hn

a+〈b〉(M)
πnM=πn,a,bM−−−−−−→ Γ〈b〉(H

n
a (M))→ 0,

where the occurring maps εnM and πnM are respectively induced by δ∆,n−1
M and

RnιM . Now, consider the obvious short exact sequence

SM : 0→ Im(Rn−1ηM)→ Un−1(M)→ Un−1(M)/Im(Rn−1ηM)→ 0,
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apply cohomology with respect to 〈b〉 and occlude that we get the exact se-
quence

0→ H0
〈b〉(U

n−1(M)/Im(Rn−1ηM))
δ0
M−→ H1

〈b〉(Im(Rn−1ηM))→ H1
〈b〉(U

n−1(M)),

in which δ0
M is the 0-th connecting homomorphism with respect to the short

exact sequence SM . Use the observations made in the last paragraph of part
B) to show that we get an isomorphism

δ0
M : Un−1(M)/Im(Rn−1η)

∼=−→ H1
〈b〉(Im(Rn−1ηM)).

Use the last statement of part B) to show that there is an isomorphism

κM : Hn−1
a (M)/Γ〈b〉(H

n−1
a (M))

∼=−→ Im(Rn−1ηM),

induced by Rn−1ηM . Let pM : Hn−1
a (M) → Hn−1

a (M)/Γ〈b〉(H
n−1
a (M)) be the

canonical map and show that we have an isomorphism

µM := (δ0
M)−1◦H1

〈b〉(κM)◦H1
〈b〉(pM) : H1

〈b〉(H
n−1
a (M))

∼=−→ Un−1(M)/Im(Rn−1ηM).

Set λnM = λn,a,bM := εM ◦ µM , to end up with the short exact sequence

0→ H1
〈b〉(H

n−1
a (M))

λn,a,bM−−−→ Hn
a+〈b〉(M)

πn,a,bM−−−→ Γ〈b〉(H
n
a (M))→ 0,

which we call the n-th comparison sequence of a with respect to b and associated
to M .

D) Observe that the three homomorphisms Rn−1ηM , RnιM , pM as well as

the connecting homomorphisms δ0
M (see [Br-Fu-Ro] (3.9)C)) and δn−1,∆

M (see
[Br-Fu-Ro] (4.13)D)) constitute natural transformations if M runs through all

R-modules. Conclude that the homomorphisms λnM = λn,a,bM and πnM = πn,a,bM

constitute natural homomorphisms, too. So the above comparison sequence is
natural for all n ∈ N.

E) Now, let R = ⊕n∈ZRn be a graded Noetherian ring, let the ideal a ⊆ R be
graded and let the element b ∈ R be homogeneous. For an arbitrary graded
ideal b ⊆ R consider the graded torsion functor ∗Γb(•), as introduced in
[Br-Fu-Ro] (8.8)B). Show that this time we get a triad of graded modules

∗∆ = ∗∆a,b : ∗Γa+〈b〉(•)
ι=ιa,〈b〉−−−−→ ∗Γa(•)

ηa,b−−→ ∗Γ(•)b
in the sense of [Br-Fu-Ro] (11.9)B). Deduce from this, that by following the
ideas of [Br-Fu-Ro](11.9)C) for each graded R-module M , we end up with a
right derived triad sequence R ∗∆(M) = R ∗∆a,b(M) which looks as the se-
quence in Part B), with all occurrences of H replaced by ∗H, where ∗Hn

b :=
R ∗Γb for each n ∈ N0 and each graded ideal b ⊆ R. Now make sure, that in
this graded setting the arguments performed in part C) still work, so that in
our comparison sequence we may replace H by ∗H and Γ by ∗Γ at all occur-
rences. Finally, observe that [Br-Fu-Ro] (8.24) shows that the n-th comparison
sequence becomes a sequence of graded R-modules in our graded situation.
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We now want to use the comparison sequences to establish a vanishing result
for the local cohomology of modules, which satisfy a certain quasi-divisibility
condition. We first give the following definition.

1.5. Definition. Let S ⊆ R. The ideal a ⊆ R is called an S-ideal if it is
generated by elements of S.

Now, we can prove the following result.

1.6. Proposition. Let S ⊆ R and let M be an R-module such that Γa(M) is
quasi-divisible with respect to S for each S-ideal a ⊆ R. Then Hn

a (M) = 0 for
all n > 0 and each S-ideal a ⊆ R.

Proof. Let a = 〈a1, a2, ..., ar〉, with a1, a2, .., ar ∈ S. We show by induction on
r, that Hn

a (M) = 0 for all n > 0. If r = 0 we have a = 0 and our claim is
clear. So, let r > 0 and set b = 〈a1, a2, ...ar−1〉. The comparison sequence of b
with respect to ar associated to M now gives an exact sequence

H1
〈ar〉(H

n−1
b (M))→ Hn

a (M)→ Γ〈ar〉(H
n
b (M)).

If n = 1, the first module in this sequence vanishes as H0
b (M) is quasi-divisible

with respect to ar. Now we may conclude as by induction Hm
b (M) = 0 for all

m > 0. �

1.7. Exercise and Remark. A) Assume now, thatR =
⊕

n∈ZRn is a Noether-
ian graded ring and let Rh :=

⋃
n∈ZRn denote the set of homogeneous elements

of R. Let I be a *injective (graded) R-module (see [Br-Fu-Ro] (8.12)). Show
that I is quasi-divisible with respect to Rh. Use (1.6) and the fact that Γa(I)
is *injective for each graded ideal a ⊆ R (see [Br-Fu-Ro] (8.22)B)) to show
that Hn

a (I) = 0 for each graded ideal a ⊆ R.

B) What we have shown in part A) is nothing else than Theorem 8.23 of
[Br-Fu-Ro]. This hints, that the concept of quasi-divisibility and the com-
parison sequences provide a powerful tool for proving (not necessarily new)
vanishing results in Local Cohomology Theory. A collection of such proofs (as
well as a detailed introduction to comparison sequences and quasi-divisibility)
is given in [Tru].

C) To illustrate what we said in part B), we suggest to reprove [Br-Fu-Ro]
(4.19) just on use of the comparison sequences and to pay attention to the
fact, that now the induction argument can be started with r = 0, so that the
auxiliary result [Br-Fu-Ro](4.18) is not needed.

We know that left-composition with exact functors commutes with right deriva-
tion. More precisely, if E is a an (additive covariant) left exact functor from
R-modules to R′-modules and F is an exact functor from R′-modules to R′′-
modules, there are natural equivalences γn : F ◦ RnE

∼=−→ Rn(F ◦ E) (see
[Br-Fu-Ro] (5.3)). The construction below is devoted to the reverse situa-
tion, in which the ”inneree functor E is exact, and hence it concerns right-
composition with exact functors.
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1.8. Construction and Exercise. (Right-Composition with Exact Functors)
A) Let R, R′ and R′′ be rings (which need not be Noetherian this time), let E
be a (covariant, additive) exact functor from R-modules to R′-modules and let
F be a (covariant, additive) left exact functor from R′-modules to R′′-modules.
Observe that the composite functor F ◦ E from R-modules to R′′-modules is
left exact and that we may identify

R0(F ◦ E) = F ◦ E = (R0F ) ◦ E.

Our first aim is to show that there is a unique family

(νn = νn,F,E : Rn(F ◦ E)→ (RnF ) ◦ E)n∈N0

of natural transformations which satisfies the following requirements:

a) For each R-module M

ν0,F,E
M = idF◦E(M) : R0(F ◦ E)(M)→ ((R0F ) ◦ E)(M) = R0F (E(M))

is the identity map.

b) For each n ∈ N and each exact sequence of R-modules

I : 0→M
h−→ I

l−→ P → 0

in which I is injective, we have the commutative diagram

Rn−1(F ◦ E)(P )
δn−1,F◦E
I //

νn−1,F,E
P

��

Rn(F ◦ E)(M)

νn,F,EM
��

Rn−1F (E(P ))
δn−1,F
E(I) // RnF (E(M))

where δn−1,F◦E
I

is the (n − 1)-th connecting homomorphism with respect

to F ◦ E associated to the exact sequence I and δn−1,F
E(I) is the (n − 1)-

th connecting homomorphism with respect to F associated to the exact
sequence E(I) (see [Br-Fu-Ro] (3.8)B)).

B) The transformations νn can be constructed recursively on n. For each R-
module M set ν0 = idM . Then assume that n > 0 and that the transformations
ν0, ν1, ..., νn−1 are already constructed such that the above requirements A) a)
and b) are satisfied. Fix an R-module M and chose an exact sequence

I : 0→M → I → P → 0

in which the R-module I is injective. Show that there is a unique homomor-
phism of R′′-modules

νn
I

: Rn(F ◦ E)(M)→ RnF (E(M))

such that the diagram in the requirement A)b) commutes if one replaces the
right vertical map in this diagram by νn

I
. (You may proceed like in the first part
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of the proof of [Br-Fu-Ro] (8.21)). Now chose a homomorphism of R-modules
h : M → N and a short exact sequence

J : 0→ N → J → Q→ 0

in which J is injective and show that we have a commutative diagram

Rn(F ◦ E)(M)
νn
J //

Rn(F◦E)(h)

��

RnF (E(M))

RnF (E(h))

��
Rn(F ◦ E)(N)

νn
J // RnF (E(N))

in which νn
J

is defined accordingly to νn
I
. (For this you might get inspiration by

looking at the second half of the proof of [Br-Fu-Ro] (8.21).) Conclude from
this, that the homomorphism νn

I
depends only on M and not on the chosen

exact sequence I. Therefore, we may define:

νnM = νn,F,EM := νn
I
.

Now, conclude that the assignment

νn,F,E : M p (νn,F,EM : Rn(F ◦ E)(M)→ RnF (E(M)))

defines indeed a natural transformation

νn = νn,F,E : Rn(F ◦ E) = Rn(F ◦ E)(•)→ RnF (E(•)) = (RnF ) ◦ E.

C) Next, reconsult your previous arguments to prove the following:

a) If RnF (E(I)) = 0 for all injective R-modules I and all n > 0, then all the
transformations νn,F,E are natural equivalences.

D) Finally, assume that the three rings R = ⊕n∈ZRn, R′ = ⊕n∈ZR′n and R′′ =
⊕n∈ZR′′n are graded and that the two functors E and F now correspondingly
are functors of graded modules and hence convert homomorphisms of graded R
(respectively R′)-modules to homomorphisms of graded R′ (respectively R′′)-
modules. Reconsider your previous arguments to make clear, that all what has
been stated in parts A),B) and C) translates mutatis mutandis to the “graded
setting”, clearly with “injective” replaced by “*injective”.

E) It is natural to ask, whether one has the commutative diagram occurring
in requirement A)b) without the restriction that the middle module I in the
exact sequence I is injective. This is indeed true. One way to prove this, is to
start with an arbitrary short exact sequence of R-modules

S : 0→ N →M → P → 0,

and to use an injective resolution of S (see [Br-Fu-Ro](3.6)) in order to end up
with a commutative diagram D consisting of three short exact rows and three
short exact columns, having S as the bottom row and having three injective
modules in the middle row. Then apply the right derived sequences with
respect to F ◦ E associated to all rows and columns of the diagram D. Use



8

the fact (or prove it, if you are courageous), that you get a diagram in which
all squares which consist of connecting homomorphisms are anti-commutative
(see [Rot](11.24) for example). Then form the commutative diagram E(D),
apply the right derived sequences with respect to F and observe again the
mentioned anti-commutativity. Then build up the appropriate cube diagram
and do not forget that (−1)(−1) = 1...

Our next aim is to consider (in the situation where R′ is an R-algebra) exact
linear functors from R-modules to R′ modules which commute with taking
torsion with respect to ideals in R and their extensions to R′.

1.9. Remark and Definition. (Torsion-Faithful Functors) A) Let f : R→ R′

be a homomorphism of Noetherian rings and let a ⊆ R be an ideal of R. Let
E be a covariant linear functor from R-modules to R′-modules. We say that
the functor E is torsion-faithful with respect to a if the R′-module E(Γa(M))
is aR′-torsion for all R-modules M . We say that E is torsion-faithful at all, if
it is torsion-faithful with respect to all ideals a ⊆ R.

B) Keep the notations and hypotheses of part A) and let E ′ be a covariant
linear functor from R′-modules to R-modules. Similarly as above we say that
E ′ is torsion-faithful with respect to a if for each R′-module M ′ the R-module
E ′(ΓaR′(M

′)) is a-torsion. Again we say that E ′ is torsion-faithful at all if it is
torsion faithful with respect to all ideals a ⊆ R.

C) Clearly, the notions defined in part A) and B) may be defined completely
analogous in the graded setting: namely, assume in addition, that the two
rings R and R′ are graded and that f is a homomorphism of graded rings,
so that f(Rn) ⊆ R′n for all n ∈ Z. Let the functors E and E ′ be functors of
graded R-modules which commute whit shifting and scalar multiplication with
homogeneous elements (see [Br-Fu-Ro] (8.6)D)). Then we define the notion of
*torsion-faithfulness of E and E ′ with respect to graded ideals a ⊆ R as in part
A) and B), just with ∗ΓaR′ instead of ΓaR′ and ∗Γa instead of Γa respectively.

1.10. Examples and Exercise. A) Let S ⊆ R be multiplicatively closed and
let ηS : R → S−1R be the canonical homomorphism. Show that the (exact)
functor

S−1• : (M
h−→ N) p (S−1M

S−1h−−−→ S−1N)

of taking up denominators at S (see (1.14) B)) is torsion-faithful (see also
[Br-Fu-Ro] (5.6)).

B) Let f : R→ R′ be a homomorphism of Noetherian rings and let

•�R: (M ′ h′−→ N ′) p (M ′ �R
h′�R−−→ N ′ �R)

be the (exact) functor of scalar restriction by means of f (see [Br-Fu-Ro]
(1.14)C)). Show that this functor is torsion-faithful.

C) Let f : R → R′ be a homomorphism of R-modules and let a ⊆ R be an
ideal. Prove the following statements
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a) Let E be a covariant linear exact functor from R-modules to R′ modules.
Assume that for each a-torsion module M and each element x ∈ E(M)
there is a finitely generated submodule N ⊆ M such the x ∈ Im(E(ι)),
where ι : N � M is the inclusion map. Then E is torsion-faithful with
respect to a.

b) Let E ′ be a covariant linear exact functor from R′-modules to R-modules.
Assume that for each aR′-torsion module M ′ and each element x′ ∈ E ′(M)
there is a finitely generated submodule N ′ ⊆M ′ such that x′ ∈ Im(E ′(ι′)),
where ι′ : N ′ � M ′ is the inclusion map. Then E ′ is torsion-faithful with
respect to a.

D) There are obvious “graded versions” of the examples given in part A), B)
and C). Formulate and justify these, keeping in mind (1.9)C).

1.11. Exercise and Remark. A) Let R an R′ be rings (not necessarily Noe-
therian this time) and let E be a covariant additive exact functor from R-
modules to R′-modules. Let M be an R-module and let U, V ⊆ M be sub-
modules. For each submodule N ⊆ M let ιN : N � M denote the inclusion
map. Use the short exact sequence

0→ U ∩ V α−→ U ⊕ V β−→M,α : x 7→ (x, x), β : (u, v) 7→ u− v

to show that

a) Im(E(ιU∩V )) = ImE((ιU)) ∩ Im(E(ιV )).

b) The functor E commutes with finite intersections: if N1, ..., Nr ⊆ M are
finitely many submodules, then

Im(E(ι⋂
i=1,...,r Ni

)) =
⋂

i=1,...,r

Im(E(ιNi)).

B) Now, let f : R → R′ be a homomorphism of Noetherian rings, let E be
a covariant linear exact functor from R-modules to R′-modules and let E ′

be a covariant linear functor from R′-modules to R-modules. For each ideal
a ⊆ R each R-module M and each R′-module M ′ let ιaM : Γa(M) � M and
ιaR
′

M ′ : ΓaR′(M
′)�M ′ denote the inclusion maps. Prove the following claims:

a) If E is torsion-faithful with respect to aR for some a ∈ R, then, for each
R-module M we have

Im(E(ιaRM )) = ΓaR′(E(M)).

b) If a = 〈a1, ...., ar〉 and E is torsion-faithful with respect to 〈ai〉 for all
i ∈ {1, ..., r}, then for each R-module M we have

Im(E(ιaM)) = ΓaR′(E(M)).

In particular E is torsion-faithful with respect to a.
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c) If E ′ is torsion-faithful with respect to aR′ for some a ∈ R, then, for each
R′-module M ′ we have

Im(E(ιaR
′

M ′ )) = ΓaR(E ′(M ′)).

d) If a = 〈a1, ..., ar〉 and E ′ is torsion-faithful with respect to 〈ai〉 for all
i ∈ {1, ..., r}, then, for each R′-module M ′ we have

Im(ιaR
′

M ′ ) = Γa(E
′(M ′))

In particular E ′ is torsion faithful with respect to a.

C) Keep the notations and hypotheses of part B). Let a ∈ R. Show

a) If E is torsion-faithful with respect to 〈a〉, and M is an R-module which
is quasi-divisible with respect to a, then the R′-module E(M) is quasi-
divisible with respect to f(a).

b) If E ′ is torsion-faithful with respect to 〈a〉 and M ′ is an R′-module which
is quasi-divisible with respect to f(a), then the R-module E ′(M) is quasi-
divisible with respect to a.

D) Translate and verify all statements made in parts A), B) and C) to the
graded setting, keeping in mind (1.9)C).

Now, we finally can give the results which are the main objective of this section.

1.12. Theorem. Let f : R→ R′ be a homomorphism of Noetherian rings, let
a1, a2, ..., ar ∈ R and set 〈a1, a2, ..., ar〉 =: a ⊆ R.

a) If E is a covariant, linear exact functor from R-modules to R′-modules
which is torsion-faithful with respect to 〈ai〉 for all i ∈ {1, ..., r}, then for
each n ∈ N0 there is a natural equivalence

τn,a,E : E(H
n

a (•))
∼=−→ Hn

aR′(E(•)).

b) If E ′ is a covariant linear exact functor from R′-modules to R-modules
which is torsion-faithful with respect to 〈ai〉 for all i ∈ {1, ..., r}, then for
each n ∈ N0x there is a natural equivalence

σn,a,E
′
: E ′(Hn

aR′(•))
∼=−→ Hn

a (E ′(•)).

Proof. eea)”: We set S := {a1, ..., ar}. For each R-module M and each S-ideal
b ⊆ R (see (1.5)) let ιbM : Γb(M) � M denote the inclusion map. According
to (1.11)B)b) the functor E is torsion-faithful with respect to each S-ideal b,
and for each S-ideal b and each R-module M , we get an isomorphism

εbM : E(Γb(M))
∼=−→ ΓbR′(E(M))

induced by E(ιbM). In particular we have a natural equivalence

εa = ε : E(Γa(•))
∼=−→ ΓaR′(E(•)).
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So, by right-derivation we get for each n ∈ N0 a natural equivalence

Rnε : Rn(E ◦ Γa)(•)
∼=−→ Rn(ΓaR′ ◦ E)(•).

As E is exact, we also have a natural equivalence (see [Br-Fu-Ro] (5.3)B))

γn : (E ◦Hn
a )(•) = (E ◦ RnΓa)(•)

∼=−→ Rn(E ◦ Γa)(•).

Now, let I be an injective R-module and let b ⊆ R be an S-ideal. Then
Γb(I) is injective (see [Br-Fu-Ro] (3.14)) and hence quasi-divisible (see (1.2)B)).
By (1.11)C)a) it follows that the R′-module E(Γb(I)) is quasi-divisible with
respect to f(S). In view of the above isomorphism εbI it thus follows, that
ΓbR′(E(I)) is quasi-divisible with respect to f(S). This means that the R′-
module Γb′(E(I)) is quasi-divisible with respect to f(S) for each f(S)-ideal
b′ ⊆ R′. As aR′ belongs to these ideals, it follows by (1.6), that

RnΓaR′(E(I)) = Hn
aR′(E(I)) = 0

for all n > 0. But in view of (1.8), this means that for each n ∈ N0 we have a
natural equivalence

νn : Rn(ΓaR′ ◦ E)(•)
∼=−→ (RnΓaR′ ◦ E)(•) = Hn

aR′(E(•)).

So, for each n ∈ N0 we end indeed up with a natural equivalence

τn,a,E = νn ◦ Rnε ◦ γn : E(Hn
a (•))

∼=−→ Hn
aR′(E(•)).

ebe)”: The proof of this statement is similar to the proof of statement a), and
we leave it as an exercise. �

In the next result we use the notation ∗Hn := Rn ∗Γ, as done already earlier.

1.13. Theorem. Let f : R = ⊕n∈ZRn → R′ = ⊕n∈ZR′n be a homomorphism
of graded Noetherian rings. Let a1, a2, ..., ar ∈ Rh = ∪n∈ZRn be homogeneous
elements and consider the graded ideal 〈a1, a2, ..., ar〉 =: a ⊆ R.

a) If E is a covariant linear exact functor from graded R-modules to graded
R′-modules which is torsion-faithful with respect to 〈ai〉 for all i ∈ {1, ..., r},
then, for each n ∈ N0 there is a natural equivalence

∗τn,a,E : E( ∗Hn
a (•))

∼=−→ ∗Hn
aR′(E(•)).

b) If E ′ is a covariant linear exact functor from graded R′-modules to graded
R-modules which is torsion-faithful with respect to 〈ai〉 for all i ∈ {1, ..., r},
then for each n ∈ N0 there is a natural equivalence

∗σn,a,E
′
: E ′( ∗Hn

aR′(•))
∼=−→ ∗Hn

a (E ′(•)).

Proof. This proof is similar as the one of (1.12) and is obtained just by “trans-
lation to the graded setting”. We suggest it as an exercise. �
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1.14. Remark and Exercise. A) The natural equivalences established in
(1.12) and (1.13) are indeed even natural with respect to taking right derived
sequences. This means, that they also commute with connecting homomor-
phisms in cohomology sequences associated to short exact sequences. To see
this, one has to prove the corresponding naturality of the natural equivalences
γn and νn, which came up in the proof of (1.12). As for the equivalences νn,
we gave some hint to this in (1.8)E).

B) If we apply (1.12)b) in the situation, where E ′ is the functor •�R of scalar
restriction (see (1.10)B)), and observe what is said in part A), we obtain the
Base Ring Independence of Local Cohomology, where as applying (1.13)b) to
the graded scalar restriction functor, we get the Graded Base Ring Indepen-
dence of Local Cohomology.

C) Now, let f : R → R′ be a flat homomorphism of Noetherian rings, so
that the (covariant,linear,right exact) tensor product functor with R′ from R-
modules to R′-modules

R′ ⊗R • : (M
h−→ N) p (R′ ⊗RM

R′⊗Rh−−−−→ R′ ⊗R N),

(where R′ ⊗R h is given by x′ ⊗m 7→ x′ ⊗ h(m)) is exact. It is easy to verify,
that this functor satisfies the requirement (1.10)C)a) for each ideal a ⊆ R.
Therefore we may say on use of (1.10)C)a) and (1.12)a):

a) The exact functor R′ ⊗R • is torsion-faithful.

b) For each ideal a ⊆ R and all n ∈ N0 there is a natural equivalence

τn,a,R
′⊗R• : R′ ⊗R Hn

a (•)
∼=−→ Hn

aR′(R
′ ⊗R •).

This is nothing else than the Flat Base Change Property of Local Cohomology.

In these lectures, we shall mainly have to use a special graded version of the
Flat Base Change Property of Local Cohomology. We pave the way for this in
our next remark.

1.15. Remark and Exercise. A) Now, assume that the Noetherian ring R =
⊕n∈N0Rn is positively graded and let f0 : R0 → R′0 be a flat homomorphisms
of Noetherian rings. We consider the R′0-algebra R′ := R′0⊗R0 R which carries
a canonical grading and thus may be written in the form

R′ := R′0 ⊗R0 R =
⊕
n∈N0

R′0 ⊗Rn.

We canonically identify R′0 ⊗R0 R0 = R′0. As R is Noetherian and positively
graded, there are finitely many homogeneous elements x1, ..., xr ∈ R such that

R = R0[x1, ..., xr].

From this it follows, that

R′ = R′0[1⊗ x1, ..., 1⊗ xr].
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As R′ is Noetherian, we see in particular, that R′ is Noetherian, too. Observe
in addition, that we have a homomorphism of graded rings

f : R→ R′ = R′0 ⊗R0 R, x 7→ 1⊗ x.

B) Keep the previous hypotheses and notations. Let M = ⊕n∈ZMn be a graded
R-module. Then M ′ = R′0 ⊗R0 M = R′ ⊗R0 M �R0 is an R′-module (we omit
to write the functor �R0 henceforth) carries a natural grading and thus may be
written in the form

M ′ = R′0 ⊗R0 M = ⊕n∈ZR′0 ⊗R0 Mn.

Observe, that the R′-module M ′ is finitely generated, if the R-module M is.
As R′0 is a flat R0-algebra, we now get a (covariant, linear) exact functor from
graded R-modules to graded R′-modules

R′0 ⊗R0 • : (M
h−→ N) p (R′0 ⊗R0 M

R′0⊗R0
h

−−−−−→ R′0 ⊗R0 N).

It is again easy to verify, that this functor satisfies the graded version of the
requirement in (1.10)C)a) for each graded ideal a ⊆ R. So, by the graded
version of (1.10)C)a) and by (1.13)a) we may conclude

a) The exact functor R′0 ⊗R0 • is *torsion-faithful.

b) For each graded ideal a ⊆ R and all n ∈ N0 there is a natural equivalence

∗τn = ∗τn,a,R
′
0⊗ R0• : R′0 ⊗R0

∗Hn
a (•)

∼=−→ ∗Hn
aR′(R

′
0 ⊗R0 •).

c) For each graded ideal a ⊆ R, each choice of integers n ∈ N0 and t ∈ Z and
each graded R-module M , there is a natural isomorphism of R′0-modules

( ∗τnM)t : R′0 ⊗R0

∗Hn
a (M)t

∼=−→ ∗Hn
aR′(R

′
0 ⊗R0 M)t.

C) Keep the above notations and hypotheses. Let a ⊆ R be a graded ideal
and let M be a graded R-module. As usually, we may use the *equiva-
lence of [Br-Fu-Ro] (8.24) to identify Hn

a (M) = ∗Hn
a (M) and correspondingly

Hn
aR′(M) = ∗Hn

aR′(M). In doing so, we may reformulate B)c) as follows

a) For each graded ideal a ⊆ R, each choice of integers n ∈ N0 and t ∈ Z and
each graded R-module M , there is a natural isomorphism of R′0-modules

(τnM)t : R′0 ⊗R0 H
n
a (M)t

∼=−→ Hn
aR′(R

′
0 ⊗R0 M)t.

D) Finally, we consider the specific case, which concerns taking up denomi-
nators in the base ring R0, and actually is incorporated in what we said in
parts A), B) and C). Namely, let R =

⊕
n∈N0

Rn be as in part A), let S0 ⊆ R0

be a multiplicatively closed subset and consider the canonical homomorphism
η0 := ηS0 : R0 → S0

−1R0. Observe that we have a natural equivalence of
functors

S0
−1• :

∼=−→ S−1
0 R0 ⊗R0 •.
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As the functor S0
−1• is exact, the homomorphism η0 is flat, and we may apply

what has been said in parts A), B) and C) with f0 = η0. In particular we can
say:

a) For each graded ideal a ⊆ R, each choice of integers n ∈ N0 and t ∈ Z and
each graded R-module M there is a natural isomorphism of S0

−1-modules

S0
−1(Hn

a (M)t)
∼=−→ Hn

aS0
−1R(S0

−1M)t.

1.16. Remark. A) (Extensions to the Multi-Graded Case) It would be interest-
ing and very useful in many respects (for example in the understanding of toric
schemes (see [Ro]) to extend the concepts and results which we presented in
this section just for Z-graded rings and modules to rings and modules graded
by arbitrary (finitely generated) Abelian groups G.

B) (Extensions to Non-Noetherian Rings) Also, inspired by [Ro] one could try
to extend the concepts of quasi-divisibility and its application to situations in
which the (G-graded) ring R is not necessarily Noetherian.



2. Supporting Degrees of Cohomology

In this section, we shall do our first step toward the algebraic definition of
Castelnuovo-Mumford regularity. This naturally leads us to look at the sup-
porting degrees of the local cohomology modulesH i

R+
(M) of a finitely generated

graded R-module M with respect to the irrelevant ideal R+ of a Noetherian
homogeneous ring R, hence the integers n ∈ Z for which the n-th graded com-
ponent H i

R+
(M)n of H i

R+
(M) does not vanish. This shall lead us to generalize

some results in sections 8 and 9 of [Br-Fu-Ro] which were proved there only
for Noetherian homogeneous algebras over infinite fields. We start with a few
preparations.

2.1. Notation and Reminder. A) Throughout this section, let R = ⊕n∈N0Rn

be a positively graded Noetherian ring. Keep in mind that the base-ring R0 is
Noetherian and

R = R0[x1, x2, ..., xr]

for finitely many homogeneous elements x1, x2, ..., xr ∈ Rh :=
⋃
n∈N0

Rn. Let

R+ =
⊕
n∈N

Rn

denote the irrelevant ideal of R.

B) Let M =
⊕

n∈ZMn be a graded R-module. Let us recall the notion of
generating degree of M (see [Br-Fu-Ro] (9.6)D)) defined as

gendeg(M) := inf{t ∈ Z |M =
∑
n≤t

RMn}.

In addition, let us introduce the beginning and the end of M , which are defined
respectively by

beg(M) := inf{n ∈ Z |Mn 6= 0},
end(M) := sup{n ∈ Z |Mn 6= 0}.

Observe the following facts:

a) If M 6= 0 is a graded R-module, then beg(M) ≤ gendeg(M) ≤ end(M).

b) If M 6= 0 is a finitely generated graded R-module, then

−∞ < beg(M) ≤ gendeg(M) <∞.

C) Finally observe that we have the Graded Nakayama Lemma, which can be
stated as follows (and proved as an exercise):

a) If M is a graded R-module with −∞ < beg(M), N ⊆ M is a graded
submodule and a ⊆ R+ is a graded ideal such that M = N + aM , then
N = M .

D) We also shall repeatedly use the Homogeneous Prime Avoidance Principle
(see [Br-Fu-Ro] (10.13)):

15
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a) Let a ⊆ R+ be a graded ideal and let p1, ..., pr ∈ Spec(R) such that a * pi
for i ∈ {1, ..., r}. Then, there exists some t ∈ N and some x ∈ at\

⋃
1≤i≤r pi.

E) If a ⊆ R is a graded ideal, then as done already previously, for each graded
R-module M and all n ∈ N0 we always shall identify

Hn
a (M) = ∗Hn

a (M) = Rn ∗Γa(M)

and hence consider Hn
a (M) as a graded R-module by means of the *equivalence

shown in [Br-Fu-Ro] (8.24).

We now prove a first result which concerns the supporting degrees of local
cohomology modules over Noetherian positively graded rings with respect to
the irrelevant ideal.

2.2. Proposition. Let M be a finitely generated graded R-module and let
i ∈ N0. Then

a) For all n ∈ Z the R0-module H i
R+

(M)n is finitely generated.

b) For all n� 0 we have H i
R+

(M)n = 0, so that end(H i
R+

(M)) <∞.

Proof. We proceed by induction on i. First, let i = 0. Clearly H0
R+

(M) =
ΓR+(M) is a graded submodule of M , and hence finitely generated, as R is
Noetherian. Therefore all the graded components H0

R+
(M)n of H0

R+
(M) are

finitely generated R0-modules (see [Br-Fu-Ro](9.6)C)). As H0
R+

(M) is gener-
ated by finitely many homogeneous elements each of which is annihilated by
some power of R+, we also have H0

R+
(M)n = 0 for all n� 0. This proves state-

ments a) and b) for i = 0. Now, let i > 0. In view of the natural isomorphism
of graded R-modules

H i
R+

(M)
∼=−→ H i

R+
(M/ΓR+(M))

we may assume, as usually, that ΓR+(M) = 0. This means that R+ * p for
each of the finitely many members p of AssR(M) (see [Br-Fu-Ro] (1.9)). So
by the Homogeneous Prime Avoidance Principle (2.1)D) we find some t ∈ N
and some x ∈ Rt such that x does not belong to

⋃
p∈AssR(M) p = ZDR(M).

Therefore we have an exact sequence of graded R-modules

0→M(−t) x−→M →M/xM → 0.

Applying cohomology, we get for each n ∈ Z an exact sequences of R0-modules

H i−1
R+

(M/xM)n → H i
R+

(M)n−t
x−→ H i

R+
(M)n.

By induction, we find some n0 ∈ Z such that H i−1
R+

(M/xM)n = 0 for all n ≥ n0.

So for all these n the multiplication map x : H i
R+

(M)n−t → H i
R+

(M)n is injec-

tive. As the R-module H i
R+

(M) is R+-torsion, it follows that H i
R+

(M)n−t = 0
for all n ≥ n0. This proves statement b). Now one proves statement a) by
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descending induction starting at n0 by means of the above sequences and ob-
serving that by induction the R0-module H i−1

R+
(M)n is finitely generated for all

n ∈ Z. �

Castelnuovo-Mumford regularity is a notion which basically applies over ho-
mogeneous Noetherian rings. We therefore shall give now a number of prepa-
rations which will allow us to perform certain repeatedly used replacement
arguments relying on flat base ring changes.

2.3. Exercise and Remark. (Flat and Faithfully Flat Base Ring Changes)
A) Let f0 : R0 → R′0 be a flat homomorphism of Noetherian rings and consider
the Noetherian positively graded ring (see (1.14))

R′ := R′0 ⊗R0 R =
⊕
n∈N0

R′0 ⊗R0 Rn.

By what is said in (1.15)A) it is easy to verify:

a) R′+ = R+R
′.

b) If R is a Noetherian homogeneous R0-algebra, then R′ = R′0 ⊗R0 R is a
Noetherian homogeneous R′-algebra.

B) Let the notations and hypotheses be as in part A). In view of (1.15)C) and
(2.2) we can say

a) For each choice of integers n ∈ N0 and t ∈ Z and each graded R-module
M there is a natural isomorphism of R′0-modules

(τnM)t : R′0 ⊗R0 H
n
R+

(M)t
∼=−→ Hn

R′+
(R′0 ⊗R0 M)t.

b) If the graded R-module M is finitely generated, then the R′0-modules oc-
curring in statement a) are finitely generated and vanish for all sufficiently
large values of t.

C) Very often, we shall apply what is said in (1.15)C) in the special case of lo-
calization at a prime in the base ring. More precisely, we choose p0 ∈ Spec(R0)
and perform what is said in (1.15)C) with S0 := R0 \ p0. In this situation we
obviously use the traditional but slightly abusive notation (S0)−1• =: •p0 . By
(1.15)C) we can say:

a) Let p0 ∈ Spec(R0). Then, for each choice of integers n ∈ N0 and t ∈ Z and
each graded R-module M , there is a natural isomorphism of (R0)p0-modules

(Hn
R+

(M)t)p0

∼=−→ Hn
(Rp0 )

+
(Mp0)t.

We express this by saying that localization in the base ring commutes component-
wise with taking local cohomology.
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D) Keep in mind that the homomorphism f0 : R0 → R′0 is faithfully flat if it
is flat and if for each R0-module M 6= 0 the R′0-module R′0 ⊗R0 M does not
vanish, too. Now, in view of B)a) we can say

a) Let the homomorphism f0 : R0 → R′0 be faithfully flat and let n ∈ N0 and
t ∈ Z. Then the R′0-module Hn

R′+
(R′ ⊗R0 M)t vanishes if and only if the

R0-module Hn
R+

(M)t does.

Later, we shall mainly use two types of faithfully flat base changes. The first
of these concerns the case in which the base ring R0 is a field and the ring R′0
is an extension field. We now pave the way for this.

2.4. Exercise and Remark. (Base Field Changes) A) Let K be a field and
let R = K⊕R1⊕R2⊕ ... be a positively graded Noetherian K-Algebra. Let K ′

be an extension field of K and keep in mind that the inclusion homomorphism
K � K ′ is faithfully flat. We consider the Noetherian positively graded ring

R′ : K ′ ⊗K R = K ′ ⊕ (K ′ ⊗K R1)⊕ (K ′ ⊗K R2)⊕ ...
If M =

⊕
n∈ZMn is graded R-module, we write M ′ =

⊕
n∈ZM

′
n for the graded

R′-module K ′ ⊗K M =
⊕

n∈ZK
′ ⊗K Mn. Now, as the K ′-vector spaces M ′

t

and K ′ ⊗K Mt coincide and in view of (2.4)B)a) we can say:

a) For all t ∈ Z we have dimK′(M
′
t) = dimK(Mt).

b) For all n ∈ N0 and all t ∈ Z we have dimK′(H
n
R′+

(M ′)t) = dimK(Hn
R+

(M)t).

B) Keep all hypotheses and notations of part A). Assume that the extension
field K ′ of K is infinite. Observe that R′ is homogeneous if R is (see (2.3)A)),
and that the graded R′-module M ′ is finitely generated if the graded R-module
M is. Use (2.2) to show that for each i ∈ N0 and any (that is, not necessarily
infinite) field K the notion of i-th cohomological Hilbert function

hiM : Z→ N0, n 7→ hiM(n) := dimK(H i
R+

(M)n)

as introduced in [Br-Fu-Ro] (9.13) makes sense for any finitely generated
graded module over a positively graded Noetherian K-algebra R. Then, prove
that in this general setting one always may define the characteristic function

χM : Z→ Z, n 7→ χM(n) := dimK(Mn)−
∑
i∈N0

(−1)ihiM(n)

of M as defined in [Br-Fu-Ro] (9.14). Prove on use of A)b) that this function
is additive in the sense of [Br-Fu-Ro] (9.15) for any finitely generated graded
module M over a homogeneous Noetherian K-algebra R and is presented by a
polynomial in the sense of [Br-Fu-Ro] (9.17) for an arbitrary field K. So, also
in this more general setting one has for the Hilbert polynomial PM ∈ Q[X]
with PM(n) = χM(n) for all n ∈ Z and PM(n) = dimK(Mn) for all n� 0.

C) Let the notations be as in parts A) and B) and assume that the Noetherian
positively graded K-algebra R is homogeneous. Keep in mind that then for any
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finitely generated graded R-module M 6= 0 one has the equality dimR(M) =
deg(PM) + 1 for the (Krull) dimension of M , under the convention the 0-
polynomial has degree −1. Show that for any extension field K ′ of K and any
finitely generated graded R-module M one has in the above notations:

a) PM ′ = PM

b) dimR(M) = dimR′(M
′).

We also shall make use of the Graded Base Ring Independence of Local Co-
homology (see (1.14)B)) in two special instances, which we mention below.

2.5. Remark and Exercise. A) Let R =
⊕

n∈N0
Rn be a Noetherian posi-

tively graded ring and let M be a graded R-module. Let a =
⊕

n∈Z0
an ⊆ R

be graded ideal such that aM = 0. Then, we may consider M canonically as a
graded R/a-module. If we do so, the graded R-module M is obtained from the
graded R/a-module M by means of scalar restriction by the canonical homo-
morphism of graded rings f : R→ R/a. As (R/a)+ = (R+ +a)/a = (R+)R/a,
and (R/a)0 = R0/a0, the Graded Base Ring Independence of Local Cohomol-
ogy (see (1.14)B) and (1.13)b) and the identification made in (2.1) E), allow
to say:

a) For any choice of integers n ∈ N0 and t ∈ Z, any graded ideal a ⊆ R
and any graded R-module M with aM = 0 there is an isomorphism of
R0/a0-modules (and hence of R0-modules)

Hn
(R/a)+

(M)t
∼=−→ Hn

R+
(M)t.

In particular:

b) If K is a field, R is a Noetherian positively graded K-algebra, M is a finitely
generated graded R-module and a ⊆ R is a graded ideal such that aM = 0,
the cohomological Hilbert functions hiM : Z→ Z (i ∈ N0) are the same, if
M is considered as a graded R/a-module or as a graded R-module.

B) Let R =
⊕

n∈N0
Rn be as in part A), let R′ =

⊕
n∈N0

R′n be a positively
graded ring which is a finite integral extension of R and let the inclusion map
j : R � R′ be a homomorphism of graded rings, so that Rn ⊆ R′n for all
n ∈ Z. Observe that R′ is Noetherian and make clear that

R+R
′ ⊆
√
R+R′ =

√
R′+

Conclude that Hn
R′+

(M ′) = Hn
R+R′

(M ′) for all n ∈ N0 and all R′-modules M ′.

Now, if we apply (1.14)B), (1.13)b) and (2.1)E) to the functor • �R of scalar
restriction by means of j, we can say

a) For each choice of integers n ∈ N0 and t ∈ Z and for each graded R′-module
M ′ there is an isomorphism of R0-modules

Hn
R′+

(M ′)t �R0

∼=−→ Hn
R+

(M ′ �R)t.
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In particular

b) If K is a field and R ⊆ R′ are both Noetherian positively graded K-algebras
such that Rn ⊆ R′n for all n ∈ N0 and R′ is integral over R, then for each
finitely generated graded R′-module and all i ∈ N0 we have

hiM ′ = hiM ′�R .

2.6. Reminder. We also shall use the Homogeneous Normalization Lemma
which we state in the following form

a) Let K be an infinite field and let R be a Noetherian homogeneous K-
algebra. Then there exist elements x1, x2, · · · , xd ∈ R1 algebraically in-
dependent over K such that R is a finite integral extension of its graded
subring K[x1, x2, · · · , xd]

b) In the situation of a) we have d = dim(R) and R+ =
√
〈x1, x2, · · · , xd〉R.

2.7. Reminder and Remark. (Cohomological Dimension) A) If a ⊆ R is
an ideal of the Noetherian ring R and M is an R-module, the cohomological
dimension of M with respect to a is defined by (see [Br-Fu-Ro](Section 4))

cda(M) := sup{n ∈ N0|Hn
a (M) 6= 0}.

Keep in mind that by Hartshorne’s Vanishing Theorem (see [Br-Fu-Ro](4.21))
we have cda(M) <∞.

B) Looking at supporting degrees of the local cohomology modules H i
R+

(M)
of a finitely generated graded module M over a Noetherian homogeneous ring
R naturally leads to study the cohomological dimension cdR+(M) of M with
respect to R+. Indeed cdR+(M) is the largest value of i for which H i

R+
(M)

has supporting degrees at all.

Our aim is to express cdR+(M) in terms of “non-cohomological invariants”
which is in fact possible in this situation. We first treat the following special
case:

2.8. Proposition. Let K be a field, let R = K⊕R1⊕R2⊕· · · be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then

cdR+(M) = dimR(M).

Proof. By Grothendieck’s Vanishing Theorem [Br-Fu-Ro](4.11) we already have
cdR+(M) ≤ dimR(M). It thus remains to show that cdR+(M) ≥ dimR(M). If
M = 0, we are done, as cdR+(0) = dimR(0) = −∞. So let d := dimR(M) ≥ 0.
Assume first that d = 0. Then Mn = 0 for all n � 0 and hence M is R+-
torsion. Therefore H0

R+
(M) ∼= M 6= 0 and H i

R+
(M) = 0 for all i > 0. This

gives our claim if d = 0.

So, let d > 0. We proceed by induction on d. Let K ′ be an infinite extension
field of K. Consider the Noetherian homogeneous K ′-algebra R′ := K ′ ⊗K R
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and the finitely generated graded R′-module M ′ := K ′⊗KM . Now, in view of
(2.4)A)b) and (2.4)C)b) we have cdR′+(M ′) = cdR+(M) and dimR′(M

′) = d.

This allows to replace R and M by R′ and M ′ respectively and hence to assume
that K is infinite. Now, let a := (0 :R M) be the (graded) annihilator ideal
of M . Then clearly dim(R/a) = dimR/a(M) = d and cd(R/a)+(M) = cdR+(M)
(see (2.5)A)a)). This allows to replace R by R/a and hence to assume that
dim(R) = d. According to the Homogeneous Normalization Lemma (see (2.6))
we find elements x1, x2, ..., xd ∈ R1 algebraically independent over K such that
R is a finite integral extension of its graded subring S := K[x1, x2, ..., xd].
Now, clearly M �S is a finitely generated graded S-module of dimension d and
by (2.5)B)b) it holds cdS+(M �S) = cdR+(M). So, we may replace R and M
respectively by S and M �S and hence finally assume that R = K[x1, x2, ..., xd]
is a polynomial ring over the field K.

Suppose now, that our claim is not true. Then there is a maximal graded
submodule U ⊆ M such that our claim fails for the graded R-module M/U .
By induction we then must have dimR(M/U) = d. This allows to replace M by
M/U and hence to assume that cdR+(M/N) = dimR(M/N) for each non-zero
graded submodule N ⊆M .

Our next aim is to show that AssR(M) = {0}. Assume that this is not the case.
As R is a domain of dimension d = dim(M) we clearly have 0 ∈ AssR(M). As
AssR(M) consists of finitely many graded primes (see [Br-Fu-Ro] (10.3)C)),
we have the proper non-zero graded ideal

q :=
⋂

p∈AssR(M)\{0}

p ⊆ R.

Now N := Γq(M) ⊆ M is a graded submodule with AssR(N) ⊆ Var(q) and
AssR(M/N) = AssR(M) \ Var(q) = {0} (see [Br-Fu-Ro](1.9)). In particular
we have dim(M/N) = d, and N ⊆ M is a non-zero graded submodule with
dimR(N) < d. By our assumption on M , the graded module M/N satisfies
our claim, so that cdR+(M/N) = d. In particular we have Hd

R+
(M/N) 6= 0.

As dimR(N) < d, Grothendieck’s Vanishing Theorem [Br-Fu-Ro](4.11) implies
that H i

R+
(N) = 0 for all i ≥ d. If we apply cohomology to the short exact

sequence of graded R-modules

0→ N →M →M/N → 0,

we thus get an isomorphism

Hd
R+

(M) ∼= Hd
R+

(M/N),

which shows that Hd
R+

(M) 6= 0, and thus contradicts our assumption that
cdR+(M) < d. So, we have indeed AssR(M) = {0} and hence M is torsion-free
over the domain R.
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Now, as M is non-zero, torsion-free and finitely generated, we find an integer
r ∈ N and a monomorphism of R-modules

ι : M � R⊕r =: F

such that P := Coker(ι) satisfies dimR(P ) < d, and hence also Hd
R+

(P ) = 0 by
Grothendieck’s Vanishing Theorem. As the irrelevant ideal R+ of our polyno-
mial ring R = K[x1, x2, . . . , xr] is generated be the R-sequence x1, x2, . . . , xd we

have Hd
R+

(R) 6= 0 (see [Br-Fu-Ro](4.6)) and hence Hd
R+

(F ) ∼= Hd
R+

(R)
⊕r 6= 0.

If we apply cohomology with respect to R+ to the short exact sequence

0→M
ι−→ F → P → 0,

we thus get Hd
R+

(M) 6= 0, which finally contradicts our assumption that
cdR+(M) < d. �

Now, we aim to generalize the previous result to the case where the base field
K is replaced by a local Noetherian ring R0.

2.9. Proposition. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring with

local base ring (R0,m0) and let M be a finitely generated graded R-module.
Then

cdR+(M) = dimR(M/m0M).

Proof. If M = 0, our claim is again obvious. So, let M 6= 0. Then Mn 6= 0
for some n ∈ Z. As the R0-module Mn is finitely generated, it follows by
Nakayama that (M/m0M)n = Mn/m0Mn 6= 0, so that M/m0M 6= 0. Therefore
we may proceed by induction on d := dimR(M/m0M) starting with d = 0. If
d = 0, we have Mn/m0Mn = (M/m0M)n = 0 for all n � 0 and we see again
by Nakayama that Mn = 0 for all n � 0. It follows that M is a non-zero
R+-torsion module, and hence once more that cdR+(M) = 0.

So, let d > 0. We first show by induction on d that cdR+(M) ≤ d. As
d > 0, clearly M cannot be R+-torsion, so that U := M/ΓR+(M) is a finitely
generated non-zero R+-torsion-free graded R-module. Hence by the Graded
Nakayama Lemma it follows that R+U 6= U (see (2.1)C)). Therefore we have
H i
R+

(U) 6= 0 for some i ∈ N0 (see [Br-Fu-Ro](4.7)). As U has no R+-torsion,

we must have i > 0. In view of the natural isomorphisms Hj
R+

(M) ∼= Hj
R+

(U)

for all j > 0, we therefore have cdR+(U) = cdR+(M). Moreover, the kernel
of the canonical epimorphism M/m0M → U/m0U is R+- torsion and hence of
dimension at most 0. This shows that dim(U/m0U) = d. So, we may replace
M by U and hence assume that ΓR+(M) = 0.

Now consider the finite sets of graded primes

A := AssR(M),B := min(0 :R M/m0M) ⊆ ∗Spec(R).

As ΓR+(M) = 0, we have R+ * p for all p ∈ A (see [Br-Fu-Ro](1.9)). Now,
let p ∈ B. Then m0 ⊆ p  m0 + R+, as equality in the second inclusion
would imply that the set B consists only of the unique graded maximal ideal
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m0 + R+ of R, and hence lead to the contradiction that d = 0. This implies
that R+ * p for all p ∈ B. So for each p ∈ A ∪ B we have R+ * p, and hence
by the Homogeneous Prime Avoidance Principle (2.1)D) we find some t ∈ N
and some

x ∈ Rt \
⋃

p∈A∪B

p.

As x avoids all members of B we have dimR((M/m0M)/x(M/m0M)) ≤ d− 1
and in view of the canonical isomorphisms

(M/xM)/m0(M/xM))∼=M/(m0M + xM)∼=(M/m0M)/x(M/m0M)

we obtain

dimR((M/xM)/m0(M/xM)) ≤ d− 1.

So, by induction we have cdR+(M/xM) ≤ d− 1 and hence H i−1
R+

(M/xM) = 0

for all i > d. As x avoids all members of A, we have x ∈ NZDR(M) and hence
a short exact sequence

0→M(−t) x−→M →M/xM → 0.

Applying cohomology we see that the multiplication map

H i
R+

(M)(−t) x−→ H i
R+

(M)

is injective for all i > d. This implies as usually that H i
R+

(M) = 0 for all i > d,
and hence that indeed cdR+(M) ≤ d.

It thus remains to show that cdR+(M) ≥ d, hence that Hd
R+

(M) 6= 0. To this
end, consider the short exact sequence

0→ m0M →M →M/m0M → 0

and the exact sequence of R-modules

Hd
R+

(M)
π−→ Hd

R+
(M/m0M)→ Hd+1

R+
(m0M)

induced in cohomology. As (0 :R M/m0M)m0M ⊆ m0
2M , we have

(0 :R M/m0M) ⊆ (0 :R m0M/m0
2M)

and hence dimR(m0M/m0
2M) ≤ d. By what we have already shown it follows

that cdR+(m0M) ≤ d, so that Hd+1
R+

(m0M) = 0 and hence π is an epimor-

phism. Observe that dimR/m0R(M/m0M) = d and that R/m0R is a Noether-
ian homogeneous algebra over the field R0/m0. Therefore by (2.8) we have
Hd

(R/m0R)+
(M/m0M) 6= 0. In view of the base ring independence stated in

(2.5)A)a) (applied with a = m0R) it follows that Hd
R+

(M/m0M) 6= 0 and so

the epimorphism π yields that Hd
R+

(M) 6= 0. �

Now, we can give the announced characterization of the cohomological dimen-
sion of a finitely generated graded module over a Noetherian homogeneous ring
in its full generality.
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2.10. Theorem. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring and

let M be a finitely generated graded R-module. Then

cdR+(M) = max{dimR(M/m0M) | m0 ∈ Max(R0)}

= max{dimRm0
(Mm0/m0Mm0) | m0 ∈ Max(R0)}

= max{dimRp0
(Mp0/p0Mp0) | p0 ∈ Spec(R0)}.

Proof. We set

c := cdR+(M), a′ := max{dimR(M/m0M) | m0 ∈ Max(R0)},

a := max{dimRm0
(Mm0/m0Mm0M) | m0 ∈ Max(R0)},

and

b := max{dimRp0
(Mp0/p0Mp0M) | p0 ∈ Spec(R0)}.

Now, let i ∈ N0 and n ∈ Z, Then, in view of (2.3)C)a) and the Local-Global
Principle for the Vanishing of R0-modules the following statements are equiv-
alent:

(i) H i
R+

(M)n = 0;

(ii) H i
(Rm0 )+

(Mm0)n ∼= (H i
R+

(M)n)m0 = 0 for all m0 ∈ Max(R0);

(iii) H i
(Rp0 )+

(Mp0)n ∼= (H i
R+

(M)n)p0 = 0 for all p0 ∈ Spec(R0).

On use of (2.9) it follows immediately that c = a = b. To prove a = a′

observe that for each m0 ∈ Max(R0) and each R-module M we have a canonical

isomorphism of R-modules M/m0M
∼=−→Mm0/m0Mm0 . �

Now, we can prove a basic result on the supporting degrees of local cohomology
modules over Noetherian homogeneous rings, which later will justify our defi-
nition of Castelnuovo-Mumford regularity. We begin with a few preparations,
which we will be of use in its proof.

2.11. Exercise and Remark. (Faithfully Flat Local Homomorphisms) A) A
homomorphism of local rings f : R → R′ is a homomorphism f of rings such
that (R,m) and (R′,m′) are both local and f(m) ⊆ m′. Show that a flat
homomorphism of local rings is faithfully flat.

B) Let (R,m) be a local ring, let X be an indeterminate and show the following.

a) The ring R′ := R[X]mR[X] is local with maximal ideal m′ := mR′ and
#R′/m′ =∞.

b) The canonical map f : R → R′, given by a 7→ a/1 is a faithfully flat
homomorphism of local rings.

2.12. Exercise. (Strict Homogeneous Prime Avoidance) Let R =
⊕

n∈N0
Rn

be a Noetherian homogeneous graded ring, whose base ring (R0,m0) is local
and has infinite residue field R0/m0. Let p1, p2, . . . , pr ∈ ∗Spec(R) be finitely
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many graded prime ideals such that R+ * pi for all i ∈ {1, 2, · · · , r}. Show (if
you like on use of [Br-Fu-Ro](9.8)a)), that there is some element

x ∈ R1 \
⋃

1≤i≤r

pi.

2.13. Theorem. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring and

let M be a finitely generated graded R-module. Set M̄ := M/ΓR+(M).

a) If l ∈ N and r ∈ Z are such that H i
R+

(M)r+1−i = 0 for all i ≥ l, then

end(H i
R+

(M)) ≤ r − i for all i ≥ l.

b) If l ∈ N and r ∈ Z such that H i
R+

(M)r−1−i = 0 for all i ∈ {1, 2, · · · , l}
and M̄r−1 = 0, then beg(M̄) ≥ r and beg(H i

R+
(M)) ≥ r − i for all i ∈

{1, 2, · · · , l}.
c) If c := cdR+(M) > 0, then a := end(Hc

R+
(M)) ∈ Z and Hc

R+
(M)n 6= 0 for

all n ≤ a.

d) If M̄ 6= 0, then H1
R+

(M)n 6= 0 for all n with beg(H1
R+

(M)) ≤ n < beg(M̄)

and M̄n 6= 0 for all n ≥ beg(M̄).

Proof. “a)”: Let l ∈ N and r ∈ Z such that H i
R+

(M)r+1−i = 0 for all i ≥ l.

We have to show that H i
R+

(M)s+1−i = 0 for all i ≥ l and for all s ≥ r. By the
Local-Global Principle for the vanishing of R0-modules it suffices to show that
(see also (2.3)C)a))

H i
(Rp0 )+

(Mp0)s+1−i ∼= (H i
R+

(M)s+1−i)p0 = 0

for all i ≥ l, all s ≥ r and all p0 ∈ Spec(R0) under the hypothesis that we have
this vanishing statement in the case s = r. So, we may fix p0 ∈ Spec(R0) and
replace R and M respectively by Rp0 and Mp0 . This allows to assume that the
base ring (R0,m0) is local and to restrict ourselves to show that H i

R+
(M)s+1−i

vanishes for all i ≥ l and all s ≥ r, provided it does so in the case s = r.

By (2.11)B) there is a faithfully flat Noetherian local R0-algebra (R′0,m
′
0) with

infinite residue field R′0/m
′
0. Now, consider the Noetherian homogeneous R′0-

algebra R′ := R′0 ⊗ R and the finitely generated graded R′-module M ′ :=
R′0⊗M . Then, for all i ∈ N0 and all n ∈ Z the R0-module H i

R+
(M)n vanishes

if and only if the R′0-module H i
R′+

(M ′)n does (see (2.3)D)a)). This allows to

replace R and M respectively by R′ and M ′ and hence to assume that the
local base ring (R0,m0) has infinite residue field R0/m0.

As R is a homomorphic image of a polynomial ring over the Noetherian local
(and hence finite-dimensional) ring R0, we have dim(R) < ∞ and hence d :=
dimR(M) < ∞. So, we may prove our claim by induction on d. The case
d ≤ 0 is clear as then H i

R+
(M) = 0 for all i > 0 by Grothendieck’s Vanishing

Theorem.
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So, let d > 0. As our claim concerns only local cohomology modules H i
R+

(M)
with i > 0, and as dimR(M/ΓR+(M)) ≤ dimR(M) = d we can as usually
replace M by M/ΓR+(M) and hence assume that ΓR+(M) = 0. Therefore we
have R+ * p for all p ∈ AssR(M) (see [Br-Fu-Ro](1.9)). Hence by the Strict
Homogeneous Prime Avoidance Principle (2.12) we find some

x ∈ R1 \
⋃

p∈AssR(M)

p ⊆ NZDR(M).

So, we have

dimR(M/xM) ≤ d− 1

(see [Br-Fu-Ro](4.10)B)c)) and a short exact sequence of graded R-modules

0→M(−1)
x−→M →M/xM → 0.

If we apply cohomology to this sequence, we get short exact sequences of R0-
modules

H i
R+

(M)(s−1)+1−i → H i
R+

(M)s+1−i → H i
R+

(M/xM)s+1−i → H i+1
R+

(M)s+1−(i+1)

for all i ≥ l and all s ≥ r. If we choose s = r and consider the last three terms
in the resulting sequences, we see that H i

R+
(M/xM)r+1−i = 0 for all i ≥ l.

Therefore, by induction we have H i
R+

(M/xM)s+1−i = 0 for all all i ≥ l and all
s ≥ r. So, for all i ≥ l and all s > r we have an epimorphism

H i
R+

(M)(s−1)+1−i → H i
R+

(M)s+1−i → 0.

As H i
R+

(M)r+1−i = 0 for all i ≥ l, we now get our claim.

“b)”: We have to show that

H i
R+

(M)s−1−i = 0,∀i ∈ {1, 2, · · · , l}

and

M̄s−1 = 0

for all s ≤ r, provided we have these vanishing statements for s = r. As in
the proof of statement a), we can assume that the base ring (R0,m0) is local
with infinite residue field R0/m0 and proceed by induction on d := dimR(M).
Again, the case d ≤ 0 is clear, so that we can assume that d > 0. As in
the proof of statement a) we can again assume that ΓR+(M) = 0 and hence
M = M̄ , and also as in the proof of statement a) we thus find some element
x ∈ R1 ∩ NZDR(M). Consequently we have dimR(M/xM) ≤ d− 1 and short
exact sequences of R0-modules

H i−1
R+

(M)s−i → H i−1
R+

(M/xM)s−i → H i
R+

(M)s−1−i → H i
R+

(R)(s+1)−1−i

for all i ∈ {1, 2, · · · , l} and all s ≤ r.

Now first of all, as ΓR+(M) = 0 and Mr−1 = 0, we have M̄s−1 = Ms−1 = 0 for
all s ≤ r. It remains to show that H i

R+
(M)s−1−i = 0 for all i with 1 ≤ i ≤ l
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and all s ≤ r. By what we just have shown, it follows that (M/xM)s−1 = 0
and hence

[(M/xM)/ΓR+(M/xM)]s−1 = 0,ΓR+(M/xM)s−1 = H0
R+

(M/xM)s−1 = 0

for all s ≤ r. Moreover, if we apply the above exact sequence with s = r we
see that H i−1

R+
(M/xM)r−1−(i−1) = 0 for all i ∈ {2, 3, · · · , l}. So, by induction,

we have H i−1
R+

(M/xM)s−1−(i−1) = 0 for all these i. So, for all i with 1 ≤ i ≤ l
and all s < r we have a monomorphism

0→ H i
R+

(M)s−1−i → H i
R+

(M)(s+1)−1−i.

As H i
R+

(M)r−1−i = 0 for all i with 1 ≤ i ≤ l, we get our claim.

“c)”: This follows immediately from statement a).

“d)”: This follows easily from statement b). �

We now aim to extend of our last result to sheaf cohomology. We start with a
few preparations.

2.14. Reminder and Exercise. A) (The Serre-Grothendieck Correspondence)
(See [Br-Fu-Ro] (Section 12)) Let R =

⊕
n∈N0

Rn be a Noetherian homoge-
neous ring and set X := Proj(R). Let F be a coherent sheaf of OX-modules so

that F = M̃ for some finitely generated graded R-module M . For each n ∈ Z
let F(n) denote the n-th twist of F . Keep in mind that by [Br-Fu-Ro](9.5)C)

we can write F(n) = M̃(n). We now make the identification of the com-
posed functor H i(X, •̃) with the functor H i(X, •̃) := Ri(◦̃(X))(•) as sug-
gested in [Br-Fu-Ro](12.9)C). Then the Serre-Grothendieck Correspondence
[Br-Fu-Ro](11.14) yields:

a) There is an exact sequence of R0-modules

0→ H0
R+

(M)n →Mn → H0(X,F(n))→ H1
R+

(M)n → 0.

b) For each i ∈ N there is an isomorhism of R0-modules

H i(X,F(n))∼=H i+1
R+

(M)n.

B) (Zero Sheaves) Keep the notations and hypotheses of part A). Let UX

denote the set of all open subsets U ⊆ X. The zero sheaf is the the sheaf of
OX-modules defined by the assignment U p 0 for all U ∈ UX . The zero sheaf
is denoted by 0. Show that the property of being the zero sheaf is indicated
by the vanishing of stalks:

a) For a sheaf F of OX-modules one has F = 0 if and only if Fx = 0 for all
x ∈ X.

Show in addition

b) If M is a graded R-module which is R+-torsion, then M̃ = 0.
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It is more challenging to show that indeed also the converse of statement b)
holds, namely:

c) If M is a graded R-module with M̃ = 0, then M is R+-torsion.

C) (Homomorphisms of Sheaves of Modules) Let F and G be sheaves of OX-
modules. A homomorphism of sheaves of OX-modules from F to G is a homo-
morphism h : F → G of sheaves of Abelian groups such that for each U ∈ UX

the homomorphism of Abelian groups h(U) : F(U) → G(U) is a homomor-
phism of OX(U)-modules. Make clear that the composition of homomorphisms
of OX-modules is again a homomorphism of sheaves of OX-modules. Make
clear, that for each sheaf F of OX-modules the identity homomorphism idF
is a homomorphism of sheaves of OX-modules. Show that for two homomor-
phisms g, h : F → G of sheaves of O-modules one has

a) g = h if and only if hx = gx for all x ∈ X.

Clearly as usually a homomorphism h : F → G of sheaves of OX-modules is
called an isomorphism if there is a homomorphism h : G → F of sheaves of OX-
modules such that g ◦ h = idF and h ◦ g = idG. In this situation, g is uniquely
determined by h, also an isomorphism of sheaves of OX-modules, denoted by
h−1 and called the inverse of h. Make clear that the composition h ◦ g of two
isomorphisms of sheaves of OX-modules is again an isomorphism of sheaves of
OX-modules and that (h ◦ g)−1 = g−1 ◦ h−1. Show that for a homomorphism
h : F → G of OX-modules the following statements are equivalent

(i) h is an isomorphism of sheaves of OX-modules.

(ii) hx : Fx → Gx is an isomorphism of OX,x-modules for all x ∈ X.

(iii) h(U) : F(U) → G(U) is an isomorphism of OX(U)-modules for all U ∈
UX .

As usually, we say that two sheaves F and G ofOX-modules are isomorphic and

write F ∼= G if there is an isomorphism of sheaves of OX-modules h : F
∼=−→ G.

D) (Induced Homomorphisms of Sheaves of Modules) Make clear, that the
functor

•̃ : (M
h−→ N) p (M̃

h̃−→ Ñ)

of taking induced sheaves (see [Br-Fu-Ro](12.9)A)) is indeed an exact functor
from graded R-modules to sheaves of OX-modules. Show the following facts:

a) If 0 → U → M
h−→ N → V → 0 is an exact sequence of graded R-

modules such that U and V are R+-torsion modules, then h̃ : M̃ → Ñ is
an isomorphism of sheaves of OX-modules.

b) If M is a graded R-module, then M̃∼= ˜M/ΓR+(M).
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2.15. Definition. (Cohomological Patterns) Keep the above notations and
hypotheses of (2.14). Then we define the cohomological pattern of F by:

P(X,F) = P(F) := {(i, n) ∈ N0 × Z | H i(X,F(n)) 6= 0}.

We define the cohomological dimension of F as

cdX(F) := sup{i ∈ N0 | ({i} × Z) ∩ P(F) 6= ∅}.

By statement (2.14)A)b) we see that F 6= 0 implies cdX(F) = cdR+(M)− 1.

Now we are ready to prove the announced application of (2.13) to sheaf coho-
mology. We do this in the form of a structure result on cohomological patterns.

2.16. Theorem. Let R =
⊕

n∈N0
Rn be Noetherian homogeneous ring, let X :=

Proj(R), let F 6= 0 be coherent sheaf of OX-modules and let P = P(X,F)
denote the cohomological pattern of F . Then

a) There is some n ∈ Z with (0, n) ∈ P
b) For all i ∈ N and all n� 0 it holds (i, n) /∈ P.

c) If (i, n) ∈ P, then there is some k ≥ i such that (k, n− k + i− 1) ∈ P.

d) If (i, n) ∈ P, then there is some l ≤ i such that (l, n− l + i+ 1) ∈ P.

Proof. All three statements follow readily from (2.13) by means of the Serre-
Grothendieck Correspondence (2.14)A)a),b) and the obvious replacement of
M by M/ΓR+(M) allowed by (2.14)D)b). We suggest to perform this a an
exercise. �

2.17. Remark. (Around Cohomological Patterns) A) Let the notations be as
in (2.16). One might present the cohomological pattern P of the sheaf of
OX-modules F 6= 0 in a diagram with horizontal n-axis and vertical i-axis,
marking the place (i, n) ∈ N0×Z by • if (i, n) ∈ P and by ◦ otherwise. Then,
the four statements of (2.16) respectively say:

a) One finds a • on the bottom row.

b) Except on the bottom row one finds only ◦’s far out to the right.

c) If there is a diagonal consisting entirely of ◦’s above a certain level i, there
are no •’s right of this diagonal above level i.

d) If there is a diagonal consisting entirely of ◦’s below a certain level i, there
are no •’s left of this diagonal below level i.

Observe in particular, that as a consequence of these properties of P we get:

e) If there is a • on the bottom level, then right of it on the bottom level there
are only •’s.

f) If there is a • on the top level c := cdX(F), then left of it on the top level
c there are only •’s.
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• • • • • • ◦ ◦ ◦ ◦ ◦

◦ • ◦ • • ◦ • ◦ ◦ ◦ ◦

◦ ◦ ◦ • ◦ • • • • • ◦

◦ ◦ ◦ ◦ ◦ • • • • • •

B)(Tameness) Keep the above notations and hypotheses. Let i ∈ N0. Then,
the cohomological pattern P is said to be tame at level i, if one of the following
requirements is satisfied:

(i) (i, n) ∈ P for all n� 0;

(ii) (i, n) /∈ P for all n� 0.

We express this also by saying, that F = M̃ is cohomologically tame at level
i. According to the Serre-Grothendieck Correspondence (see (2.14)) this is
equivalent to the fact that the R0-module H i+1

R+
(M)n either vanishes for all

n � 0 or else does not vanish for all n � 0. We express this by saying that
the finitely generated graded R-module M is cohomologically tame at level
i + 1. We say hat the pattern P is tame at all, if it is tame at all levels i.
Correspondingly we say that the coherent sheaf F of OX-modules respectively
the finitely generated graded R-module M is (cohomologically) tame at all, if
it is so at all levels i. Now. let r ∈ N. Then we have the following Realization
Result for Tame Patterns (see [Br-He]):

a) Let P ⊆ {0.1, · · · , r} × Z be an arbitrary set which satisfies the pat-
tern requirements a),b),c),d) of (2.16) and the the above tameness con-
dition at all levels i ∈ {0, 1, · · · , r}. Let K be a field and let PrK =
Proj(K[X0, X1, · · · , Xr]) be the projective r-space over K. Then, there
is a coherent sheaf of OPrK -modules F such that

P(PrK ,F) = P .

C)(The Tameness Problem) It is quite natural to ask, whether at least over
a polynomial ring R = K[X0, X1, · · · , Xr] over a field K, one can character-
ize in combinatorial terms all sets P ⊆ {0, 1, · · · , r} × Z which occur as the
cohomological pattern of a coherent sheaf F of OPrK = OProj(R)-modules. If
we knew, that all such coherent sheaves (or equivalently: all finitely generated
graded R-modules) where cohomologically tame, then statement B)a) would
answer affirmatively this question. For a while it was indeed an open prob-
lem, whether all cohomological patterns are a fortiori tame (see [Br4], [Br6])
(at all levels). There are indeed many results, proving tameness of a finitely
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generated graded module M over a Noetherian homogeneous ring R at partic-
ular levels or under certain assumptions on R - or else on M (see [Br6], [Br7],
[Br-Fu-Lim], or also [Br-He], [Lim3], [Rott-Seg] for example). Nevertheless in
[Ch-Cu-Her-Sr] a striking counter-example is constructed. Namely, it is shown
there:

a) There exists a Noetherian homogeneous domain R =
⊕

n∈N0
Rn, of finite

type over the complex field C with dim(R) = 4 and dim(R0) = 3 such that
M = R is not cohomologically tame at level 2 (or equivalently OProj(R) is
not cohomologically tame at level 1).

This immediately shows, that even over polynomial rings overC the mentioned
Tameness Problem finds a negative answer.

D)(The Realization Problem for Smooth Complex Projective Varieties) Let
X = Proj(R) be a smooth connected complex projective variety of dimen-
sion at least 2, so that R is a Noetherian homogeneous integral C-algebra such
that the local ring OX,x = R(p) is regular for all x = p ∈ X = Proj(R). Then,
by the Vanishing Theorem of Kodaira [Ko] one has H i(X,OX(n)) = 0 for all
i < dim(X) = dim(R) − 1 and all n < 0. By another result of Mumford
and Ramanujam [Mu2] one has the same vanishing statement for i = 1 under
the weaker assumption that X is normal. So, one is naturally lead to ask the
following realization question:

a) Let d ≥ 2 be an integer and let P ⊆ {0, 1, · · · d} × Z be a set which satis-
fies the pattern requirements (2.16)a),b),c),d) and the additional positivity
condition that (i, n) /∈ P if i < d and n < 0. Does there exist a smooth
(or only normal) complex projective variety X (of dimension d) such that
PX(X,OX) = P?

We do not know the answer to this question, even in the surface case, that is
in the case d = 2. In [M] a method is given, which allows to realize by smooth
surfaces a great variety of positive patters as discussed above. We also should
mention that by the Non-Rigidity Theorem of Evans-Griffiths [Ev-Gri] (see
also [Mi-N-P]) there are realization results of the above type in which indeed
more than the cohomological pattern is described. Nevertheless, these results
allow a realization only up to an eventual shift of the pattern and do not allow
to control the last supporting degree the top cohomology groups. Therefore
they do not answer our question. Another, local realization result, similar to
those just quoted, is given in [Br-Sh2].

E)(Extensions to the Multi-Graded Case) The study of supporting degrees
over rings who carry more general gradings is a surprisingly complex subject,
which found much attention in the past two decades, partly motivated by toric
geometry (see [Ro]). We just want to mention here [Br-Sh3] which concerns
the case of Zn-gradings.



3. Castelnuovo-Mumford Regularity

Now, we are ready to define the notion of Castelnuovo-Mumford regularity
and to derive some of its general properties. We first give a purely algebraic
definition of Castelnuovo-Mumford regularity in terms of ends of local coho-
mology modules as given by Ooishi [O]. We observe a few basic properties
of this new invariant. Then, we prove that Castelnuovo-Mumford regularity
provides an upper bound for the generating degree and treat the basic example
of a polynomial ring. After this purely algebraic exposition, we turn to the
original sheaf-theoretic definition af Castelnuovo-Mumford regularity as given
by Mumford [Mu1]. Then we attack the main result of this section, which says
that Castelnuovo-Mumford regularity provides an upper bound for the least
order needed to twist a coherent sheaf to become generated by global sections.

3.1. Notation. Throughout this section let R =
⊕

n∈N0
Rn be a Noetherian

homogeneous ring.

3.2. Definition. (Castelnuovo-Mumford Regularity) Let M be a finitely gen-
erated graded R-module and let l ∈ N0. We define the Castelnuovo-Mumford
regularity of the finitely generated graded R-module M at and above level l by

regl(M) := sup{end(H i
R+

(M)) + i | i ≥ l}.

Observe that by (2.2) and as cdR+(M) <∞, we have

regl(M) ∈ Z ∪ {−∞}.
The Castelnuovo-Mumford regularity of M is defined by

reg(M) := reg0(M).

From now on, we prefer just to speak of regularity instead of Castelnuovo-
Mumford regularity.

In the following exercise we collect a few simple facts which we shall repeatedly
use later.

3.3. Exercise. A) (Properties of Generating Degrees) Let M be a finitely
generated graded R-module. Prove the following statements.

a) For all n ∈ Z one has gendeg(M(n)) = gendeg(M)− n.

b) If 0→ L→M → N → 0 is an exact sequence of finitely generated graded
R-modules, then

gendeg(N) ≤ gendeg(M) ≤ max{gendeg(L), gendeg(N)}.

c) gendeg(M) = max{gendeg(Mp0) | p0 ∈ Spec(R0)}.
d) If R′0 is a Noetherian faithfully flat R0-algebra, the finitely generated graded

module
M ′ := R′0 ⊗R0 M =

⊕
n∈Z

R′0 ⊗R0 Mn

32
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over the Noetherian homogeneous ring

R′ := R′0 ⊗R0 R =
⊕
n∈N0

R′0 ⊗R0 Rn

satisfies

gendeg(M ′) = gendeg(M).

e) If b ∈ R is a graded ideal such that bM = 0, the generating degree of M as
an R/b-module is the same as the generating degree of M as an R-module.

B) (Properties of Regularity) Now, let M be a finitely generated graded R-
module and let l, k ∈ N0. Then, concerning regularities, one has the following
statements:

a) If k ≥ l then regk(M) ≤ regl(M).

b) For all n ∈ Z one has regl(M(n)) = regl(M)− n.

c) reg(M) = max{end(ΓR+(M)), reg1(M)}.
d) reg(M/ΓR+(M)) = reg1(M/ΓR+(M)) = reg1(M) ≤ reg(M).

e) M = ΓR+(M) if and only if reg1(M) = −∞.

f) M = 0 if and only if reg(M) = −∞.

g) regl(M) = max{regl(Mp0) | p0 ∈ Spec(R0)}.
h) If R′0, R′ and M ′ are as in statement A)d), then regl(M ′) = regl(M).

i) If b ⊆ R is as in A)e), regl(M) does not change if we consider M as an
R/b-module.

C)(Behaviour of Regularity in Short Exact Sequences) Now let

0→ L→M → N → 0

be an exact sequence of finitely generated graded R-modules and let l ∈ N0.
Then

a) reg(L) ≤ max{reg(M), reg(N) + 1}.
b) regl+1(L) ≤ max{regl+1(M), regl(N) + 1}.
c) regl(M) ≤ max{regl(L), regl(N)}.
d) regl(N) ≤ max{regl+1(L)− 1, regl(M)}.

D) (Alternative Characterization of Regularity) Finally, use (2.13) to show that
for all l ∈ N0 and each finitely generated graded R-module M one has:

regl(M) = inf{r ∈ Z | H i
R+

(M)r+1−i = 0,∀i ≥ l}.

Our first aim is to compare generating degrees with regularity.

3.4. Proposition. Let M be a finitely generated graded R-module. Then

gendeg(M) ≤ reg(M).
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Proof. By (3.3)A)c) and (3.3)B)g) we may immediately assume that the Noe-
therian base ring (R0,m0) is local. Now, by (2.11) there is a Noetherian local
faithfully flat R0-Algebra (R′0,m

′
0) with infinite residue field R′0/m

′
0. So, in

view of (3.3)A)d) and (3.3)B)h) we may assume that R0/m0 is infinite. If
M = 0, our claim is obvious. So, let M 6= 0.

We proceed by induction on d := dimR(M)(∈ N0). If d = 0, we have
H0
R+

(M)n = M 6= 0 and H i
R+

(M) = 0 for all i > 0, and hence gendeg(M) ≤
end(M) = reg(M). So, let d > 0 and consider the short exact sequence

0→ ΓR+(M)→M →M/ΓR+(M)→ 0.

As gendeg(ΓR+(M)) ≤ end(H0
R+

(M)) ≤ reg(M) and in view of (3.3)A)b) it
suffices to show that gendeg(M/ΓR+(M)) ≤ reg(M). In view of (3.3)A)d) it is
indeed even enough to show that gendeg(M/ΓR+(M)) ≤ reg(M/ΓR+(M)).
As dim(M/ΓR+(M)) ≤ d and in view of the isomorphisms of graded R-

modules H i
R+

(M)
∼=−→ H i

R+
(M/ΓR+(M)) for all i > 0 we thus may replace

M by M/ΓR+(M) and hence assume that ΓR+(M) = 0. So, as usually by
the strict Graded Prime Avoidance Principle (2.12) we find some element
x ∈ R1 ∩ NZDR(M). We consider the short exact sequence of graded R-
modules

0→M(−1)
x−→M →M/xM → 0.

As dim(M/xM) < d we get by induction that

g′ := gendeg(M/xM) ≤ reg(M/xM).

By (3.3)B)a),b) we have reg(M(−1)) ≤ reg(M) + 1 and so (3.3)C)d) implies
that

reg(M/xM) ≤ max{reg1(M(−1))− 1, reg(M)} ≤ max{reg(M), reg(M)},
so that g′ ≤ reg(M). With N :=

∑
n≤g′ RMn we thus have (N + xM)/xM =

M/xM , hence M = N + xM . So by (2.1)C)a) we end up with N = M and
hence with gendeg(M) ≤ g′ ≤ reg(M). �

3.5. Example. Let r ∈ N0 and consider the polynomial ring

R := R0[X1, X2, · · · , Xr].

We aim to show that

reg(R) = reg(R0[X1, X2, · · · , Xr]) = 0.

By (3.4) we already know that reg(R) ≥ gendeg(R) = 0. It thus remains to
show that reg(R) ≤ 0. Observe that the ideal R+ ⊆ R is generated by the R-
sequence X1, X2, · · · , Xr so that H i

R+
(R) = 0 for all i 6= r (see [Br-Fu-Ro](4.3)

and (4.19)). It thus remains to show that end(Hr
R+

(R)) ≤ −r. We do this by
induction on r.

If r = 0 our claim is clear as H0
0 (R) = R = R0 in this case. So, let r > 0 and

consider the canonical homomorphism of graded R0-algebras

π : R = R0[X1, X2, · · · , Xr]→ R′ := R0[X1, X2, · · · , Xr−1]
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given by Xi 7→ Xi for all i ∈ {1, 2, . . . , r − 1} and Xr 7→ 0. By induction,
we have end(Hr−1

R′+
(R′)) ≤ −r + 1. If we consider R′ as a graded R-module

by means of π and keep in mind that R+R
′ = R′+, the Graded Base Ring

Independence of Local Cohomology (see (1.14)B)) teaches us, that we have
end(Hr−1

R+
(R′)) ≤ −r + 1. But now the short exact sequence of graded R-

modules

0→ R(−1)
Xr−→ R→ R′ → 0

induces short exact sequences of R0-modules

Hr−1
R+

(R′)n → Hr
R+

(R)n−1
Xr−→ Hr

R+
(R)n

which show that multiplication by Xr yields a monomorphism Hr
R+

(R)n−1 �
Hr
R+

(R)n for all n ≥ −r+ 2. But this shows a usually that Hr
R+

(R) = 0 for all
n ≥ −r + 1.

Now, we shall define Castelnuovo-Mumford regularity in sheaf theoretic terms,
as this was originally done by Mumford.

3.6. Definition. (Castelnuovo-Mumford Regularity of Sheaves) A) Let R =⊕
n∈N0

Rn be our Noetherian homogeneous ring, set X := Proj(R) and let
F be a coherent sheaf of OX-modules. We define the Castelnuovo-Mumford
regularity of F by:

reg(F) := inf{r ∈ Z | H i(X,F(r − i)) = 0,∀i > 0}.

As in the case of modules, we speak just of regularity from now on.

3.7. Exercise and Remark. A) (Comparison with Regularity of Modules)
Let the notations and hypotheses be as in (3.6). Keep in mind, that there is

a finitely generated graded R-module M such that F = M̃ (see [Br-Fu-Ro]
(12.2)D)). Show on use of the Serre-Grothendieck Correspondence that

reg(F) = reg2(M).

and conclude that

reg(F) ∈ Z ∪ {−∞}.

B) (Regularity and Patterns) Let the notations and hypotheses be as above.
Let P = P(X,F) denote the cohomological pattern of the coherent sheaf of
OX-modules F . We describe the pattern P by •’s and ◦’s as suggested in
(2.17). Make clear that reg(F) is the first place in the bottom row of P lying
on a diagonal which contains only ◦’s above the bottom level. Observe that
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all “later” diagonals also consist completely of ◦’s above the bottom level.

• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦

• • • ◦ • ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ • • • • reg(F) • •

Our next goal is to deduce the announced relation between the regularity of
a coherent sheaf and the generation by global sections of its twists. To do so,
we first need to develop further our sheaf-theoretic machinery.

3.8. Construction and Exercise. (Total Modules of Sections) A) Let R =⊕
n∈N0

Rn be our Noetherian homogeneous ring, let X := Proj(R) and let F
be a sheaf of OX-modules. Let U ∈ UX , where UX denotes the set of open
subsets of X. We consider the R0-module (see [Br-Fu-Ro](12.2),(12.8)A))

Γ∗(U,F) :=
⊕
n∈Z

Γ(U,F(n)) =
⊕
n∈Z

F(n)(U),

which we call the total module of sections in F over U . Now, let m,n ∈ Z and
let

a = (al)l∈R1 ∈ OX(m)(U); f = (fl)l∈R1 ∈ F(n)(U)

be families on m-sections of OX respectively of n-sections of F over U (see
[Br-Fu-Ro](12.5)A)). Make clear that

af := (alfl)l∈R1 ∈ F(m+ n)(U)

is a family of (m+ n)-sections of F over U .

B) Keep the above notations and hypotheses. Let m,m′, n, n′ ∈ Z and show
that in Γ∗(U,F) we have

a) For all a ∈ OX(m)(U), all a′ ∈ OX(m′)(U) and all f ∈ F(n)(U):

(a+ a′)f = af + a′f.

b) For all a ∈ OX(m)(U), all f ∈ F(n)(U) and all f ′ ∈ F(n′)(U):

a(f + f ′) = af + af ′.

Conclude that the R0-module Γ∗(U,OX) is in fact a (unitary, commutative)
R0-algebra, by means of the multiplication defined by:

c) For all (an)n∈Z, (bn)n∈Z ∈ Γ∗(U,OX) =
⊕

n∈Z Γ(U,OX(n)):

(an)n∈Z(bn)n∈Z := (
∑
i+j=n

aibj)n∈Z.
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Clearly, the ring Γ∗(U,OX) carries a natural Z-grading, given by

d) Γ∗(U,OX)n = Γ(U,OX(n)) for all n ∈ Z.

Show that the R0-module Γ∗(U,F) is turned into a Γ∗(U,OX)-module, by
means of the scalar multiplication defined by:

e) For all

(an)n∈Z ∈ Γ∗(U,OX) =
⊕
n∈Z

Γ(U,OX(n))

and all
(fn)n∈Z ∈ Γ∗(U,F) =

⊕
n∈Z

Γ(U,F(n)) :

(an)n∈Z(fn)n∈Z := (
∑
i+j=n

aifj)n∈Z.

Finally, the Γ∗(U,OX)-module Γ∗(U,F) carries a natural Z-grading, given by

f) Γ∗(U,F)n = Γ(U,F(n)) for all n ∈ Z.

C) Now, for each n ∈ Z we may consider the following natural homomorphism
of R0-modules (see [Br-Fu-Ro] (11.5)C), (12.5)C)f))

εUR,n : Rn = R(n)0

ϕU◦ηU
R(n)−−−−−→ OX(n)(U),

given by c 7→ (ch)h∈R1 ∈
∏

h∈R1
OX(Uh), where for the germs we have

(ch)x =
c

hn
∈ OX,x = R(p),∀h ∈ R1,∀x = p ∈ Uh.

Make clear, that the map

εUR,∗ : R→ Γ∗(U,OX), (cn)n∈Z 7→ (εUR,n(cn))n∈Z.

is a homomorphism of graded rings, which allows to view Γ∗(U,F) as a graded
R-module.

D) Consider a homomorphism of sheaves of OX-modules, f : F → G. Show
that for each n ∈ Z, there is a homomorphism of OX-modules

h(n)(U) : Γ∗(U,F)n = F(n)(U)→ G(n)(U) = Γ∗(U,G)n,

given by (fl)l∈R1 7→ (h(Ul)(fl))l∈Z for each family of n-sections

(fl)l∈Z ∈
∏
l∈R1

F(Ul)

of F over U . Show, that there is a homomorphism of graded Γ∗(U,OX)-
modules

Γ∗(U, h) : Γ∗(U,F)→ Γ∗(U,G); (γn)n∈Z 7→ (h(U)(γn))n∈Z.

Prove, that we now have defined a (linear, covariant) left exact functor

Γ∗(U, •) : (F h−→ G) p (Γ∗(U,F)
Γ∗(U,h)−−−−→ Γ∗(U,G))
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from sheaves ofOX-modules to graded Γ∗(U,OX)-modules and hence to graded
R-modules (see part C)).

E) Let M be a graded R-module with M̃ = F . Then again, for each n ∈ Z we
may consider the natural map (see [Br-Fu-Ro] (11.5)C), (12.5)C)f))

εUM,n : Mn = M(n)0

ϕU◦ηU
M(n)−−−−−−→ F(n)(U),

given by m 7→ (mh)h∈R1 ∈
∏

h∈R1
F(Uh), where for the germs we have

(mh)x =
m

hn
∈ Fx = M(p),∀h ∈ R1,∀x = p ∈ Uh.

Make clear, that we have a homomorphisms of graded R-modules

εUM,∗ : M → Γ∗(U,F), (mn)n∈Z 7→ (εUM,n(mn))n∈Z.

Now prove that we have a natural transformation of functors of graded R-
modules

εU∗ : • → Γ∗(U, •̃),M p (εUM,∗ : M → Γ∗(U, M̃)).

F) Finally, let a ⊆ R+ be a graded ideal such that U = U(a) ⊆ Proj(R) = X
is the open set defined by a (see [Br-Fu-Ro] (11.4)C)a)). Let M be a graded

R-module and set F = M̃ . Conclude by [Br-Fu-Ro](11.13) that for each n ∈ Z
there is an exact sequence of R0-modules

0→ Γa(M)n →Mn

εUM,n−−→ Γ∗(U,F)n → H1
a (M)n → 0.

Draw the following conclusions:

a) Ker(εUM,∗) = Γa(M).

b) If M is a-torsion, then Γ∗(U,F) = 0.

3.9. Lemma. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring, let a ⊆

R+ be a graded ideal, let U = U(a) ∈ UX be the open set defined in X =
Proj(R) by a and let F be a sheaf of OX-modules. Then H0

a (Γ∗(U,F)) = 0.

Proof. Let n ∈ Z and let f ∈ H0
a (Γ∗(U,F))n. Then f ∈ Γ∗(U,F)n = F(n)(U)

and atf = 0 for some t ∈ N. We write f = (fl)l∈R1 ∈
∏

l∈R1
F(Ul) as a family

of n-sections in F over U . Let at = 〈a1, a2, · · · , ar〉 with ai ∈ Rdi and di ∈ N
for all i ∈ {1, 2, · · · , r}. Then 0 = aif = εUR,∗(ai)f = εUR,di(ai)f . So for all
i ∈ {1, 2, · · · , r} and all l ∈ R1 we have (see (3.8)E))

ai
ldi
fl,x = 0(∈ Fx),∀x ∈ Ul.

Now let x ∈ U . Then x ∈ Ul for some l ∈ R1. As U = U(a) = U(at), there is
some i ∈ {1, 2, · · · , r} such that x /∈ Var(Rai). We thus have ai, l /∈ mX,x and

hence ldi
ai
∈ OX,x. So we obtain

fl,x =
ldi

ai

ai
ldi
fl,x = 0(∈ Fx).
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This proves that fl ∈ F(Ul) is vanishing for all l ∈ R1. Therefore f = 0. �

3.10. Proposition. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring,

let X = Proj(R), let M be a finitely generated graded R-module and set Γ :=

Γ∗(X, M̃). Then

a) The natural homomorphism of graded R-modules εM = εXM,∗ : M → Γ
induces an isomorphism of sheaves

ε̃M : M̃
∼=−→ Γ̃.

b) The natural homomorphism of graded R-modules

εΓ = εXΓ,∗ : Γ→ Γ∗(X, Γ̃)

is an isomorphism.

c) H0
R+

(Γ) = H1
R+

(Γ) = 0.

Proof. “a)”: For each n ∈ Z we have an exact sequence

0→ H0
R+

(M)n →Mn

εM,n−−→ Γn → H1
R+

(M)n → 0.

(see (3.8)F)). As H i
R+

(M)n = 0 for all n � 0 and all i ∈ N0 (see (2.2)) we
thus have an exact sequence of graded R-modules

0→ U →M
εM−→ Γ→ V → 0

in which U and V are both R+-torsion. Bearing in mind (2.14)D)a) we get

indeed the requested isomorphism ε̃M : M̃
∼=−→ Γ̃.

“b)”: Keep in mind that ΓR+(Γ) = 0 (see (3.9)). In view of (3.8)F)a) it
therefore follows that the homomorphism εΓ is injective. It remains to show
that εΓ is surjective. By the naturality of the homomorphisms εX•,∗ (see (3.8)E))
we get the following commutative diagram:

M
εM //

εM

��

Γ

εΓ
��

Γ
f :=Γ∗(X,ε̃M )

// Γ∗(X, Γ̃)

in which f is an isomorphism by statement a). Now, let δ ∈ Γ∗(X, Γ̃). We
find some γ ∈ Γ such that f(γ) = δ. In the proof of part a) we have already
seen, that the cokernel of εM is R+-torsion. We therefore find some n ∈ N
such that (R+)nγ ⊆ Im(εM). Now let u1, u2, · · · , ut ∈ R+ such that (R+)n =
〈u1, u2, · · · , ut〉. Then for each index i ∈ {1, 2, · · · , t} we find some element
mi ∈M such that uiγ = εM(mi). Consequently in view of the above diagram
we get for each i ∈ {1, 2, · · · , t} the relations

uif(γ) = f(uiγ) = f(εM(mi)) = εΓ(εM(mi)) = εΓ(uiγ) = uiεΓ(γ).

So, for each i ∈ {1, 2, · · · } we finally obtain

ui(δ − εΓ(γ)) = uif(γ)− uiεΓ(γ) = 0.
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But this implies that (R+)n(δ − εΓ(γ)) = 0. As ΓR+(Γ∗(X, Γ̃)) = 0 (see (3.9))
it follows that δ − εΓ(γ) = 0 and hence δ = εΓ(γ). This proves that εΓ is
surjective.

“c)”: This follows immediately from statement b) on use of the exact sequences
of (3.8)F). �

3.11. Lemma. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring, let

X = Proj(R), let F be a coherent sheaf of OX-modules and let t ∈ Z. Consider
the graded R-module Γ := Γ∗(X,F) and its graded submodule

Γ≥t :=
⊕
n≥t

Γn ⊆ Γ.

Then:

a) The graded R-module Γ≥t is finitely generated.

b) H0
R+

(Γ≥t) = 0 and end(H1
R+

(Γ≥t)) < t.

c) Γ̃≥t ∼= Γ̃ ∼= F .

d) gendeg(Γ≥t) ≤ max{t, reg(F)}.
e) gendeg(Γ) ≤ reg(F).

Proof. “a)”: We find a finitely generated graded R-module M with M̃ = F .
Again by the exact sequences of (3.8)F) and by the fact that H i

R+
(M)n = 0

for all n� 0 we get isomorphisms of R0-modules

εM,n : Mn

∼=−→ Γn,∀n� 0,

so that the natural homomorphism of graded R-modules εM,n : M → Γ is an
isomorphism in large degrees. As M is finitely generated, it follows immedi-
ately, that Γ≥t is finitely generated.

“b)”: By (3.10)c) we have H0
R+

(Γ) = 0 and as Γ≥t is a submodule of Γ, we

get H0
R+

(Γ≥t) = 0. Observe, that we also have an exact sequence of graded
R-modules

0→ Γ≥t → Γ→ P → 0

in with end(P ) < t. If we apply cohomology and observe that H i
R+

(Γ) = 0
for i = 1, 2 (see (3.10)c)) we get an isomorphism of graded R-modules P ∼=
H1
R+

(Γ≥t) so that indeed end(H1
R+

(Γ≥t)) < t.

“c)”: The second isomorphism is clear by (3.10)a). The first isomorphism
follows by (2.14)D)a) applied the exact sequence used in the proof of statement
b).

“d)”: By statement c) and (3.7) we have reg(F) = reg2(Γ≥t). By statement
b) it follows

reg(Γ≥t) ≤ max{t, reg2(Γ≥t)} = max{t, reg(F)}.
Now we may conclude by (3.4).
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“e)”: This follows easily from the fact that statement d) holds for any choice
of t. �

3.12. Exercise and Definition. (Generation of Sheaves by Global Sections)
A) Let R =

⊕
n∈N0

Rn be a Noetherian positively graded ring, let X = Proj(R)
and let F be a sheaf of OX-modules. Let S ⊆ Γ(X,F). We say that the sheaf
F is generated by S if

Fx =
∑
f∈S

OX,xfx,∀x ∈ X.

B) Keep the notations and hypotheses of part A) and prove the following
statements

a) If S ⊆ T ⊆ Γ(X,F), and F is generated by S, then it is also generated by
T .

b) F is generated by S if and only if it is generated by the R0-module 〈S〉 =∑
f∈S R0f ⊆ Γ(X,F).

C) Keep the previous notations and hypotheses. We say that F is generated
by global sections if there is some set S ⊆ Γ(X,F) such that F is generated
by S. It is obviously equivalent to say that F is generated by Γ(X,F). If F
is generated by a finite set S ⊆ Γ(X,F), we say that F is generated by finitely
many global sections.

Now we are ready to formulate and to prove the result on the global generation
of twists of coherent sheaves over projective schemes we are heading for.

3.13. Theorem. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring, let

X = Proj(R) and let F be a coherent sheaf of OX-modules. Then for all
n ≥ reg(F) the sheaf F(n) is generated by (finitely many) global sections.

Proof. Let n ≥ reg(F). We set Γ := Γ∗(X,F). According to (3.11)a), the
graded R-module Γ≥n is finitely generated. So, the R0 module Γ(X,F(n)) =
Γn is finitely generated. Let f1, f2, · · · , fr ∈ Γn be such that Γn =

∑
1≤i≤r R0fi.

According to (3.11)d) we have gendeg(Γ≥n) ≤ n. As the ring R is homogeneous
it follows by [Br-Fu-Ro](9.6)E)a) that

a) Γt = Rt−nΓn =
∑

1≤i≤r Rt−nfi for all t ≥ n.

Now, let x = p ∈ X and let γ ∈ Fx. By (3.11)c) we may write F = Γ̃

and hence F(n) = Γ̃(n) = Γ̃(n) (see [Br-Fu-Ro](12.5)C)). Therefore the stalk
F(n)x of F(n) at x coincides with the homogeneous localization Γ(n)(p) of the
graded R-module Γ(n) at the prime p ∈ Proj(R) (see [Br-Fu-Ro](12.4)B)). So,
we find some m ∈ N0, some s ∈ Rm \ p and some f ∈ Γ(n)m = Γm+n such
that in F(n)x = Γ(n)(p) we have γ = f

s
. Applying the above observation a)
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with t = m + n we thus find some elements a1, a2, · · · , ar ∈ Rm such that
f =

∑
1≤i≤r aifi. It follows that

γ =
f

s
=
∑

1≤i≤r

ai
s

fi
1
,

with ai
s
∈ R(p) = OX,x and fi

1
∈ Γ(n)(p) = F(n)x for all i ∈ {1, 2, · · · , r}.

According to [Br-Fu-Ro](12.4)B) we may write fi
1

= (fi)x ∈ Γ(n)(p) = F(n)x.
Therefore

γ =
∑

1≤i≤r

ai
s

fi
1

=
∑

1≤i≤r

ai
s

(fi)x ∈
∑

1≤i≤r

OX,x(fi)x.

So, the sheaf F(n) is generated by the finite set {f1, f2, · · · , fr} ⊆ Γ(X,F(n)).
�

3.14. Corollary. Let X = Proj(R), where R =
⊕

n∈N0
Rn is a Noetherian

homogeneous ring, and let F be a coherent sheaf of OX-modules. Then the
sheaf F(n) is generated by (finitely many) global sections for all n� 0.

Proof. This is immediate by (3.13). �

In order to illustrate the results of this section we now give a number of ex-
amples, presented in the form of exercises.

3.15. Examples and Exercises. A) (Algebras of Regularity Zero) In 3.5 we
have seen that polynomial rings are of regularity 0. We now want to establish a
partial converse of this. So letK be an infinite field and letR be a homogeneous
K-algebra of dimension d such that reg(R)=0. Show by induction on d, that
there are d elements x1, x2, . . . , xd ∈ R1 such that R = K[x1, x2, . . . , xd] and
conclude that R can be viewed as a polynomial ring over K.

B) (Preservation of Global Generation Under Positive Twists) Once more, let
R =

⊕
n∈N0

Rn be a Noetherian homogeneous ring, let X = Proj(R), let F be

a coherent sheaf of OX-modules. Write F = M̃ with some finitely generated
graded R-module M . Prove the following:

a) For all n ∈ Z, all p ∈ Proj(R) and all f ∈ R1 \ p, the multiplication map

f : M(n)(p) →M(n+ 1)(p)

is an isomorphism of R(p)-modules.

b) If m ∈ Z and F(m) is generated by S ⊆ Γ(X,F(m)), then F(n) is gener-
ated by Rn−mS for all n ≥ m.

c) If F(m) is generated by global sections for some m ∈ Z, then it is so for
all n ≥ m.

C) (Global Generation of Twisted Structure Sheaves) Let the notations be as in
part B) but assume in addition that dim(R) > 1 and H i

R+
(R) = 0 for i = 0, 1.

Show that OX(n) is generated by global sections if and only if n ≥ 0. Use
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(3.5) to see that the bound given in (3.13) is sharp if R = R0[X1, X2, . . . , Xd]
is a polynomial ring with d > 1 and F = OX(m) for an arbitrary integer m.
Now, let K be field, let d, r ∈ N with d > 2, let f ∈ K[X1, X2, . . . , Xd]r \ 0.
Show that

reg(R) := K[X1, X2, . . . , Xd]/〈f〉) = r

Conclude from this, that the bound given in (3.13) is not sharp in this case
for F = OX .

D) (Alternative Characterization of Generation by Global Sections) Let the
notations be as in part B). Let G1, . . . ,Gr be sheaves of OX-modules. Make
clear that the assignment U p 

⊕
1≤i≤r Gi(U) for all U ∈ UX defines a sheaf⊕

1≤i≤r Gi of OX-modules, the direct sum of the sheaves G1, . . . ,Gr. Show that:

a) For all x ∈ X we have (
⊕

1≤i≤r Gi)x∼=
⊕

1≤i≤r(Gi)x.
b) If G1, . . . ,Gr are coherent, then so is

⊕
1≤i≤r Gi.

c) If M1, . . . ,Mr are graded R-modules, then⊕̃
1≤i≤r

Mi
∼=
⊕

1≤i≤r

M̃i.

If F is a sheaf of OX-modules and r ∈ N we write F⊕r :=
⊕

1≤i≤r F . Using
this notation prove the following:

d) The coherent sheaf of OX-modules F is generated by r global sections if
and only if there is a surjective homomorphism of sheaves of OX-modules
O⊕r → F .

E) (Total Modules of Sections) Let the notations and hypotheses be as in part

B) and set Γ = Γ∗(X,F), where F = M̃ for some finitely generated graded
R-module M . Show that the following statements are equivalent:

(i) The R-module Γ is finitely generated.

(ii) H1
R+

(M) is a finitely generated R-module.

(iii) beg(H1
R+

(M)) > −∞.

Assume that the equivalent conditions (i),(ii),(iii) are satisfied and show that

a) beg(Γ) = min{beg(M/ΓR+(M)), beg(H1
R+

(M))}.
b) gendeg(Γ) ≤ max{gendeg(M), end(H1

R+
(M))}.



4. Hilbert-Serre Coefficients

In (3.4) we have seen that the generating degree of a finitely generated graded
module over a Noetherian homogeneous ring is bounded from above by the
regularity of this module. In many cases finitely generated graded modules
are given by a presentation, so that their generating degree is a fortiori known.
Clearly the bounding result (3.4) is not of any interest in these cases. It would
be much more interesting in this situation, to find an upper bound for the
regularity in terms of the generating degree and eventually some additional
numerical invariants of the module under consideration. There are indeed ex-
amples given in [Ma-Me], which show that the generating degree alone cannot
be used to bound the regularity. In this section, we shall prove a bounding
result of this type, which applies over Noetherian homogeneous algebras over a
field. More precisely, we shall prove that for a finitely generated graded mod-
ule M over such a ring the regularity at and above level 1 is bounded in terms
of the generating degree and the Hilbert polynomial of M . As an application
we shall get back Mumford’s regularity bound for coherent sheaves of ideals I
over a projective space [Mu1] in terms of the Hilbert polynomial of I.

4.1. Notation. Throughout this section let R = K ⊕ R1 ⊕ R2 ⊕ R3 ⊕ · · · be
a Noetherian homogeneous ring with base field K. For a finitely generated
R-module M let PM ∈ Q[X] denote the Hilbert polynomial of M . For each
i ∈ N0 let hiM : Z→ N0 denote the i-th cohomological Hilbert function of M
and let χM : Z→ Z denote the characteristic function of M (see (2.4)B)).

4.2. Reminder and Exercise. (Numerical Polynomials) A) A polynomial
P ∈ R[X] is called a numerical polynomial if P (Z) ⊆ Z. Show that for a
polynomial P ∈ R[X] of degree s ≥ 0 the following statements are equivalent:

(i) P is a numerical polynomial.

(ii) There is an integer n ∈ Z such that P (n+ i) ∈ Z for all i ∈ {0, 1, . . . , s}
(iii) There are integers eP0 , e

P
1 , . . . e

P
s ∈ Z such that eP0 6= 0 and

P (X) =
∑

0≤i≤s

(−1)iePi

(
X + s− i
s− i

)
.

In this situation, the integers ePi are uniquely determined by P and are called
the binomial coefficients of P .

B) If P ∈ R[X] is a numerical polynomial of degree s ≥ 0 we can say:

a) P ∈ Q[X].

b) eP0 = limn→∞
s!P (n)
ns

.

c) eP0 > 0 if and only if P (n) > 0 for all n� 0.

d) eP0 < 0 if and only if P (n) < 0 for all n� 0.
44
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C) Let P ∈ Q[X] be a numerical polynomial of degree s > 0. Show that the
first difference polynomial

∆P := P (X)− P (X − 1) ∈ Q[X]

is a numerical polynomial of degree s− 1 such that

a) e∆P
i = ePi for all i ∈ {0, 1, . . . , s− 1}.

4.3. Reminder and Exercise. (Hilbert-Serre Coefficients) A) Let M be a
finitely generated graded R-module. We set

ei(M) :=

{
ePMi , ∀i ∈ {0, 1, . . . , deg(PM)}
0, ∀i ∈ Z>deg(PM )

and call this number the i-th Hilbert-Serre coefficient of M .

If deg(PM) ≥ 0 or-equivalently-if dimR(M) > 0 the number e0(M) is called the
Hilbert-Serre multiplicity mult(M) of M . If dimR(M) ≤ 0 or-equivalently-if
M is R+-torsion, the Hilbert-Serre multiplicity of M is defined as the (finite)
K-vector space dimension dimK(M) of M . Thus

mult(M) :=

{
e0(M), dimR(M) > 0

dimK(M), dimR(M) ≤ 0

B) Prove that

a) e0(M) ∈ N if and only if deg(PM) ≥ 0.

b) PM(n) = χM(n) =
∑

i∈N0
(−1)iei(M)

(
n+deg(PM )−i
deg(PM )−i

)
for all n ∈ Z.

c) ei(M) = ei(M/ΓR+(M)) for all i ∈ N0.

d) If x ∈ NZDR(M) ∩ R1, then PM/xM = ∆PM and ei(M/xM) = ei(M) for
all i < deg(PM).

e) mult(M) ∈ N if and only if M 6= 0.

C) Later, we often shall have to perform a base field change with our Noe-
therian homogeneous K-algebra R. We now wish to develop in the form of
exercises a number of facts which shall be useful in this respect. So let K ′

be an extension field of K, consider the Noetherian homogeneous K ′-algebra
R′ := K ′⊗K R = K ′⊕ (K ′⊗K R1)⊕ (K ′⊗K R2) . . . and the finitely generated
graded R′-module K ′ ⊗K M =

⊕
n∈ZK

′ ⊗K Mn. Use the observations made
in (2.4) to prove the following facts

a) ei(M
′) = ei(M) for all i ∈ N0.

b) mult(M ′) = mult(M).

We now prove the announced bounding result in the special case of a graded
module of dimension 1, where it takes a particularly simple form.
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4.4. Lemma. Let M be a finitely generated graded R-module of dimension ≤ 1.
Then

reg1(M) ≤ gendeg(M) + e0(M).

Proof. If dimR(M) ≤ 0 the left hand side of the stated inequality takes the
value −∞ and we are done. So, let dimR(M) = 1. By the reduction arguments
of (2.4)C)a),b) and (3.3)A)d),B)h) we may replace K by one of its infinite
extension fields and hence assume at once, that K is infinite. As deg(PM) =
dim(M) − 1 = 0 (see (2.4)C)b)) we may write PM = e0(M). Now, in view
of (4.3)c), (3.3)B)d) and (3.3)A)b) we may replace M by M/ΓR+(M) and
hence assume that ΓR+(M) = 0. So, we find some x ∈ NZDR(M) ∩ R1 (see
[Br-Fu-Ro](9.9)). As PM/xM = ∆PM = 0 (see (4.3)d)) we have (M/xM)n = 0
for all large n and hence

Mn+1 = xMn, ∀n� 0.

Now, let m ≥ gendeg(M) such that Mm+1 = xMm and let f1, f2, . . . , fr ∈ R1

be such that R1 =
∑

1≤i≤rKfi. As m ≥ gendeg(M) and R is homogeneous we
obtain (see [Br-Fu-Ro](9.6)E)a))

Mm+2 = R1Mm+1 =
∑

1≤i≤r

fiMm+1 =
∑

1≤i≤r

fixMm

= x
∑

1≤i≤r

fiMm = xR1Mm = xMm+1.

By induction on m it now follows:

a) If m0 ≥ gendeg(M) such that the multiplication map x : Mm0 � Mm0+1

is an isomorphism, then the multiplication map x : Mm � Mm+1 is an
isomorphism for all m ≥ m0.

This shows that the function m 7→ dimK(Mm) is strictly increasing in the
range m ≥ gendeg(M) until it reaches its constant value e0(M). Consequently
we obtain

dimK(Mn) = e0(M) = PM = χM ,∀n ≥ gendeg(M) + e0(M).

As H i
R+

(M) = 0 for all i 6= 1 we have e0(M) = χM = dimK(Mn) + h1
M(n) for

all n ∈ Z. It thus follows:

h1
M(n) = e0(M)− dimK(Mn) = 0, ∀n ≥ gendeg(M) + e0(M).

Therefore end(H1
R+

(M)) < gendeg(M) + e0(M). As H i
R+

(M) = 0 for all i > 1

it follows that reg1(M) ≤ gendeg(M) + e0(M). �

Now we want to approach our announced bounding result in the general situ-
ation. We begin with a few technical prerequisites.

4.5. Construction and Exercise. A) (A Family of Bounding Polynomials)
Let (Ui)i∈N0 be a family of independent indeterminates. We recursively define
a family (Qt)t∈N of polynomials Qt ∈ Q[U0, U1, . . . , Ut−1] as follows
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a) Q1 = Q1(U0) := U0 ∈ Z[U0];

b) Qt = Qt(U0, U1, . . . , Ut−1) := Qt−1 +
∑

0≤i≤t−1(−1)iUi
(
Qt−1+t−2−i

t−1−i

)
,∀t > 1.

Check that

c) deg(Q1) = 1;

d) deg(Qt) = 1 + deg(Qt−1)(t− 1),∀t > 1.

e) (t− 1)! ≤ deg(Qt) < t!,∀t > 1.

These polynomials will be used in the main result we are heading for.

B)(Shifted Numerical Polynomials) Now, let P ∈ Q[X] be a numerical poly-
nomial of degree ≥ 0. Let Y be a second indeterminate and consider the
polynomial P (X + Y ) ∈ Q[X, Y ]. Observe that deg(P (X + Y )) = s and that
the family of polynomials

(Y j

(
X + s− i
s− i

)
)(i,j)∈N2

0:i+j≤s

forms a Q-basis of the space

Q[X, Y ]≤s := {g ∈ Q[X, Y ] | deg(g) ≤ s}.
From this we may conclude:

a) There is a uniquely determined family (EP
i )0≤i≤s of polynomials EP

i ∈ Q[Y ]
such

deg(EP
i ) = s− i, ∀i ∈ {0, 1, . . . , s};

P (X + Y ) =
∑

0≤i≤s

(−1)−iEP
i (Y )

(
X + s− i
s− i

)
.

Observe in particular that

b) EP
i (0) = ePi ,∀i ∈ {0, 1, . . . , s}

More generally, let c ∈ Z. Then P (X + c) ∈ Q[X] is again a numerical
polynomial of degree s and we get:

c) EP
i (c) = e

P (X+c)
i ,∀i ∈ {0, 1, . . . , s}.

C)(Shifted Binomial Coefficients) Now, let k ∈ N0. We consider the numerical
polynomial of degree k given by

(
X+k
k

)
and set:

a) Ek,j(Y ) := E
(X+k

k )
j (Y ),∀j ∈ {0, 1, . . . , k}.

So, we have deg(Ek,j(Y )) = k − j for all j ∈ {0, 1, . . . , k} and may write

b)
(
X+Y+k

k

)
=
∑

0≤j≤k(−1)jEk,j(Y )
(
X+k−j
k−j

)
.

Now, it follows by (4.2)A) that
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c) P (X + Y ) =
∑

0≤i≤s(−1)i(
∑

0≤j≤i e
P
j Es−j,i−j(Y ))

(
X+s−i
s−i

)
.

In particular by statement B)a) we get:

d) EP
i (Y ) =

∑
0≤j≤i e

P
j Es−j,i−j(Y ),∀i ∈ {0, 1, . . . , s}.

As a consequence of statement B)c) we finally obtain:

e) e
P (X+c)
i =

∑
0≤j≤i e

P
j Es−j,i−j(c),∀c ∈ Z,∀i ∈ {0, 1, . . . , s}.

D) (Shifted Hilbert Coefficients) We use the notation of part A) and define for
each t ∈ N the following polynomial in Q[U0, U1, . . . , Ut−1, Y ]:

a) Ft = Ft(U0, U1, . . . , Ut−1, Y ) := Qt(V0, V1, . . . , Vt−1) + Y , where

Vi :=
∑

0≤j≤i

UjEt−1−j,i−j(Y ), ∀i ∈ {0, 1, . . . , t− 1}.

Observe that by A)e) we have

b) (t− 1)! ≤ deg(Qt) ≤ deg(Ft) ≤ tdeg(Qt) < t!t.

Now, let M be a finitely generated graded R-module and let c ∈ Z. As-
sume that dimR(M) = t ∈ N. Then on use of [Br-Fu-Ro](9.14)D) we have
PM(c)(X) = PM(X + c). So, as deg(PM) = t− 1 we get

c) ei(M(c)) =
∑

0≤j≤i ej(M)Et−1−j,i−j(c),∀i ∈ {0, 1, . . . , t− 1}.

In view of our definition of the polynomials Ft in statement a) we thus end up
with:

d) Ft(e0(M), . . . , et−1(M), c) = Qt(e0(M(c)), . . . , et−1(M(c))) + c.

We now treat a few further simple preliminaries, which shall be useful in the
proof of our announced main result.

4.6. Exercise. A) (Finite Direct Sums) Let (M (i))1≤i≤r be a finite family of
graded R-modules and keep in mind that the R-module

⊕
0≤i≤rM

(i) carries

a natural grading, given by (
⊕

1≤i≤rM
(i))n =

⊕
1≤i≤r(M

(i))n, for all n ∈ Z.

Assume now, that the graded R-modules M (i) are all finitely generated. Show
that

a) gendeg(
⊕

1≤i≤rM
(i)) = max{gendeg(M (i)) | 1 ≤ i ≤ r}.

b) P⊕
1≤i≤rM

(i) =
∑

1≤i≤r PM(i) .

c) dimR(
⊕

1≤i≤rM
(i)) = max{dimR(M (i)) | 1 ≤ i ≤ r}.

d) regl(
⊕

1≤i≤rM
(i)) = max{regl(M (i)) | 1 ≤ i ≤ r}, for all l ∈ N0.
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e) If all the R-modules M (i) have the same dimension, then

ej(
⊕

1≤i≤r

M (i)) =
∑

1≤i≤r

ej(M
(i)), ∀j ∈ Z.

f) If all the R-modules M (i) have the same dimension, then

mult(
⊕

1≤i≤r

M (i)) =
∑
1≤ir

mult(M (i)).

B) (Regularity of Kernels) Let M be a finitely generated graded R-module and
let m1,m2, . . . ,ms ∈M be a homogeneous system of generators of M such that
mi ∈ Mai for an appropriate integer ai for all i ∈ {1, 2, . . . , s}. Observe that
there is an epimorphism of graded R-modules

π :
⊕

1≤i≤s

R(−ai)→M, (v1, . . . , vs) 7→
∑

1≤i≤s

vimi.

Show that

a) gendeg(Ker(π)) ≤ max({reg(R) + ai | 1 ≤ i ≤ s} ∪ {reg(M) + 1}).
b) If R = R0[X0, . . . , Xr] is a polynomial ring, then

gendeg(Ker(π)) ≤ max({ai | 1 ≤ i ≤ s} ∪ {reg(M) + 1}).

Now we are ready to formulate and to prove our main result. The occurring
bounding polynomials are as defined in (4.5)D).

4.7. Theorem. Let R = K⊕R1⊕R2 . . . be a Noetherian homogeneous algebra
over a field K and let M be a finitely generated graded R-module of dimension
t > 0 and let g ∈ Z such that gendeg(M) ≤ g. Then

reg1(M) ≤ Ft(e0(M), e1(M), . . . , et−1(M), g).

Proof. Let K ′ be an algebraically closed extension fields of K and consider the
Noetherian homogeneous K ′-algebra R′ = K ′⊗K R and the finitely generated
graded R′-moduleM ′ = R′⊗KM . According to (2.4)C) we have dimR′(M

′) = t
and P ′M = PM , so that ej(M

′) = ej(M) for all j ∈ N0. Moreover by (3.3)A)d)
we have gendeg(M ′) = gendeg(M), whereas by (3.3)B)h) we have reg1(M ′) =
reg1(M). So, we may replace R and M by R′ and M ′ respectively and hence
assume that the base field K is algebraically closed.

Clearly, we find a polynomial ring S := K[X0, . . . , Xr] and a graded ideal
a ⊆ S such that we can write R = S/a. So, we may consider M as an S-
module such that aM = 0. Clearly we have by the Base Ring Independence of
Dimension that dimS(M) = t. Moreover, a family of homogeneous elements
generates M over R if and only if it does over S. So the generating degrees
of M as an S-module and as an R-module are the same. Clearly the Hilbert
function n 7→ dimK(Mn) is independent on whether we consider M as a module
over S or over R. Finally, by (2.5)A)b) the cohomological Hilbert functions
of M and hence also reg1(M) are not affected if we consider M as a module
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over S instead over R. So, we may replace R by S and hence assume that
R = K[X0, X1, . . . , Xr] is a polynomial ring over the algebraically closed field
K.

As reg1(M(g)) = reg1(M) − g (see (3.3)B)b)) and in view of the equality
(4.5)D)d) it suffices to show that

reg1(M(g)) ≤ Qt(e0(M(g)) . . . , et−1(M(g))).

As gendeg(M(g)) = gendeg(M) − g ≤ 0 (see (3.3)A)a)) and dim(M(g)) = t
we thus may assume that gendeg(M) ≤ 0 and content ourselves to prove

a) reg1(M) ≤ Qt(e0(M), . . . , et−1(M)).

Observe that we have an exact sequence of finitely generated graded R-modules

0→M≥0 →M → V → 0

in which V is R+-torsion and hence satisfies reg1(V ) = −∞. So, by (3.3)C)c)
we have reg1(M) ≤ reg1(M≥0). Therefore, it suffices to show that

reg1(M≥0) ≤ Qt(e0(M), . . . , et−1(M)).

As Vn = 0 for all n � 0 the above sequence yields that PM≥0
= PM so that

dimR(M≥0) = dimR(M) = t and ei(M≥0) = ei(M) for all i ∈ N0. Clearly, we
also have gendeg(M≥0) = 0. So, we may replace M by M≥0 and hence assume
that

b) beg(M) = gendeg(M) = 0.

We now prove statement a) under the additional assumption b) by induction
on t. First, let t = 1. Then (4.4) implies that

reg1(M) ≤ e0(M) = Q1(e0(M))

and we are done. So, let t > 1. We set

P := AssR(M) ∩ (mProj(R) ∪ {R+}), a :=
⋂
p∈P

p.

By [Br-Fu-Ro](10.3)C) we know that AssR(M) consists of graded primes, and
hence a ⊆ R is a graded ideal. Therefore the module M̄ := M/Γa(M)
is graded. By [Br-Fu-Ro](1.9)b) and a) we respectively have AssR(M̄) =
AssR(M) \ P and AssR(Γa(M)) = P . As dim(R/p) ≤ 1 for all p ∈ P and
as t = dimR(M) = max{dim(R/p) | p ∈ AssR(M)} it follows

c) dimR(M̄) = t and dimR(Γa(M)) ≤ 1.

As there is an epimorphism of graded R-modules M → M̄ 6= 0 we get

d) gendeg(M̄) = beg(M̄) = 0.

Moreover, by our choice of P we have

e) AssR(M̄) ∩mProj(R) = ∅ and ΓR+(M̄) = 0.



51

From this, if follows by [Br-Fu-Ro](10.5) that there are two elements x, y ∈ R1

such that

f) αx+ βy ∈ NZDR(M̄) for all (α, β) ∈ K2 \ {(0, 0)}.

In view of the exact sequence of graded R-modules

0→ Γa(M)→M → M̄ → 0

we get by the additivity of characteristic functions (see [Br-Fu-Ro](9.15)) that
χM̄ = χM − χΓa(M) and hence (see also c))

g) PM̄ = PM − PΓa(M) and deg(PΓa(M)) ≤ dimR(Γa(M))− 1 ≤ 0.

So, it follows by the definition (4.2)A) that

h) ei(M̄) = ei(M) for all i ∈ {0, . . . , t− 2}.

Now, we choose a pair (α, β) ∈ K2 \ {(0, 0)} and set z := αx + βy. As
z ∈ NZDR(M̄) we have dimR(M̄/zM̄) = dimR(M̄) − 1 = t − 1 (see c)). By
(4.3)B)d) and by the previous statement h) we also get ei(M̄/zM̄) = ei(M)
for all i ∈ {0, . . . , t − 2}. Moreover gendeg(M̄/zM̄) ≤ gendeg(M̄) ≤ 0 (see
d) and (3.3)A)b)) and beg(M̄/zM̄) ≥ beg(M̄) ≥ 0 (see d)), so that M̄/zM̄
satisfies our hypothesis b). Therefore, by induction we obtain

i) reg1(M̄/zM̄) ≤ Qt−1(e0(M), e1(M), . . . , et−2(M)) =: p.

Now,the short exact sequence of graded R-modules

0→ M̄(−1)
z−→ M̄ → M̄/zM̄ → 0

shows that reg2(M̄) + 1 = reg2(M̄(−1)) ≤ max{reg2(M̄), reg1(M̄/zM̄) + 1}
(see (3.3)B)b),C)b)). Therefore reg2(M̄) ≤ reg1(M̄/zM̄). Hence by statement
g) we get

j) reg2(M̄) ≤ p.

By i) we also have H1
R+

(M̄/zM̄)n = 0 for all n ≥ p. So, if we apply cohomology
to the the above exact sequence, we get an epimorphism of K-vector spaces

H1
R+

(M̄)n−1
z=αx+βy−−−−−→ H1

R+
(M̄)n, ∀n ≥ p, ∀(α, β) ∈ K2 \ {(0, 0}.

By [Br-Fu-Ro](10.7) we conclude from this, that

h1
M̄(n) ≤ max{0, h1

M̄(n− 1)− 1},∀n ≥ p.

Therefore we finally obtain

end(H1
R+

(M̄)) ≤ p+ h1
M̄(p− 1)− 1.

By statement j) we have hi
M̄

(p− 1) = 0 for all i ≥ 2. So, as H0
R+

(M̄) = 0 (see
statement e)) and as PΓa(M) = χΓa(M) is constant (see statement g)) we obtain

dimK(M̄p−1) + h1
M̄(p− 1) = χM̄(p− 1) = χM(p− 1)− χΓa(M)
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and hence

0 ≤ h1
M̄(p− 1) ≤ χM(p− 1)− χΓa(M).

Therefore

end(H1
R+

(M̄)) ≤ p+ χM(p− 1)− χΓa(M) − 1

and

χM(p− 1)− χΓa(M) ≥ 0.

So, as H0
R+

(M̄) = 0 and in view statement i) we get

k) reg(M̄) = reg1(M̄) ≤ p+ χM(p− 1)− χΓa(M).

Our next aim is to show the inequality

l) reg(M) ≤ p+ χM(p− 1) + 1.

We first show that

m) p+ χM(p− 1)− χΓa(M) + 1 > 0.

To do so, observe that U := (M̄/zM̄)/ΓR+(M̄/zM̄) is an R+-torsion-free
finitely generated graded R-module 6= 0, so that by statement i) we have
p ≥ reg1(M̄/zM̄) = reg(U) ≥ gendeg(U) ≥ beg(U) ≥ beg(M̄) ≥ beg(M) = 0
(see also (3.3)B)b) and (3.4)). As we already know that χM(p−1)−χΓa(M) ≥ 0
this proves statement m).

Now, let us prove statement l). In view of our assumption b) we find an

integer s ∈ N and an epimorphism of graded R-modules R⊕s
π−→ M which

is incorporated in the following commutative diagram of graded R-modules,
in which both rows are exact, u is the inclusion map and w is the canonical
epimorphism.

0 // Ker(π) //

u

��

R⊕s
π //

Id

��

M //

w

��

0

0 // Ker(π̄) // R⊕s
π̄ // M̄ // 0

If we apply (4.6)B)b) to the second row of this diagram and keep in mind
statements k) and m) we get

gendeg(Ker(π̄)) ≤ max{0, p+χM(p−1)−χΓa(M)+1} = p+χM(p−1)−χΓa(M)+1.

By the Snake Lemma we have Coker(u) = Ker(w) = Γa(M) and therefore we
obtain

gendeg(Γa(M)) ≤ p+ χM(p− 1)− χΓa(M).

As Γa(M) ⊆M is a submodule of dimension ≤ 1 we have χΓa(M) = e0(Γa(M)).
Consequently we obtain

gendeg(Γa(M)) ≤ p+ χM(p− 1)− e0(Γa(M)) + 1.
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But now, by (4.4) we get

reg1(Γa(M)) ≤ p+ χM(p− 1) + 1.

If apply the sequence mentioned just before statement g) and bear in mind
that χΓa(M) = e0(Γa(M)) > 0, we get by statement k) that reg1(M) ≤ p +
χM(p− 1) + 1, that is statement l).

Finally, by our previous definition of p (see statement i)) and by the definition
(4.5)A)b) of the bounding polynomial Qt it follows at once that

p+ χM(p− 1) + 1 = Qt(e0(M), e1(M), . . . , et−1(M)).

So, by statement l) we get the requested inequality a). �

4.8. Corollary. Let R = K⊕R1⊕R2 . . . be a Noetherian homogeneous algebra
over a field K, let t ∈ N, g ∈ Z and let

0→ L→M → N → 0

be an exact sequence of finitely generated graded R-modules such that dimR(N) =
t and gendeg(N) ≤ g. Then

reg2(L) ≤ max{reg2(M), Ft(e0(N), . . . , et−1(N), g) + 1}.

Proof. This follows immediately by (4.7) and (3.3)C)b). �

We now aim to apply the previous result to ideals in polynomial rings. We
start with a few preparations.

4.9. Exercise and Definition. (Saturation of Graded Submodules) A) Let
R =

⊕
n∈N0

Rn be a Noetherian positively graded ring, let M be a graded
R-module and let N ⊆M be a graded submodule. Make clear that

N satM = N sat := ∪n∈N(N :M (R+)n) ⊆M

is a graded submodule of M , the so called saturation of N in M . Make clear
that the following hold

a) For each graded submodule N ⊆M we have N ⊆ N sat.

b) M sat = M and 0sat = ΓR+(M).

c) If L ⊆ N ⊆M are graded submodules, then Lsat ⊆ N sat

d) For each graded submodule N ⊆M we have (N sat)sat = N sat.

We say that the graded R-submodule N ⊆ M is saturated, if N sat = N .
According to statement d), the graded saturated submodules ofM are precisely
those, which are the saturation of some graded submodule of M .

B) Let R, M and N ⊆M be as in part A) and show:

a) N sat/N = ΓR+(M/N).
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b) If H0
R+

(M) = H1
R+

(M) = 0, we have an exact sequence of graded R-
modules

0→ N
⊆−→ N sat → H1

R+
(N)→ 0.

c) If M is finitely generated, then PN = PNsat , PM/N = PM/Nsat and

ei(N) = ei(N
sat), ei(M/N) = ei(M/N sat), ∀i ∈ N0.

d) If N 6= 0, then dimR(N) = dimR(N sat).

e) If M/N is not R+-torsion, then dimR(M/N sat) = dimR(M/N).

Now, we are ready to formulate and to prove the announced application of
(4.8) to polynomial ideals.

4.10. Corollary. Let r ∈ N, let R = K[X0, X1, . . . , Xr] be a polynomial
ring over the field K and let a ⊆ R be a graded saturated ideal such that
dim(R/a) =: t > 0. Then

a) reg(R/a) ≤ Qt(e0(R/a), e1(R/a, . . . , et−1(R/a)).

b) reg(a) ≤ Qt(e0(R/a), e1(R/a), . . . , et−1(R/a)) + 1.

Proof. According to (4.9)B)a) we have H0
R+

(R/a) = 0, so that reg(R/a) =

reg1(R/a). Observe that gendeg(R/a) = 0 and that by (4.5)D)d)

Ft(e0(R/a), e1(R/a), . . . , et−1(R/a), 0) = Qt(e0(R/a), e1(R/a), . . . , et−1(R/a)).

Now statement a) follows from (4.7), applied with g = 0. Clearly we have
H0
R+

(a) = 0. By (4.9)B)b) we also have H1
R+

(a) = 0. Therefore reg(a) =

reg2(a) and so statement b) follows by (4.8), applied with g = 0 and bearing
in mind the fact that reg(R) = 0 (see (3.5)). �

Now, we aim to translate our previous results to the language of sheaves. We
begin with a some preparations.

4.11. Exercise and Definition. A) (Cohomological Hilbert Functions of Co-
herent Sheaves) A) Let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous
algebra over the field K, let X = Proj(R) and let F be a coherent sheaf of

OX-modules, so that F = M̃ for some finitely generated graded R-module M .
Now, we may extend what was done in [Br-Fu-Ro](12.12) only in the case of
an infinite base field K to arbitrary base fields. Namely, the fact that Mn and
H i
R+

(M)n are K-vector spaces of finite dimension for all i ∈ N0 and all n ∈ Z
(see (2.4) and [Br-Fu-Ro](9.6)C)) and the Serre-Grothendieck Correspondence
(2.14)A) tell us that

hi(X,F(n)) := dimK(H i(X,F(n)) ∈ N0, ∀i ∈ N0, ∀n ∈ Z.

So, for each i ∈ N0 we may again define the i-th cohomological Hilbert function

hiF : Z→ N0, n 7→ hi(X,F(n))
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of (X with respect to the coherent sheaf of coefficients) F . Now, by (2.16)b)
we can say, that these functions hiF : Z→ N0 are again right-vanishing.

B) (Characteristic Functions, Serre Polynomials and Serre Coefficients). Keep
all the notations and hypotheses of part A). As cdX(F) = cdR+(M) <∞ (see
(2.15)) we may again define the characteristic function of F :

χF : Z→ Z, n 7→
∑
i∈N0

(−1)ihiF(n) =
∑
i∈N0

hi(X,F(n)).

Check on use of the Serre-Grothendieck Correspondence that in the notation
used in part A) we have

χF = χM

so that there is a numerical polynomial

a) PF = PM ∈ Q[X] such that PF(n) = χF(n) for all n ∈ Z.

which also is characterized by the property

b) PF(n) = h0
F(n) = h0(X,F(n)) for all n� 0.

This numerical polynomial PF is called the Serre polynomial of F . Now, using
the notation introduced in (4.2)A), for each i ∈ N0 we may define the i-th
Serre coefficient of F by

ei(F) :=

{
ePFi , ∀i ∈ {0, 1, . . . , deg(PF)}
0, ∀i ∈ Z>deg(PF )

Verify that in the notation of part A) we have

c) ei(F) = ei(M) for all i ∈ N0.

C) (Support and Dimension of Sheaves) For a moment let R =
⊕

n∈N0
Rn

be an arbitrary Noetherian positively graded ring, let X = Proj(R) and let

F = M̃ be a coherent sheaf of OX-modules, induced by the finitely generated
graded R-module M . Then, we define the support of F by:

Supp(F) := {x ∈ X | Fx 6= 0}.
As Supp(F) ⊆ Spec(R), it has a Krull dimension and so we may define the
dimension of F as follows:

dim(F) := dim(Supp(F)).

Now, prove the following statements:

a) Supp(F) = Proj(R) ∩ Var(0 :R M).

b) If p, q ∈ ∗Spec(R) with p ⊆ q and ht(q/p) > 1, then, there is some s ∈
∗Spec(R) with p  s  q.

Finally, let the notations and hypotheses again be as in part A) and show that:
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c) If F 6= 0, then dimR(M) > 0 and dim(F) = dimR(M)− 1.

d) If F 6= 0, then dimR(F) = deg(PF).

Now, we prove the announced sheaf-theoretic version of (4.7). In our statement
the total module of sections (see (3.8)) occurs and we use the fact that this
module has generating degree <∞ (see (3.11)e)).

4.12. Corollary. Let X = Proj(R), where R = K⊕R1⊕R2 · · · is a Noetherian
homogeneous algebra over the field K, let d ∈ N0, γ ∈ Z and let F be a coherent
sheaf of OX-modules such that dim(F) = d and gendeg(Γ∗(X,F)) ≤ γ. Then

reg(F) ≤ Fd+1(e0(F), e1(F), . . . , ed(F), γ).

Proof. Let Γ = Γ∗(X,F).

Clearly, as R is homogeneous, we have gendeg(Γ≥γ) = γ. Moreover F = Γ̃≥γ
(see (3.11)c)) and reg(F) = reg2(Γ≥γ) ≤ reg1(Γγ) (see (3.7) and (3.3)B)a)).

As dim(Γγ) = d+ 1 (see (4.11)C)c)) and in view of the coincidence of Hilbert-
Serre coefficients (see (4.11)B)c)) our claim follows if we apply (4.7) to the
finitely generated graded R-module Γ≥γ. �

Another application to sheaves is given by the following result.

4.13. Corollary. Let X = Proj(R), where R = K⊕R1⊕R2 . . . is a Noetherian
homogeneous algebra over the field K, let d ∈ N0, ρ ∈ Z and let

0→ G → F → H → 0

be an exaxt sequence of sheaves of coherent OX-modules such that dim(H) = d
and reg(F) ≤ ρ. Then

a) reg(H) ≤ Fd+1(e0(H), e1(H), . . . , ed(H), ρ).

b) reg(G) ≤ max{ρ, Fd+1(e0(H), e1(H), . . . , ed(H), ρ) + 1}.

Proof. For each n ∈ Z we get an induced exact sequence of K-vector spaces

0→ H0(X,G(n))→ H0(X,F(n))→ H0(X,H(n))→ H1(X,G(n))

in which the last term vanishes for all n � 0. Passing over to total modules
of sections we thus get an exact sequence

0→ Γ∗(X,G)→ Γ∗(X,F)→ N → 0,

where N ⊆ Γ∗(X,H) is a graded submodule such that Nn = Γ∗(X,H)n for

all n � 0. In particular we have H∼=Ñ (see (2.14)D)a)) and gendeg(N) ≤
gendeg(Γ∗(X,F)) ≤ ρ (see (3.11)e)), so that (4.7) and (3.7)A) (and also
(3.3)B)a)) yield statement a). Statement b) follows likewise from (4.8). �
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4.14. Remark and Exercise. A) (Regularity of Quotient Modules) The prin-
cipal significance of the results of these section is the fact that they provide
uniform bounds on the regularity of quotient modules. To make this explicit,
let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous algebra over the field
K and let M be a finitely generated graded R-module. A graded R-module
N is called a quotient of M if there is an epimorphism of graded R-modules
M → N → 0. Clearly, in this situation the module N is also finitely generated
and we have gendeg(N) ≤ gendeg(M). Now, as an immediate consequence of
(4.7) we can say

a) Let P ∈ Q[X] be a numerical polynomial. Then, there exists an integer β
such that reg1(N) ≤ β for all quotients N of M with PN = P .

In particular we obtain the following application

b) Let P ∈ Q[X] be a numerical polynomial. Then, there is an integer β such
that reg1(R/a) ≤ β for all graded ideals a ⊆ R with PR/a = P .

This is a an quantitative and algebraic extension of Mumford’s original bound-
ing result for the regularity of coherent sheaves of ideals over a projective space
[Mu1]. We shall turn back to this later.

We suggest the following example to make clear, that in statement b) one can-
not replace reg1(R/a) by reg(R/a). Namely, let R = K[X, Y ] be a polynomial
ring. For each r ∈ N consider the graded ideal

a(r) := 〈X〉 ∩ 〈X, Y 〉r ⊆ R.

Calculate PR/a(r) and end(R/a(r)) and conclude, that statement b) fails if reg1

is replaced by reg.

B) (Regularity of Saturated Submodules) Keep the notations and hypotheses
of part A). Prove the following statements:

a) Let L ⊆M be a graded saturated submodule with dim(M/L) = t > 0 and
assume that gendeg(M) ≤ g ∈ Z. Then

reg(M/L) ≤ Ft(e0(M/L), e1(M/L), . . . , et−1(M/L), g).

b) If L  M is a graded saturated submodule then PL 6= PM and if gendeg(M) ≤
g ∈ Z and setting s = deg(PM − PL) we have

reg(M/L) ≤ Fs+1(ePM−PL0 , ePM−PL1 , . . . , ePM−PLs , g).

c) If M,L, s are as in statement b) and if in addition H1
R+

(M) = 0 and
reg(M) ≤ ρ ∈ Z then

reg(L) ≤ max{ρ, Fs+1(ePM−PL0 , ePM−PL1 , . . . , ePM−PLs , ρ) + 1}.

d) Let P ∈ Q[X] be a numerical polynomial. Then there is an integer β
such that reg(M/L) ≤ β for all saturated graded submodules L ⊆M with
PM/L = P .
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e) Assume that H1
R+

(M) = 0 and let Q ∈ Q[X] be a numerical polynomial.
Then there is an integer γ such that reg(L) ≤ γ for all saturated graded
submodules L ⊆M with PL = Q.

C) (Sheaves of Submodules) Let R and X be as in part A) and let F be a sheaf
of OX-modules. We say that G is a sheaf of submodules of F if

a) G(U) ⊆ G(U) is a submodule of the OX(U)-module F(U) for all U ∈ UX .

b) For all U, V ∈ UX with V ⊆ U we have the commutative diagram

G(U)
⊆ //

ρGU,V
��

F(U)

ρFU,V
��

G(V )
⊆ // F(V )

Prove that in this situation, there is an injective homomorphism of sheaves of
OX-modules

inclG,F : G → F , U p (G(U)
⊆−→ F(U)),∀U ∈ UX ,

the so called inclusion homomorphism. Show the following statements

c) If M is a graded R-module and N ⊆M is a graded submodule, then Ñ is

sheaf of submodules of M̃ .

d) If M and N are as in statement c), then Ñ sat = Ñ .

e) If L ⊆ N are graded submodules of M such that L̃ = Ñ , then N ⊆ Lsat.

f) If L,N ⊆M are graded submodules with L̃ = Ñ , then Lsat = N sat.

Now, assume that F = M̃ is coherent, with M finitely generated and let G = Ñ
be a quasi-coherent sheaf of submodules of F , with N a graded R-module. Use
the diagram (see (3.8)D),E))

N

εXN,∗
��

M

εXM,∗
��

Γ∗(X,G)
Γ∗(X,inclG,F )

// Γ∗(X,F)

to show that there is a graded submodule L ⊆ M such that G = L̃. Use this
to prove

g) The quasicoherent sheaves of submodules of a coherent sheaf F of OX-
modules are all coherent.

h) If F = M̃ with a finitely generated graded R-module M , the assignment

L 7→ L̃ gives a bijection between the graded saturated submodules of M
and the coherent sheaves of submodules of F .
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i) If F is a coherent sheaf of OX-modules with reg(F) ≤ ρ ∈ Z and G 6= F is
a coherent sheaf of submodules, then PG 6= PF and with s := deg(PF −PG)
we have

reg(G) ≤ max{ρ, Fs+1(e
PF−PG
0 , e

PF−PG
1 , . . . , ePF−PGs , ρ) + 1}.

D) (Sheaves of Ideals) Let the notations and hypotheses be as above. A sheaf
of ideals over X is a sheaf I of submodules of the structure sheaf OX of X.
If I 6= OX , we call I a proper sheaf of ideals over X. Now, let r ∈ N let
K be a field, consider the polynomial ring R = K[X0, X1, . . . , Xr] and the
corresponding projective r-space over K, hence the scheme

PrK := Proj(K[X0, X1, . . . , Xr]).

Prove the following results

a) If I is a proper coherent sheaf of ideals over PrK then TI := PI−
(
X+r
r

)
6= 0

and with s := deg(TI) we have:

reg(I) ≤ Qs+1(eTI0 , eTI1 , . . . , eTIs ) + 1.

b) For all numerical polynomials P ∈ Q[X], there is an integer γ such that
reg(I) ≤ γ for all coherent sheaves I of ideals over PrK .

The first of these statements is a quantitative version of Mumford’s bound-
ing result for coherent sheaves of ideals (see [Mu1] and part A)). The second
statement is the original form of Mumford’s result.

4.15. Remark. (Regularity of Annihilators) Let us mention one more result,
which is of the same spirit as the results presented in this section, namely (see
the Diploma thesis [Sei])

a) The regularity of the annihilator of a finitely generated graded module M
over a polynomial ring R = K[X1, X2, . . . , Xr] is bounded in terms of the
Hilbert polynomial (and hence of the Hilbert coefficients) of M and the
postulation number

P (M) := sup{n ∈ Z | dimK(Mn) 6= PM(n)}
of M .

This result was actually motivated by a question from the theory of D-modules
and Weyl algebras (brought to us by M. Bächtold, a former a PhD student
in our Department’s research group in Mathematical Physics, see [Bäc]) : Is
there an upper bound on the degree of the equations defining (set theoretically)
the characteristic variety of a D-module, only in terms of the Hilbert function
associated to the chosen filtration on D? This nicely fits to a statement made
by a leading Mathematical Physicist at a workshop on Commutative Algebra
and Algebraic at the Max-Planck-Institute in Leipzig: “What Physicists like
very much in Algebraic Geometry is the fact that it produces a huge number
of invariants”.



5. Filter-Regular Sequences

In this section we aim to introduce a basic tool for the study of Castelnuovo-
Mumford regularity: the so called filter-regular sequences. In view of our
subject, we do not introduce these sequences in the most general setting, that
is relative to arbitrary ideals in Noetherian rings. Instead we consider only the
case where the filter-ideal is the irrelevant ideal of a homogeneous Noetherian
ring. Moreover we consider only filter-regular sequences consisting of homoge-
neous elements in this ideal. Our main result shall be (a generalized version
of) the Regularity Criterion of Bayer-Stillman (see [B-St]). In order to avoid
to much technicalities, we do not prove the most general form of this criterion
which is given in [Br5].

In a shorter second part of this section we also shall prove that filter-regular
sequences are systems of multiplicity parameters and provide an example which
shows that the converse implication is not true. This shows, that filter-regular
sequences are not only a powerful tool to study Castelnuovo-Mumford regu-
larity, but also can be applied in Multiplicity Theory.

5.1. Exercise and Definition. A) (Filter-Regular Elements) Fix a Noetherian
homogeneous ring R =

⊕
n∈N0

Rn and let Rh
+ :=

⋃
n∈NRn denote the set of

homogeneous elements of positive degree in R. Moreover let M be a finitely
generated graded R-module. Show that for a given element f ∈ Rt ⊆ Rh

+ with
t ∈ N the following statements are equivalent:

(i) f ∈ NZDR(M/ΓR+(M)).

(ii) f /∈
⋃

p∈AssR(M)∩Proj(R) p.

(iii) f
1
∈ NZDRp(Mp) for all p ∈ Proj(R).

(iv) (0 :M f) ⊆ ΓR+(M).

(v) end(0 :M f) <∞.

(vi) The multiplication map f : Mn →Mn+t is injective for all n� 0.

If the homogeneous element f ∈ Rt satisfies these equivalent conditions, it is
called a filter-regular element with respect to M .

B) (Properties of Filter-Regular Elements) Let the notations and hypotheses
be as in part A). Prove the following facts:

a) If f ∈ NZDR(M), then f is filter-regular with respect to M .

b) If N ⊆ ΓR+(M) is a graded submodule, then f is filter-regular with respect
to M/N if and only if it is with respect to M .

c) If f is filter-regular with respect to M , then fn is filter-regular with respect
to M for all n ∈ N.

d) If f(∈ Rt) is filter regular with respect to M , then (0 :M f)n = ΓR+(M)n
for all n ≥ end(ΓR+(M))− t+ 1.

60
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e) (Flat Base Change Property of Filter-Regular Elements) If f ∈ Rt is filter-
regular with respect to M and R′0 is a flat Noetherian R0-algebra, then the
element 1R′0 ⊗ f ∈ (R′0 ⊗R0 R

′)t = R′0 ⊗ Rt is filter-regular with respect
to the finitely generated graded module R′0 ⊗R0 M over the Noetherian
homogeneous ring R′0 ⊗R0 R.

f) (Base Ring Independence of Filter-Regular Elements) If b ⊆ R is a graded
ideal such that bM = 0, then f is filter-regular with respect to the R-
module M if and only if f + b ∈ R/b is filter regular with respect to the
R/b-module M .

5.2. Exercise and Definition. A) (Filter-Regular Sequences) Let R and M
be as above. Let f1, f2, . . . , fr ∈ Rh

+. Show that the following statements are
equivalent:

(i) fi is filter-regular with respect to M/
∑

j<i fjM for all i ∈ {1, 2, . . . , r}.
(ii) f1

1
, f2

1
, . . . , fr

1
∈ Rp form an Mp-sequence for all p ∈ Proj(R).

If these equivalent conditions hold, we say that f1, f2, . . . , fr form a filter-
regular sequence with respect to M .

B) (Properties of Filter-Regular Sequences) Keep the notations and hypotheses
of part A) and let f1, f2, . . . , fr ∈ Rh

+. Prove the following statements:

a) If f1, f2, . . . , fr form an M -sequence, then they form a filter-regular se-
quence with respect to M .

b) If N ⊆ ΓR+(M) is a graded submodule, then f1, f2, . . . , fr form a filter-
regular sequence with respect to M/N if and only if they do with respect
to M .

c) If f1, f2, . . . , fr form a filter-regular sequence with respect to M , then
fn1

1 , fn2
2 , . . . , fnr form a filter-regular sequence with respect to M for any

choice n1, n2, . . . , nr ∈ N.

d) (Flat base Change Property of Filter-Regular Sequences) If f1, f2, . . . , fr
form a filter-regular sequence with respect to M and if R′0 is a flat R0-
algebra, then 1R′0 ⊗ f1, 1R′0 ⊗ f2, . . . , 1R′0 ⊗ fr ∈ (R′0 ⊗R0 R)h+ form a filter-
regular sequence with respect to R′0 ⊗r0 M .

e) (Base Ring Independence of Filter-Regular Sequences) If b ⊆ R is a graded
ideal such that bM = 0, then f1, f2, . . . , fr form a filter-regular sequence
with respect to M if and only if f1 + b, f2 + b, . . . , fr + b ∈ R/b do.

5.3. Lemma. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring, let M

be a finitely generated graded R-module, let r ∈ N, let t1, t2, . . . , tr ∈ N and
let fi ∈ Rti for all i ∈ {1, 2, . . . , r} such that f1, f2, . . . , fr form a filter-regular
sequence with respect to M . Then, for all k ∈ N0 and all i ∈ {0, 1, . . . , r} we
have

a) end(Hk
R+

(M/
∑i

j=1 fjM)) ≤ maxij=0{end(Hk+j
R+

(M)) + j} − i+
∑i

j=1 tj.
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b) end(Hk+i
R+

(M)) +
∑1

j=1 tj ≤ end(Hk
R+

(M/
∑i

j=1 fjM)).

c) regk(M/
∑i

j=1 fjM) ≤ regk(M)− i+
∑i

j=1 tj.

d) regk+i(M) ≤ regk(M/
∑i

j=1 fjM) + i−
∑i

j=1 tj.

Proof. It suffices to show statements a) and b). For i = 0, both statements are
clear. So, let i > 0 and let l ∈ N0. As f1 is filter-regular with respect to M we
have (0 :M f1) ⊆ ΓR+(M) and hence get an epimorphism of graded R-modules

H l
R+

(M)→ H l
R+

(M/(0 :M f1))→ 0

and an isomorphism of graded R-modules

H l+1
R+

(M) ∼= H l+1
R+

(M/(0 :M f1)).

If we apply cohomology to the short exact sequence of graded R-modules

0→ (M/(0 :M f1))(−t1)→M →M/f1M → 0

we therefore obtain

end(H l
R+

(M/f1M)) ≤ max{end(H l
R+

(M)), end(H l+1
R+

(M)) + t1}

hence

(i) end(H l
R+

(M/f1M)) ≤ max{end(H l
R+

(M)), endH l+1
R+

(M)) + 1}+ t1 − 1,

and moreover

(ii) end(H l+1
R+

(M)) + t1 ≤ end(H l
R+

(M/f1M)).

Applying the estimate (i) with M/
∑i−1

j=1 fjM instead of M and with fi instead
of f1, we thus get

end(H l
R+

(M/
i∑

j=1

fjM)) ≤

≤ max{end(H l
R+

(M/

i−1∑
j=1

fjM)), end(H l+1
R+

(M/

i−1∑
j=1

fjM)) + 1}+ ti − 1.

By induction on i applied to statement a), we get

end(Hk
R+

(M/
i−1∑
j=1

fjM)) ≤ maxi−1
j=0{end(Hk+j

R+
(M)) + j} − i+ 1 +

i−1∑
j=1

tj,

with k = l, l + 1. Combining this with the previous estimate, we get

end(H l
R+

(M/
i∑

j=1

fjM)) ≤ i−1
max
j=0
{end(H l+j

R+
(M)) + j} − i+

i∑
j=1

tj.
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This proves statement a). By induction on i applied to statement b) with
M/f1M instead of M , we have

end(Hk+i−1
R+

(M/f1M)) +
i∑

j=2

tj ≤ end(Hk
R+

(M/
i∑

j=1

fjM)).

If we apply the estimate (ii) with l = k + i− 1, we now get statement b). �

5.4. Exercise and Definition. A) (Saturated Filter-Regular Sequences) Let
the notations and hypotheses be as in (5.2). Let f1, f2, . . . , fr be a filter-
regular sequence with respect to M . Show that the following statements are
equivalent:

(i) M/
∑

i≤r fiM is R+-torsion.

(ii) R+ ⊆
√

(0 :R M) + 〈f1, f2, . . . , fr〉.

If these equivalent conditions hold, f1, f2, . . . , fr is called a saturated filter-
regular sequence with respect to M .

B) (Properties of Saturated Filter-Regular Sequences) Keep all notations and
hypotheses of part A). Show the following statements:

a) Let N ⊆ ΓR+(M) be a graded submodule. Then f1, f2, . . . , fr form a
saturated filter-regular sequence with respect to M/N if and only if they
do with respect to M .

b) (Base Ring Independence of Saturated Filter-Regular Sequences) Let b ⊆ R
be a graded ideal such that bM = 0. Then f1, f2, . . . , fr form a saturated
filter regular sequence with respect to M if and only if f1+b, f2+b, . . . , fr+
b ∈ R/b do.

c) If f1, f2, . . . , fr form a saturated filter-regular sequence with respect to M ,
then H i

R+
(M) = H i

〈f1,f2,...,fr〉(M) for all i ∈ N0 and r ≥ cdR+(M).

5.5. Lemma. Let K be a field, let R = K ⊕ R1 ⊕ R2... be a Noetherian ho-
mogeneous K-algebra and let M be a finitely generated graded R-module. Let
f1, f2, . . . , fr be a filter-regular sequence with respect to M . Then

a) If M 6= 0, then dimR(M/
∑

i≤s fiM) = max{0, dimR(M)− s},∀s ≤ r.

b) The filter-regular sequence f1, f2, . . . , fr is saturated if and only if r ≥
dimR(M).

Proof. ”a)“: We first treat the cases with s ≤ d := dimR(M). We do this
by induction on s. The case s = 0 is obvious. So let s > 0. Set M̄ :=
M/

∑
i≤s−1 fiM . By induction we have dimR(M̄) = d−s+1 > 0. In particular

all minimal members of (the non-empty set) AssR(M̄) belong to Proj(R). As
fs is filter-regular with respect to M̄ it avoids all these minimal members so
that dimR(M̄/fsM̄) = dimR(M̄)− 1 = d− s. As M/

∑
i≤s fiM

∼= M̄/fsM̄ we
get our claim. Now, let s > d. Then clearly, by what we have already shown
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dimR(M/
∑

i≤s fiM) ≤ dimR(M/
∑

i≤d fiM) ≤ 0. As M 6= 0 and fi ∈ R+ for
all i ∈ {1, 2, . . . , r} it follows from the Graded Nakayama Lemma (2.1)C)a)
that M/

∑
i≤s fiMi 6= 0 so that dimR(M/

∑
i≤s fiM) = 0.

”b)“: This follows immediately by statement a), as the module M/
∑

i≤r fiM
is R+-torsion if and only if it has dimension ≤ 0. �

We now prove a basic existence result for filter-regular sequences.

5.6. Proposition. Let r ∈ N0, let K be an infinite field, let R = K⊕R1⊕R2 . . .
be a Noetherian homogeneous K algebra, let M be a finitely generated graded
R-module and let a ⊆ R+ be a graded ideal with

R+ ⊆
√
a + (0 :R M).

Let t1, t2, . . . , tr ∈ Z≥gendeg(a) and let P ⊆ Spec(R) \ Var(a) be a finite set.
Then, there are elements

fi ∈ ati \
⋃
p∈P

p (i = 1, 2, . . . , r)

such that f1, f2, . . . , fr form a filter-regular sequence with respect to M . More-
over this filter-regular sequence is saturated if and only if r ≥ dimR(M).

Proof. By (5.5)b) it suffices to prove the existence of the requested filter-regular
sequence. We do this by induction on r. For r = 0, there is nothing to show.
So, let r > 0. Let

{p1, p2, . . . , ps} := (AssR(M) ∩ Proj(R)) ∪ P , (s ∈ N0).

We first aim to show that

a * pj, ∀j ∈ {1, 2, . . . , s}.
So, let j ∈ {1, 2, ..., s}. If pj ∈ AssR(M)∩Proj(R) we have (0 :R M) ⊆ pj and

pj  R+ ⊆
√
a + (0 :R M) which implies that a * pj. If pj ∈ P this latter

inclusion is clear by our hypothesis.

But now we get a≥t1 * pj for all j ∈ {1, 2, . . . , s}. As t1 ≥ gendeg(a) we
also have a≥t1 = 〈at1〉 and hence at1 * pj for all j ∈ {1, 2, . . . , s}. Therefore
at1 ∩ pj  at1 for all j ∈ {1, 2, . . . , s}. As K is infinite, we thus find some
element

f1 ∈ at1 \
⋃

j∈{1,2,...,s}

at1 ∩ pj = at1 \
⋃

p∈(AssR(M)∩Proj(R))∪P

p.

So,

f1 ∈ at1 \
⋃
p∈P

p

is filter-regular with respect to M . Observe that (0 :R M) ⊆ (0 :R M/f1M),
so that

R+ ⊆
√
a + (0 :R M/f1M).
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Therefore, by induction we find elements

fi ∈ ati \
⋃
p∈P

p (i = 2, 3, . . . , r)

such that f2, f3, . . . , fr form a filter-regular sequence with respect to M/f1M .
Therefore f1, f2, . . . , fr form a filter-regular sequence with respect to M . �

We now focus on (saturated) filter-regular sequences which consist of homoge-
neous elements of degree 1.

5.7. Proposition. Let r ∈ N, let m ∈ Z, let R =
⊕

n∈N0
Rn be a Noetherian

homogeneous ring, let f1, f2, . . . , fr ∈ R1 and let M be a finitely generated
graded R-module. Then the following statements are equivalent:

(i) reg(M) < m and f1, f2, . . . , fr is a saturated filter-regular sequence with
respect to M .

(ii) end(0 :(M/
∑
j<k fjM) fk) < m,∀k ≤ r and end(M/

∑
j≤r fjM) < m.

Proof. Assume first, that condition (i) holds. And let i ∈ {1, 2, . . . , r}. Then,
by (5.3)c) we have

end(H0
R+

(M/
∑
j≤i

fjM)) ≤ reg(M/
∑
j≤i

fjM) ≤ reg(M) < m.

Now, let k ∈ {1, 2, . . . , r}. As fk is filter-regular with respect to M/
∑

j<k fjM
and on application of the previous estimate with i = k − 1 we thus get

end(0 :(M/
∑
j<k fjM) fj) ≤ end(H0

R+
(M/

∑
j<i

Mfj)) < m.

As the filter-regular sequence f1, f2, . . . , fr is saturated and on use of the above
inequality with k = r we also get

end(M/
∑
j≤r

fjM) = end(H0
R+

(M/
∑
j≤r

fjM)) < m.

So, condition (ii) holds.

Assume now, that condition (ii) holds. Then

end(0 :(M/
∑
j<k fjM) fk) < m <∞, ∀k ∈ {1, 2, . . . , r}

shows that f1, f2, . . . , fr is a filter-regular sequence with respect to M . As
end(M/

∑
j≤r fjM) < m < ∞, the module M/

∑
j≤r fjM is R+-torsion, so

that the filter-regular sequence f1, f2, . . . , fr is saturated. In particular we
have H i

R+
(M) = 0 for all i > 0 (see (5.4)B)c)). By (5.3)b) (applied with

k = 0) we have

end(H i
R+

(M)) + i ≤ end(H0
R+

(M/
∑
j≤i

fjM)), ∀i ∈ {0, 1, . . . , r}.
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If we apply this this with i = r and bear in mind that M/
∑

j≤i fjM is R+-

torsion and has an end < m, we get end(Hr
R+

(M)) + r < m. Finally, let
k ∈ {1, 2, . . . , r}. As fk ∈ R1 is filter-regular with respect to M/

∑
j<k fjM we

have (see (5.1)B)d))

end(H0
R+

(M/
∑
j<k

fjM)) = end(0 :(M/
∑
j<k fjM) fk) < m.

If we apply the above estimate with i = k − 1 we thus get end(Hk−1
R+

(M)) +

(k − 1) < m. Altogether we thus have reg(M) < m. Therefore condition (i)
holds. �

Later, we shall have to consider the situation where M is a graded submodule
of a given graded module V . The following consequence of (5.7) will help to
pave the way to this.

5.8. Corollary. Let r ∈ N, let m ∈ Z, let R =
⊕

n∈N0
Rn be a Noetherian

homogeneous ring, let V be a finitely generated graded R-module with reg(V ) <
m and let f1, f2, . . . , fr ∈ R1. Then the following statements are equivalent:

(i) reg(M) ≤ m and f1, f2, . . . , fr is a saturated filter-regular sequence with
respect to V/M .

(ii) ((M +
∑

j<i fjV ) :V fi)≥m = (M +
∑

j<i fjV )≥m, ∀i ∈ {1, 2, . . . , r} and

(M +
∑

j≤r fjV )≥m = V≥m.

Proof. Observe that by (3.3)C)a),d) we have

reg(M) ≤ max{reg(V ), reg(V/M)+1}, reg(V/M) ≤ max{reg(M)−1, reg(V )},
so that reg(V/M) < m if and only if reg(M) ≤ m. Therefore, condition (i)
is equivalent to the fact that V/M satisfies condition (i) of (5.7). Moreover
condition (i) is obviously equivalent to the fact that V/M satisfies condition
(ii) of (5.7). Now, we may conclude by (5.7). �

Upper bounds on the generating degree of an intersection of two graded sub-
modules of a given graded module are a basic issue in computational algebraic
geometry. Here comes a corresponding bounding result, which will be used as
an important tool for our investigation of filter-regular sequences.

5.9. Proposition. Let m ∈ Z, let R =
⊕

n∈N0
Rn be a Noetherian homoge-

neous ring, let V be a finitely generated graded R-module and let M,N ⊆ V
be two graded submodules such that

gendeg(M), gendeg(N) ≤ m, reg(M +N) < m.

Then gendeg(M ∩N) ≤ m.

Proof. We find a polynomial ring S := R0[X1, X2, . . . , Xr] and a graded ideal
a ⊆ S such that R = S/a. If we consider V,M,N,M + N and M ∩ N as
graded S-modules their regularities and generating degrees remain the same
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(see (3.3)A)e) and (3,3)B)i)). This allows to replace R by S and hence to
assume that R = R0[X1, X2, . . . , Xr] is a polynomial ring. As M and N are
generated in degrees ≤ m, there are epimorphisms of graded R-modules

F
π−→M → 0, G

ρ−→ N → 0

in which

F =
r⊕
i=1

R(−ai), a1 ≤ a2‘ . . . ≤ ar = gendeg(M),

G =
s⊕
i=1

R(−ar+i), ar+1 ≤ ar+2 ≤ . . . ≤ ar+s = gendeg(N)

are graded free R-modules of finite rank with

gendeg(F ), gendeg(G) ≤ m.

So

F ⊕G =
r+s⊕
j=1

R(−aj), aj ≤ m,∀j ∈ {1, 2, . . . , r + s}

is a graded free R-module of finite rank with gendeg(M⊕N) ≤ m. As reg(R) =
0 (see (3.5)), we thus have reg(F ⊕ G) ≤ m (see (4.6)A)d)). So, the exact
sequence of graded R-modules

0→ Ker(π + ρ)→ F ⊕G π+ρ−−→ (M +N)→ 0

yields that reg(Ker(π + ρ)) ≤ m (see (3.3)C)a)). Therefore gendeg(Ker(π +
ρ)) ≤ m, (see (3.4)). Now, the commutative diagram

F ⊕G
IdF⊕G //

π⊕ρ
��

F ⊕G
π+ρ
��

M ⊕N σ:=IdM+IdN // M +N

shows that

(π ⊕ ρ)(Ker(π + ρ)) = Ker(σ).

Therefore

gendeg(Ker(σ)) = gendeg((π ⊕ ρ)(Ker(π + ρ))) ≤ gendeg(Ker(π + ρ)) ≤ m.

In view of the isomorphism of graded R-modules

Ker(σ)
∼=−→M ∩N, (m,n) 7→ m

we finally get that gendeg(M ∩N) ≤ m, as requested. �

We now are ready to prove the crucial result of this section, which shall imme-
diately lead to the announced generalized version of the Regularity Criterion
of Bayer-Stillman. As a last preparative step, we prove the following auxiliary
result.
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5.10. Lemma. Let m ∈ Z, let R =
⊕

n∈N0
Rn be a Noetherian homogeneous

ring, let V be a finitely generated graded R-module, let M ⊆ V be a graded
submodule and let f ∈ R1 be a filter-regular element with respect to V . Assume
that

gendeg(M), reg(V ), reg(M + fV ) ≤ m.

Then gendeg(M :V f) ≤ m.

Proof. As (see (3.3) A)a),b), (3.4))

gendeg(fV ) ≤ gendeg(V ) + 1 ≤ reg(V ) + 1 ≤ m+ 1

our previous proposition (5.9) implies that gendeg(M∩fV ) ≤ m+1 and hence
gendeg(M(1)) ≤ m (see (3.3)A)a)). As

M ∩ fV = f(M :V f)

we have an exact sequence of graded R-modules

0→ (0 :V f)→ (M :V f)→ (M ∩ fV )(1)→ 0.

As f ∈ R1 is filter-regular with respect to V we also have (see (5.1)A)):

gendeg(0 :V f) ≤ end(0 :V f) ≤ end(H0
R+

(V )) ≤ reg(V ) ≤ m.

So, in view of the above exact sequence we obtain (see (3.3)A)b)

gendeg(M :V f) ≤ m.

�

Now, we are ready to formulate and to prove the announced main results.

5.11. Theorem. Let r ∈ N, let m ∈ Z, let R =
⊕

n∈N0
Rn be a Noetherian

homogeneous ring, let V be a finitely generated graded R-module, let M ⊆ V
be a graded submodule and let f1, f2, . . . , fr ∈ R1 be filter-regular elements with
respect to V . Assume that reg(V ) < m and gendeg(M) ≤ m. Then, the
following statements are equivalent:

(i) reg(M) ≤ m and f1, f2, . . . , fr is a saturated filter-regular sequence with
respect to V/M .

(ii) ((M +
∑

j<i fjV ) :V fi)m = (M +
∑

j<i fjV )m, ∀i ∈ {1, 2, . . . , r} and

(M +
∑

j≤r fjV )m = Vm.

Proof. By (5.8) statement (i) implies statement (ii). We prove the reverse
implication by induction on r. First, let r = 1 and assume that statement
(ii) holds. Then (M + f1V )m = Vm. As gendeg(V ) ≤ reg(V ) ≤ m (see (3.4))
and R is homogeneous, it follows (M +f1V )≥m = V≥m and hence end(V/(M +
f1V )) < m <∞. In particular the module V/(M+f1V ) is R+-torsion, so that
reg(V/(M + f1V )) = end(V/(M + f1V )) < m. Hence, in view of (3.3)C)a) the
short exact sequence of graded R-modules

0→ (M + f1V )→ V → V/(M + f1V )→ 0
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implies that reg(M + f1V ) ≤ m. Now, by (5.10) it follows that

gendeg(M :V f1) ≤ m.

By our assumption we have (M :V f1)m = Mm. As R is homogeneous it thus
follows (M :V f1)≥m = M≥m. But this means that in our situation statement
(ii) of (5.8) holds for r = 1. So, by (5.8) we see that reg(M) ≤ m and that
f1 constitutes a saturated filter-regular sequence with respect to V/M . This
proves the requested implication if r = 1.

So, let r > 1 and assume that statement (ii) holds. As gendeg(f1V ) ≤
gendeg(V ) + 1 ≤ reg(V ) + 1 ≤ m, we have gendeg(M + f1V ) ≤ m. Ap-
plying induction to the graded submodule M + f1V ⊆ V and the sequence
f2, f3, . . . , fr ∈ R1 of elements which all are filter-regular with respect to V ,
we obtain that reg(M + f1V ) ≤ m and that f2, f3, . . . , fr is a saturated filter-
regular sequence with respect to V/(M + f1V ). Hence, by (5.8) we have

((M +
∑
j<i

fjV ) :V fi)≥m = (M +
∑
j<i

fjV )≥m, ∀i ∈ {2, 3, . . . , r}

and in addition
(M +

∑
j≤r

fjV )≥m = V≥m.

By (5.10) we also have gendeg(M :V f1) ≤ m. As R is homogeneous, as
(M :V f1)m = Mm and as gendeg(M) ≤ m, this implies that

(M :V f1)≥m = M≥m.

Now, by another use of (5.8) we get statement (ii). �

Finally we can prove the announced extension of the Regularity Criterion of
Bayer-Stillman.

5.12. Theorem. Let m ∈ Z, let K be an infinite field, let R = K⊕R1⊕R2 . . .
be a Noetherian homogeneous K-algebra, let V be a finitely generated graded
R-module and let M ⊆ V be a graded submodule. Assume that reg(V ) < m
and gendeg(M) ≤ m. Then, the following statements are equivalent:

(i) reg(M) ≤ m.

(ii) There is an integer r ∈ N0 and there are elements f1, f2, . . . , fr ∈ R1

which are filter-regular with respect to V and such that

((M +
∑
j<i

fjV ) :V fi)m = (M +
∑
j<i

fjV )m, ∀i ∈ {1, 2, . . . , r}

and
(M +

∑
j≤r

fjV )m = Vm.

Moreover, a sequence f1, f2, . . . , fr ∈ R1 which satisfies the conditions men-
tioned in statement (ii) is a saturated filter-regular sequence with respect to
V/M .
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Proof. Assume first, that statement (i) holds. If dimR(V/M) ≤ 0 the module
V/M is R+-torsion and so, by (3.3)C)d)

end(V/M) = reg(V/M) ≤ max{reg(M)− 1, reg(V )} < m.

So we get statement (ii) with r = 0.

Now, let r := dimR(V/M) > 0 and set P := AssR(V ) ∩ Proj(R). Then, by
(5.6) (applied with a = R+ and t1 = t2 = · · · = tr = 1 to the module V/M)
we find elements

f1, f2, . . . , fr ∈ R1 \
⋃
p∈P

p

which constitute a saturated filter-regular sequence with respect to V/M . By
(5.11) these elements satisfy the requirements of statement (ii).

Assume now, that statement (ii) holds. If r = 0 we see that V/M is R+-torsion
with reg(V/M) = end(V/M) < m, so that by (3.3)C)a) we get

reg(M) ≤ max{reg(V ), reg(V/M) + 1} ≤ m

and hence statement (ii). If r > 0 statement (i) follows immediately by (5.11).

The remaining statement of our theorem is also immediate by (5.11) if r > 0
and clear by what we were saying above in the case r = 0. �

5.13. Remark. (Around the Regularity Criterion of Bayer-Stillman) A) Let
m ∈ N, let R = K[X1, X2, . . . , Xs] be a polynomial ring over the infinite field
K and let a  R be a graded ideal with gendeg(a) ≤ m. As reg(R) = 0
(see (3.5)) we may apply (5.12) with V = R and M = a and thus get, that
reg(a) ≤ m if and only if there are linear forms f1, f2, . . . , fr ∈ R \ {0}| such
that

((a + 〈f1, f2, . . . , fi−1〉) :R fi)m = (a + 〈f1, f2 . . . , fi−1〉)m, ∀i ∈ {1, 2, . . . , r}
and

(a + 〈f1, f2, . . . , fr〉)m = Rm.

Moreover we know that the linear forms f1, f2, . . . , fr satisfy the above require-
ments if and only if they constitute a filter-regular sequence with respect to
R/a. In addition by (5.6) we always can choose r = dim(R/a). This is essen-
tially what has by been shown by Bayer and Stillmann [B-St]. In fact their
statement says that for a ”generic family“ of r = dim(R/a) elements the above
requirements hold. The genericity condition means that there is a non-empty
(Zariski-) open subset U ⊆ (R1)r = Krs such that for all (fi)i∈{1,2,...,r} ∈ U the
above requirements hold. Indeed, a generic family of r linear forms is always
a filter-regular sequence with respect to R/a. We leave the proof of this to
those readers who have already some background in Algebraic Geometry. Our
result gives more information, as it precisely characterizes the sequences which
satisfy the above requirements.

B) In [Br-L2] we did prove that the Regularity Criterion of Bayer-Stillman
holds for graded submodules of free modules over a polynomial ring over a
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field, as we needed the criterion in this more general form. In [Br5] we did
establish the criterion in question in greater generality as given in (5.11). We
namely did show that this criterion holds over any Noetherian homogeneous
ring R =

⊕
n∈N0

Rn whose base ring R0 has infinite residue fields, which means
that the ring R0/p0 is infinite for all p0 ∈ Spec(R0).

C) Finally, let us point out the significance of the Regularity Criterion of
Bayer-Stillman. Observe that this criterion tells that the requirements given
in statement (5.12)(ii) are satisfied for all degrees m ≥ m0 if they hold for
m = m0. So, this criterion includes a persistence result for the requirements in
question. There is in fact a classical idea hidden behind this criterion: Already
in [Herm] one finds similar criteria to bound the saturation degree (see (4.9))

satdeg(a) := sup{n ∈ Z | (asat)n = an} = end(H0
R+

(R/a))

of a graded ideal a ⊆ R = K[X1, X2, . . . , Xr] in a polynomial ring over a field
K.

We now aim to investigate the relation between multiplicities and filter-regular
sequences. We start with a number of preliminaries, which will lead us im-
mediately to the corresponding main result, which claims that non-saturated
filter-regular sequences with respect to graded modules over Noetherian ho-
mogeneous K-algebras are systems of multiplicity parameters.

5.14. Exercise and Definition. A) (Homogeneous Parameters) Let K be a
field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous K-algebra and
let M be finitely generated graded R-module. We set

Ass
(0)
R (M) := {p ∈ AssR(M) | dim(R/p) = dimR(M)}.

Now, let t ∈ N, assume that dim(M) > 0 and show that for all elements
f ∈ Rt the following statements are equivalent:

(i) dim(M/fM) < dim(M).

(ii) dim(M/fM) = dim(M)− 1.

(iii) f /∈
⋃

p∈Ass
(0)
R (M)

p.

If these equivalent conditions hold, the element f ∈ Rt is called a homogeneous
parameter (of degree t) with respect to M.

B) (Multiplicity Parameters) Keep the notations and hypotheses of part A),
assume that dimR(M) > 0 and let ft ∈ Rt be a homogeneous parameter of
degree t ∈ N with respect to M . Prove the following claims

a) deg(PM/fM) = deg(PM)− 1.

b) PM(n)− PM(n− t) ≤ PM/fM(n) for all n� 0.

c) If dim(M) > 1, then e0(M/fM) ≥ te0(M).
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If dim(M) > 1 and e0(M/fM) = te0(M), we call f a multiplicity parameter
(of degree t) with respect to M .

C) (Filter-Regular Elements as Multiplicity Parameters) Keep the notations of
part A) and assume that dimR(M) > 0. Prove the following statements:

a) If f ∈ Rt is filter-regular with respect to M , then it is a homogeneous
parameter with respect to M and

PM/fM(X) = PM(X)− PM(X − t).

b) If dimR(M) > 1 and f ∈ Rt is filter regular with respect to M , then f is a
multiplicity parameter with respect to M .

5.15. Exercise and Definition. A) (Homogeneous Systems of Parameters)
As in (5.14), let K be a field and let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module, let
r ∈ N with r ≤ dimR(M), let t1, t2, . . . , tr ∈ N and let fi ∈ Rti for all
i ∈ {1, 2, . . . , r}. Prove that the following statements are equivalent;

(i) fi is a homogeneous parameter with respect to M/
∑

j<i fjM for all i ∈
{1, 2, . . . , r}.

(ii) dimR(M/
∑

i≤s fiM) = dimR(M)− s for all s ∈ {0, 1, . . . , r}.
(iii) dimR(M/

∑
i≤r fiM) = dimR(M)− r.

(iv) dimR(M/
∑

i≤r fiM) ≥ dimR(M)− r.

If the equivalent conditions (i)-(iv) are satisfied, the sequence f1, f2, . . . , fr is
called a homogeneous system of parameters with respect to M .

B) (Properties of Homogeneous Systems of Parameters) Let the notations and
hypotheses be as in part A). Prove the following statements:

a) If f1, f2, . . . , fr is a homogeneous system of parameters with respect to M ,
then so is f1, f2, . . . , fs for all s ∈ {1, 2, . . . , r}.

b) If f1, f2, . . . , fr is a homogeneous system of parameters with respect to M ,
then so is fσ(1), fσ(2), . . . , fσ(r) for each permutation σ of {1, 2, . . . , r}.

c) If r < dimR(M), then e0(M/
∑

i≤r fiM) ≥ t1t2 . . . tre0(M).

C) (Systems of Multiplicity Parameters) Keep the above notations and hy-
potheses. Assume in addition that r < dimR(M) and that f1, f2 . . . , fr is a
homogeneous system of parameters with respect to M . Show that the following
statements are equivalent:

(i) e0(M/
∑

i≤r fiM) ≤ t1t2 . . . tre0(M).

(ii) e0(M/
∑

i≤s fiM) = t1t2 . . . tse0(M) for all s ∈ {1, 2, . . . , r}.
(iii) fi is a multiplicity parameter with respect to M/

∑
j<i fjM for all i ∈

{1, 2, . . . , r}.



73

It these three equivalent conditions are satisfied, the sequence f1, f2, . . . , fr is
called a system of multiplicity parameters with respect to M .

D) (Properties of Systems of Multiplicity Parameters) Keep all notations and
hypotheses of part C) and prove the following:

a) If f1, f2, . . . , fr is a system of multiplicity parameters with respect to M ,
then so is f1, f2, . . . , fs for all s ∈ {1, 2, . . . , r}.

b) If f1, f2, . . . , fr is a system of multiplicity parameters with respect to M ,
then so is fσ(1), fσ(2), . . . , fσ(r) for each permutation σ of the set {1, 2, . . . , r}.

5.16. Theorem. Let r ∈ N, let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be
a Noetherian homogeneous K-algebra, let M be a finitely generated graded R-
module such that dimR(M) > r and let f1, f2, . . . , fr be a filter-regular sequence
with respect to M . Then f1, f2, . . . , fr is a system of multiplicity parameters
with respect to M .

Proof. This follows easily from (5.14)C)a) on use of the equivalences shown in
(5.15)A),C). �

5.17. Example and Exercise. Let K be a field, let X, Y, Z,W be indetermi-
nates and consider the Noetherian homogeneous K-algebra

R := K[X, Y, Z,W ]/〈X〉 ∩ 〈X2, Y, Z〉 = K[X, Y, Z,W ]/X〈X, Y, Z〉,

consider the graded primes

p := XR, q := 〈X, Y, Z〉R, s := 〈X,W 〉R ∈ Proj(R)

and the two elements

f1 := W1R, f2 := Z1R ∈ R1.

Show that

a) AssR(R) = {p, q} and dim(R) = 3.

b) AssR(R/f1R) = {s, R+}.
c) f1, f2 is a filter-regular sequence with respect to R.

d) f2, f1 is not a filter-regular sequence with respect to R.

e) f1, f2 and f2, f1 are systems of multiplicity parameters with respect to R.

f) e0(R) = e0(R/〈f1, f2〉) = 1.

This example teaches us, that filter-regular sequences are not permutable (see
statements c) and d)). It thus shows the most important difference between
filter regular sequences and systems of multiplicity parameters: the latter are
always permutable, whereas the former need not be. In particular, we see by
this example, that there are systems of multiplicity parameters which are not
filter-regular sequences.
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We have already observed in (5.2)B)a) that M -sequences with respect to a
finitely generated graded module over a Noetherian homogeneous ring are
filter-regular sequences. We now want to prove a partial converse of this.
We begin with the following preparation.

5.18. Reminder. (Grade with Respect to the Irrelevant Ideal) (See [Br-Fu-Ro]
(4.5),(4.6)) Let R =

⊕
n∈N0

Rn be a Noetherian homogeneous ring and let M
be a finitely generated graded R-module. Then the grade of R+ with respect
to M is defined as the supremun of lengths of all M -sequences which consist
of elements of R+ and is denoted by gradeM(R+). Keep in mind that

gradeM(R+) = inf{i ∈ N0 | H i
R+

(M) 6= 0}.

Using this notation we now can say:

5.19. Proposition. Let r ∈ N0, let R =
⊕

n∈N0
Rn be a Noetherian homoge-

neous ring, let M be a finitely generated graded R- module and let f1, f2, . . . , fr ∈
Rh

+ form a filter regular sequence with respect to M . Then, the following state-
ments are equivalent:

(i) r ≤ gradeM(R+).

(ii) f1, f2, . . . , fr is an M-sequence.

Proof. Assume that condition (i) is satisfied. Suppose first, that gradeM(R+) =
∞. Then R+M = M (see [Br-Fu-Ro] (4.7)). By the Graded Nakayama Lemma
(2.1)C)a) it thus follows M = 0, and so f1, f2, . . . , fr is an M -sequence.

Assume now that g := gradeM(R+) < ∞. We prove by induction on r that
f1, f2, . . . , fr is an M -sequence. If r = 0, there is nothing to show. So, let
r > 0. Then we have g > 0 and hence NZDR(M) ∩ R+ 6= ∅. Therefore
AssR(M) ∩ Var(R+) = ∅ and hence AssR(M) ⊆ Proj(R). As f1 is filter-
regular with respect to M it thus avoids all members of AssR(M) and therefore
we get f1 ∈ NZDR(M). Now, we have r − 1 ≤ g − 1 = gradeM/f1M(R+)
and f2, f3, . . . , fr is a filter-regular sequence with respect to M/f1M . So, by
induction f2, f3, . . . , fr is an M/f1M -sequence. It follows that f1, f2, . . . , fr is
an M -sequence.

The reverse implication is immediate by the definition of grade. �

We now come to the last result of this section, which may be seen as a com-
plement of (5.16).

5.20. Proposition. Let K be a field, let R = K ⊕R1⊕R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module with
r := dimR(M) = gradeM(R+) > 0, let t1, t2, . . . , tr ∈ N and let

fi ∈ Rti , (i = 1, 2, . . . , r)



75

be such that f1, f2, . . . , fr is an M-sequence. Then

dimK(M/〈f1, f2, . . . , fr〉M) =
∏

i=1,2,...,r

tie0(M).

Proof. We first treat the case r = 1. Observe that for all n ∈ Z there is an
exact sequence of K-vector spaces

0→Mn−t1
f1−→Mn → (M/f1M)n → 0

with Mn = 0 for all n � 0 and all dimK(Mn) = e0(M) for all n � 0. So, for
all m ∈ Z we have∑
k∈Z

dimK((M/f1M)m+kt1) =
∑
k∈Z

dimK(Mm+kt1)− dimK(Mm+kt1−t1) = e0(M).

and hence
dimK(M/f1M) =

∑
n∈Z

dimK((M/f1M)n) =

=

t1∑
m=1

∑
k∈Z

dimK((M/f1M)m+kt1) = t1e0(M).

This proves the case r = 1.

Now, let r > 1 and set M ′ = M/〈f1, f2, . . . , fr−1〉M . By (5.2)B)a) and (5.16)
we know that f1, f2, . . . , fr−1 form a system of multiplicity parameters with
respect to M , so that

dimR(M ′) = 1, e0(M ′) =
∏
i<r

tie0(M).

Moreover, fr ∈ NZDR(M ′) and

M/〈f1, f2, . . . , fr〉M ∼= M ′/frM
′.

If we apply what we have shown in the case r = 1 to the module M ′ instead
of M and to the element fr instead of f1, our claim follows. �

Now, using the notion of Hilbert-Serre multiplicity as introduced in (4.3)A),
we can conclude.

5.21. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K algebra, let r ≤ gradeM(R+), let t1, t2, . . . , tr ∈ N and let

fi ∈ Rti , (i+ 1, 2, . . . , r)

be such that f1, f2, . . . , fr is a filter-regular sequence with respect to M . Then

mult(M/〈f1, f2 . . . , fr〉M) =
r∏
i=1

timult(M)

.

Proof. If r < dimR(M), we may conclude by (5.16). If r = dimR(M) we may
conclude by (5.18),(5.19) and (5.20). �



6. Regularity of Submodules and Generating Degrees

This section is motivated by a classical question, namely: to give a ”good“
bound on the regularity of a graded ideal a in a polynomial ring

R = K[X1, X2, . . . , Xr]

over a fieldK in terms of the generating degree gendeg(a) of this ideal. We shall
actually study a more general situation and bound the regularity of a graded
submodule M of a finitely generated graded module V over a Noetherian
homogeneous Cohen-Macaulay K-algebra R in terms of the generating degrees
of M and of the ideal (M :R V ) and some further numerical invariants of the
ring R and the ambient R-module V . Specializing our main result to the case
where M := a ⊆ K[X1, X2, . . . , Xr] =: R =: V we shall get that

reg(a) ≤ (2gendeg(a))2r−2

,

a bound which was established by Galligo and Giusti for fields K of charac-
teristic 0 (see [G], [Gi]) in 1979 and 1984 and by Caviglia-Sbarra [Cav-Sb] in
2005 for fields K of arbitrary characteristic.

We also shall derive a number of further bounding results, which apply in the
case case in which the base ring R is not necessarily a Cohen-Macaulay ring
or in which the Annihilator of V/M is not known. We also derive a bounding
result for the regularity of M in terms of the discrete data of a presentation of
M. This will give us the opportunity to comment once more on the Problem of
the Finitely Many Steps and hence to turn our view for a very short moment
back to the beginning of Algorithmic Algebraic Geometry.

We begin with an investigation on the ends and the lengths of R+-torsion
modules.

6.1. Proposition. Let t ∈ N, let K be a field, let R = K ⊕ R1 ⊕ R1 . . . be
a Noetherian homogeneous K-algebra and let M 6= 0 be a finitely generated
graded R+-torsion R-module. Let a ⊆ R be a graded ideal such that aM = 0,√
a = R+ and gendeg(a) ≤ t. Then

end(M) ≤ reg(R) + gendeg(M) + (t− 1)dim(R).

Proof. We set
r := dim(R), g := gendeg(M).

As M 6= 0 we have g ∈ Z.

Let K ′ be an infinite extension field of K, consider the Noetherian homo-
geneous K ′-algebra R′ := K ′ ⊗K R = K ′ ⊕ (K ′ ⊗K R1) ⊕ (K ′ ⊗K R2) . . .,
the finitely generated graded R′-module M ′ := K ′ ⊗K M =

⊕
n∈ZK

′ ⊗K Mn

and the graded ideal a′ := K ′ ⊗ a =
⊕

n∈NK
′ ⊗K an ⊆ R′. Then clearly

reg(R′) = reg(R) (see (3.3)B)h), dim(R′) = dim(R) = r (see (2.4)C)b)) and
end(M ′) = end(M) < ∞ (see (2.4)A)). In particular M ′ is R′+-torsion. Fi-

nally it is easy to see that a′M ′ = 0 and
√
a′ = R′+. By (3.3)A)d) we have
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gendeg(M ′) = gendeg(M) = g and gendeg(a′) = gendeg(a) ≤ t. So, we may
replace R, M and a respectively by R′, M ′ and a′ and hence assume that K
is infinite.

We find a short exact sequence of graded R-modules

0→ N
⊆−→ F →M → 0

in which

F =
k⊕
i=1

R(−ai), a1 ≤ a2 ≤ . . . ≤ ak = g

is a graded free R-module of finite rank k with gendeg(F ) = g. Now, clearly
dimR(F ) = r (see (4.6)A)c)) and reg(F ) = reg(R) + g (see (3.3)B)b) and
(4.6)A)d)). As aM = 0 we also have aF ⊆ N .

If we apply (5.6) to the graded R-module F , we find elements f1, f2, . . . , fr ∈ at
which form a saturated filter-regular sequence with respect to F . In particular

G := F/〈f1, f2, . . . fr〉F
is R+-torsion, and (5.3)c) applied to the R-module F with k = 0 and i = r
yields that

end(G) = reg(F/
∑
j≤r

fjF ) ≤ reg(F )− r + rt ≤ reg(R) + g + (t− 1)r.

As 〈f1, f2, . . . fr〉F ⊆ aF ⊆ N , we have an epimorphism of graded R-modules
G→M → 0, and therefore end(M) ≤ end(G) ≤ reg(R) + g + (t− 1)r. �

Before we prove our next result, we introduce a few notions.

6.2. Exercise and Definition. (Minimal Numbers of Homogeneous Genera-
tors) A) Let K be a field, let R = K⊕R1⊕R2 . . . be a Noetherian homogeneous
K-algebra and let M be a finitely generated graded R-module. We then con-
sider the number

µR(M) = µ(M) := dimK(M/R+M) (∈ N0).

It follows easily from the Graded Nakayama Lemma, that µ(M) is the number
of elements in all minimal homogeneous systems of generators of M . Therefore
we call this number the minimal number of homogeneous generators of M .

B) Keep the notations and hypotheses of part A). Show the following state-
ments:

a) (Base Field Change Property) Let K ′ be an extension field of K, and con-
sider the Noetherian homogeneousK-algebra R′ := K ′⊗KR and the finitely
generated graded R′-module M ′ := K ′ ⊗K M . Then µR′(M

′) = µR(M).

b) (Base Ring Independence) Let b ⊆ R be a graded ideal such that bM = 0.
Then µR/b(M) = µR(M).

c) For all n ∈ Z we have µ(M(n)) = µ(M).
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d) If (M (i))i∈{1,2,...,s} is a finite family of finitely generated graded R-modules,

then µ(
⊕

i∈{1,2,...,s}M
(i)) =

∑
i∈{1,2,...,s} µ(M (i)).

6.3. Exercise and Definition. A) (Graded Cohen-Macaulay Modules) Let K
be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous K-algebra,
and let M 6= 0 be a finitely generated graded R-module. Then we have

gradeM(R+) ≤ dimR(M),

(as one can easily see on use of (5.18) and Grothendieck’s Vanishing Theorem
[Br-Fu-Ro](4.11), for example). We say that M is a (graded) Cohen-Macaulay
module or a CM module for short, if equality holds in the above inequality.

B) (Properties of Graded CM-Modules). Let the hypotheses and notations be
as in part A). Prove the following claims:

a) If dimR(M) = 0, then M is CM.

b) If dimR(M) = 1, then M is CM if and only if ΓR+(M) = 0.

c) (Base Field Change Property) Let d ∈ N0, let K ′ be a field extension of K
and consider the Noetherian homogeneous K ′-algebra R′ := K ′ ⊗K R and
the finitely generated graded R′-module M ′ = R′ ⊗K M . Then M ′ is CM
of dimension d if and only if M is CM of dimension d.

d) (Base Ring Independence) If b ⊆ R is a graded ideal with bM = 0, then
M is CM as an R/b-module if and only if it is as an R-module.

e) Let n ∈ Z. Then M(n) is CM if and only if M is.

f) Let (M (i))i∈{1,2,...,s} be a finite family of finitely generated graded R-modules

M (i) which have all the same dimension. Then
⊕

i∈{1,2,...,s}M
(i) is CM if

and only if all the M (i) are.

g) Let d = dimR(M). Then the following statements are equivalent:

(i) There is an M -sequence f1, f2, . . . , fd consisting of elements fi ∈ R+

(ii) Each homogeneous system of parameters with respect to M is an M -
sequence.

(iii) Each Filter-regular sequence f1, f2, . . . , fs with s ∈ {1, 2, . . . , d} is an
M -sequence

C) (Homogeneous Cohen-Macaulay-Algebras) Let R be as in part A), we say
that R is a (homogeneous) CM-algebra (over K) if R is CM as an R-module.

Prove the following facts.

a) If dim(R) = 0, R is CM.

b) If dim(R) = 1, then R is CM if and only if ΓR+(R) = 0.

c) (Base Field Change Property) Let K ′ be an extension field of K and let
d ∈ N0. Then, the following statements are equivalent

(i) R is CM and of dimension d.
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(ii) The Noetherian homogeneous K ′-algebra R′ := K ′ ⊗K R is CM and
of dimension d.

c) If f1, f2, . . . , fs ∈ R+ is a homogeneous R-sequence then R is CM if and
only if R/〈f1, f2 . . . , fs〉 is.

d) IfR is CM of dimension d, then each graded freeR-module F =
⊕k

i+1 R(−ai)
of rank k > 0 is CM of dimension d.

e) If R = K[X1, X2, . . . , Xr] is a polynomial ring, it is CM.

We now give an estimate on the length, or –equivalently– the vector space
dimension, or – also equivalently– the Hilbert-Serre multiplicity (see (4.3)A))
of torsion modules over Noetherian homogeneous K-algebras.

6.4. Proposition. Let t ∈ N, let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a
Noetherian homogeneous K-algebra which is CM and let M 6= 0 be a finitely
generated graded R+-torsion R-module. Let a ⊆ R be a graded ideal such that
aM = 0,

√
a = R+ and gendeg(a) ≤ t. Then

mult(M) = dimK(M) ≤ mult(R)µR(M)tdim(R).

Proof. We set

e := mult(R), d := dim(R), k := µR(M).

Clearly e > 0. As M 6= 0, we have k > 0.

Now, let K ′ be an infinite extension field of K and consider the Noetherian
homogeneous K ′-algebra R′ = K ′ ⊗K R, the graded ideal a′ = K ′ ⊗K a ⊆ R′

and the finitely generated graded R-module M ′ = K ′ ⊗K M . Observe that
R′ is again CM of dimension d (see (6.3)C)c)) and mult(R′) = mult(R) = e
(see (4.3)C)b)). By (6.2)B)a) we have µR′(M

′) = µR(M) = k. Moreover, by
(4.3)C)b) it also follows that dimK′(M

′) = dimK(M). So, as in the proof of
(6.1) we may replace R, a and M respectively by R′, a′ and M ′ and hence
assume that K is infinite.

AsM is generated by k homogeneous elements, there is again an exact sequence
of graded R-modules

0→ N
⊆−→ F →M → 0, F =

k⊕
i=1

R(−ai)

in which F is a graded free R-module of rank k and aF ⊆ N . In particular
we have mult(F ) = mult(R)k = ek (see (4.6)A)e)). Moreover by (6.3)C)e) the
module F is CM of dimension d.

By (5.6), applied to the R-module F , we find elements f1, f2, . . . , fd ∈ at which
constitute a filter-regular sequence with respect to F . But now, by (6.3)B)g)
f1, f2, . . . , fd is an F -sequence. We set G := F/〈f1, f2, . . . , fd〉F . Then (5.21)
implies that dimK(G) = mult(F )td = ektd. As 〈f1, f2 . . . , fd〉F ⊆ aF ⊆ N
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we have an epimorphism of graded R-modules G → M → 0 and thus get
dimK(M) ≤ dimK(G) ≤ ektd. �

Now, we want to study the length of some particular torsion modules, the so
called filter kernels, which we will define now.

6.5. Definition. (Filter Kernels) Let R =
⊕

n∈N0
Rn be a Noetherian homo-

geneous ring, let M be a finitely generated graded R-module and let t ∈ N and
let f ∈ Rt e a filter-regular element with respect to M . The graded R+-torsion
submodule (0 :M f) is called the filter kernel of M with respect to f .

We also introduce another numerical invariant of graded modules.

6.6. Exercise and Definition. (Span of Graded Torsion-Modules) A) Let R =⊕
n∈N0

Rn be a Noetherian homogeneous ring and let M be finely generated
graded R-module. We define the span of M by

span(M) :=

{
0, M = 0

end(M)− beg(M) + 1,M 6= 0

B) Let the notations and hypotheses be as in part A), let t ∈ N, let f ∈ Rt

and let M in addition be R+-torsion. Show that

fnM = 0,∀n ≥ span(M)

t
.

6.7. Notation. [
a
]+

:= min{n ∈ Z | n ≥ a}, (a ∈ R).

6.8. Lemma. Let t ∈ N, let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a
Noetherian graded K-algebra, let M be a finitely generated R-module and let
f ∈ Rt be filter-regular with respect to M . Then

a) dimK(0 :M f) ≤ dimK(H0
R+

(M/fM)).

b) dimK(H0
R+

(M)) ≤
[ span(H0

R+
(M))

t

]+
dimK(H0

R+
(M/fM)).

Proof. ”a)“: As f is filter-regular with respect to M we have

(H0
R+

(M) :M f) = H0
R+

(M)

and hence fM ∩H0
R+(M) = f(H0

R+
(M) :M f) = fH0

R+
(M), so that

(H0
R+

(M) + fW )/fW ∼= H0
R+

(M)/fH0
R+

(M).

As (H0
R+

(M) + fM)/fM ⊆ H0
R+

(M/fM) we thus get a monomorphism of
graded R-modules

H0
R+

(M)/fH0
R+

(M)� H0(M/fM)
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and therefore

dimK(H0
R+

(M)/fH0
R+

(M)) ≤ dimK(H0
R+

(M/fM)).

Moreover, the exact sequence

0→ (0 :M f)→ H0
R+

(M)
f−→ (fH0

R+
(M))(t)→ 0

implies

dimK(0 :M f) = dimK(H0
R+

(M))− dimK(fH0
R+

(M))

= dimK(H0
R+

(M)/fH0
R+

(M)).

Together with the above inequality, this proves our claim.

”b)“: We set:

m :=
[span(H0

R+
(M))

t

]+
.

By (6.6)B) we then have fmH0
R+

(M) = 0. Therefore

dimK(H0
R+

(M)) =
m−1∑
n=0

dimK(fnH0
R+

(M)/fn+1H0
R+

(M)).

In view of the epimorphism of graded R-modules

H0
R+

(M)/fH0
R+

(M)
fn−→ (fnH0

R+
(M)/fn+1H0

R+
(M))(nt)→ 0

we have an epimorphism of K-vector spaces

H0
R+

(M)/fH0
R+

(M)→ (fnH0
R+

(M)/fn+1H0
R+

(M))→ 0,

so that

dimK(fnH0
R+

(M)/fn+1H0
R+

(M)) ≤ dimK(H0
R+

(M)/fH0
R+

(M)), ∀n ∈ N0

and hence

dimK(H0
R+

(M)) ≤ mdimK(H0
R+

(M)/fH0
R+

(M)).

In view of the inequality used in the proof of statement a), we now get our
claim. �

6.9. Lemma. Let r ∈ N, let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a
Noetherian homogeneous K-algebra, let M 6= 0 be a finitely generated graded
R-module with dimR(M) = r > 0 and let f1, f2, . . . , fr ∈ R1 be a filter-regular
sequence with respect to M . Set k := dimK(M/

∑r
j=1 fjM).

a) dimK(H0
R+

(M)) ≤ k
∏r−1

i=0 span(H0
R+

(M/
∑i

j=1 fjM)).

b) dimK(0 :M f1) ≤ k
∏r−1

i=1 span(H0
R+

(M/
∑i

j=1 fjM)).
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Proof. First of all observe that by (5.5) the R-module M/
∑r

j=1 fjM has di-
mension 0, so that k ∈ N.

”a)“: We proceed by induction on r. So, let r = 1. Then, M/f1M =
H0
R+

(Mf1M) and by (6.8)b) it follows

dimK(H0
R+

(M)) ≤
[span(H0

R+
(M))

1

]+
dimK(M/f1M) = kspan(H0

R+
(M)).

This is precisely our claim for r = 1.

Now, let r > 1. we set M̄ := M/f1M . Then dimR(M̄) = r − 1 and
f2, f3 . . . , fr ∈ R1 form a filter-regular sequence with respect to M̄ . More-
over, for each i ∈ {1, 2, . . . , r} there is an isomorphism of graded R-modules

M̄/
∑i

j=1 fjM̄
∼= M/

∑i
j=1 fjM . So, if we apply induction to the R-module

M̄ and the sequence f2, f3, . . . , fr ∈ R1 we get

dimK(H0
R+

(M̄)) ≤ k
r−1∏
i=1

span(H0
R+

(M/

i∑
j=1

fjM)).

By (6.8)b) we also have

dimK(H0
R+

(M)) ≤ span(H0
R+

(M))dimK(H0
R+

(M̄)).

Both inequalities together give our claim.

”b)“: First let r = 1. Then M/f1M is R+-torsion, and so (6.8)a) yields that
dimK(0 :M f1) ≤ dimK(M/f1M) = k and this is our claim. So, let r > 1. We
set again M̄ := M/f1M . Then (6.8)a) gives us

dimK(0 :M f1) ≤ dimK(H0
R+

(M̄)).

If we apply our statement a) to the (r − 1)-dimensional finitely generated
graded R-module M̄ and the sequence f2, f3, . . . , fr ∈ R1 and bear in mind
the isomorphisms of graded R-modules M̄/

∑i
j=2 fjM̄

∼= M/
∑i

j=1 fjM for all

i ∈ {1, 2, . . . , r} we obtain

dimK(H0
R+

(M̄)) ≤ k

r−1∏
i=1

span(H0
R+

(M/

i∑
j=1

fjM)).

Our claim follows. �

Now, we are ready to prove our main results on the lengths of filter kernels.

6.10. Proposition. Let K be a field, let R = K ⊕R1⊕R2 . . . be a Noetherian
homogeneous K algebra which is CM and of dimension d. Let M be a finitely
generated graded R-module of dimension r > 0, let f1, f2, . . . , fr ∈ R1 be a
filter-regular sequence with respect to R and to M , let b ⊆ (0 :R M) be graded

ideal such that
√
b =

√
(0 :R M) and let t ∈ N with gendeg(b) ≤ t. Then

dimK(0 :M f1) ≤ mult(R)µR(M)td−r
r−1∏
i=1

span(H0
R+

(M/

i∑
j=1

fjM)).
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Proof. Observe first, that as in the proof of (6.4) we have e := mult(R),m :=
µR(M) > 0. According to (5.19) the sequence f1, f2, . . . , fr ∈ R1 is an R-
sequence. So the Noetherian homogeneous K-algebra R̄ := R/〈f1, f2, . . . , fr〉
is CM of dimension d − r (see (6.3)C)c)). By (5.21) we also have mult(R̄) =
mult(R) = e. As the sequence f1, f2, . . . , fr is a saturated filter-regular se-
quence with respect to M , the module

M̄ := M/
r∑
j=1

fjM = M/〈f1, f2, . . . , fr〉M

is R+-torsion (see (5.5)). As (0 :R M), 〈f1, f2, . . . , fr〉 ⊆ R+ and
√
b =√

(0 :R M) we have (see (5.4)A))

R+ =
√

(0 :R M) + 〈f1, f2, . . . , fr〉 =
√

b + 〈f1, f2, . . . , fr〉.

If we set b̄ := bR̄ we thus get

b̄M̄ = 0,
√

b̄ = R̄+, gendeg(b̄) ≤ t.

If we apply (6.4) to the R̄-module M̄ and the ideal b we thus get

dimK(M/
r∑
j=1

fjM) = dimK(M̄) ≤ emtd−r.

Now, we may conclude by (6.9)b). �

6.11. Corollary. Let the notations and hypotheses be as in (6.10). Then

dimK(0 :M f1) ≤ mult(R)µR(M)td−r
r−1∏
i=1

(reg(M/
i∑

j=1

fjM)− beg(M) + 1).

Proof. This follows immediately from (6.10) on use of the definition of span
and regularity. �

Now we are heading for the main result of this section. We start with the
following auxiliary results.

6.12. Lemma. Let K be an infinite field, let R = K ⊕ R1 ⊕ R2 . . . be a Noe-
therian homogeneous K-algebra, let V be a finitely generated graded R-module,
let M ⊆ V be a graded submodule and let f ∈ R1 be filter-regular with respect
to V/M and to V . Let m ∈ Z such that

max{gendeg(M), reg(V ) + 1, reg(M + fV )} ≤ m, (M :V f)m = Mm.

Then reg(M) ≤ m.

Proof. By our hypothesis we have (see (3.4))

reg(V ) < m, gendeg(M + fV ) ≤ reg(M + fV ) ≤ m.
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If we apply the Bayer-Stillman Criterion (5.12) to the modules M + fV ⊆ V
we thus find an integer r ∈ N0 and elements f2, f3, . . . , fr ∈ R1 which are
filter-regular with respect to V and such that with f1 := f we have

((M + f1V +
i−1∑
j=2

fjV ) :V fi)m = (M + f1V +
i−1∑
j=2

fjV )m

for all i ∈ {2, 3, . . . , r} and

(M + f1V +
r∑
j=2

fjV )m = Vm.

As (M :V f1)m = Mm. We thus get

((M +
i−1∑
j=1

fjV ) :V fi)m = (M +
i−1∑
j=1

fjV )m, ∀i ∈ {1, 2, . . . , r}.

We also may write

(M +
r∑
j=1

fjV )m = Vm.

As f1 ∈ R1 is filter-regular with respect to V we now may apply the criterion
(5.12) in the opposite direction to the modules M ⊆ V and obtain reg(M) ≤
m. �

6.13. Lemma. Let K, R, V , M and f ∈ R1 be as in (6.12). Then

reg(M) ≤ max{gendeg(M), reg(V ) + 1, reg(M + fV )}+ dimK((M :V f)/M).

Proof. Let

d := max{gendeg(M), reg(V ) + 1, reg(M + fV )}
and observe that ((M :V f)/M) = (0 :V/M f) is R+-torsion so that indeed
dimK((M :V f)/M) ∈ N0. Consequently, there is an integer

m ∈ {d, d+ 1, . . . , d+ dimK((M :V f)/M)}
such that

(M :V f)m/Mm = ((M :V f)/M)m = 0.

Now, we conclude by (6.12). �

Now we are ready to state and to prove the announced main result.

6.14. Theorem. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous CM-algebra over K with dim(R) = r > 0. Let V be a finitely
generated graded R-module, let M  V be a graded submodule and let b ⊆
(M :R V ) be a graded ideal such that

√
b =

√
(M :R V ). Let t ∈ N and

g, ρ ∈ Z with

gendeg(b) ≤ t, gendeg(M) ≤ g, max{reg(V ), gendeg(V ) + reg(R)} ≤ ρ.
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Moreover set

e := mult(R), b := beg(V ), µ := µR(V ), s := dimR(V/M).

Then

a) s = 0 : reg(M) ≤ ρ+ (t− 1)r + 1.

b) s > 0 : reg(M) ≤
[
max{g, ρ+ (t− 1)(r − s) + 1}+ µetr−s − b

]2s−1

+ b.

Proof. Once more, let K ′ be an infinite extension field of K, consider the
Noetherian homogeneous K ′-algebra R′ := K ′ ⊗K R, the graded ideal b′ :=
K ′⊗Kb ⊆ R′ and the finitely generated graded R′-module M ′ := K ′⊗KM . By
the same arguments as performed already at several instances we my replace
R, b and M respectively by R, b′ and M ′ and hence assume that K is infinite.

”a)“: If s = 0, the module V/M is R+-torsion and so (6.1) yields

reg(V/M) = end(V/M) ≤ reg(R) + gendeg(V/M) + (t− 1)r

≤ reg(R) + gendeg(V ) + (t− 1)r ≤ ρ+ (t− 1)r.

Now, in view of the short exact sequence of graded R-modules

0→M → V → V/M → 0

we get (see (3.3)C)a))

reg(M) ≤ max{reg(V ), reg(V/M)+1} ≤ max{ρ, ρ+(t−1)r+1} = ρ+(t−1)r+1.

”b)”: So, let s > 0. As

(M(b) :R V (b)) = (M :R V ), gendeg(M(b)) = gendeg(M)− b ≤ g − b,

reg(V (b)) = reg(V )− b, gendeg(V (b)) = gendeg(V )− b, beg(V (b)) = 0,

µR(V ) = µ, dimR(V (b)/M(b)) = s

we may replace M and V respectively be M(b) and V (b) and hence assume
that beg(V ) = 0. Now, with

A :=
[
max{g, ρ+ (t− 1)(r − s) + 1}+ µetr−s

]
we have to show that

reg(M) ≤ A2s−1

.

We proceed by induction on s. Assume first that s = 1. According to (5.6)
(applied with a = R+) we find some f ∈ R1 which is filter-regular with respect
to R⊕ V ⊕ V/M . So, f is filter-regular with respect to R, V and V/M . Now
V/(M + fV ) ∼= (V/M)/f(V/M) is of dimension s − 1 = 0 (see (5.5)a)), and
hence R+-torsion. Setting a := b + 〈f〉 we clearly have a(V/(M + fV )) = 0.
Moreover gendeg(a) ≤ t and as f forms a saturated filter-regular sequence
with respect to V/M (see (5.5)b) we also have (see (5.4)A))

√
a =

√
b + 〈f〉 =

√
(M :R V ) + 〈f〉 =

√
(0 :R V/M) + 〈f〉 = R+.
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Now, by (6.1), and bearing in mind that gendeg(V/(M + fV )) ≤ gendeg(V )
we get

reg(V/(M + fV )) = end(V/(M + fV ))

≤ reg(R) + gendeg(V ) + (t− 1)r ≤ ρ+ (t− 1)r.

So, as reg(V ) ≤ ρ, the exact sequence of graded R-modules

0→ (M + fV )→ V → V/(M + fV )→ 0

yields that
reg(M + fV ) ≤ ρ+ (t− 1)r + 1.

Hence, by (6.13) and bearing in mind that reg(V ) ≤ ρ we get

reg(M) ≤ max{g, ρ+ (t− 1)r + 1}+ dimK((M :V f)/M).

As (M :V f)/M = (0 :V/M f) it remains to show that

dimK(0 :V/M f) ≤ µetr−1.

To this end, we just apply 6.10 to the one-dimensional R-module V/M , the
graded ideal b ⊆ R and the sequence of length one which consists of the single
element f . So, we are done in the case s = 1.

Now, let s > 1. By (5.6) (applied with a = R+) we find a sequence of linear
forms f1, f2, . . . , fs ∈ R1 which is filter-regular with respect to R⊕ V ⊕ V/M .
Clearly, this sequence is filter-regular with respect to R, V and V/M . Now,
for each i ∈ {1, 2, . . . , s}, we consider the finitely generated graded R-modules

V (i) := V/
i∑

j=1

fjV, M (i) := (M +
i∑

j=1

fjV )/
i∑

j=1

fjV ⊆ V (i).

As V (i)/M (i) ∼= (V/M)/
∑i

j=1 fj(V/M) and as the sequence f1, f2, . . . , fs is

filter-regular with respect to V/M we have (see (5.5))

dimR(V (i)/M (i)) = s− i, ∀i ∈ {1, 2, . . . , s}.
Clearly we also have

gendeg(M (i)) ≤ gendeg(M), gendeg(V (i)) ≤ gendeg(V ), ∀i ∈ {1, 2, . . . , s}.
By (5.3)c) (applied to the module V with k = 0) we also have

reg(V (i)) ≤ reg(V ), ∀i ∈ {1, 2, . . . , s}.
Finally, for each i ∈ {1, 2, . . . , s} we consider the graded ideal

b(i) := b + 〈f1, f2, . . . , fi〉.
Then clearly

b(i) ⊆ (M (i) :R V
(i)), gendeg(b(i)) ≤ t, ∀i ∈ {1, 2, . . . , s}.

Moreover, as V (i)/M (i) ∼= (V/M)/
∑i

j=1 fj(V/M) we have√
(M (i) :R V (i)) =

√
(0 :R V (i)/M (i))
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=

√√√√(0 :R (V/M)/
i∑

j=1

fj(V/M))

=
√

(0 :R V/M) + 〈f1, f2 . . . , fi〉 =
√

(M :R V ) + 〈f1, f2, . . . , fi〉

=
√
b + 〈f1, f2 . . . , fi〉 =

√
b(i), ∀i ∈ {1, 2. . . . , s}.

So, for each i ∈ {1, 2, . . . , s − 1} we may apply induction to the modules
M (i)  V (i) and the ideal b(i) ⊆ R and get

reg(M (i)) ≤ A2s−i−1

, ∀i ∈ {1, 2, . . . , s− 1}.
Now, the short exact sequences of graded R-modules

0→M (i) → V (i) → V/(M +
i∑

j=1

fjV )→ 0

and the fact that reg(V (i)) ≤ reg(V ) ≤ ρ < A ≤ A2s−i−1
yield the inequalities

(see (3.3)C)d))

reg(V/(M +
i∑

j=1

fjV )) ≤ A2s−i−1 − 1, ∀i ∈ {1, 2, . . . , s− 1}.

If we apply this for i = 1, we get

reg(V/(M + f1V )) ≤ A2s−2 − 1.

So by means of the the short exact sequence of graded R-modules

0→ (M + f1V )→ V → V/(M + f1V )→ 0

and remembering that reg(V ) < A2s−2
we get (see (3.3)C)a))

reg(M + f1V ) ≤ A2s−2

.

Observe that for each i ∈ {1, 2, . . . , s − 1} there is an isomorphism of graded
R-modules

(V/M)/
i∑

j=1

fj(V/M) ∼= V/(M +
i∑

j=1

fjV ),

so that we have

reg((V/M)/
i∑

j=1

fj(V/M)) ≤ A2s−i−1 − 1, ∀i ∈ {1, 2, . . . , s− 1}.

If we apply (6.10) to the s-dimensional R-module V/M , the ideal b ⊆ R and
the sequence f1, f2, . . . , fs ∈ R1 which is filter-regular with respect to R and
to V/M and bear in mind that (0 :V/M f1) = (M :V f1)/M we get

dimK((M :V f1)/M) ≤ eµtr−s
s−1∏
i=1

A2s−i−1

= eµtr−sA2s−1−1.
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We now apply (6.13) with f = f1 and obtain

reg(M) ≤ max{g, reg(V ) + 1, reg(M + f1V )}+ eµtr−sA2s−1−1.

As

g, reg(V ) + 1, 1 + eµtr−s ≤ A ≤ A2s−2

, reg(M + f1V ) ≤ A2s−2

,

we thus get

reg(M) ≤ A2s−2

+ eµtr−sA2s−1−1 = A2s−2

(1 + eµtr−sA2s−2−1)

≤ A2s−2

(1 + eµtr−s)A2s−2−1 ≤ A2s−2

AA2s−2−1 = A2s−1

and this is precisely our claim. �

We now draw a number of conclusions from the above bounding result.

6.15. Corollary. Let the notations and hypotheses be as in (6.14) and assume
that s < r 6= 1. Then

reg(M) ≤
[
max{g, ρ+ t}+ µet− b

]2r−2

+ b.

Proof. As in the proof of (6.14) we may shift V appropriately in order to
assume that b = beg(V ) = 0. Then clearly ρ, g ≥ 0. We now set

B := max{g, ρ+ t}+ µet

and must show that

reg(M) ≤ B2r−2

.

Assume first that s = 0. Then by (6.14) we have

reg(M) ≤ ρ+ (t− 1)r + 1.

If r = 2 we thus obtain

reg(M) < ρ+ 2t ≤ ρ+ t+ µet ≤ B

and our claim is shown if s = 0 and r = 2.

Now, still assume that s = 0, but let r > 2. Then we have r − 1 ≤ 2r−2 and
thus may write

reg(M) < (ρ+ t) + (r − 1)t ≤ (ρ+ t)2r−2

+ 2r−2(ρ+ t)2r−2−1t

< ((ρ+ t) + t)2r−2 ≤ ((ρ+ t) + µet)2r−2 ≤ B2r−2

.

So, we have our claim if s = 0.

Now, let s > 0. Then 1 ≤ c := r − s ≤ r − 1. We now set

A(c) := max{g, ρ+ (t− 1)c+ 1}+ µetc.

In view of (6.14)b) it suffices to show that

A(c)2r−c−1 ≤ B2r−2

.
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We do this by induction on c. As A(1) = B, we are done in the case c = 1.
So, let 2 ≤ c ≤ r − 1. Then, we have

A(c) ≤ tmax{g, ρ+ (t− 1)(c− 1) + 1}+ µetc ≤ A(c− 1)2

and hence

A(c)2r−c−1 ≤ A(c− 1)2r−(c−1)−1

.

Now, we may conclude by induction. �

Our next application concerns the case where the R-module V is free

6.16. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra of dimension r > 0 which is CM. Let F be a graded
free R-module and let M  F be a graded submodule. Let t ∈ N and g, ρ ∈ Z
with

gendeg(M :R F ) ≤ t, gendeg(M) ≤ g, gendeg(F ) + reg(R) ≤ ρ.

Moreover set

e := mult(R), b := beg(F ), µ := rank(F ), s := dim(F/M).

Then

a) s = 0: reg(M) ≤ ρ+ (t− 1)r + 1.

b) s > 0: reg(M) ≤
[
max{g, ρ+ (t− 1)(r− s) + 1}+ µetr−s − b

]2s−1

+ b.

c) s < r 6= 1: reg(M) ≤
[
max{g, ρ+ t}+ µet− b

]2r−2

+ b.

Proof. As

F =

µ⊕
i=1

R(−ai), a1 ≤ a2 ≤ . . . ≤ aµ = gendeg(F )

is a graded free R-module of finite rank, we have µR(F ) = rank(F ) (see
(6.2)B)) and reg(F ) = gendeg(F ) + reg(R) (see (4.6)a)). Now we may ap-
ply (6.14) and (6.15) with b = (M :R V ). �

As a special case of this latter result, we get back the bound of Galligo, Giusti
and Caviglia-Sbarra mentioned at the beginning of this section.

6.17. Corollary. Let r > 1 and let 0 6= a  K[X1, X2, . . . , Xr] be a non-zero
graded ideal of a polynomial ring in r indeterminates over a field K. Then

reg(a) ≤ (2gendeg(a))2r−2

.

Proof. Apply (6.16)c) with F = R = K[X1, X2, . . . , Xr] and M = a bearing in
mind that dim(R/a) < r, reg(R) = 0 (see (3.5)) and mult(R) = 1. �
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6.18. Remark. A) (Regularity and Generating Degrees of Ideals) Bounds for
the regularity of graded ideals in polynomial rings are a classical subject of
Algebraic Geometry, which goes back much further than a well defined concept
of regularity. The motivation to this was the controversy around the Problem
of the Finitely Many Steps which was initiated by Hilbert’s Theory of Syzygies
[Hi1], [Hi2]. This controversy found its end through G. Hermann [Herm],
who proved (in “syzygetic terms”) that in the situation of (6.17) we have the
following bound

reg(a) ≤ (2gendeg(a))2(r−1)r

.

In fact, the bound given in [Herm] is not calculated properly, and would give a
smaller value on the right hand side. Putting Hermann’s arguments right, one
obtains the above estimate. Quite early the question came up, whether the
“quadratically exponential bound” of Hermann could be replaced by a “linearly
exponential bound”, that is a bound of the form

reg(a) ≤ (2gendeg(a))2Cr .

with some universal constant C > 0. Observe, that the bound of (6.17) has
this property. As already pointed out, over base-fields of characteristic 0 such
linearly exponential bounds were given already by Galligo [G] and Giusti [Gi],
whereas over fields of arbitrary characteristic such bounds were given much
later by Caviglia-Sbarra [Cav-Sb].

In between, there was a characteristic-free bound by Bayer-Mumford [B-Mu],
which is considerably smaller than the bound of Hermann (as (r−1)!� 2(r−1)r

for all r � 0), but still far away from being linearly exponential (as for all
C > 0 one has 2Cr � (r − 1)!,∀r � 0), namely:

reg(a) ≤ (2gendeg(a))(r−1)!.

On the other hand it is known, that linearly exponential regularity bounds are
best possible in general. Indeed according to Mayr-Meyer [Ma-Me] for each
r > 1 there is a graded ideal a(r) ⊆ C[X1, X2, . . . , Xr] such that

gendeg(a(r)) = 4, reg(a(r)) > 8
2
r−2
10

.

B) (Generalizations to Modules) In [Br-L2] we had to use an extension of the
Bayer-Mumford bound to submodules of free modules. It says that for a non-
zero graded submodule M  K[1, X2, . . . , Xr]

⊕s one has

reg(M) ≤ sr!(2gendeg(M))(r−1)!.

In [Br5] we gave a generalization of this to arbitrary graded submodules of
finitely generated graded submodules over Noetherian homogeneous rings R
with Artinian local base ring R0. We do not spell out the further details of
this result here. More general versions of (6.14),(16.17) and (16.18) are given
in [Br-Gö]. In fact, also these bounds hold for Noetherian homogeneous rings
R with Artinian local base ring R0. Finally, similar bounds (slightly sharper in
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some cases) have been given by use of different methods by Chardin-Fall-Nagel
[Ch-F-N].

In fact, our previous bounding results have further consequences. We begin
with a bound in which the condition that R is CM is dropped.

6.19. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra with r := dimK(R1) > 1, let V be a finitely generated
graded R-module and let M  V be a graded submodule. Let t ∈ N and
g, ρ ∈ Z with

max{reg(R) + 1, gendeg(M :R V )} ≤ t, gendeg(M) ≤ g, reg(V ) ≤ ρ.

Moreover set

b := beg(V ), µ := µR(V ), s := dimR(V/M).

Then

a) s = 0: reg(M) ≤ ρ+ (t− 1)r + 1

b) s > 0: reg(M) ≤
[
max{g, ρ+ (t− 1)(r − s) + 1}+ µtr−s − b

]2s−1

+ b.

c) s < r: reg(M) ≤
[
max{g, ρ+ t}+ µt− b

]2r−2

+ b.

Proof. By our hypotheses there is a polynomial ring S = K[X1, X2, . . . , Xr]
and a graded ideal c ⊆ S such that R = S/c. We also find a graded ideal
b ⊆ S with c ⊆ b and b/c = (M :R V ). Now, the short exact sequence of
graded R-modules

0→ c→ S → R→ 0

together with the facts that reg(R) is also the regularity of the S-module R
and that reg(S) = 0 yields that reg(c) ≤ reg(R) + 1 (see (3.3)C)a)). So, by
(3.4) we obtain gendeg(c) ≤ reg(R) + 1. Now, the short exact sequence of
graded S-modules

0→ c→ b→ (M :R V )→ 0

shows that (see (3.3)A)b))

gendeg(b) ≤ max{reg(R) + 1, gendeg(M :R V )} ≤ t.

Observe also that
b = (M :S V ).

and that the invariants

gendeg(V ) ≤ reg(V ), beg(V ), µ(V ), gendeg(M), reg(M), dim(V/M)

remain the same if we consider V and M as S-modules. So, if we apply (6.14)
and (6.15) to these S-modules and the above ideal b ⊆ S and keep in mind
that dim(S) = r, reg(S) = 0, mult(S) = 1, we get our claim. �

Our next application concerns the case where the base ring R is CM, but the
annihilator of V/M is unknown.
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6.20. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous CM-algebra over K with dim(R) = r > 0, let V be a finitely
generated graded R-module, let M  V be a graded submodule and set

α := min{beg(V ), reg(V )− reg(R)}, ρ := max{gendeg(M), reg(V ) + 1},
e := mult(R), µ := µR(V ).

Then
reg(M) ≤

[
ρ+ (µ+ 1)e− α

]2r−1

+ α.

Proof. Consider M as a graded submodule of W := V ⊕ R(−α) and observe
that

µR(W ) = µ+ 1, beg(W ) = α, dimR(W/M) = r, (M :R W ) = 0,

reg(W ) = max{reg(V ), reg(R(−α)} = max{reg(V ), reg(R) + α} = reg(V ).

Then apply (6.14)b) with b = 0 and t = 1. �

The next application deals with a similar situation as (6.20), but without
requiring that the K-algebra R is CM.

6.21. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra with dimK(R1) = r > 1, let V be a finitely generated
graded R-module, let M  V be a graded submodule and set

µ := µR(V ), α := min{beg(V ), reg(V )− reg(R)},
σ := max{gendeg(M), reg(R) + reg(V ) + 1}.

Then
reg(M) ≤

[
σ + µ+ 1− α

]2r−1

+ α.

Proof. This is shown similar as (6.20): namely, consider M as a graded sub-
module of W = V ⊕R(−α), observe that

µR(W ) = µ+ 1, beg(W ) = α, dimR(W/M) = r, (M :R W ) = 0

and apply (6.19)b) with b = 0. �

Now, we turn to regularity bounds in terms of discrete data of a presentation
of a module.

6.22. Theorem. Let K be a field and let R = K⊕R1⊕R2 . . . be a Noetherian
homogeneous K-algebra. Let

ν⊕
j=1

R(−bj)
h−→

µ⊕
i=1

R(−ai)→M → 0

be an exact sequence of graded R-modules, such that h 6= 0 and with integers

b1 ≤ b2 ≤ . . . ≤ bν , a1 ≤ a2 ≤ . . . ≤ aµ

and set
µ∗ := max{i ∈ {1, 2, . . . , µ} | ai ≤ bν}.



93

Then

a) If R is CM, with r := dim(R) > 0, e := mult(R) and ρ := reg(R) we have

reg(M) ≤ max{aµ + ρ,
[
bν + ρ+ 1 + (µ∗ + 1)e− a1

]2r−1

+ a1 − 1}.

b) If r := dimK(R1) > 1 (and R is not necessarily CM), then with ρ = reg(R)
we have

reg(M) ≤ max{aµ + ρ,
[
bν + 2ρ+ µ∗ + 2− a1

]2r−1

+ a1 − 1}.

Proof. “a)”: As h 6= 0 we have a1 ≤ bν so that µ∗ ∈ N. We set

W :=
ν∑
j=1

R(−bj), V :=

µ∗∑
i=1

R(−ai), F :=

µ∑
i=1

R(−ai).

Clearly the map h factors through the submodule V of F , so that Im(h) ⊆ V .
Observe that

gendeg(Im(h)) ≤ gendeg(W ) = bν , reg(V ) = aµ∗ + reg(R) ≤ bν + reg(R),

µR(V ) = µ∗

and

α := min{beg(V ), reg(V )− reg(R)} = min{a1, aµ∗ + reg(R)− reg(R)} = a1.

If Im(h)  V , we apply (6.20) to the pair of graded modules Im(h)  V and
obtain

reg(Im(h)) ≤
[
bν + reg(R) + 1 + (µ∗ + 1)e− a1

]2r−1

+ a1.

If Im(h) = V , this inequality is obvious. As reg(F ) = aµ + reg(R) we now get
our claim by (3.3)C)d) and the exact sequence of graded R-modules

0→ Im(h)→ F →M → 0.

“b)”: We may argue similar as in the proof of statement a), namely: again
we may assume that Im(h)  V and use (6.21) together with the previously
observed facts that gendeg(Im(h)) ≤ bν , reg(V ) ≤ bν + reg(R), α = a1, and
µR(V ) = µ∗ to see that

reg(Im(h)) ≤
[
bν + 2reg(R) + µ∗ + 2− a1

]2r−1

+ a1,

which is obviously true if Im(h) = V . Then we conclude once more with the
exact sequence of graded R-modules

0→ Im(h)→ F →M → 0.

�
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Our final result in this section is an application to the classical case in which R
is a polynomial ring over a field. It says, that the discrete data of a presentation
of a graded module over a polynomial ring bound the regularity of this module
in a “linearly exponential way”. We shall give a more detailed explanation of
this statement in final remark of the present section.

6.23. Corollary. Let r ∈ N, let K be a field, let R = K[X1, X2, . . . , Xr] be a
polynomial ring and let

ν⊕
j=1

R(−bj)
h−→

µ⊕
i=1

R(−ai)→M → 0

be an exact sequence of graded R-modules such that h 6= 0 and with integers

b1 ≤ b2 ≤ . . . ≤ bν , a1 ≤ a2 ≤ . . . ≤ aµ

and set

µ∗ := max{i ∈ {1, 2, . . . , µ} | ai ≤ bν}.
Then

reg(M) ≤ max{aµ,
[
bν + µ∗ + 2− a1

]2r−1

+ a1 − 1}.

Proof. Apply (6.22)a) and keep in mind that reg(R) = 0 and mult(R) = 1. �

6.24. Remark and Exercise. (Presentations of Graded Modules). A) Let
r ∈ N, let R = K[X1, X2, . . . , Xr] be a polynomial ring over the field K and
let M 6= 0 be a finitely generated graded R-module. By a presentation of M
we mean an exact sequence of graded R-modules

ν⊕
j=1

R(−bj)
h−→

µ⊕
i=1

R(−ai)→M → 0

with integers

b1 ≤ b2 ≤ . . . ≤ bν , a1 ≤ a2 ≤ . . . ≤ aµ.

We call the two sequences

(bj)
ν
j=1, (ai)

µ
i=1

the degree sequences of the given presentation of M . These two sequences
are considered as the discrete data of our presentation. Observe that M =
Coker(h), so that M is indeed determined by the homomorphism of graded
free R-modules

G :=
ν⊕
j=1

R(−bj)
h−→

µ⊕
i=1

R(−ai) =: F

B) Keep the above hypotheses and notations and let

eGj := (δlj(−bj))νl=1 ∈ G, j ∈ {1, 2, . . . , ν}

eFi := (δki(−ai))µk=1 ∈ F, i ∈ {1, 2, . . . , µ}
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(with δlk the Kronecker symbol) be the canonical basis elements of the graded
free R-modules G and F respectively. Then the map h : G → F is uniquely
determined by a matrix

A = A[h] =
[
fij | 1 ≤ i ≤ µ, 1 ≤ j ≤ ν

]
∈ Rµ×ν

with

a) fij ∈ Rbj−ai , ∀(i, j) ∈ {1, 2, . . . , µ} × {1, 2, . . . , ν}.
b) h(

∑ν
j=1 uje

G
j ) =

∑µ
i=1(
∑ν

j=1 fijuj)e
F
i , ∀(u1, u2, . . . , uν) ∈ Rν .

The matrix A[h] = A is called a presentation matrix with respect to the degree
sequences (bj)

ν
j=1 and (ai)

µ
i=1 or more precisely the presentation matrix of h. If

we fix our degree sequences, the assignment h 7→ A[h] yields a bijection between
the set of graded homomorphisms h from G to F and the set of matrices
Rµ×ν with homogeneous entries which satisfy the above requirement a). The
presentation matrix A[h] expresses the continuous data of our presentation.

C) Keep the above notations and hypothesis. Our bounding result (6.23) says
that there is an upper bound on the regularity of M , linearly exponential in the
number of indeterminates and only depending on the two degree-sequences of
our presentation. In fact, in [Br-Gö] there is shown a more general result than
(6.22), and a more general version of (6.23) is drawn there as a consequence.
Observe also, that our bounding results (6.22) and (6.23) use only little infor-
mation on the degree sequences of the given presentation. A finer bound, but
using more information on these sequences has been shown in [Ch-F-N].

D) Finally let us remark, that with our result (6.23) we are back to the core
of the classical controversy around the problem of the finitely many steps.
Namely, still in our above notations and also the notation of (6.23) we can use
the short exact sequence

0→ Ker(h)
⊆−→ G→ Im(h)→ 0

and the bound on reg(Im(h)) given in the proof of (6.22) to see that

reg(Ker(h)) ≤
[
bν + µ∗ + 2− a1

]2r−1

+ a1.

As a consequence of this we get

gendeg(Ker(h)) ≤
[
bν + µ∗ + 2− a1

]2r−1

+ a1.

This type of bound is indeed the crucial point in the positive answer of the
problem of the finitely many steps. We namely can say in particular, that the
generating degree of Ker(h) is bounded in terms of the beginning of F , the
rank of F and the generating degree of G.

E) We now come to the exercise part. Keep the above notations and hypothe-
ses. From the last bound in part D) one may conclude the following:
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a) If g : Rν → Rµ is the R-linear map, given by a matrix

B =
[
bkl | 1 ≤ k ≤ µ, 1 ≤ l ≤ ν

]
∈ Rµ×ν ,

whose entries bkl ∈ R are homogeneous polynomials, the generating degree

min{max1≤i≤t,1≤j≤ν(deg(fij)) | fij ∈ R : Ker(g) =
t∑
i=1

R(fi1, fi2, . . . , fiν)

of Ker(g) is bounded only by the size (µ, ν) of B and the (maximal) degree

deg(B) := max1≤k≤µ,1≤l≤ν(deg(bkl))

of all entries of B.

b) In the situation of statement a), one even may drop the condition that the
entries of B are homogeneous.

Indeed G. Hermann [Herm] has established a corresponding bound (not com-
puted correctly, as mentioned already earlier). This type of bounds is also of
great interest in the more general situation where the base field K is replaced
by an appropriate ring. These more general bounds also apply in Algebraic
Number Theory or Arithmetic Geometry, (see [Mas-W] for example).



7. Presentations and Resolutions

Towards the end of the last section we were lead to consider presentations of
graded modules and hence dropped on a fundamental concept of Commutative
Algebra and Algebraic Geometry. In particular the computational aspect of
these theories is closely related to the notion of presentation and its natural
extension, namely the notion of resolution.

Starting from the concept of minimal resolution we shall define the notion
of Betti vector and of homological dimension of a finitely generated graded
module M over a Noetherian homogeneous ring R with local base ring (R0,m0)
and relate the ends of the Betti vectors of M to the Castelnuovo-Mumford
regularity reg(M) of M . This relation becomes particularly simple for finitely
generated graded modules of finite homological dimension over a standard
graded polynomial ring.

Here we also naturally shall be lead to prove Hilbert’s “Syzygiensatz” for
finitely generated graded modules M 6= 0 over a standard graded polyno-
mial ring R = K[X1, X2, . . . , Xr] over a field K - whose essential statement is
that in this situation M has finite homological dimension. The main ingredient
of our proof is the fact, that the (graded) maximal Cohen-Macaulay modules
over the polynomial ring R are precisely the graded free R-modules of finite
positive rank - and hence may be characterized in terms of the vanishing of
the local cohomology modules H i

R+
(M) for i = 1, 2, . . . , r − 1.

Once having established this cohomological criterion the for freeness of graded
modules over the polynomial ring R = K[X1, X2, . . . , Xr] we can dare a de-
tour in order to through a glance to algebraic vector bundles over projective
spaces and to prove the Splitting Criterion of Horrocks and the Splitting The-
orem of Grothendieck for such bundles. On our way to this, we also extend
the Vanishing Theorem of Severi-Enriques-Zariski-Serre to projective schemes
over arbitrary fields and rephrase it as a Criterion for a Coherent Sheaf to be
an Algebraic Vector Bundle over a regular irreducible projective scheme.

Finally, we return to the computational significance of regularity in a number
of conclusive remarks, by retrospecting once more the Problem of the Finitely
Many Steps.

7.1. Exercise and Definition. A) (Homogeneous Rings with Local Base Rings)
Let R =

⊕
n∈N0

R0 be a Noetherian homogeneous ring with local base ring
(R0,m0). Keep in mind that

m := m0 ⊕R+ = m0 ⊕R1 ⊕R2 . . .

is the unique graded maximal ideal of R and that there is a canonical isomor-
phism of fields

R0/m0
∼= R/m.
97
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B) (Minimal Systems of Homogeneous Generators) Let M =
⊕

n∈ZMn be
a finitely generated graded R-module, let r ∈ N, let d1 ≤ d2 ≤ . . . ≤ dr
be integers and let (mi)

r
i=1 be a family of homogeneous elements such that

mi ∈ Mdi for all i ∈ {1, 2, . . . , r}. We use the notational convention that
Rm = 0 for all m < 0. Show that the following statements are equivalent

(i) M =
∑r

i=1 Rmi.

(ii) Mn =
∑r

i=1Rn−dimi for all n ∈ Z.

(iii) Mn = m0Mn +
∑r

i=1Rn−dimi for all n ∈ Z.

Conclude that

a) The elements m1,m2, . . . ,mr ∈ M form a minimal system of homoge-
neous generators of the graded R-module M if and only if the classes
m1 + m0M,m2 + m0M, . . . ,mr + m0M ∈ M/m0M form a minimal ho-
mogeneous system of generators of the graded R/m0R-module M/m0M .

b) The elements m1,m2, . . . ,mr ∈ M form a minimal system of homoge-
neous generators of the graded R-module M if and only if the classes
m1 + mM,m2 + mM, . . . ,mr + mM ∈ M/mM form a basis of the R/m
(and hence R0/m0)- vector space M/mM .

C) (Vectors of Generating Degrees) Keep the previous notations and hypothe-
ses. For each integer n we consider the non-negative integer

µR,n(M) = µn(M) := dimR0/m0((M/mM)n),

which we call the minimal number of homogeneous generators of M in degree
n. Moreover we consider the family on non-negative integers

µR,∗(M) = µ∗(M) := (µR,n(M))n∈Z,

which we call the vector of generating degrees of M . Prove the following
statements:

a) If m1,m2, . . . ,mr is a minimal homogeneous system of generators of the
finitely generated graded R-module M , then

µR,n(M) = #{i ∈ Z | mi ∈Mn}, ∀n ∈ Z.

b) inf{n ∈ Z | µR,n(M) 6= 0} = beg(M).

c) sup{n ∈ Z | µR,n(M) 6= 0} = gendeg(M).

d)
∑

n∈Z µR,n(M) = µR(M).

e) For a free graded R-module F of finite rank we have

F =
⊕
n∈Z

R(−n)⊕µR,n(F ), rank(F ) =
∑
n∈Z

µR,n(F ) = µR(F ).

7.2. Exercise and Definition. A) (Minimal Homomorphisms of Graded Mod-
ules) Let R =

⊕
n∈N0

Rn be a Noetherian homogeneous ring with local base
ring (R0,m0) and let M =

⊕
n∈ZMn and N =

⊕
n∈ZNn be graded R-modules
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such that M is finitely generated. Show that for a homomorphism of graded
R-modules h : M → N the following statements are equivalent:

(i) For each minimal system (mi)
r
i=1 of homogeneous generators of M the

sequence (h(mi))
r
i=1 is a minimal system of homogeneous generators of

Im(h).

(ii) There is a system (mi)
r
i=1 of homogeneous generators of M such that

(h(mi))
r
i=1 is a minimal system of homogeneous generators of Im(h).

(iii) µR,∗(M) = µR,∗(Im(h)).

(iv) µR(M) = µR(Im(h)).

(v) The induced R0/m0-linear map

h̄ : M/mM → Im(h)/mIm(h), m+ mM 7→ h(m) + mIm(h)

is an isomorphism of vector spaces.

(vi) Ker(h) ⊆ mM .

If the homomorphism of graded R-modules h : M → N satisfies these equiva-
lent conditions (i)-(vi), it is called minimal.

B) (First Properties of Minimal Homomorphisms) Keep the notations and
hypotheses of part A). Prove the following facts:

a) If the zero map M
0−→ N is minimal, then M = 0.

b) If h : M → N is minimal, then Ker(h) ∩Mbeg(M) ⊆ m0M .

c) If h : M → N is injective, then it is minimal.

d) If h : M → N is surjective and µR(M) ≤ µR(N), then h is minimal.

e) There is a graded free R-module F and a minimal epimorphism of graded
R-modules g : F →M → 0.

f) If g : F → M → 0 is as in statement e), then there is an isomorphism of
graded R-modules

F ∼=
⊕
n∈Z

R(−n)µR,n(M)

and moreover each homogeneous basis of F is mapped under g to a minimal
homogeneous system of generators of M .

C) (Minimal Epimorphisms from Graded Free Modules) Let the notations and
hypotheses as above. Prove the followings statements:

a) If f : M
∼=−→M ′ is an isomorphism of graded R-modules and if

0→ N
ι−→ F

π−→M → 0, 0→ N ′
ι′−→ F ′

π′−→M ′ → 0

are exact sequences of graded R-modules in which F and F ′ are free of finite
rank and π and π′ are minimal, then there are isomorphisms of graded R-
modules

g : F
∼=−→ F ′, h : N

∼=−→ N ′,
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which occur in the following commutative diagram

0 // N
ι //

h
��

F
π //

g
��

M //

f
��

0

0 // N ′
ι′ // F ′

π′ // M ′ // 0

b) In the notations and under the hypotheses of statement a) we have

µR,∗(F ) = µR,∗(F
′), µR,∗(N) = µR,∗(N

′).

c) If 0→ N
ι−→ F

π−→M → 0 is as in statement a), then

reg(N) ≤ reg(M) + max{1, reg(R)},
reg(M) ≤ max{reg(N)− 1, gendeg(M) + reg(R)}.

Now, we generalize and refine the concept of presentation of a graded module
over a polynomial ring over a field, as it was introduced in (6.24). First of all
we admit arbitrary Noetherian homogeneous rings with local base rings and
define the notion of minimal presentation for finitely generated modules over
such rings.

7.3. Exercise and Definition. A) (Minimal Presentations of Graded Mod-
ules) Let R =

⊕
n∈ZRn be a Noetherian homogeneous ring with local base ring

(R0,m0) and let M be a finitely generated graded R-module. By a minimal
free presentation of M we mean an exact sequence of graded R-modules

G
h−→ F

π−→M → 0

in which the graded R-modules F and G are free and the homomorphisms h
and π are minimal. Clearly if M 6= 0, such a minimal free presentation can
always be written as this is done in (6.24)A).

B) (Existence and Uniqueness of Minimal Presentations) Keep the notations
and hypotheses of part A). Use (7.2)B)e) and (7.2)C)a) to prove the following
statements:

a) Each finitely generated graded R-module M admits a minimal free resolu-

tion G
h−→ F

l−→M → 0.

b) If G
h−→ F

l−→ M → 0 and G′
h′−→ F ′

l′−→ M → 0 are two minimal presenta-
tions of M , there are isomorphisms u and v of graded R-modules, which
appear in the following commutative diagram

G
h //

u
��

F
l //

v
��

M //

id
��

0

G′
h′ // F ′

l′ // M // 0

Next, we extend the concept of minimal presentation to the concept of minimal
resolution.
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7.4. Exercise and Definition. A) (Minimal Resolutions of Graded Modules)
Again, let R =

⊕
n∈ZRn be a Noetherian homogeneous ring with local base

ring (R0,m0) and letM be a finitely generated graded R-module. By a minimal
(free) resolution of M we mean an exact sequence of graded R-modules

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ F1
d1−→ F0

d0−→M → 0

in which all the modules Fi are free of finite rank and all the homomorphisms
di are minimal.

B) (Existence and Uniqueness of Minimal Resolutions) Keep the notations
and hypotheses of part A). Use (7.2)B)e) and (7.2)C)a) to prove the following
claims:

a) Each finitely generated graded R-module M admits a minimal free resolu-
tion

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ F1
d1−→ F0

d0−→M → 0.

b) Whenever

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ F1
d1−→ F0

d0−→M → 0

. . .→ Gn+1
en+1−−→ Gn

en−→ Gn−1 → . . .→ G1
e1−→ G0

e0−→M → 0

are two minimal free resolutions of M there is family (un)n∈N0 of isomor-
phisms of graded R-modules, which appear in the following commutative
diagram

. . . // Fn+1

dn+1 //

un+1

��

Fn //

un
��

. . . // F0
d0 //

u0

��

M //

id
��

0

. . . // Gn+1

en+1 // Gn
// . . . // G0

e0 // M // 0

C) (First Properties of Minimal Resolutions) Keep the above notations. In
particular let M be a finitely generated graded R-module with minimal reso-
lution

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ F1
d1−→ F0

d0−→M → 0.

Prove the following claims

a) F1
d1−→ F0

d0−→M → 0 is a minimal presentation of M .

b) For each m ∈ N0 the finitely generated graded R-module Ker(dn) =
Im(dn+1) has the minimal resolution

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ Fm+2
dm+2−−−→ Fm+1

d̄m−→ Ker(dm)→ 0,

where d̄m denotes the homomorphism given by x 7→ dm+1(x).

c) If Fn = 0 for some n ∈ N0, then Fm = 0 for all m ≥ n.
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Now, we may use the concept of minimal resolution to associate certain nu-
merical invariants to a finitely generated graded module M over a Noetherian
homogeneous ring with local base ring.

7.5. Exercise and Definition. A) (Betti Vectors and Betti Numbers) Let
R =

⊕
n∈N0

Rn be a Noetherian homogeneous ring with local base ring (R0,m0)
and let M be a finitely generated graded R-module with minimal resolution

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ F1
d1−→ F0

d0−→M → 0.

Let n ∈ N0. Then by (7.4)B)b) the family of non-negative integers

bn,∗(M) = bRn,∗(M) := µR,∗(Fn)

is uniquely determined by M and by n and is called the n-th Betti vector of
M . The non-negative number

bn(M) = bRn (M) := µR(Fn)

is called the n-th Betti number of M .

B) (First Properties of Betti Vectors and Betti Numbers) Keep the hypotheses
and notations of part A). If S ⊆ Z and (βi)i∈S is a family of real numbers
βi ∈ R we set:

beg((βi)i∈S) := inf{i ∈ mathbbS | βi 6= 0},
end((βi)i∈S) := sup{i ∈ S | βi 6= 0}.

Prove the following facts

a) For all n ∈ N0 we have

beg(bRn,∗(M)) = beg(Fn) = beg(Im(dn)),

end(bRn,∗(M)) = gendeg(Fn) = gendeg(Im(dn)).

b) If bRn,∗(M) = 0 for some n ∈ N0, then bRm,∗(M) = 0 for all m ≥ n.

c) For all n ∈ N0 we have beg(bRn,∗(M)) ≤ beg(bRn+1,∗(M)).

d) If the local base ring R0 is a field, then the inequality in statement c) is
strict whenever bRn,∗(M) 6= 0.

e) For all m,n ∈ N0 we have bRn,∗(Im(dm)) = bRn+m,∗(M).

C) (Homological Dimension) Keep the previous notations and hypotheses. We
define the homological dimension of the graded R-module M as

hdim(M) = hdimR(M) := sup{n ∈ N0 | bRn,∗(M) 6= 0}.
Prove the following claims:

a) hdimR(M) = −∞ if and only if M = 0.

b) hdimR(M) = 0 if and only if M is free.

c) For all n ∈ N0 we have bRn,∗(M) = 0 if and only if n > hdimR(M).

d) For all n ∈ {0, 1, . . . , hdimR(M)} we have hdimR(Im(hn)) = hdimR(M)−n.
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Our next result relates the regularity of a graded module to the ends of the
Betti vectors of this module.

7.6. Theorem. Let R =
⊕

n∈N0
Rn be a Noetherian homogeneous ring with

local base ring (R0,m0) and let M 6= 0 be a finitely generated graded R-module.
Then, with ρ := max{1, reg(R)} we have

a) reg(M) ≥ supn∈N0
{end(bRn,∗(M))− nρ}.

b) If h := hdimR(M) <∞ then

reg(M) ≤ reg(R) + h(ρ− 1) + supn∈N0
{end(bRn,∗(M))− nρ}.

Proof. Consider a minimal resolution

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ F1
d1−→ F0

d0−→M → 0

of M and consider the resulting short exact sequences of graded R-modules

a) 0→ Im(dn+1)
⊆−→ Fn

d̄n−→ Im(dn)→ 0, ∀n ∈ N0.

If we apply the first inequality of (7.2)C)c) to the sequences a) we obtain

reg(Im(dn+1)) ≤ reg(Im(dn)) + ρ, ∀n ∈ N0.

As Im(d0) = M it thus follows by induction that

reg(Im(dn)) ≤ reg(M) + nρ, ∀n ∈ N0.

As end(bRn,∗(M)) = gendeg(Im(dn)) ≤ reg(Im(dn)) (see (7.5)B)a) and (3.4)),
we thus obtain

end(bRn,∗(M)) ≤ reg(M) + nρ, ∀n ∈ N0.

This proves statement a).

To prove statement b) we set h := hdimR(M). If h = 0 we have M ∼= F0 and
hence reg(M) = reg(F0) = gendeg(F0) + reg(R) = end(bR0,∗(M)) + reg(R), and
this is the requested inequality. So, let h > 0. Then, by induction and in view
(7.5)C)d) and (7.5)B)e) we have

reg(Im(d1)) ≤ reg(R) + (h− 1)(ρ− 1) + supn∈N0
{end(bRn,∗(Im(d1)))− nρ}

= reg(R) + (h− 1)(ρ− 1) + supn∈N0
{end(bRn+1,∗(M))− nρ}

= reg(R) + (h− 1)(ρ− 1) + supn∈N{end(bRn,∗(M))− (n− 1)ρ}
= reg(R) + (h− 1)(ρ− 1) + supn∈N{end(bRn,∗(M))− nρ+ ρ− 1}+ 1

= reg(R) + h(ρ− 1) + supn∈N{end(bRn,∗(M))− nρ}+ 1.

Now, consider the above exact sequence a) with n = 0, keep in mind that
Im(d0) = M and observe the second inequality of (7.2)C)c), in order to con-
clude that

reg(M) ≤ max{reg(Im(d1))− 1, gendeg(Im(d0)) + reg(R)}
≤ max{reg(R)+h(ρ−1)+supn∈N{end(bRn,∗(M))−nρ}, end(bR0,∗(M))+reg(R)}
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≤ reg(R)+max{h(ρ−1)+supn∈N{end(bRn,∗(M))−nρ}, h(ρ−1)+end(bR0,∗(M))}

= reg(R) + h(ρ− 1) + max{supn∈N{end(bRn,∗(M))− nρ}, end(bR0,∗(M))}

= reg(R) + h(ρ− 1) + supn∈N0
{end(bRn,∗(M))− nρ}.

But this proves statement b). �

7.7. Corollary. Let (R0,m0) be a Noetherian local ring, let r ∈ N and let
M 6= 0 be a finitely generated graded R-module over the polynomial ring R :=
R0[X1, X2, . . . , Xr]. Then

a) reg(M) ≥ sup{end(bRn,∗(M))− n}.
b) If hdimR(M) <∞, we have equality in statement a).

Proof. By our hypotheses on the ring R we have reg(R) = 0 and hence our
claims are immediate by (7.6) �

We now aim to focus to the special case, where R is a polynomial ring over a
field.

We begin with a few preparations, which shall lead us to the corresponding
main result, which at its turn will contain Hilbert’s ”Syzygiensatz“.

7.8. Exercise. A) (Lifting of Free Bases) Let A be a ring, let X be an inde-
terminate, let M be an A[X]-module and consider the A-module M/XM . Let
S be a set and let (mi)i∈S be a family of elements mi ∈ M . For each element
m ∈ M we write m̄ for the class m + XM ∈ M/XM . Prove the following
statements

a) If X ∈ NZDA[X](M) and if the family (m̄i)i∈S of classes m̄i ∈M/XM is lin-
early A- independent, then the family (mi)i∈S is linearly A[X]-independent.

b) If M/XM =
∑

i∈SAm̄i and X(M/N)  M/N for each proper A[X]-
submodule N  M , then M =

∑
i∈SA[X]mi.

c) IfX ∈ NZDA[X](M) andX(M/N)  M/N for each properA[X]-submodule
N  M then, the A-module M/XM is free over the basis (m̄i)i∈S if and
only if the A[X]-module M is free over the basis (mi)i∈S.

B) (Maximal Graded CM-Modules) Let K be a field, let R = K⊕R1⊕R2 . . . be
a Noetherian homogeneous K-algebra and let M be a finitely generated graded
R-module. We call M a maximal graded CM-module over R if gradeM(R+) =
dim(R) or - equivalently - if M is CM in the sense of (6.3) and dimR(M) =
dim(R). Prove the following claims:

a) The graded R-module M is maximally CM if and only if H i
R+

(M) = 0 for
all i 6= dim(R).

b) If R is a domain and M is maximally CM, then M is torsion-free, or -
equivalently - AssR(M) = {0}.
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c) If t ∈ N0 and x ∈ Rt ∩ NZD(R) ∩ NZDR(M), then the graded R-module
M is maximally CM if and only if the graded R/xR-module M/xM is
maximally CM.

C) (Maximal Graded CM-Modules over Polynomial Rings) Now, let r ∈ N0,
let R = K[X1, X2, . . . , Xr] be a polynomial ring. Let M 6= 0 be a finitely gen-
erated graded R-module. Use the results of parts A) and B) (and in particular
induction on r where this is helpful) to show that the following statements are
equivalent

(i) H i
R+

(M) = 0 for all i 6= r.

(ii) H i
R+

(M) = 0 for all i < r.

(iii) M is maximally CM.

(iv) M is free.

(v) There is an isomorphism of graded R-modules M ∼=
⊕

n∈ZR(−n)µR,n(M).

7.9. Reminder and Exercise. (Grade in Short Exact Sequences) Let R be
a Noetherian ring, let a ⊆ R be an ideal and let M be a finitely generated
R-module. Keep in mind that the grade gradeM(a) of a with respect to M is
defined as the supremum of lengths r of M -sequences x1, x2, . . . , xr in a and
that (see [Br-Fu-Ro] (4.5), (4.6))

gradeM(a) = inf{i ∈ N0 | H i
a(M) 6= 0}.

Now, let 0→ N → F →M → 0 be a short exact sequence of finitely generated
R-modules. Prove the following:

a) If gradeM(a) < gradeF (a), then gradeN(a) = gradeM(a) + 1.

b) If gradeM(a) ≥ gradeF (a), then gradeN(a) ≥ gradeF (a).

Now we may collect our previous results in order to get the second main
result of this section. Statement a) of this result corresponds to Hilbert’s
”Syzygiensatz“.

7.10. Theorem. Let r ∈ N0 and let M 6= 0 be a finitely generated graded
module over the polynomial ring R = K[X1, X2, . . . , Xr]. Then

a) hdimR(M) <∞ and hdimR(M) + gradeM(R+) = r.

b) reg(M) = supn∈N0
{end(bRn,∗(M))− n} = max

hdimR(M)
n=0 {end(bRn,∗(M))− n}.

Proof. We consider a minimal resolution

. . .→ Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → . . .→ F1
d1−→ F1

d0−→ F0 →M → 0

of M . If we apply (7.9) to the short exact sequences

0→ Im(dn+1)
⊆−→ Fn → Im(dn)→ 0,

observe that gradeFn(R+) = r, and by (7.8)C) we get
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(i) gradeIm(dn+1)(R+) = gradeIm(dn)(R+) + 1, if gradeIm(dn)(R+) < r.

(ii) Im(dn) is free if gradeIm(dn)(R+) = r.

Moreover, if Im(dn) is free for some n ∈ N0, then clearly Fn+1 = 0 and hence
Fm = 0 for all m > n (see (7.4)C)c)) so that hdimR(M) ≤ n. Now, the above
statements (i) and (ii) imply statement a) of our theorem. Statement b) now
follows by (7.7). �

We now discuss the relation of the previous results to Algebraic Vector Bundles
over projective spaces.

7.11. Remark and Exercise. A) (Algebraic Vector Bundles) Let K be a
field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous K-algebra and
set X := Proj(R). An algebraic vector bundle over X is a locally free coherent
sheaf of OX-modules E , so that for each point x ∈ X there is an integer
rankx(E) ∈ N0 such that

Ex ∼= O⊕rankx(E).

The number rankx(E) is called the rank of E at the point x ∈ X. If rankx(E)
takes the same value for all points x ∈ X, we say that E is an algebraic
vector bundle of constant rank. In this situation, we denote the constant value
rankx(E) by rank(E) and call it the rank of E . If r is a non-negative integer,
we say that E is an algebraic vector bundle of rank r if E is an algebraic vector
bundle of constant rank r. Vector bundles of rank 1 are called line bundles.
Prove the following statements.

a) For each n ∈ Z the sheaf OX(n) of OX-modules is a line bundle over X.

b) If the ring R is an integral domain, each algebraic vector bundle E over X
is of constant rank.

B) (Direct Sums of Vector Bundles) Keep the above notations and hypotheses.
Here we also use the concept of direct sum of sheaves of OX-modules (see
(3.15)D)). Prove the following facts.

a) If the sheaves F1,F2, . . . ,Ft are algebraic vector bundles, then so is
⊕t

i=1Fi.
b) In the situation of statement a) we have rankx(

⊕t
i=1Fi) =

∑t
i=1 rankx(Fi)

for all x ∈ X.

c) For each family (ni)
t
i=1 of integers ni ∈ Z, the sheaf

⊕t
i=1OX(ni) is an

algebraic vector bundle of rank t over X.

C)(Algebraic Vector Bundles over Projective Spaces) Let r ∈ N0 and consider
the projective r-space PrK := Proj(K[X0, X1, . . . , Xr]). Verify that each al-
gebraic vector bundle E over PrK is of constant rank. An algebraic vector
bundle E over PrK is said to split if there is a direct sum of line bundles, or -



107

equivalently:

E ∼=
t⊕
i=1

OX(−ai), a1 ≤ a2 ≤ . . . ≤ at.

In this latter situation, calculate the cohomological Hilbert functions (see
(4.11))

hiE : Z→ N0, n 7→ hiE(n) = hi(PrK , E(n))

for all i ∈ N0. Use this to show, that the sequence (ai)
t
i=1 is uniquely deter-

mined by E . This sequence is called the splitting type of E .

D) (Revisiting the Vanishing Theorem of Severi-Enriques-Zariski-Serre) This
part needs slightly more involved arguments from commutative algebra. Let
R = K ⊕ R1 ⊕ R2 . . . be as in part A), let X = Proj(R), let M be a finitely

generated graded R-module and let M̃ =: F be the coherent sheaf of OX-
modules induced by M . Let K ′ be an extension field of K, consider the
Noetherian homogeneous K ′-algebra

R′ := K ′ ⊗K R = K ′ ⊕ (K ′ ⊗K R1)⊕ (K ′ ⊗K R2) . . . ,

let X ′ := Proj(R′), consider the finitely generated graded R-module

M ′ = K ′ ⊗K M
and the induced coherent sheaf of OX′-modules

M̃ ′ = F ′.
Observe that R′ is an integral extension of R and a flat R-algebra. Prove the
following statements:

a) The assignment p′ 7→ p′∩R defines a surjective map ϕ : X ′ → X such that
ϕ−1(p) = min(pR′) for all p ∈ X.

b) ϕ(mProj(R′)) = mProj(R) and ϕ−1(mProj(R)) = mProj(R′).

c) If x′ ∈ X ′, then OX′,x′ is a flat OX,ϕ(x′)-algebra with
√

mX,ϕ(x′)OX′,x′ =
mX′,x′ .

d) If x′ ∈ X ′, then F ′x′ ∼= OX,x′ ⊗OX,ϕ(x′)
Fϕ(x′).

e) If x ∈ X ′, then depthOX′,x′ (Fx′) = depthOX,ϕ(x′)
(Fϕ(x′)).

f) δ(F ′) = δ(F).

Now, use the last statement and (2.4)A)b) to show that the Vanishing Theorem
of Severi-Enriques-Zariski-Serre (see [Br-Fu-Ro] (12.16),(12.17)) holds over an
arbitrary base field K.

E) (Characterizations of Algebraic Vector Bundles) Let R = K⊕ R1⊕R2 . . . be
a Noetherian homogeneous K-algebra, which is an integral domain of strictly
positive dimension and assume that the scheme X = Proj(R) is regular, so
that the local ring OX,x of X at x is regular for all x ∈ X. Let F 6= 0 be
a coherent sheaf of OX-modules. Show (on use of the Formula of Auslander-
Buchsbaum-Serre) that the following statements are equivalent:
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(i) F is an algebraic vector bundle over X.

(ii) δ(F) = dim(X).

(iii) H i(X,F(n)) = 0 for all i < dim(X) and all n� 0.

(iv) depthOX (Fx) > 0 for all closed points x ∈ X (that is for all x ∈ mProj(R)),
and H i(X,F(n)) = 0 for all i ∈ {1, 2, . . . , dim(X)− 1} and all n� 0.

Observe in particular that the equivalence of statements (i) and (iii) is a Coho-
mological Criterion for the Coherent Sheaf F to be an Algebraic Vector Bundle.

We now easily can prove a the Splitting Criterion of Horrocks (see [Hor]) for
vector-bundles over a projective spaces.

7.12. Theorem. Let r ∈ N, let K be a field, let R = K[X0, X1, . . . , Xr] be a
polynomial ring, consider the projective r-space PrK = Proj(R) and let F 6=
0 be a coherent sheaf of OPrK -modules. Then, the following statements are
equivalent:

(i) There is a graded free R-module F of finite rank such that F ∼= F̃ .

(ii) F is a splitting vector bundle over PrK.

(iii) F is an algebraic vector bundle over PrK and H i(PrK ,F(n)) = 0 for all
i ∈ {1, 2, . . . , r − 1} and all n ∈ Z.

(iv) H0(PrK ,F(m)) = 0 for all m � 0 and H i(PrK ,F(n)) = 0 for all i ∈
{1, 2, . . . , r − 1} and all n ∈ Z.

(v) depthOX,x(Fx) > 0 for all closed points x ∈ PrK and H i(PrK ,F(n)) = 0

for all i ∈ {1, 2, . . . , r − 1} and all n ∈ Z.

(vi) The total module of global sections Γ∗(P
r
K ,F) of F (see (3.8)) is a graded

free R-module of finite rank.

Proof. By (7.10)B)c) it is immediate that statement (i) implies statement (ii).
Assume that statement (ii) holds. Then, using the cohomological Hilbert func-
tion hiF : Z → N0 as calculated in (7.11), we see immediately that statement
(iii) holds. Statements (iii),(iv) and (v) are equivalent by (7.11)E).

Now, consider the total module of global sections

Γ := Γ∗(P
r
K ,F) =

⊕
n∈Z

Γ(PrK ,F(n)).

According to (3.11)c) we have F ∼= Γ̃. This shows, that statement (vi) implies
statement (i). It thus remains to show that statement (iv) implies statement
(vi).

Observe first that by (3.10) we have

H i
R+

(Γ) = 0, i = 0, 1.

As
Γn = H0(PrK ,F(n)) = 0, ∀n� 0
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we find some t ∈ Z such that Γ = Γ≥t. By (3.11)a) this means that the
graded R-module Γ is finitely generated. Now, by the second part of the
Serre-Grothendieck Correspondence (2.14)b) we obtain that

H i
R+

(Γ)n ∼= H i−1(PrK ,F(n)) = 0, ∀i ∈ {2, 3, . . . , r},∀n ∈ Z.
Consequently H i

R+
(Γ) vanishes for all i ∈ {2, 3, . . . , r}. As we have observed

above, this vanishing also holds for i = 0, 1. Therefore gradeΓ(R+) = r + 1
and hence (7.10)a) implies that hdimR(Γ) = 0, so that the finitely generated
graded R-module Γ is indeed free (see (7.5)C)b). �

As an application we now get the Splitting Theorem of Witt-Grothendieck (see
[Gro0]) for Vector Bundles over the projective line.

7.13. Corollary. Let K be a field. Then, each algebraic vector bundle over the
projective line P1

K splits.

Proof. Apply (7.12) with r = 1. �



8. Diagonal Bounds

Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous
K-algebra, let X = Proj(R) be the induced projective scheme and let F be a
coherent sheaf of OX-modules. Consider the cohomological pattern

P = P(X,F) = {(i, n) ∈ N0 × Z | H i(X,F(n)) 6= 0}

of F (see (2.15)). Now, for all k ∈ {0, 1, . . . , dim(F)} and all r ∈ Z we know

that the entries H i(X,F(n)) of P vanish right of the diagonal
(
(i, r− i)

)dim(F)

i=k+1

above level k , if they vanish along this diagonal.

It is natural to ask, whether this fact finds a natural extension, which also
applies to situations in which the entries of P do not necessarily vanish. In
this section we shall prove that this is indeed the case. More precisely, we
shall compute an upper bound and a right-vanishing bound for the numbers
hi(X,F(n − r − i)) in the range i > k and n ≥ r − i in terms of the r-th
cohomology diagonal

diag>kr (F) := (hi(X,F(i− r))dim(F)
i=k+1

of F above level k . This will tell us, that cohomology along a diagonal above
a given level, bounds cohomology right of this diagonal. In particular, the
cohomology diagonal of F above level 0 bounds the regularity of F .

We call this type of bounds A Priori Bounds of Castelnuovo Type as they are
valid for any coherent sheaf (which is expressed by the wording ”a priori“) and
also give upper bounds for the regularity. We also speak of Diagonal Bounds
by the reason explained above (see [Br2],[Br4],[Br-Matt-Mi1] and [Br-Sh1]).
The bounds we give in this section are not intented to be very sharp. Instead,
we prefer to give bounds which may be expressed by relatively simple explicit
formulas. Moreover the corresponding bounds are also valid in the more general
situation in which the base ring of our Noetherian homogeneous algebra is not
only a field, but just local Artinian. Readers interested in these extensions and
specifications should consult the quoted references.

We also shall prove a Left-Boundedness Result for Geometric Cohomological
Hilbert Functions. This result teaches us, that the cohomology left of a (lower
partial) diagonal is bounded left of this diagonal in terms of the values at-
tained there by the geometric cohomological Hilbert functions. But contrary
to the previous bounds of Castelnuovo type, one cannot expect here a general
left-vanishing bound. Nevertheless our (algebraic version of) the Vanishing
Theorem of Severi-Enriques-Zariski-Serre (see [Br-Fu-Ro](10.17)) gives such
left-vanishing bounds, but only at levels below the global subdimension. We
call these (”restricted“) left-vanishing bounds A Priori Bounds of First Sev-
eri Type (see also [Br3],[Br4], [Br-Matt-Mi1]). Above the level given by the
global subdimension one cannot expect the left-vanishing of cohomology, and
so left-vanishing bounds must be replaced by a conceptually new type of bound
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beyond the mentioned level. We shall treat these new A Priori Bounds of Sec-
ond Severi Type in Section 10.

But nevertheless our first Left-Boundedness Result for Geometric Cohomo-
logical Hilbert Functions enables us to look at cohomological patterns in a
new way. We namely use this boundedness result to prove a Right-Finiteness
Result for classes D of pairs (X,F) in which X is a projective scheme over
some field K and F is a coherent sheaf of OX-modules of a given dimension
s. This result says that if the class D is of finite cohomology on some diago-
nal set ∆r = {(i.r − i) | i = 0, 1, . . . , s}, then the class D is indeed of finite
cohomology on each set S ⊆ {0, 1, . . . , s} × Z which is bounded to the left.
We finally give an extension of this Right-Finiteness result, which allows to
replace the hypotheses that the class D is of finite cohomology on some di-
agonal set by the weaker condition, that D is of finite cohomology on some
quasi-diagonal subset Σ = {(i, ni) | i = 0, 1, . . . , s} ⊆ {0, 1, . . . , s} × Z with
ns < n − s− 1 < . . . < n0. This is a first and not yet complete look at the
general question: ”What Bounds Cohomology ¿‘ which will be discussed in
section 10.

We now attack our task, and we do this in the ring- and module theoretic
framework. To do so, we first give a number of prerequisites.

8.1. Reminder, Exercise and Definition. A) (Geometric Cohomological
Hilbert Functions) Let K be a field, let R = K ⊕R1 ⊕R2 . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then, for each i ∈ N0 we may consider the i-th cohomological Hilbert function
of M (see (2.4)B) and [Br-Fu-Ro](9.13))

hiM : Z→ N0, n 7→ hiM(n) = dimK(H i
R+

(M)n).

Moreover, we may define the i-th geometric Hilbert function

diM : Z→ N0

of M by

a) d0
M(n) := dimK(Mn)− h0

M(n) + hiM(n), ∀n ∈ Z.

b) If i > 0, then diM(n) := hi+1
M (n), ∀n ∈ Z.

In [Br-Fu-Ro](10.6),(10.19) we have introduced and studied these functions in
the special case where K is an infinite field.

B) (Basic Properties of Geometric Cohomological Hilbert Functions) Let the
notations and hypothesis as in part A). Prove the following statements:

a) d0
M(n) = 0 for all n ∈ Z if and only if dimR(M) ≤ 0.

b) If dimR(M) > 0, then dimR(M) = sup{i ∈ N0 | diM 6= 0}+ 1.

c) If N ⊆ ΓR+(M) is a graded submodule, then diM/N(n) = diM(n) for all
i ∈ N0 and all n ∈ Z.

d) For all i ∈ N0 and for all n, r ∈ Z we have diM(r)(n) = diM(n+ r).
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e) If K ′ is an extension field of K, the finitely generated graded module K ′⊗K
M over the Noetherian homogeneous K ′-algebra K ′ ⊗K R satisfies

diK′⊗KM(n) = diM(n), ∀i ∈ N0,∀n ∈ Z.

f) For all n ∈ Z we have (see (2.4)B))

χM(n) =
∑
i∈N0

(−1)idiM(n).

g) If X = Proj(R) and if F = M̃ is the coherent sheaf of OX-modules induced
by M then

diM(n) = hi(X,F(n)), ∀i ∈ N0,∀n ∈ Z.

h) In the notations of statement g) and (2.15) we have

P(X,F) = {(i, n) ∈ N0 × Z | diM(n) 6= 0}.

C) (Cohomology Tables) Let the notations and hypotheses be as in parts A)
and B). We define the cohomology table of the the finitely generated graded
R-module M as the family of non-negative integers

dM :=
(
diM(n)

)
(i,n)∈N0×Z

.

Let X = Proj(R). Then correspondingly for each coherent sheaf of OX-
modules F we define the cohomology table of the sheaf F as the family of
non-negative integers

hF :=
(
hi(X,F(n))

)
(i,n)∈N0×Z

.

Observe that

a) If F = M̃ , then hF = dM .

b) If N ⊆ ΓR+(M) is a graded submodule, then dM/N = dM .

c) If K ′ is an extension field of K, the finitely generated graded K ′ ⊗K R-
module K ′ ⊗K M satisfies dK′⊗KM = dM .

D) (Cohomology Diagonals) Let the notations and hypotheses be as above.
Then for each integer r ∈ Z we define the r-th cohomology diagonal of the
finitely generated graded R-module M as the finite family of non-negative in-
tegers

diagr(M) :=
(
diM(r − i)

)dimR(M)−1

i=0
= dM �{(i,r−i)|i<dimR(M)} .

Correspondingly, we define the r-th cohomology diagonal of the coherent sheaf
of OX-modules F as the family of non-negative integers

diagr(F) :=
(
hi(X,F(r − i))

)dim(F)

i=0
= hF �{(i,r−i)|i≤dim(F)} .
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We usually refer to the 0-th cohomology diagonal just as the cohomology di-
agonal of M (respectively of F) and thus write in accordance with [Br-Fu-Ro]
(10.19) B)

diag(M) := diag0(M), diag(F) := diag0(F).

Observe the following facts

a) If F = M̃ , then diagr(F) = diagr(M).

b) If N ⊆ ΓR+(M) is a graded submodule, then diagr(M/N) = diagr(M).

c) If K ′ is an extension field of K, then diagr(K
′ ⊗K M) = diagr(M).

d) diagr(M) = diag0(M(r)) = diag(M(r)).

e) diagr(F) = diag0(F(r)) = diag(F(r)).

E) (Cohomology Diagonals Above a Certain Level) Let the notations and hy-
potheses be as above. Let k ∈ N0. We define the r-th cohomology diagonal of
M above level k as the family of non negative integers

diag>kr (M) := (diM(r − i))dimR(M)−1
i=k+1 = dM �{(i,r−i)|k<i<dimR(M)} .

Similarly, we define the r-th cohomology diagonal of F above level k as

diag>kr (F) := (hi(X,F(r − i)))dim(F)
i=k+1 = dF �{(i,r−i)|k<i≤dim(F)} .

Observe the following fact:

a) The five statements a)-e) of part D) remain valid mutatis mutandis for
cohohomology diagonals above a given level k.

8.2. Exercise and Definition. A) (Diagonal Right Bounding Functions for
Modules) Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homo-
geneous K-algebra and let M be a finitely generated graded R-module. For
each integer l > 1 and each n ∈ Z we set

B̄l
M(n) :=

dimR(M)−1∑
i=l−1

(
dimR(M)− l
i− l + 1

)
diM(n− i),

With our usual convention that
(
u
v

)
:= 0 for all v ∈ N0 and all u ∈ Z<v. Keep

in mind that we also can write

B̄l
M(n) =

dimR(M)∑
j=l

(
dimR(M)− l

j − l

)
hjM(n− j + 1).

Observe the similarity of the l-th diagonal right-bounding function associated
with the graded R-module M

B̄l
M : Z→ N0, n 7→ B̄l

M(n),∀n ∈ Z

with the corresponding diagonal left-bounding functions Bk
M : Z → N0 one

may define for all k < dimR(M) according to [Br-Fu-Ro](10.10)A).
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B) (First Properties of Bounding Functions). Keep the above notations and
hypotheses. Prove the following statements:

a) For all n, r ∈ Z it holds B̄l
M(r)(n) = B̄l

M(r + n).

b) If K ′ is an extension field of K then B̄l
K′⊗KM(n) = B̄l

M(n) for all n ∈ Z.

c) For all i ∈ {l, l + 1, . . . , dimR(M)} and all n ∈ Z it holds hiM(n− i + 1) ≤
B̄l
M(n).

d) If d := dimR(M) > 1 then for all n ∈ Z we have B̄d
M(n) = hdM(n − d + 1)

and B̄l
M(n) = 0 whenever l > d.

e) sup{n ∈ Z | B̄l
M(n) 6= 0}+ 1 = regl(M).

f) If N ⊆ M is a graded submodule with dimR(M) ≤ 1 then B̄l
N(n) = 0 and

B̄l
M/N(n) = B̄l

M(n) for all n ∈ Z.

g) If N ⊆ ΓR+(M) is a graded submodule, then B̄l
M/N(n) = B̄l

M(n) ∀n ∈ Z.

The following Lemma is rather similar to [Br-Fu-Ro](10.10)

8.3. Lemma. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, Let M be a finitely generated graded R-module, let
x ∈ R1 ∩ NZDR(M) and let l > 1 be an integer. Then

B̄l
M/xM(n) ≤ B̄l

M(n), ∀n ∈ Z.

Proof. Let d = dimR(M). If d ≤ 2, we have dimR(M/xM) ≤ 1 and hence
B̄l
M/xM(n) = 0 for all n ∈ Z. So, let d > 2. Then dimR(M/xM) = d − 1.

Moreover, if we apply cohomology to the the short exact sequence of graded R-
modules 0→M(−1)

x−→M →M/xM → 0 we obtain that hjM/xM(n− j+1) ≤
hjM(n− j + 1) + hj+1

M (n− j) for all j ∈ N and all n ∈ Z. Consequently

diM/xM(n− i) ≤ diM(n− i) + di+1
M (n− (i+ 1)), ∀n ∈ Z.

Therefore, on use of the Pascal formula we get

B̄l
M/xM(n) =

d−2∑
i=l−1

(
d− l − 1

i− l + 1

)
diM/xM(n− i) ≤

≤
d−2∑
i=l−1

(
d− l − 1

i− l + 1

)(
diM(n− i) + di+1

M (n− (i+ 1))
)

=

= dl−1
M (n− (l − 1)) + dd−1

M (n− (d− 1))+
d−2∑
i=l

((d− l − 1

i− l

)
+

(
d− l − 1

i− l + 1

))
diM(n− i) =

=
d−1∑
i=l−1

(
d− l

i− l + 1

)
diM(n− i) = B̄l

M(n).

�
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8.4. Exercise. Let K be an algebraically closed field and let V,W be two
K-vector spaces such that 0 < dimK(V ) < ∞. Let f, g : V → W be two
K-linear maps such that the map αf + βg : V → W is surjective for all
pairs (α, β) ∈ K2 \ {(0, 0)}. Show that dimK(W ) < dimK(V ). (Hint: See
[Br-Fu-Ro](10.7).)

8.5. Theorem. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module of
dimension d > 0. Then for each r ∈ Z and each integer l ∈ {2, 3, . . . , d} we
have

a) regl(M) ≤ r +
(
2B̄l

M(r)
)2d−l

.

b) B̄l
M(n) ≤ 1

2

(
2B̄l

M(r)
)2d−l

for all n ≥ r.

Proof. By (8.2)B)b) we may assume as usually that K is algebraically closed.
Moreover by replacing M by M(r) we may assume that r = 0 (see (3.3)B)b)
and (8.2)B)a)). Now, let

P := AssR(M) ∩ (mProj(R) ∪ {R+}), a :=
⋂
p∈P

p, M̄ = M/Γa(M).

Then once more by [Br-Bo-Ro](1.9),(10.3)C) we have (see also in the proof of
(4.7))

AssR(ΓR+(M)) = P , dim(R/p) > 1, ∀p ∈ AssR(M̄).

In particular dimR(M̄) = d, dimR(ΓR+(M)) ≤ 1 and hence B̄l
M̄

(n) = B̄l
M(n)

for all n ∈ Z (see (8.2)B)f)). So, we may may replace M by M̄ and hence
assume in addition, that dim(R/p) > 1 for all p ∈ AssR(M). Consequently
by [Br-Fu-Ro](10.5) there is a K-vector space L ⊆ R1 with dimK(L) = 2 and
L \ {0} ⊆ NZDR(M). So, if f, g form a K-basis of L, we have

αf + βg ∈ NZDR(M), ∀(α, β) ∈ K2 \ {(0, 0)}.

If we set x = αf + βg and apply cohomology to the exact sequence of graded
R-modules 0 → M(−1)

x−→ M → M/xM → 0 we get exact sequences of
K-vector spaces

(i) H i
R+

(M)n−1
αf+βg−−−−→ H i

R+
(M)n → H i

R+
(M/(αf + βg)M)n

for all i ∈ N0, all n ∈ Z and all (α, β) ∈ K2 \ {(0, 0)}.

Now, we proceed by induction on d − l. If d − l = 0 we have B̄l
M(n) =

B̄d
M(n) = hdM(n − d + 1) for all n ∈ Z (see (8.2)B)d)). For all (α, β) ∈

K2 \ {(0, 0)} the element αf + βg ∈ R1 belongs to NZDR(M). Therefore
dimR(M/(αf + αg)M) < d, whence Hd

R+
(M/(αf + βg)M) = 0. So, if we

apply the sequences (i) with i = d, we get epimorphisms

Hd
R+

(M)n−1−d+1
αf+βg−−−−→ Hd

R+
(M)n−d+1 → 0, ∀(α, β) ∈ K2 \ {(0, 0)},∀n ∈ Z.
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Thus, for all n ∈ Z we get by (8.3) that

B̄d
M(n) = hdM(n−d+1) ≤ max{hdM(n−1−d+1)−1, 0} = max{B̄d

M(n−1)−1, 0}.
Therefore B̄d

M(n) ≤ B̄d
M(0) for all n ≥ 0 and B̄d

M(n) = 0 for all n ≥ B̄d
M(0).

This proves (more than) our claim if d− l = 0.

Now, let d − l > 0. Choose (α, β) ∈ K2 \ {(0, 0)}. Then in particular
dimR(M/(αf + βg)M) = d − 1. So, by induction and in view of (8.2)B)e)
and (8.3) we have

(ii) B̄l
M/(αf+βg)M(n) ≤ 1

2

(
2B̄l

M(0)
)2d−l−1

, ∀n ∈ Z.

(iii) B̄l
M/(αf+βg)M(n) = 0, ∀n ≥

(
2B̄l

M(0)
)2d−l−1

.

Now, the sequences (i) yield that

hjM(n− j+1) ≤ hjM(n−1− j+1)+hjM/(αf+βg)M(n− j+1), ∀j ∈ N,∀n ∈ Z.

According to (8.2)A) this implies that

B̄l
M(n) ≤ B̄l

M(n− 1) + B̄l
M/(αf+βg)M(n), ∀n ∈ Z,

whence, by induction on n:

B̄l
M(n) ≤ B̄l

M(0) +
n∑
k=1

B̄l
M/(αf+βg)M(k), ∀n ∈ N0.

But now, the above statements (ii) and (iii) imply that

B̄l
M(n) ≤ B̄l

M(0) +
1

2

(
2B̄l

M(0)
)2d−l−1

max{0,
(
2B̄l

M(0)
)2d−l−1

− 1} ≤

1

2

[(
B̄l
M(0)

)2d−l−1]2
=

1

2

(
B̄l
M(0)

)2d−l
.

This proves our statement b).

It remains to show statement a). By (8.2)B)e) this comes up to show that

B̄l
M(n) = 0, ∀n ≥

(
2B̄l

M(0)
)2d−l

.

In order to do so, we choose any n ≥
(
2B̄l

M(0)
)2d−l−1

, so that by statement

(iii) we have B̄l
M/(αf+βg)M(n) = 0 and hence (see (8.2)B)c))

hiM/(αf+βg)M(n− i+ 1) = 0, ∀i ∈ {l, l + 1, . . . , d}.

So, by the exact sequences (i) we get an epimorphism

H i
R+

(M)n−i
αf+βg−−−−→ H i

R+
(M)n−i+1 → 0

for all i ∈ {l, l + 1, . . . , d} and all pairs (α, β) ∈ K2 \ {(0, 0)}. By (8.4) this
allows to conclude that

hiM(n− i+ 1) ≤ max{hiM(n− i)− 1, 0}, ∀i ∈ {l, l + 1, . . . , d}.
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From this we obtain by (8.2)A) that

B̄l
M(n) ≤ max{B̄l

M(n− 1)− 1, 0}, ∀n ≥
(
2B̄l

M(0)
)2d−l−1

.

It follows that

B̄l
M(n) = 0, ∀n ≥ B̄l

M

(
(2B̄l

M(0))2d−l−1)
+
(
2B̄l

M(0)
)2d−l−1

=: B.

By statement b) we have

B̄l
M

(
(2B̄l

M(0))2d−l−1) ≤ 1

2

(
2B̄l

M(0)
)2d−l

.

As in addition (
Bl
M(0)

)2d−l−1

≤ 1

2

(
2B̄l

M(0)
)2d−l

it follows that B ≤
(
2B̄l

M(0)
)2d−l

. This proves our claim. �

8.6. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module of
dimension d > 0. Then, for all l ∈ {2, 3, . . .} we have

a) regl(M) ≤
(
2
∑d

j=l

(
d−l
j−l

)
hjM(1− j)

)2d−l
.

b)
∑d

j=1

(
d−l
j−l

)
hjM(n− j − 1) ≤ 1

2

(
2
∑d

j=l

(
d−l
j−l

)
hjM(1− j)

)2d−l
, ∀n ∈ N0.

Proof. Apply 8.4 with r = 0 and observe the second equality in (8.2)A). �

In order to express the previous results in sheaf theoretic terms, we extend
the notion of regularity of a coherent sheaf over a projective scheme as it was
introduced in (3.6). We also give a sheaf-theoretic version of the bounding
functions defined in (8.2).

8.7. Exercise and Definition. A) (Regularity of Sheaves Above a Certain
Level) Let R =

⊕
n∈N0

Rn be a Noetherian homogeneous ring, set X :=
Proj(R), let F be a coherent sheaf of OX-modules and let k ∈ N0. We define
the regularity of the coherent sheaf of OX-modules F above level k by

regk(F) := inf{r ∈ Z | H i(X,F(r − i)) = 0, ∀i > k}.

Prove the following statements:

a) reg0(F) = reg(F).

b) For all k, l ∈ N0 with k ≤ l we have regl(F) ≤ regk(F).

c) For all k ∈ N0 and all r ∈ Z we have regk(F(r)) = regk(F)− r.
d) If M is a finitely generated graded R-module with M̃ = F , then regk(F) =

regk+2(M) for all k ∈ N0.

B) (Diagonal Right Bounding Functions for Sheaves) Now, let K be a field,
let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous K-algebra, set X :=
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Proj(R) and let F be a coherent sheaf of OX-modules. For each k ∈ N0 and
all n ∈ Z we set

B̃k
F(n) :=

dim(F)∑
i=k+1

(
dim(F)− k − 1

i− k − 1

)
hi(X,F(n− i))

and consider the corresponding k-th diagonal right-bounding function associ-
ated to the coherent sheaf F

B̃k
F : Z→ N0, n 7→ B̃k

F(n),∀n ∈ Z.
Prove the following facts

a) For all n, r ∈ Z it holds B̃k
F(r)(n) = B̃F(r + n).

b) For all i ∈ {k+1, k+2, . . . , dim(F)} and all n ∈ Z it holds hi(X,F(n−i)) ≤
B̃k
F(n).

c) If d := dim(F) > 0 then for all n ∈ Z we have B̃d−1
F (n) = hd(X,F(n− d))

and B̃k
F(n) = 0 whenever k ≥ d.

d) For all k ∈ N0 we have regk(F) = inf{r ∈ Z | B̃k
F(r) = 0}.

e) If M is a finitely generated graded R-module with F = M̃ , then B̃k
F(n) =

B̄k+2
M (n) for all k ∈ N0 and all n ∈ Z.

8.8. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, set X := Proj(R) and let F be a coherent sheaf of
OX-modules of dimension s ≥ 0. Then for each k ∈ {0, 1, . . . , s − 1} and all
r ∈ Z we have

a) regk(F) ≤ r +
(
B̃k
F(r)

)2s−k−1

.

b) B̃k
F(n) ≤ 1

2

(
2B̃F(r)

)2s−k−1

for all n ≥ r.

Proof. Let M be a finitely generated graded R-module with F = M̃ , observe
that dimR(M) = s+ 1, keep in mind (8.7)A)d),B)e) and apply (8.5). �

8.9. Corollary. Let K be a field, let K ⊕ R1 ⊕ R2 . . . be a Noetherian ho-
mogeneous K-algebra, set X := Proj(R) and let F be a coherent sheaf of
OX-modules of dimension s ≥ 0. Then, for each k ∈ {0, 1, . . . , s− 1} we have

a) regk(F) ≤
(
2
∑s

i=k+1

(
s−k−1
i−k−1

)
hi(X,F(−i))

)2d−k−1

.

b)
∑s

i=k+1

(
s−k−1
i−k−1

)
hi(X,F(n− i) ≤ 1

2

(
2
∑s

i=k+1

(
s−k−1
s−i−1

)
hi(X,F(−i))

)2s−k−1

for
all n ∈ N0.

Proof. Apply (8.8) with r = 0. �

8.10. Corollary. Let K be field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, set X := Proj(R) and let F be a coherent sheaf of OX-
modules of dimension s ≥ 0. Then the 0-th cohomology diagonal diag>0

0 (F)
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above level 0 bounds the regularity of F . More precisely

reg(F) ≤
(
2

s∑
i=1

(
s− 1

i− 1

)
hi(X,F(−i))

)2s−1

.

Proof. Apply (8.9)a) with k = 0. �

In the previous results, we only did use information on cohomology diagonals
above level 0. So, it is natural to ask, whether we could draw further reaching
conclusions if we knew the full cohomology diagonal. We shall answer this
question affirmatively in a way which will lead as to look at our cohomological
patterns from a new point of view. To do so, we first prove a Left-Bounding
Result for Geometric Cohomological Hilbert Functions, which holds in the
range ”left of a diagonal below a certain level“. We begin with an auxiliary
result.

8.11. Lemma. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module and let
x ∈ R1 ∩ NZDR(M). Then, with the notational convention that djN(n) = 0 for
all j < 0, all finitely generated graded R-modules N and all n ∈ Z we have for
all i, k ∈ N0:

a) diM(m− 1) ≤ diM(m) + di−1
M/xM(m), for all m ∈ Z.

b) diM(n) ≤ diM(−i) +
∑

n<m≤−i d
i−1
M/xM(m), for all n ≤ −i.

c)
∑i−1

l=0

(
i−1
l

)
dl+kM/xM(−l) ≤

∑i
j=0

(
i
j

)
dj+kM (−j).

Proof. ”a)“: First, we apply cohomology to the short exact sequence of graded
R-modules

0→M(−1)
x−→M →M/xM → 0

to conclude that

hi+1
M (m− 1) ≤ hi+1

M (m) + hiM/xM(m), ∀m ∈ Z.
If i > 2, this proves statement a). If i = 2 we get

d1
M(m− 1) ≤ d1

M(m) + h1
M/xM(m), ∀m ∈ Z.

As h0
M/xM(m) ≤ dimK((M/xM)m) we have for all m ∈ Z the inequality

h1
M/xM(m) ≤ dimK((M/xM)m) + h1

M/xM(m)− h0
M/xM(m) = d0

M/xM(m).

This proves statement a) if i = 1. So, let i = 0. Then by [Br-Fu-Ro](10.8)a)
we have d0

M(m− 1) ≤ d0
M(m) for all m ∈ Z. This proves statement a) in this

case.

”b)“: This follows immediately from statement a).

”c)“: By statement a) we have

dl+kM/xM(−l) ≤ dl+k+1
M (−l − 1) + dl+kM (−l), ∀l ∈ N0.
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Therefore on use of the Pascal formula
i−1∑
l=0

(
i− 1

l

)
dl+kM/xM(−l) ≤

i−1∑
l=0

(
i− 1

l

)[
dl+k+1
M (−l − 1) + dl+kM (−l)

]
=

dkM(0) +
i−1∑
j=1

[(i− 1

j − 1

)
+

(
i− 1

j

)]
dj+kM (−j) + dj+kM (−i) =

i∑
j=0

dj+kM (−j).

�

Now we are ready to prove the announced Left-Bounding Result for Geometric
Cohomological Hilbert Functions. It gives an upper bound on the geometric
cohomological Hilbert functions left of a given diagonal.

8.12. Proposition. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noether-
ian homogeneous K-algebra and let M be finitely generated graded R-module.
Then, for all i ∈ N0 we have

diM(n) ≤
i∑

j=0

(
−n− j − 1

i− j

)[ i−j∑
l=0

(
i− 1

l

)
di−lM (l − i)

]
, ∀n ≤ −i.

Proof. We proceed by induction on i. If i = 0 we may conclude as d0
M(n) ≤

diM(0) for all n ≤ 0 (see either (8.2)d) or [Br-Fu-Ro](10.8)a)). So let i > 0. As
usually we can assume that K is infinite and that ΓR+(M) = 0, so that there
is some element x ∈ R1 ∩ NZDR(M). Then, according to (8.11)b) we have

diM(n) ≤ diM(−i) +
∑

n<m≤−i

di−1
M/xM(m), ∀n ≤ −i.

By induction we also have

di−1
M/xM(m) ≤

i−1∑
j=0

(
−m− j − 1

i− 1− j

)[ i−1−j∑
l

(
I − l − 1

l

)
d
i−1−l)
M/xM(l−i+1)

]
, ∀m ≤ 0.

So, combining both inequalities we can say

(i) For all n ≤ −i it holds

diM(n) ≤ diM(−i)+

∑
n<m≤−i

{ i−1∑
j=0

(
−m− j − 1

i− 1− j

)[ i−1−j∑
l=0

(
i− l − 1

l

)
di−1−l
M/xM(l − i+ 1)

]}
.

Now, by (8.11)c) (applied to M(−j) with k = j) we may write

i−1−j∑
l=0

(
i− 1− j

l

)
di−1−l
M/xM(l − i+ 1) =
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i−j−1∑
l=0

(
i− j − 1

i− j − 1− l

)
d

(i−j−1)+j
M/xM (−(i− j − 1− l)− j) =

i−j−1∑
h=0

(
i− j − 1

h

)
dh+j
M(−j)/xM(−j)(h) ≤

i−j∑
g=0

(
i− j
g

)
dg+jM(−j)(−g) =

i−j∑
g=0

(
i− j

i− j − g

)
d
i−(i−j−g)
M ((i− j − g)− i) =

i−j∑
l=0

(
i− j
l

)
di−lM (l − i).

Now, on use of the above inequality (i) and as∑
n<m≤−i

(
−m− j − 1

i− 1− j

)
=

(
−n− j − 1

i− j

)
we obtain

diM(n) ≤ diM(−i) +
∑

n<m≤−i

{ i−1∑
j=0

(
−m− j − 1

i− 1− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM (l − i)

]}
=

diM(−i) +
{ i−1∑
j=0

∑
n<m≤−i

(
−m− j − 1

i− 1− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM (l − i)

]}
=

diM(−i) +
{ i−1∑
j=0

(
−n− j − 1

i− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM (l − i)

]}
=

i∑
j=0

(
−n− j − 1

i− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM (l − i)

]
.

�

The previous bounding results taken for its own occurs indeed not to be very
appealing. But its consequences give a hint to consider cohomology tables from
a new point of view. To make this precise, we first introduce some notations.

8.13. Notation. Let d ∈ N. ByMd we denote the class of all pairs (R,M) in
which R = K⊕R1⊕R2 . . . is a Noetherian homogeneous K-algebra over some
field K and M =

⊕
n∈ZMn is a finitely generated graded R-module such that

dimR(M) = d.

Correspondingly let s ∈ N0 and let Ss the class of all pairs (X,F) in which X is
a projective scheme over some field K and F is a coherent sheaf of OX-modules
with dim(F) = s. Observe that

Ss = {(Proj(R), M̃) | (R,M) ∈Ms+1}.

Now, we define a concept, which will play an important role later on in these
lectures: the concept of subclass C ⊆ Md (or ⊆ Ss) which is of finite cohomol-
ogy on a subset S ⊆ {0, 1, . . . , d− 1} × Z (respectively ⊆ {0, 1, . . . , s} × Z).
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8.14. Exercise and Definition. A) (Classes of Finite Cohomology) Let d ∈ N
and let S ⊆ {0, 1, . . . , d− 1}×Z be a set. A subclass C ⊆ Md is said to be (a
class) of finite cohomology on S if the set of families

{(diM(n))(i,n)∈S | (R,M) ∈ C} = {dM �S| (R,M) ∈ C}.

is finite. We say that the class C ⊆ Md is of finite cohomology (at all) if it is
of finite cohomology on the set {0, 1, . . . , d− 1} × Z.

The notion of subclass D ⊆ Ss of finite cohomology (on a set S ⊆ {0, 1, . . . , s}×
Z) is defined similarly.

B) (First Properties of Classes of Finite Cohomology) Let r ∈ N0, let

C, Ci,D ⊆Md (or ⊆ Ss), (i = 1, 2, . . . , r)

be subclasses and let

S,Si,T ⊆ {0, 1, . . . , d− 1} × Z (or ⊆ {0, 1, . . . , s} × Z), (i = 1, 2, . . . , r)

be subsets. Observe the following easy facts

a) C is of finite cohomology on ∅.
b) If C is finite, it is of finite cohomology on S.

c) If C ⊆ D and D is of finite cohomology on S, then C is of finite cohomology
on S.

d) If C is of finite cohomology on S and ifT ⊆ S, then C is of finite cohomology
on T.

e) If Ci is of finite cohomology on S for all i ∈ {1, 2, . . . , r}, then ∪ri=1Ci is of
finite cohomology on S.

f) If C is of finite cohomology on Si for all i ∈ {1, 2, . . . , r}, then C is of finite
cohomology on ∪ri=1Si.

C) (An Example) Let the notations and hypotheses as in be as in parts A) and
B), choose (R,M) ∈Md and let C := {(R,M⊕r) | r ∈ N}. Show that

{0, 1, . . . , d− 1} × Z \ P(Proj(R), M̃)

is the unique maximal subset S ⊆ {0, 1, . . . , d− 1}×Z on which the class C is
of finite cohomology.

Now, we can prove the following Right-Finiteness Result for Classes C ⊆ Md, a
module-theoretic formulation of the corresponding announced sheaf-theoretic
finiteness result for classes D ⊆ Ss.

8.15. Proposition. Let d ∈ N, r ∈ Z and let C ⊆ Md be a subclass which is
of finite cohomology on the diagonal set ∆r := {(i, r − i) | i = 0, 1, . . . , d− 1}.
Then, for each t ∈ Z the class C is of finite cohomology on the set

S := {0, 1, . . . , d− 1} × Z≥t.
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Proof. In view of (8.14)B)d) we may assume that r−d ≥ t, so that in particular
r− i ≥ t for all i ∈ {0, 1, . . . , d− 1}. Now, for each integer i ∈ {0, 1, . . . , d− 1}
and each integer n ≤ r − i we may use (8.12) to see that

diM(n) = diM(r)(n− r) ≤
i∑

j=0

(
n− j − 1

i− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM(r)(l − i)

]
=

i∑
j=0

(
n− j − 1

i− j

)[ i∑
k=j

(
i− j
i− k

)
dkM(r)(−k)

]
=

i∑
j=0

(
n− j − 1

i− j

)[ i∑
k=j

(
i− j
i− k

)
dkM(r − k)

]
.

So, the class C is of bounded cohomology on the set

S1 := {(i, n) | i ∈ {0, 1, . . . , d− 1}, n ∈ {t, t+ 1, . . . , i− r}}.
If we apply (8.5) with l = 2 and bear in mind the definition of the numbers
B̄2
M(n) (see (8.2)A)) we see immediately that the class C is of finite cohomology

on the set

S2 := {(i, n) | i ∈ {1, 2, . . . , d− 1}, n ∈ Z≥r−i}.
Now, set

S3 := {0} × Z>r.
Then clearly S = S1 ∪ S2 ∪ S3. So, by (8.14)B)f) it remains to show that the
class C is bounded on the set S3.

To do so. let (R,M) ∈ C. Then the Hilbert polynomial PM ∈ Q[X] is of
degree d− 1 and moreover we have (see (8.1)B)b),f))

PM(n) = χM(n) =
i∑
i=0

(−1)idiM(n), ∀n ∈ Z.

In particular, the polynomial PM is determined by the finite family

FM := (diM(n))(i,n)∈{0,1,...,d−1}×{r−d,r−d+1,...,r}.

As {0, 1, . . . , d − 1} × {r − d, r − d + 1, . . . , r} ⊆ S1 ∪ S2 and as C is of finite
cohomology on the set S1 ∪ S2, the set {FM | (R,M) ∈ C} is finite. Therefore
the set of Hilbert polynomials PM with (R,M) ∈ C is finite, thus:

(i) #{PM | (R,M) ∈ C} <∞.

Moreover, as the class C is of finite cohomology on the set S2, and as diM(n) =
hi+1
M (n) = 0 for all i > 0 and all n� 0, there is some integer s > r such that

(ii) diM(n) = 0, ∀(R,M) ∈ C,∀i ∈ {1, 2, . . . , d− 1},∀n > s.

In addition by our above description of the Hilbert polynomial PM we have

(iii) d0
M(n) = PM(n)−

∑d−1
i=1 (−1)idiM(n), ∀n ∈ Z.
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As C is of finite cohomology on the set S2, statement (i) and (ii) imply that
the class C is of finite cohomology on the set {0} × {r + 1, r + 2, . . . , s} ⊆ S3.
It thus remains to show that C is of finite cohomology on the set

S3 \
[
{0} × {r + 1, r + 2, . . . , s}

]
= {0} × Z>s.

But this follows easily by statements (i),(ii) and (iii). �

In sheaf-theoretic terms, the previous right-finiteness result takes the form of
the following Right-Finiteness Result for Classes D ⊆ Ss.

8.16. Corollary. Let s ∈ N0, let r ∈ Z and let D ⊆ Ss be a subclass which is
of finite cohomology on the diagonal subset ∆r := {(i, r − i) | i = 0, 1, . . . , s}
of {0, 1, . . . , s} × Z. Then, for each t ∈ Z the class D is of finite cohomology
on the set

S := {0, 1, . . . , s} × Z≥t.

Proof. This follows immediately by (8.15) and the last observation made in
(8.13). �

So, we can say, that a subclass D ⊆ Ss which is of finite cohomology on a
diagonal set ∆r ⊆ {0, 1, . . . , s} × Z is also of finite cohomology on each left
bounded subset S of {0, 1, . . . , s} × Z. It is natural to ask, whether the same
conclusion holds if the diagonal subset ∆r is replaced by a set subject to weaker
conditions. This is indeed true, as we are going to show now. We begin with
the following auxiliary result.

8.17. Lemma. Let d ∈ N, let (ni)
d−1
i=0 be a sequence of integers such that nd−1 <

nn−2 < . . . < n0 and let C ⊆ Md be a subclass which is of finite cohomology
on the subset Σ := {(i, ni) | i = 0, 1, . . . , d− 1} of {0, 1, . . . , d− 1} ×Z. Then,
the class C is of finite cohomology on the diagonal set

∆ = ∆d+nd−1
:= {(i, d+ nd−1 − i) | i = 0, 1, . . . , d− 1}.

Proof. We proceed by induction on

δ = δ(Σ) := n0 − nd−1 (≥ d).

If δ = d we clearly have Σ = ∆ and our claim is clear.

So, let δ > d. Then, there is some i ∈ {0, 1, . . . , d− 2} such that ni−ni+1 > 1.
We chose i minimal with this property, write i = i(Σ) if necessary, and proceed
by induction on i = i(Σ).

Assume first, that i = 0. Then n1 + 1 < n0 and it follows by (8.12) applied
with i = 0 that d0

M(n1 + 1) = d0
M(n0)(n1 + 1 − n0) ≤ d0

M(n0)(0) = d0
M(n0).

But this implies that the class C is of finite cohomology on the set Σ′ :=
{(0, n1 + 1)} ∪ {(j, nj) | j = 1, 2 . . . , d − 1}. But for this set we also have
δ(Σ′) < δ(Σ) = δ. Now, by induction the class C is of finite cohomology on
the set ∆.
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Now, let i > 0. Then clearly ni−1−n0 = −i−1 and C is of finite cohomology
on the non-empty set

{(i− l, n0 + l − i) | l = 0, 1, . . . , i} = {(k, nk) | k = 0, 1, . . . , i} ⊆ Σ.

So, there is some h ∈ N0 such that di−lM(n0)(l − i) = di−lM (n0 + l − i) ≤ h for all

l ∈ {0, 1, . . . , i} and all pairs (R,M) ∈ C. By (8.12) it follows that there is
some h′ ∈ N0 such that

diM(ni − 1) = diM(n0)(ni − 1− n0) = diM(n0)(−i− 1) ≤ h′, ∀(R,M) ∈ C.
From this we obtain that the class C is of finite cohomology on the set

Σ′′ := {(j, nj) | j = 0, 1, . . . , i−1}∪{(i, ni−1)}∪{(k, nk) | k = i+1, i+2, . . . , d−1}.
As now i(Σ′′) = i(Σ)− 1 = i− 1, we may conclude by induction. �

To formulate the announced finiteness result, we introduce a further notion.

8.18. Definition. Let t ∈ N0. A set Σ ⊆ {0, 1, . . . , t} × Z is said to be a
quasi-diagonal subset if there are integers nt < nt−1 < . . . < n0 such that

Σ = {(i, ni) | i = 0, 1, . . . , t}.
Observe that diagonal subsets are quasidiagonal.

Now, we may prove the module-theoretic version of the announced extension
of our Right-Finiteness Result.

8.19. Proposition. Let d ∈ N and let C ⊆ Md be a subclass which is of finite
cohomology on some quasi-diagonal subset Σ ⊆ {0, 1, . . . , d−1}×Z. Then, for
each t ∈ Z the class C is of finite cohomology on the set {0, 1, . . . , d−1}×Z≥t.

Proof. this is immediate by (8.15) and (8.17). �

Finally, in sheaf-theoretic terms we now can say:

8.20. Corollary. Let s ∈ N0 and let D ⊆ Ss be a subclass which is of finite
cohomology on some quasi-diagonal subset Σ ⊆ {0, 1, . . . , s} × Z. Then, for
each t ∈ Z the class D is of finite cohomology on the set {0, 1, . . . , s} × Z≥t.

Proof. This follows once more by mere translation from (8.20). �

So, we finally indeed can say, that any subclass D of Ss which is of finite
cohomology on some quasi-diagonal subset Σ of {0, 1, . . . , s} × Z is of finite
cohomology on any left-bounded subset S of {0, 1, . . . , s} × Z.



9. Modules of Deficiency

In this section we introduce an important tool for the treatment of local co-
homology modules, the so called Modules of Deficiency. We restrict ourselves
to do this in the special framework which is most relevant for these lectures -
namely over Noetherian homogeneous algebras over fields. In this special case,
the functor of taking Graded Matlis Duals luckily coincides with the functor
of taking Graded Duals with respect to the base field of our Noetherian homo-
geneous ring. In our construction, this will allow us to shortcut the theory of
Graded Gorenstein Rings and to define the requested deficiency modules sim-
ply as graded duals of local cohomology modules with respect to the irrelevant
ideal. So, we invest in our definition a fact which, in a more general situation
corresponds to the Graded Local Duality Theorem. This simplification comes
for free, as our rings are graded homomorphic images of polynomial rings over
fields and hence a fortiori of Gorenstein rings.

On the other hand as we renounced to define our modules of deficiency in
the usual way by means of certain Ext-modules, we now are left with the
task to prove that these modules are finitely generated. We shall do this in
two steps. First we compute the modules of deficiency of a polynomial ring
over a field. In a second step, which is incorporated in the proof of our Main
Theorem on Modules of Deficiency (9.7) we use an induction argument to
show the requested finiteness result in general. In order to be able to perform
efficient homological arguments, we actually shall introduce the Functors of
Deficiency as the composition of local cohomology functors with respect to
the the irrelevant ideal and the graded duality functor. As this latter functor
behaves well in the subcategory of Graded Modules with Finite Components,
we get the expected Graded Local Duality. In our Main Theorem (9.7) we
shall collect all the relevant properties of deficiency modules.

As an application, we shall be able to introduce the concept of Cohomological
Hilbert Polynomial and the notion of Cohomological Postulation Number of a
finitely generated graded module over a Noetherian homogeneous K-algebra.
The latter invariant finds a lower bound in terms of the regularity of deficiency
modules, and this shall us lead to the investigation of our next section. We
also compute the top local cohomology module of a polynomial ring over a field
in an example and exercise.

We also introduce the canonical module of a finitely generated graded module
M over a Noetherian homogeneous algebra over a field K as the highest non-
vanishing deficiency module. We then prove a few properties about these
modules. The most basic of these says, that that the grade of the canonical
module of a finitely generated graded module M is at least as big as the
minimum of 2 and the dimension of M . We then derive a Structure Theorem
for Canonical Modules and show that the canonical module of a CM-module
is again CM.
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Finally we devote an extended remark to the link between our ”narrow-gauge“
way of approaching the theory of deficiency module and the ”standard-gauge“
way which relies on (the graded form) of Grothendieck’s Local Duality Theo-
rem. At the very end of this section we shortly shall discuss in an exercise and
remark the fact that our local cohomology modules are Artinian.

We now begin with a number of fairly general preparations, which shall pave
the way to define and to study modules of deficiency.

9.1. Construction and Exercise. A) (Graded Dual Modules) For the moment
let R =

⊕
n∈ZRn be an arbitrary graded ring and let M =

⊕
n∈ZMn be a

graded R-module. We consider the R0-module

HomR0(M,R0)

of all R0-linear maps h : M → R0. By means of the scalar multiplication
defined by

xh := h ◦ xIdM , ∀x ∈ R, ∀h ∈ HomR0(M,R0)

the R0-module HomR0(M,R0) is turned into an R-module. We consider the
subset

D(M) := {h ∈ HomR0(M,R0) | #{n ∈ Z | h(Mn) 6= 0} <∞}
of HomR0(M,R0) consisting of all R0-linear maps h : M → R0 which vanish
on almost all graded components of M . Moreover, for each t ∈ Z we define
the subset

D(M)t := {h ∈ HomR0(M,R0) | h(Mn) = 0,∀n 6= −t}
of D(M) consisting of all R0-linear maps h : M → R0 which vanish on all
graded components of M in degrees different from −t. Prove the following
statements:

a) D(M) ⊆ HomR0(M,R0) is an R-submodule.

b) For all t ∈ Z the set D(M)t ⊆ D(M) is an R0-submodule.

c) The family (D(M)t)t∈Z of R0-submodules D(M)t ⊆ D(M) defines a grad-
ing on the R-module D(M).

d) For all t ∈ Z there is an isomorphism of R0-modules

τMt : HomR0(M−t, R0)
∼=−→ D(M)t

given by

τMt (h)(m) := h(m−t), ∀h ∈ HomR0(M−t, R0), ∀m := (mn)n∈Z ∈M = ⊕n∈ZMn.

e) For all r, t ∈ Z we have D(M(r))t = D(M)t−r.

From now on, we always furnish the R-module D(M) with the grading men-
tioned in statement c), hence write

D(M) =
⊕
t∈Z

D(M)t,
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and call D(M) the graded (R0-) dual of M . Observe that by statement e) we
have

f) D(M(r)) = D(M)(−r), ∀r ∈ Z.

B) (The Graded Duality Functor) Keep the notations and hypotheses of part
A) and let h : M → N be a homomorphism of graded R-modules. Show that
there is a homomorphism of graded R-modules

D(h) : D(N)→ D(M), f 7→ f ◦ h, ∀f ∈ D(N).

The homomorphisms of graded R-modules D(h) is called the graded (R0-) dual
of h. Prove the following claims:

a) D(IdM) = IdD(M).

b) If h : M → N and g : N → P are homomorphisms of graded R-modules,
then D(g ◦ h) = D(h) ◦D(g).

c) If h, l : M → N are homomorphism of graded R-modules, then D(h+ l) =
D(h) +D(l).

d) For all r ∈ Z, all x ∈ Rr and each homomorphism of graded R-modules
h : M → N the homomorphism of graded R-modules xh : M → N(r)
satisfies D(xh) = xD(h) : D(N)(−r)→ D(M) (see [Br-Fu-Ro](8.5)E))

e) If L
u−→ M

v−→ N → 0 is an exact sequence of graded R-modules, we have
an exact sequence of graded R-modules

0→ D(N)
D(v)−−→ D(M)

D(u)−−−→ D(L).

So, similar as in [Br-Fu-Ro](8.6)A),D) we we can say that we have a contravari-
ant, R-linear, left exact functor of graded R-modules

D(•) : (M
h−→ N) p (D(N)

D(h)−−→ D(M)),

the functor of taking graded (R0-)duals or the graded duality functor (with
respect to R0).

C) (First Properties of Graded Duality Functors) Keep the notations and hy-
potheses of parts A) and B). Show the following

a) For all t ∈ Z there is a natural equivalence of contravariant functors from
graded R-modules to R0-modules

τMt : HomR0(•−t, R0)
∼=−→ D(•)t : M p (HomR0(M−t, R0)

τMt−−→ D(M)t),

where τMt is defined as in statement A)d).

b) There is a natural transformation of covariant functors of graded R-modules

γ : • → D(D(•)) : M p (M
γM−−→ D(D(M))),

where the homomorphism γM : M → D(D(M)) is given by

γM(m)(f) = f(m), ∀m ∈M,∀f ∈ D(M).
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D) (Base Ring Independence of Graded Duals) Keep the notations of part A)
and assume that a  R is a proper graded ideal such that a0 = 0 and aM = 0.
We identify R0 = (R/a)0. Show the following facts.

a) The R0-module HomR0(M,R0) stays the same, if consider M as an R/a-
module.

b) The R-module HomR0(M,R0) is annihilated by a and its structure as an
R/a-module coincides with the structure inherited from the R/a-module
M .

c) The graded R-module D(M) satisfies aD(M) = 0 and is independent on
whether we consider M as an R-module or an R/a-module.

We now shall begin to focus to the special case, where the graded ring R is a
Noetherian homogeneous algebra over a field. In order to do so, we first of all
recall a few general facts about duals of vector spaces.

9.2. Reminder and Exercise. A)(Duality Functors for Vector Spaces) Let
K be a field. Keep in mind that the assignment

(V
h−→ W ) p (W∨ = HomK(W,K)

h∨=HomK(h,K)−−−−−−−−−→ V ∨ = HomK(V,K))

with

h∨(f) = HomK(h,K)(f) := f ◦ h, ∀f ∈ W∨ = HomK(V,K)

defines a contravariant, linear, exact functor of K-vector spaces

•∨ = HomK(•, K),

the functor of taking K-duals or the duality functor for K-vector spaces.

B) (Dualizing and Finite Direct Sums) Let r ∈ N and let V• = (Vi)
r
i=1 be a

family of K-vector spaces. Check that there is an isomorphism of K-vector
spaces

νV• = ν :
r⊕
i=1

(V ∨i )
∼=−→
( r⊕
i=1

Vi
)∨

given by

ν(u1, u2, . . . , ur)(v1, v1, . . . , vr) =
r∑
i=1

ui(vi), ui ∈ V ∨i , vi ∈ Vi, (i = 1, 2, . . . , r).

Formulate and prove the fact that this isomorphism is natural in the obvious
sense, so that the duality functor •∨ commutes with finite direct sums. Show
that for a K-vector space V we can say:

a) V ∼= V ∨ if and only if dimK(V ) <∞.

b) If dimK(V ) <∞, then dimK(V ∨) = dimK(V ).
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C) (Biduals) We now are concerned with the covariant linear exact functor of
K-vector spaces

•∨∨ := (•∨)∨

of taking biduals. Check that for each K-vector space V there is a K-linear
map

γV = γ : V → V ∨∨ : γ(v)(f) = f(v), ∀v ∈ V, ∀f ∈ V ∨

and prove the following statements:

a) For each K-vector space V , the linear map γV : V → V ∨∨ is injective.

b) The assignment γ : V p (V
γV−→ V ∨∨) is a natural transformation of covari-

ant functors of K-vector spaces γ : • → •∨∨.
c) If dimK(V ) <∞, then the map γV : V → V ∨∨ is an isomorphism.

D)(Dualizing and Diagonals) Let r ∈ N, fix a K-vector space V and consider
the r-th diagonal map on V , that is the injective K-linear map

δ = δVr : V � V ⊕r, v 7→ (v, v, . . . , v),∀v ∈ V,

and the surjective K-linear map

δ∨ = (δVr )∨ : (V ⊕r)∨ → V ∨.

Show that there is a commutative diagram

(V ∨)⊕r
ν

∼=
//

β ##

(V ⊕r)∨

δ∨{{
V ∨

in which ν = ν(V,V,...,V ) is the natural isomorphism defined for the finite family
(V, V, . . . , V ) of r copies of V in part B) and β is defined by the assignment
(u1, u2, . . . , ur) 7→

∑r
i=1 ui.

E)(Duality and Kernels) Fix two K-vector spaces V and W , let r ∈ N and fix
a finite family of K-linear maps

h• := (hk)
r
i=1, hk ∈ HomK(V,W ),∀k ∈ {1, 2, . . . , r}.

Moreover consider the composition of the diagonal map δVr of part D) with the
direct sum of the maps hk, that is the map

σh• = σ := (⊕rk=1hk) ◦ δVr : V → W⊕r, v 7→ (hk(v))rk=1.

and its dual

(σh•)∨ = σ∨ : (W⊕r)∨ → V ∨.

Prove the following statements:

a) Ker(σ) =
⋂r
k=1 Ker(hk).

b) Im(σ∨) =
∑r

k=1 Im(h∨k ).
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c) There is a short exact sequence of K-vector spaces

0→
r∑

k=1

Im(h∨k )
incl−−→ V ∨

incl∨−−−→
( r⋂
k=1

Ker(hk)
)∨ → 0.

d) There is an isomorphism of K-vector spaces

V ∨
/ r∑
k=1

Im(h∨k )
∼=−→
( r⋂
k=1

Ker(hk)
)∨
,

given by

u+
r∑

k=1

Im(h∨k ) 7→ u�⋂r
k=1 Ker(hk) .

We now use the previous reminder, to establish a few basic facts about graded
duals over graded K-algebras.

9.3. Exercise and Definition. A) (Graded Duals over K-Algebras) Let K be
a field and let R =

⊕
n∈ZRn be a graded K-algebra, so that R0 = K. We now

reconsider the covariant, linear, left exact functor of graded R-modules D(•)
introduced in (9.1). Use (9.1)B)a) and (9.2)A) to show:

a) For each homomorphism h : M → N of graded R-modules and all t ∈ Z
we have the commutative diagram of K-linear maps

N∨−t
τNt

∼=
//

h∨−t
��

D(N)t

D(h)t
��

M∨
−t

τMt

∼=
// D(M)t

where the maps τMt and τNt are defined according to (9.1)C)a)).

b) The contravariant linear functor D(•) of graded R-modules is exact.

B) (Modules with Finite Components) We say that a graded R-module M =⊕
n∈ZMn has finite components if

dimK(Mn) <∞, ∀n ∈ Z.
We denote the class of graded R-modules with finite components bu FR. Use
A)a), (9.2)B,b) and (9.2)C)c) to prove the following statements:

a) If 0 → N → M → P → 0 is an exact sequence of graded R-modules, we
have M ∈ FR if and only if N,P ∈ FR.

b) If r ∈ N and M (1),M (2) . . . ,M (r) ∈ FR, then
⊕r

i+1M
(i) ∈ FR.

c) If M ∈ FR, then dimK(D(M)t) = dimK(M−t) for all t ∈ Z.

d) If M ∈ FR, then D(M) ∈ FR.

e) If M ∈ FR, the canonical map γM : M → D(D(M)) (see (9.1)C)b)) is an
isomorphism of graded R-modules.
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f) If M ∈ FR, then D(M) = 0 if and only if M = 0.

C) (Equihomogeneous Ideals) Keep the above notations and hypotheses. An
ideal a ⊆ R is said to be equihomogeneous if it is generated by homogeneous
elements of the same degree. We now are interested in finitely generated
equihomogeneous ideals. So, let s ∈ Z, let r ∈ N, let x1, x2, . . . , xr ∈ Rs, let
M be a graded R-module and consider the multiplication maps given by these
elements, that is the homomorphisms of graded R-modules

xi = xiIdM : M →M(s), m 7→ xim, (i = 1, 2, . . . , r).

Use (9.2)E) to show the following facts:

a) (0 :M 〈x1, x2, . . . , xr〉)−t =
⋂r
i=1 Ker(xi �M−t) for all t ∈ Z.

b) There is an isomorphism of graded R-modules

D(M)
/
〈x1, x2, . . . , xr〉D(M)

∼=−→ D(0 :M 〈x1, x2, . . . , xr〉)
defined by

u+ 〈x1, x2, . . . , xr〉D(M) 7→ u�(0:M 〈x1,x2,...,xr〉), ∀u ∈ D(M).

Now, we definitively shall consider the situation in which the graded ring R is a
Noetherian homogeneous algebra over a field. In this situation we introduce a
now class of functors, which we call deficiency functors and which are obtained
by composing the local cohomology functors with respect the the irrelevant
ideal R+ of R with the graded duality functor .

9.4. Exercise and Definition. A) (Deficiency Functors and -Modules) Let K
be a field and let R = K⊕R1⊕R2 . . . be a Noetherian homogeneous K-algebra.
For each i ∈ N0 we define the i-th deficiency functor) Ki = Ki(•) (over R) as
the contravariant linear functor of graded R-modules obtained by composing
the graded local cohomology functor ∗H i

R+
(•) with the graded duality functor

D = D(•), thus the functor of graded R-modules given by the assignment

(M
h−→ N) p 

(
Ki(M) = D(H i

R+
(N))

Ki(h)=D(Hi
R+

(h))

−−−−−−−−−−−→ D(H i
R+

(M)) = Ki(M)
)
.

For each graded R-module M , the graded R-module Ki(M) is called the i-th
deficiency module of M .

B) (First Properties of Deficiency Functors) Keep the notations and hypothe-
ses of part A). Let i ∈ N0. Prove the following facts:

a) (Duals of Deficiency Modules) There is a natural transformation of covari-
ant functors of graded R-modules

κi : H i
R+(•)→ D(Ki(•)) : M p 

(
H i
R+

(M)
κi,M :=γ

HiR+
(M)

−−−−−−−−−→ D(Ki(M))
)
,

where the homomorphism

γ
Hi
R+

(M)
: H i

R+
(M)→ D(D(H i

R+
(M))) = D(Ki(M))
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is defined according to (9.1)C)b).

b) (Base Ring Independence of Deficiency Modules) If M is a graded R-
module, a  R is a proper graded ideal with aM = 0 we have aKi(M) = 0
and (up to an isomorphism of graded R-modules) the module Ki(M) re-
mains the same if we consider M as as a graded R/a-module.

C) (Deficiency Modules of Finitely Generated Modules) Let the notations be
as in parts A) and B) and assume that the graded R-module M is finitely
generated. Prove the following facts:

a) H i
R+

(M) and Ki(M) are graded modules with finite components, and hence
belong to the class FR (see (9.3)B)).

b) dimK(Ki(M))n = hiM(−n) for all n ∈ Z.

c) beg(Ki(M)) = −end(H i
R+

(M)) > −∞.

d) The natural homomorphism of graded R-modules of (9.4)B)a) becomes an
isomorphism

κi,M : H i
R+

(M)
∼=−→ D(Ki(M)).

D) (The Deficiency Sequence) Keep the above notations and hypothesis and
let

S : 0→ N
h−→M

l−→ P → 0

be an exact sequence of graded R-modules. We form the exact graded cohomol-
ogy sequence with respect to R+ and associated to S (see [Br-Fu-Ro](8.26)A))

0 // H0
R+

(N)
H0
R+

(h)
// H0

R+
(M)

H0
R+

(l)
// H0

R+
(P )

δ
0,R+
S // H1

R+
(N)

H1
R+

(h)
// H1

R+
(M)

H1
R+

(l)
// . . .

. . . // H i−1
R+

(P )

δ
i−1,R+
S // H i

R+
(N)

Hi
R+

(h)
// H i

R+
(M)

Hi
R+

(l)
// H i

R+
(P )

δ
i,R+
S // H i+1

R+
(N)

Hi+1
R+

(h)
// H i+1

R+
(M) // . . .

Then, we apply the contravariant linear exact functor of graded R-modules
D(•) to this sequence, write

εi
S

:= D(δi,R+), ∀i ∈ N0
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and thus end up with an exact sequence of graded R-modules

. . . // Ki+1(M)
Ki+1(h)

// Ki+1(N)
εi
S //

Ki(P )
Ki(l)

// Ki(M)
Ki(h)

// Ki(N)
εi−1
S //

Ki−1(P ) // . . .

. . . // K1(M)
K1(h)

// K1(N)
ε0
S //

K0(P )
K0(l)

// K0(M)
K0(h)

// K0(N) // 0

We call this sequence the deficiency sequence associated to S. Formulate and
prove the fact, that the deficiency sequence is natural.

E) (Socles of Local Cohomology Modules) Let R be as above. For any graded
R-module U one defines the socle of U as the graded submodule

soc(U) := (0 :U R+) ⊆ U.

Observe that R+soc(U) = 0, so that soc(U) is a vector space over R/R+
∼= K

and the R-submodules of soc(U) are the same as the K-vector subspaces.

Now, let M be a finitely generated graded R-module and chose elements
x1, x2, . . . , xr ∈ R1 such that

〈x1, x2, . . . , xr〉 = R+.

Let i ∈ N0 and use the developments of (9.3)C) to prove the following state-
ments:

a) There is an isomorphism of graded R-modules

Ki(M)/R+K
i(M)

∼=−→ D(soc(H i
R+

(M))).

b) Ki(M) is finitely generated if and only if end(H i
R+

(M)) <∞ and soc(H i
R+

(M))
is finitely generated.

c) If the equivalent conditions of statement b) are satisfied, then

µR,∗(K
i(M))) = bR0,∗(K

i(M)) =
(
dimK(soc(H i

R+
(M))−n

)
n∈Z.

F) (Canonical Modules) Keep the above notations and hypotheses. Let M be
a finitely generated graded R-module. Prove that

a) sup{i ∈ N0 | Ki(M) 6= 0} = dimR(M).
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The highest order non-vanishing deficiency module of M is called the canonical
module of M and denoted by K(M), thus

K(M) :=

{
KdimR(M) , M 6= 0

0 , M = 0

In the next exercise we prepare some arguments which will be used repeatedly
later.

9.5. Exercise. A) (Deficiency Modules and Torsion). Let K be a field, let
R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous K-algebra and let M be
a graded R-module. Prove the following statements

a) If M is R+-torsion, then Ki(M) = 0 for all i ∈ N.

b) If M is finitely generated, then K0(M) is R+-torsion, finitely generated
and satisfies dimK(K0(M)) = dimK(H0

R+
(M)) <∞.

c) If N ⊆ M is a graded submodule which is R+-torsion and p : M → M/N
is the canonical homomorphism, then the induced homomorphism Ki(p) :
Ki(M/N) → Ki(M) is an isomorphism if i > 0 and a monomorphism if
i = 0.

B) (Deficiency Modules and Non-Zero Divisors) Let the notations and hy-
potheses be as in part A). Let t ∈ N and let x ∈ Rt ∩ NZDR(M). If we
form the deficiency sequence associated to the short exact sequence of graded
R-modules

S : 0→M(−t) x−→M
p−→M/xM → 0

and write εiM,x := εi
S

for all i ∈ N0 (see (9.3)D)), we can say:

a) For each i ∈ N0 there is an exact sequence of graded R-modules

Ki+1(M)
x−→ Ki+1(M)(t)

εiM,x−−→ Ki(M/xM)
Ki(p)−−−→ Ki(M)

x−→ Ki(M)(t).

Consequently

b) For each i ∈ N0 there is a short exact sequence of graded R-modules

0→
(
Ki+1(M)/xKi+1(M)

)
(t)→ Ki(M/xM)→ (0 :Ki(M) x)→ 0.

Now we are ready to formulate and to prove our first result on the structure
of deficiency modules.

9.6. Proposition. Let K be a field, let R ∈ N0 and let R := K[X1, X2, . . . , Xr]
be a polynomial ring.

a) If i 6= r, then Ki(R) = 0.

b) Kr(M) ∼= R(−r).
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Proof. As R is CM, we have H i
R+

(R) = 0 for all i 6= r. So, statement a) follows
from (9.4)C)b).

We prove statement b) by induction on r. If r = 0, we have R = K = H0
R+

(R).

If we apply (9.4)C)b) with i = 0 it follows that K0(M) = K = R = R(−0).

So let r > 0. We consider the polynomial ring

R′ := K[X1, X2, . . . , Xr−1].

By induction we have Kr−1(R′) ∼= R′(−r+1). Observe that there is an isomor-
phism of graded R-modules R′ ∼= R/XrR. So, by the Base Ring Independence
of Deficiency Modules (9.4)B)b) we get an isomorphism of graded R-modules

Kr−1(R/XrR) ∼= (R/XrR)(−r + 1).

If we apply the short exact sequence (9.5)B)b) with i = r− 1, x = Xr, M = R
and keep in mind that Kr−1(R) = 0 we therefore get isomorphisms of graded
R-modules

Kr(R)/XrK
r(R) ∼= Kr−1(R/XrR)(−1) ∼= (R/XrR)(−r).

As a consequence

Kr(R)/(R+)Kr(R) ∼= R/(XrR)(−r)/(R+)(R/XrR)(−r) ∼=
∼=
(
(R/XrR)/(R+)(R/Xr)

)
(−r) ∼= (R/R+)(−r).

This shows that Kr(R)/(R+)Kr(R) is generated by a single element of degree
r, hence an element of the form a+(R+)Kr(R), with a ∈ K(R)r. Consequently
Kr(R) = aR + (R+)Kr(R). As beg(Kr(M)) = −end(Hr

R+
(R)) > −∞ (see

(9.4)C)b)), the Graded Nakayama Lemma implies that Kr(R) = Ra. So, there
is an epimorphism of graded R-modules

R(−r) π−→ Kr(R)→ 0, f 7→ fa.

As pR(X) =
(
X+r−1
r−1

)
and R−n = H i

R+
(M)−n = 0 for all n > 0, we have

(−1)r−1hrR(−n) = χR(−n) = pR(−n) =

(
−n+ r − 1

r − 1

)
for all n > 0 and hence

hrR(−n) =

(
n− 1

r − 1

)
= dimK(Rn−r), ∀n ≥ r.

So, by (9.4)C)b) we end up with

dimK(Kr(M)n) = dimK(Rn−r) = dimK(R(−r)n), ∀n ≥ r.

This proves, that the epimorphism π is indeed an isomorphism. �

Now, we are ready to prove the following Main Theorem on Deficiency Mod-
ules.
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9.7. Theorem. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module and let
i ∈ N0. Then

a) Ki(M) is a finitely generated graded R-module.

b) µR,∗(K
i(M)) = bR0,∗(K

i(M)) =
(
dimK(soc(H i

R+
(M))−n

)
n∈Z.

c) dimK(Ki(M)n)) = hiM(−n) for all n ∈ Z.

d) beg(Ki(M)) = −end(H i
R+

(M)) > −∞.

e) Ki(M) = 0 for all i > dimR(M).

f) dimR(Ki(M)) ≤ i for all i ≤ dimR(M) with equality if i = dimR(M).

Proof. ”a)“: We find a polynomial ring S = K[X1, X2, . . . , Xr] and a proper
graded ideal a  S such that R = S/a. According to the Base Ring Inde-
pendence of Deficiency Modules (9.4)B)b) we may consider M as a graded
S-module and hence assume that R = K[X1, X2, . . . , Xr]. If M = 0 we have
Ki(M) = 0. So, let M 6= 0. We show by induction on h := hdim(M) that
Ki(M) is finitely generated. If h = 0 we have an isomorphism of graded
R-modules

M ∼=
s⊕

k=1

R(−ak), ak ∈ Z,∀k ∈ {1, 2, . . . , s}, a1 ≤ a2 ≤ . . . ≤ as.

So, by (9.6) and the additivity of the contravariant functor of graded R-
modules Ki(•) we get Ki(M) = 0 if i 6= r and Kr(M) ∼=

⊕s
k=1 R(−r + ak).

Now. let h > 0 and consider a minimal presentation

S : 0→ N → F →M → 0, F =
s⊕

k=1

R(−ak)

of M . As hdim(n) = hdim(M) − 1 = h − 1, by induction Kj(N) is finitely
generated for all j ∈ N0. By the case h = 0 we have Kj(F ) = 0 for all j 6= r
and Kr(F ) is a graded free R-module of finite rank. So, the deficiency sequence
(9.4)D) associated to S gives rise to isomorphisms of graded R-modules

Kj+1(N) ∼= Kj(M), ∀j ∈ {0, 1, . . . , r − 2},
an epimorphism of graded R-modules

Kr(N)→ Kr−1(M)→ 0,

and a short exact sequence of graded R-modules

Kr+1(N)→ Kr(M)→ Kr(F ).

Hence, Ki(M) is finitely generated if i ≤ r. As Ki(M) = 0 if i > dimR(M)
(see (9.4)F)a)) and as dimR(M) ≤ r, we get our claim.

”b)“: This follows from statement a) and (9.4)E)c).

”c)“: This is nothing else than (9.4)C)b).
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”d)“: This is a restatement of (9.4)C)c).

”e)“: This is clear by (9.4)F)a).

”f)“: Let M 6= 0. We prove by induction on i that dimR(Ki(M)) ≤ i. The
case i = 0 is immediate by (9.5)A)b). So, let i > 0. By (9.5)A)c) we may
replace M by M/ΓR+(M) and hence assume that R+ /∈ AssR+(M). So, by the
Homogeneous Prime Avoidance Lemma there is some t ∈ N and some x ∈ Rt

which avoids all members of AssR(M). Therefore x ∈ Rt∩NZDR(M) and thus
by (9.5)B)b) we get a short exact sequence of graded R-modules

(i) 0→
(
Ki(M)/xKi(M)

)
(t)→ Ki−1(M/xM)→ (0 :Ki−1(M) x)→ 0.

By induction, we have dimR(Ki−1(M/xM)) ≤ i− 1. Therefore

dimR(Ki(M)/xKi(M)) = dimR

(
(Ki(M)/xKi(M))(t)

)
≤ i− 1

and hence dimR(Ki(M)) ≤ dimR(Ki(M)/xKi(M)) + 1 ≤ i− 1 + 1 = i.

It remains to show, that dimR(Kd(M)) ≥ d := dimR(M). We do this by
induction d. The case d = 0 follows easily from (9.5)A)b). So, let d > 0. Then
dimR(M/ΓR+(M)) = d and as previously we may assume that R+ /∈ AssR(M).
Now, by the Homogeneous Prime Avoidance Lemma there is some t ∈ N and
some x ∈ Rt such that

x /∈
⋃
p∈S

p, S := AssR(M)
⋃(

(AssR(Kd(M)) ∪ AssR(Kd−1(M)) \ {R+}
)
.

In particular x is a non-zero divisor with respect to M and filter-regular with
respect to Kd(M) and Kd−1(M). Now, we may write down the sequence (i)
with i = d and get the short exact sequence of graded R-modules

(ii) 0→ (Kd(M)/xKd(M))(t)→ Kd−1(M/xM)→ (0 :Kd−1(M) x)→ 0

in which (0 :Kd−1(M) x) is R+-torsion and hence of dimension ≤ 0. by the

filter-regularity of x with respect to Kd−1(M). As x is a non-zero divisor
with respect to M we have dimR(M/xM) = d − 1. So, by induction we have
dimR(Kd−1(M/xM)) ≥ d− 1.

Our next aim is to show that dimR(Kd(M)) > 0. Indeed, assuming that
dim(Kd(M)) ≤ 0, the sequence (ii) would imply that dimR(Kd−1(M/xM)) ≤ 0
and hence that d = 1, so that the Hilbert polynomial PM of M would be of
degree 0, whence h1

M(n) = χM(n) = PM(n) 6= 0 for all n � 0. Consequently
by (9.4)C)b) we would have K1(M)n 6= 0 for all n� 0, which contradicts the
assumption that dimR(K1(M)) ≤ 0.

Now, as dimR(Kd(M)) > 0 the element x is a parameter with respect to
Kr(M), whence

dimR(Kr(M)) = dimR(Kr(M)/xKr(M)) + 1 = dimR(T ) + 1,
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where T := (Kr(M)/xKr(M))(t). As Kr(M) 6= 0 is finitely generated and
x ∈ R+ we have Kr(M)/xKr(M) 6= 0 and hence T 6= 0. So, by the sequence
(ii) and bearing in mind that dimR(Kd−1(M/xM)) = 0 we obtain dimR(T ) =
dimR(Kd−1(M/xM)) ≥ d− 1 and hence that dimR(Kd(M)) ≥ d. �

9.8. Remark and Definition. A) (Cohomological Hilbert Polynomials) Let K
be a field, let R = K⊕R1⊕R2 . . . be a Noetherian homogeneous K-algebra and
let M be a finitely generated graded R-module. Fix i ∈ N0 and consider the
Hilbert polynomial PKi(M) of the finitely generated graded R-module Ki(M).
Then, by the definition of PKi(M) and by (9.10)c) we have

hiM(n) = dimK(Ki(M)−n) = PKi(M)(−n), ∀n� 0.

If we set
piM(X) := PKi(M)(−X)

we thus have
hiM(n) = piM(n), ∀n� 0.

The polynomial piM ∈ Q[X] is called the i-th cohomological Hilbert polynomial
of M .

B) (First Properties of Cohomological Hilbert Polynomials) Let the notations
and hypotheses be as in part A). Prove the following facts:

a) deg(piM) ≤ i− 1 with equality if i = dimK(M) > 0.

b) piM(r)(X) = piM(r +X) for all r ∈ Z.

c) PM(X) =
∑dimR(M)−1

i=1 (−1)i−1piM(−X) =
∑

n∈N(−1)i−1piM(−X).

C) (Cohomological Postulation Numbers) Let the notions and hypotheses be
as in parts A) and B). Then clearly

νiM := inf{n ∈ Z | piM(n) 6= hiM(n)} ∈ Z ∪ {∞}.
The number νiM is called the i-th cohomological postulation number of M .
Prove the following statements:

a) νiM =∞ if and only if H i
R+

(M) = 0.

b) If νiM <∞, then νiM ≤ end(H i
R+

(M)).

c) νiM(r) = νiM − r for all r ∈ Z.

d) νiM ≥ −reg(Ki(M)).

9.9. Examples and Exercises. A)(Homogeneous Gorenstein Algebras) Let K
be a field and let R = K⊕R1⊕R2 . . . be a Noetherian homogeneous K-algebra.
Assume in addition, that R is CM. Prove that the following statements are
equivalent;

(i) K(R) is a cyclic R-module.

(ii) D(R) ∼= Hd
R+

(R)(t) for some t ∈ Z.

(iii) soc(Hd
R+

(M)) ∼= (R/R+)(t) for some t ∈ Z.
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If the Noetherian homogeneous CM-algebra R satisfies these equivalent con-
ditions, it is called a homogeneous Gorenstein algebra. Prove the following
facts:

a) If d > 0 and x ∈ R+ is a homogeneous non-zero divisor in R, then R is
Gorenstein if and only if R/xR is.

b) If R is Gorenstein, then Hd
R+

(R) is *injective.

c) Each polynomial ring K[X1, X2, . . . , Xr] is Gorenstein.

B) (Top Local Cohomology of Polynomial Rings) Let r ∈ N, consider the
polynomial ring

R := K[X1, X2, . . . , Xr]

and the Laurent algebra

L := K[X1, X
−1
1 , X2, X

−1
2 , . . . , Xr, X

−1
r ],

furnished with its natural grading, so that

Ln =
⊕

ν1,...,νr∈Z:ν1+...+νr=n

KXν1
1 . . . Xνr

r , ∀n ∈ Z.

Moreover consider the graded R-submodule

W :=
⊕

(ν1,...,νr)∈Zr\Zr<0

KXν1
1 . . . Xνr

r ⊆ L

and the graded R-module

K[X−1 , X
−
2 , . . . , X

−
r ] = R− := L/W.

For each Laurent polynomial l ∈ L let l− := l +W ∈ R−. Prove the following
facts:

a) For all n ∈ Z we have Wn =
⊕

ν1,...νr∈Z<0:ν1+...+νr=n
K
(
Xν1

1 . . . Xνr
r

)−
.

b) end(R−) = −1 and dimK(R−n ) = dimK(R−n−1) =
(−n+r−2

r−1

)
for all n < 0.

c) (0 :R− 〈X1, X2, . . . , Xr〉) = R−−1.

d) D(R−) = D(R−)1R.

e) There is an isomorphism of graded R-modules D(R−) ∼= R(−1).

f) There is an isomorphism of graded R-modules

Hr
〈X1,X2,...,Xr〉(K[X1, X2, . . . , Xr]) ∼= K[X−1 , X

−
2 , . . . , X

−
r ].

Next, we aim to prove a few basic results canonical modules. We begin with
a statement on the Grade of Canonical Modules. This result already hints an
important property of the operation of taking canonical modules: namely its
”improving effect on grade“.



141

9.10. Proposition. Let K be a field, let R = K ⊕R1⊕R2 . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then

gradeK(M)(R+) ≥ min{2, dimR(M)}.

Proof. Let d := dimR(M). If d ≤ 0 our claim is obvious. So, let d > 0 and
set M̄ := M/ΓR+(M). Then dimR(M̄) = d and hence K(M̄) = Kd(M̄) ∼=
Kd(M) = K(M) (see (9.5)A)c)). This allows us to replace M by M̄ and
hence to assume that ΓR+(M) = 0. So, once more by the Homogeneous Prime
Avoidance Lemma we find some t ∈ N and some x ∈ Rt ∩ NZDR(M). Now,
by the exact sequence (9.5)B)b), applied with i = d, we get an epimorphism

Kd(M/xM)→ (0 :Kd(M) x)→ 0.

As x ∈ R+ ∩ NZDR(M) we also have dimR(M/xM) = d − 1 and hence
Kd(M/xM) = 0 (see ((9.4)F)). It follows that (0 :Kd(M) x) = 0 and hence

x ∈ NZDR(Kd(M)). Thus, if d = 1, we get our claim. So, let d > 1. An-
other use of the sequence (9.5)B)b), this time applied with i = d− 1, yields a
monomorphism

0→
(
Kd(M)/xKd(M)

)
(t)→ Kd−1(M/xM).

As dimR(M/xM) = d−1 > 0 we have Kd−1(M/xM) = K(M/xM) and hence
by induction we get gradeKd−1(M/xM)(R+) > 0, hence ΓR+(M/xM) = 0. Now,

the above monomorphism shows that ΓR+

(
(Kd(M)/xKd(M))(t)

)
= 0 and

hence ΓR+(Kd(M)/xKd(M)) = 0, so that gradeKd(M)/xKd(M)(R+) ≥ 1. As

x ∈ R+ ∩ NZDR(Kd(M)) it follows that gradeKd(M)(R+) ≥ 2 and this proves
our claim. �

The previous result tells us, that in certain cases the grade of a module may
go up if one passes to the canonical module. This hints, that the formation
of canonical modules has a ”smoothing effect“. Our next result is a Structure
Theorem for Canonical Modules which supports this observation. Its first
statement says that canonical modules are unmixed as usually CM-modules
are. The second statement says, that the canonical module of a graded module
is not affected if one replaces the original module by its unmixed part. The
third statement says, that the canonical module satisfies a strong version of
the second Serre property S2.

We first give a few preparations which are related to the notion of unmixedness.

9.11. Exercise and Definition. A) (Unmixed Graded Modules). Let K be a
field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian homogeneous K-algebra and
let M be a finitely generated graded R-module. We say that M is unmixed
if dim(R/p) = dimR(M) for all p ∈ AssR(M). Keep in mind (or reprove) the
following fact:

a) If M is CM, then M is unmixed.
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B) (Unmixed Parts) Keep the notations and hypotheses of part A). We intro-
duce the following notation;

Ass
[0]
R (M) := {p ∈ AssR(M) | dim(R/p) = dimR(M)},

a[0,M ] :=
⋂

p∈AssR(M)\Ass
[0]
R (M)

p,

with the convention that a[0,M ] = R if Ass
[0]
R (M) = AssR(M). Prove the

following statements:

a) Γa[0,M ](M) ⊆M is the largest graded submodule whose dimension is strictly
less than the dimension of M .

b) M [0] := M/Γa[0,M ](M) is unmixed with AssR(M [0]) = Ass
[0]
R (M).

c) If p : M → M [0](M) is the canonical epimorphism and q : M → M̄
is a further epimorphism of graded R-modules such that M̄ is unmixed
with dimR(M̄) = dimR(M), there is a unique homomorphism of graded
R-modules s, which occurs in the commutative diagram

M
p //

q
  

M [0]

s
}}

M̄

So, p : M → M [0] is characterized as the largest unmixed quotient of M
which has the same dimension as M . Therefore, the graded R-module M [0] =
M/Γa[0,M ](M) is called the unmixed part of M .

Now, we are ready to prove the announced structure result for canonical mod-
ules.

9.12. Theorem. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then

a) AssR(K(M)) = {p ∈ AssR(M) | dim(R/p) = dimR(M)}. In particular
K(M) is unmixed.

b) The canonical epimorphism p : M → M [0] induces an isomorphism of
graded R-modules

KdimR(M) : K(M [0])→ K(M).

c) For all q ∈ ∗Spec(R) with depthRq
(K(M)q) = 1 it holds

dim(R/q) = dimR(M)− 1.

Proof. ”a)“: Let d := dimR(M). If d = −∞, we have M = K(M) = 0, and our
claim is obvious. If d = 0 we have dimR(K(M) = 0 and hence AssR(K(M)) =
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R+ = AssR(M), and our claim is again clear. So, let d > 0 and let us proceed
by induction. As usually, we first may assume that gradeM(R+) > 0.

Let p ∈ AssR(M) with dim(R/p) = d. We aim to show that p ∈ AssR(K(M)).
By our choice of p we find an integer s and an element m ∈ Ms such that
p = (0 :R m) and so multiplication by m yields an exact sequence of graded
R-modules 0 → R/p → M(s) → N → 0. Applying the associated deficiency
sequence (9.4)D) we get an exact sequence of graded R-modules

Kd(M(s))→ Kd(R/p)→ Kd−1(N).

By the Base Ring Independence of Deficiency Modules (see (9.4)B)b)) we may
consider Kd(R/p) as a graded R/p-module and by (9.7)f) this R/p-module
has dimension d. Therefore the zero ideal in R/p is associated to Kd(R/p),
whence p ∈ AssR(Kd(R/p)) ⊆ SuppR(Kd(R/p)). Moreover by (7.9)f) we
have dimR(Kd−1(N)) ≤ d − 1 and hence p /∈ SuppR(Kd−1(N)). If we local-
ize the above exact sequence at p we thus get an epimorphism of Rp-modules
(Kd(M(s)))p → Kd(R/p)p in which the target does not vanish. this shows that
p ∈ SuppR(Kd(M(s)) = SuppR(Kd(M)). As dim(R/p) = d = dimR(Kd(M))
it follows that p is a minimal member of SuppR(Kd(M)) and hence p ∈
AssR(Kd(M)).

Now, let p ∈ AssR(Kd(M)). By the linearity of the functor Kd(•) we have
(0 :R M)Kd(M) = 0, so that p ∈ Var(0 :R M) = SuppR(M). It thus remains
to show that dim(R/p) ≥ d. By (9.10) we have gradeM(R+) > 0. By assump-
tion we also have gradeM(R+) > 0. So, by the Homogeneous Prime Avoidance
Lemma as usually we find some t ∈ N and some x ∈ Rt ∩ NZDR(Kd(M)).
As p, Rx ⊆ R+ we find a minimal prime ideal q of p + Rx. According to the
Non-Zero Divisor Lemma of Matsumura we have q ∈ AssR(Kd(M)/xKd(M)),
hence q ∈ AssR

(
(Kd(M)/xKd(M))(t)

)
. If use the sequence (9.5)B)b) with

i = d− 1 we obtain a monomorphism (Kd(M)/xKd(M))(t)� Kd−1(M/xM)
so that finally q ∈ AssR(Kd−1(M/xM)). By our choice of x we also have
dimR(M/xM) = d − 1 so that Kd−1(M/xM) = K(M/xM). Hence by in-
duction we have dim(R/q) = d − 1, and as p  q we get dim(R/p) ≥ d as
requested.

”b)“: Keep all notations introduced in the proof of statement a). If d ≤ 0 we
have M [0] = M and our claim is obvious. If d > 0, we form the deficiency
sequence associated to the short exact sequence of graded R-modules

0→ Γa[0,M ](M)
⊆−→M

p−→M [0] → 0

(see (9.4)D)). Bearing in mind that dimR(Γa[0,M ](M)) < d and hence Ki(M) =
0 for all i ≥ d (see (9.4)F)), we get an isomorphism of graded R-modules
Kd(p) : Kd(M [0])→ Kd(M), and this is precisely our claim.

”c)“: By statement b) we may replace M by M [0] and hence assume that
M is unmixed. So, by statement a) we have AssR(K(M)) = AssR(M) with
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dim(R/p) = d for all p ∈ AssR(M). Now, let

q ∈ ∗Spec(R) such that depthRq
(K(M)q) = 1.

Then clearly q ∈ SuppR(K(M)) \ AssR(K(M)), so that q * p for all p ∈
AssR(K(M)) = AssR(M) =: S. Consequently by the Homogeneous Prime
Avoidance Lemma there is some t ∈ N and some x ∈ qt \

⋃
p∈S p. Therefore

x ∈ qt ∩ NZDR(K(M)) = qt ∩ NZDR(M). As depthRq
(K(M)q) = 1, it follows

that
q ∈ AssR(K(M)/xK(M)) = AssR((Kd(M)/xKd(M))(t)).

By the exact sequence (9.5)B)b) we have a monomorphism of graded R-
modules (

Kd(M)/xKd(M)
)
(t)� Kd−1(M/xM),

so that q ∈ AssR(Kd−1(M/xM)). As dimR(M/xM) = d−1 andKd−1(M/xM) =
K(M/xM) it follows by statement a) that dim(R/q) = d− 1. �

Our next result says that the canonical module of a CM-module is again a
CM-module.

9.13. Proposition. Let K be a field, let R = K ⊕R1⊕R2 . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module
which is CM. Then the canonical module K(M) of M is CM, too.

Proof. Let d := dimR(M). If d ≤ 2, we may conclude by (9.10). So, let d > 2.
Then M and Kd(M) are both of grade ≥ 2, and so clearly there is some t ∈ N
and some x ∈ Rt ∩ NZDR(M) ∩ NZDR(Kd(M)). By (9.5)B)b), applied with
i = d− 1, we get an exact sequence of graded R-modules

0→
(
Kd(M)/xKd(M)

)
(t)→ Kd−1(M/xM)→ (0 :Kd−1(M) x)→ 0.

As M is CM of dimension d we have Hd−1
R+

(M) = 0 and hence Kd−1(M) =

D(Hd−1
R+

(M)) = 0. So, the above sequence yields an isomorphism of graded
R-modules (

Kd(M)/xKd(M)
)
(t) ∼= Kd−1(M/xM).

As x ∈ R+ ∩ NZDR(M), the R-module M/xM is CM of dimension d− 1. By
induction and by the above isomorphism it thus follows that

grade(Kd(M)/xKd(M))(t)(R+) = d− 1

and hence gradeK(M)/xKd(M)(R+) = d − 1. As x ∈ R+ ∩ NZDR(Kd(M)) this

implies that gradeKd(M)(R+) = d. As dim(Kd(M)) = d, this proves our claim.
�

As the more experienced readers may have observed, our approach to deficiency
modules is not the standard one, which reveals itself from Grothendieck’s Local
Duality Theorem in its graded form. In the following remark, we sketch the
relation between the standard point of view and the approach we have chosen
in these lectures.
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9.14. Remark. A) (Deficiency Modules over Noetherian Local Rings) Usu-
ally deficiency modules are introduced in the situation, where M is a finitely
generated module over a Noetherian local ring (R,m) which at its turn is a
homomorphic image of a Noetherian local Gorenstein ring (R′,m′). Then, for
i ∈ N0 one defines the i-th deficiency module of M to be the finitely generated
graded module

Ki(M) := Ext
dim(R′)−i
R′ (M,R′),

furnished with its natural structure as an R-module. One can show, that up
to isomorphism, this module is indeed independent of the choice of the local
Gorenstein ring R′, as long as R is a quotient of R′. An extended study of this
modules and their structure may be found in [Sc1]. A particularly interesting
special case is again the canonical module

K(M) := KdimR(M)(M)

of M . Even in the special situation where M = R is a CM-ring, the canonical
module K(R) is an interesting object. A classical introduction to this subject
may be found in [Her-Kun]. We refer the reader also to [Br-Sh1], [Bru-Her] or
[E1].

B) (Matlis Duals) Keep all notations and hypotheses of part A). Let E denote
the injective hull of the R-module R/m and consider the contravariant linear
exact functor

HomR(•, E) := D(•) : (M
h−→ N) p (D(N)

D(h)−−→ D(M))

of taking Matlis Duals. This functor is of basic importance in commutative
algebra. In certain cases, taking Matlis biduals D(D(M)) gives back the orig-
inal module M , as stated by the so called Matlis Duality Theorem. We refer
the interested reader to [Br-Sh1].

C) (Local Duality) Keep all hypotheses and notations of parts A) and B). Then,
the Local Duality Theorem of Grothendieck [Gro2] says that for each finitely
generated R-module M and each i ∈ N0 there is an isomorphism of R-modules

H i
m(M) ∼= HomR(Ext

dim(R′)−i
R′ (M,R′), E) = D(Ki(M)).

Moreover, if the local ring R is m-adically complete, then there are isomor-
phisms (see [?] (3.5.8) for example)

Ki(M) ∼= D(H i
m(M)).

We also refer the reader to [Br-Sh1], [Bru-Her] or [E1]. The particularity of
these result is that they describe local cohomology modules as Matlis duals
of certain finitely generated R-modules – and vice versa, if R is m-adically
complete.

D) (Graded Deficiency Modules) Now, let R =
⊕

n∈N0
Rn be a Noetherian

homogeneous ring with local base ring (R0,m0) and let R′ → R be a surjective
homomorphism of graded rings such that R′ =

⊕
n∈N0

R′n is a Noetherian
homogeneous Gorenstein ring with local base ring (R′0,m

′
0). Then, for each
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graded R-module M and each i ∈ N0 one may define the i-th graded deficiency
module of M as the graded module

Ki(M); = ∗Ext
dim(R′)−i
R′

(
M,R′(−dim(R′))

)
,

where ∗ExtjR′(•, •) denotes the j-th Ext bifunctor in the category of graded R′-
modules. Also here one shows, that up to isomorphism of graded R-modules,
the module Ki(M) does not depend on the chosen surjective homomorphism
R′ → R of graded rings, as long as R′ is Gorenstein. Keep in mind that
for all j ∈ N0 and any finitely generated graded R-module M the covariant
linear functor ExtjR′(M, •) has the *restriction property (see [Br-Fu-Ro] (8.9),
[Br-Sh1] (12.2.7)), so that for each graded R′-module N and each j ∈ N0 there
is a ”natural“ isomorphism of R-modules ∗ExtjR′(M,N) ∼= ExtjR′(M,N). Thus
in particular, for all i ∈ N0 and any finitely generated graded R-module M we
also may write

Ki(M) = Ext
dim(R′)−i
R′

(
M,R′(−dim(R′))

)
,

where the right hand side R-module is furnished with the grading resulting
from the *restriction property.

E) (Graded Matlis Duals) Keep the hypotheses and notations of part D) and
let m := m0 + R1 denote the graded maximal ideal of R. Let ∗E denote the
*injective hull of the graded R-module R/m and consider the contravariant
linear exact functor of graded R-modules given by

∗D(•) : (M
h−→ N) p ( ∗HomR(N, ∗E)

∗HomR(h, ∗E)−−−−−−−−→ ∗HomR(N, ∗E)),

the functor of taking graded Matlis duals. Here again, if the graded R-module
M is finitely generated, we may write

∗D(M) = HomR(M, ∗E).

Moreover, if the base ring R0 = K is a field, the graded Matlis dual ∗D(M) of
the graded R-module M luckily coincides with the graded dual D(M) of M
as it was introduced in (9.1) (see [Br-Sh1](13.3.5)). This means that in this
particular situation, we can identify the two duality functors and write

∗D(•) = D(•).

F) (Graded Local Duality) Keep the notations and hypotheses of parts D)
and E). Then the Graded Local Duality Theorem says that for each finitely
generated graded R-module M and each i ∈ N0 there are isomorphisms of
graded R-modules (see [Br-Sh1] (13.4.3) for example):

H i
m(M) ∼= ∗HomR

(
M, ∗Ext

dim(R′)−i
R′ (M.R′(−dim(R′))

)
= ∗D(Ki(M)).

Moreover, if the local base ring R0 is m0-adically complete, then there are
isomorphisms (see [?] (3.6.19) for example)

Ki(M) ∼= ∗D(H i
m(M)).
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This result translates the meaning of ordinary local duality over local rings to
the graded context: The i-th local cohomology module H i

m(M) of the finitely
generated graded R-module M is the graded Matlis dual of the finitely gener-
ated graded R-module Ki(M) and that the graded deficiency module Ki(M)
at its turn is the graded Matlis dual of the local cohomology module H i

m(M).

G) (Duality over Homogeneous K-Algebras) Let the notations and hypotheses
be as in parts D),E) and F). Assume in addition, that the base ring R0 is
a field K so that R = K ⊕ R1 ⊕ R2 . . .. Observe that in this case we have
m = R+. Now, let M be a finitely generated graded R-module. Then on use
of the identification suggested at the end of part E) we get isomorphisms of
graded R-modules

H i
R+

(M) ∼= D(Ki(M)),

Ki(M) ∼= D(H i
R+

(M)).

In (9.4) we took the latter of these two isomorphisms (which holds for finitely
generated graded modules M) to define the notion of deficiency module and of
deficiency functor for arbitrary graded R-modules. This definition prevented
us from introducing the whole (co-)homological machinery which is needed
to install the Graded Local Duality Theorem. But on the other hand, our
approach covers only the special case of Noetherian homogeneous algebras
over a field. For the purpose of these lectures, we decided to consider this
narrow-gauge track to the subject as being adequate.

Let us conclude this section which another theme neglected up to now in these
lectures.

9.15. Exercise and Remark. A) (Graded Noetherian and Graded Artinian
Modules) Let R =

⊕
n∈ZRn be a graded ring and let M be a graded R-module.

We say that M is *Noetherian or graded Noetherian, if each ascending sequence
(N (i))i∈N0 of graded submodules N (i) ⊆ M becomes stationary. Correspond-
ingly we say thatM is *Artinian or graded Artinian if each descending sequence
(N (i))i∈N0 of graded submodules N (i) ⊆ M becomes stationary. Observe the
following facts:

a) M is *Noetherian if and only if all graded submodules of M are finitely
generated.

b) The properties of being *Noetherian and *Artinian are inherited by graded
subquotients.

c) If M is Noetherian, it is *Noetherian, and if R is Noetherian, the converse
is true also.

d) If M is Artinian, it is *Artinian.

e) If R is positively graded and M is *Noetherian, then beg(M) > −∞ and
Mn is a Noetherian R0-module for all n ∈ Z.

f) If R is positively graded and M is *Artinian, then end(M) < ∞ and Mn

is an Artinian R0-module for all n ∈ Z.
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B) (Graded Noetherian and Graded Artinian Modules over K-Algebras) Keep
the notations and hypotheses of part A). Assume in addition that R0 = K is
a field. Use what is said in (9.3) to prove the following:

M ∈ FR is *Noetherian if and only if D(M) is *Artinian.

M ∈ FR is *Artinian if and only if D(M) is *Noetherian.

C) (Graded Noetherian and Graded Artinian Modules over Homogeneous K-
Algebras) Keep the notations of part B) but assume that R is positively graded.
Prove the following:

a) If M is *Noetherian or *Artinian, then M ∈ FR.

b) M is *Noetherian if and only if D(M) is *Artinian.

c) M is *Artinian if and only if D(M) is *Noetherian.

D) (Local Cohomology modules over Noetherian Homogeneous K-Algebras) Let
R be as in statement C) but in addition Noetherian and homogeneous. Prove
the following:

a) If M is a finitely generated graded R-module, then the local cohomology
module H i

R+
(M) is *Artinian for each i ∈ N0.

b) In the situation of statement a), the module H i
R+

(M) is indeed Artinian.



10. Regularity of Modules of Deficiency

Already in Mumford’s Lecture Note [Mu1] the study of the regularity of de-
ficiency modules is called to be of basic significance. In this section, we are
precisely concerned with this issue. Our main result will say that the regular-
ity of the deficiency modules of a given finitely generated graded module over
a Noetherian homogeneous K-algebra is bounded in terms of the cohomology
diagonal of M and the beginning of M . We rephrase this a bit more precisely:
Let d ∈ N and let i ∈ N0. Then, there is a function

Gi
d : Nd

0 × Z→ Z

such that for each field K each Noetherian homogeneous K-algebra R = K ⊕
R1⊕R2 . . . and each a finitely generated graded R-module M with dimR(M) ≤
d we have the estimate

reg
(
Ki(M)

)
≤ Gi

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

With this result we will have reached the climax of our course. Indeed, the
result taken for its own seems to have a very technical flavour and it may
not by evident at once, why this estimate should by the ultimate peak in our
climbing tour. But we shall be able to draw some conclusions from it, which
show that it has indeed far reaching consequences.

Instead of starting to dwell on these consequences, we now immediately begin
with our last ”tour de force“ and meet the technical preparations which will
help to bring us to the last peak we are heading for - in the hope that we shall
get recompensation by the view from the top.

10.1. Lemma. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module and let
x ∈ R1 be a filter-regular element with respect to M . Then

reg1(M) ≤ reg(M/xM) ≤ reg(M).

Proof. We have two short exact sequences of graded R-modules

0→ (0 :M x)→M →M/(0 :M x)→ 0,

0→ (M/(0 :M x))(−1)→M →M/xM → 0.

As (0 :M x) is R+-torsion we get an isomorphism of graded R-modules

H1
R+

(M) ∼= H1
R+

(M/(0 :M x)),

so that reg1(M/(0 : Mx)) = reg1(M). Now, by (3.3)B)b) and with (3.3)C)b),
applied to the second exact sequence it follows that

reg1(M) = reg1(M/(0 :M x)) = reg((M/(0 :M x))(−1))− 1 ≤

≤ max{reg1(M), reg(M/xM) + 1} − 1,

whence reg1(M) ≤ reg(M/xM).
149
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If we apply (3.3)C)d) and (3.3)B)b) to the second sequence we get

reg(M/xM) ≤ max{reg1((M/(0 :M x))(−1))− 1, reg(M)} =

= max{reg1(M), reg(M)} = reg(M),

whence reg(M/xM) ≤ reg(M). �

The next result also has the flavour of a lemma. But as it has so many nice
uses we decided to honour it by calling it a proposition.

10.2. Proposition. Let K be a field, let R = K ⊕R1⊕R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module, let x ∈
R1 be filter-regular with respect to M and let m ∈ Z be such that reg(M/xM) ≤
m and gendeg((0 :M x)) ≤ m. Then

reg(M) ≤ m+ h0
M(m).

Proof. By (10.1) we have reg1(M) ≤ reg(M/xM) ≤ m. So, it remains to show
that

end(H0
R+

(M)) ≤ m+ h0
M(m).

The short exact sequence of graded R-modules

0→ (M/(0 :M x))(−1)→M →M/xM → 0

induces exact sequences of K-vector spaces

0→ H0
R+

(M/(0 :M x))n → H0
R+

(M)n+1 →

→ H0
R+

(M/xM)n+1 → H1
R+

(M/(0 :M x))n

for all n ∈ Z. As H0
R+

(M/xM)n+1 = 0 for all n ≥ m, we therefore obtain

H0
R+

(M/(0 :M x))n ∼= H0
R+

(M)n+1, ∀n ≥ m.

The short exact sequence of graded R-modules

0→ (0 :M x)→M →M/(0 :M x)→ 0

and the facts that

H0
R+

((0 :M x)) = (0 :M x), H1
R+

(
(0 :M x)

)
= 0

induces short exact sequences of K-vector spaces

0→ (0 :M x)n → H0
R+

(M)n → H0
R+

(M/(0 :M x))n → 0, ∀n ∈ Z.
So, for all n ≥M we get an exact sequence of K-vector spaces

0→ (0 :M x)n → H0
R+

(M)n
πn−→ H0

R+
(M)n+1 → 0.

To prove our claim we may assume that end(H0
R+

(M)) > m. As

end((0 :M x)) = end(H0
R+

(M)), gendeg((0 :M x)) ≤ m

it follows that

(0 :M x)n 6= 0, ∀n ∈ {m,m+ 1, . . . , end(H0
R+

(M))}.
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Hence for all these values of n the homomorphism πn is surjective but not
injective. Therefore

h0
M(n) > h0

M(n+ 1), ∀n ∈ {m,m+ 1, . . . , end(H0
R+

(M))}.

So, in the range n ≥ m the function n 7→ h0
M(n) is strictly decreasing until it

reaches the value 0. Therefore h0
M(n) = 0 for all n > m+ h0

M(m). This proves
our claim. �

The following result is a ”graded version“ of a corresponding ”local“ result
shown in [Sc2], Proposition 2.4. It tells us, that the graded short exact se-
quences of (9.5)B)b) also exist if the occurring homogeneous element x is only
filter-regular with respect to M . As one sees immediately, the statement we
are heading for is an easy consequence of (9.5)B)b) in the case i > 0, whereas
in the case i = 0 some extra work is needed. Indeed, we would not use this
result in the present general form to prove our main result, as the attentive
reader will observe later. But we decided to present this result for the fun of
its own.

10.3. Proposition. Let K be a field, let R = K ⊕R1⊕R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module, let
t ∈ N and let x ∈ Rt be filter-regular with respect to M . Then for each i ∈ N0

there is an exact sequence of graded R-modules

0→
(
Ki+1(M)/xKi+1(M)

)
(t)→ Ki(M/xM)→ (0 :Ki(M) x)→ 0.

Proof. Let M̄ := M/H0
R+

(M). Then x ∈ Rt∩NZDR(M̄) and Ki(M̄) ∼= Ki(M)

for all i ∈ N and K0(M̄) = 0 (see (9.5)A)c),b)). So, in view of (9.5)B)b) we
get the requested short exact sequences for all i ∈ N. It remains to treat the
case i = 0. First of all by (9.5)B)b) and the previous observations on the
module Ki(M̄) we get an isomorphism of graded R-modules

(i)
(
K1(M)/xK1(M)

)
(t) ∼= K0(M̄/xM̄).

Observe that the canonical epimorphism of graded R-modules p : M/xM →
M̄/xM̄ satisfies

Ker(p) =
(
H0
R+

(M) + xM
)
/xM ∼=

H0
R+

(M)/
(
xM ∩H0

R+
(M)

)
= H0

R+
(M)/x

(
H0
R+

(M) :M x
)
.

As x is filter-regular with respect to M we have (H0
R+

(M) :M x) = H0
R+

(M),

so that finally Ker(p) = H0
R+

(M)/xH0
R+

(M). Therefore, we end up with the
short exact sequence of graded R-modules

0→ H0
R+

(M)/xH0
R+

(M)→M/xM → M̄/xM̄ → 0.

As H0
R+

(M)/xH0
R+

(M) is R+-torsion, we have K1
(
H0
R+

(M)/xH0
R+

(M)
)

= 0.
If we form the deficiency sequence associated to the above short exact sequence,
we thus get an exact sequence of graded R-modules

0→ K0(M̄/xM̄)→ K0(M/xM)→ K0
(
H0
R+

(M)/xH0
R+

(M)
)
→ 0.
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In view of the previously observed isomorphism (i) it thus remains to show
that there is an isomorphism of graded R-modules

K0
(
H0
R+

(M)/xH0
R+

(M)
) ∼= (0 :K0(M) x).

By (9.4)C)d) we have a natural isomorphism H0
R+

(M) ∼= D(K0(M)) so that
in view of (9.3)C)b) we obtain isomorphisms of graded R-modules

H0
R+

(M)/xH0
R+

(M) ∼= D(K0(M))/xD(K0(M)) ∼= D(0 :K0(M) x).

Therefore, by (9.4)B)a) it we get isomorphisms of graded R-modules

K0
(
H0
R+

(M)/xH0
R+

(M)
) ∼= D

(
H0
R+

(H0
R+

(M)/xH0
R+

(M))
) ∼=

D
(
H0
R+

(M)/xH0
R+

(M)
) ∼= D

(
D(0 :K0(M) x)

) ∼= (0 :K0(M) x).

�

10.4. Lemma. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra and let M be a finitely generated graded R-module.
Then, for all i ∈ N0 and all n ≥ i we have

dimK

(
Ki+1(M)n

)
≤

i∑
j=0

(
n− j − 1

i− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM (l − i)

]
.

Proof. Observe that for i ∈ N0 and all n ≥ i we have −n ≤ −i and hence (see
(8.12))

diM(−n) ≤
i∑

j=0

(
n− j − 1

i− j

)[ i−j∑
l=0

(
i− j
l

)
di−lM (l − i)

]
.

If i > 0, then
diM(−n) = hi+1

M (−n).

Moreover

h1
M(−n) ≤ dimK(M−n)− h0

M(−n) + h1
M(−n) = d0

M(−n).

As hi+1
M (−n) = dimK(Ki+1(M)n) (see (9.4)C)b)) our claim follows. �

Now, we define the bounding functions Gi
d : N0×Z→ Z, which were mentioned

already at the beginning of this section.

10.5. Definition. (A Class of Bounding Functions) For all d ∈ N and all
i ∈ {0, 1, . . . , d} we define the functions

Gi
d : Nd

0 × Z→ Z

recursively as follows. In the case i = 0 we define

(i) G0
d(x0, x1, . . . , xd−1, y) := −y.

In the case i = 1 we set:

(ii) G1
1(x0, y) := y − 1;

(iii) G1
d(x0, x1, . . . , xd−1, y) := max{0, 1− y}+

∑d−2
i=0

(
d−1
i

)
xd−i−2, for d ≥ 2.
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In the case i = d = 2 we define

(iv) G2
2(x0, x1, y) := G1

2(x0, x1, y) + 2.

Now, assume that d ≥ 3 and that the functions Gi−1
d−1, G

i
d−1 and Gi−1

d are
already defined. In order to define the function Gi

d we first intermediately
introduce the following notation:

(v) mi := max{Gi−1
d−1(x0+x1, . . . , xd−2+xd−1, y), Gi−1

d (x0, . . . , xd−1, y)+1}+1.

(vi) ni := Gi
d−1(x0 + x1, ..., xd−2 + xd−1, y),

(vii) ti := max{mi, ni},
(viii) ∆ij :=

∑i−j−1
l=0

(
i−j−1
l

)
xi−l−1.

Using these notational conventions, we define

(ix) Gi
d(x0, . . . , xd−1, y) := ti +

∑i−1
j=0 ∆ij, ∀i ∈ {2, 3, . . . , d− 1}.

Finally, if d ≥ 3 and Gd−1
d−1 and Gd−1

d are already defined, we set (see (v))

(x) Gd
d(x0, . . . , xd−1, y) := md.

In order to prove our main result, we need a few more preparations. The
following three exercises are devoted to these.

10.6. Exercise. A) (Monotonicity of the Bounding Functions Gi
d) Let d ∈ N0,

let i ∈ {0, 1, . . . , d− 1} and let

(x0, x1, . . . , xd−1, y), (x′0, x
′
1, . . . , x

′
d−1, y

′) ∈ Nd
0 × Z

such that

xi ≤ x′i, ∀i ∈ {0, 1, . . . , d− 1}, y′ ≤ y.

Prove by induction on i and d, that under these circumstances we have

Gi
d(x0, x1, . . . , xd−1, y) ≤ Gi

d(x
′
0, x
′
1, . . . , x

′
d−1, y

′).

(B) (Two Further Properties) Let the notations be as in (10.5). Use induction
on i to show the following statements

a) min{mi, ti} ≥ i.

b) If i ≤ s ≤ d and (x0, x1, . . . , xs−1, y) ∈ Ns × Z, then

Gi
s(x0, x1, . . . , xs−1, y) ≤ Gi

d(x0, x1, . . . , xs−1, 0, . . . , 0, y).

10.7. Exercise. A) (Dual Vector Spaces and Base Field Extensions) Let K be
a field and let K ′ be an extension field of K. We identify K ′ = K ′⊗KK. Verify
that there is a natural transformation of contravariant linear exact functors of
K ′-vector spaces

ι : K ′ ⊗K HomK(•, K)→ HomK′(K
′ ⊗K •, K ′),
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such that for all K-vector spaces V , all c′ ∈ K ′ and all h ∈ HomK(V,K) we
have

ιV (c′ ⊗ h) = c′IdK′ ⊗K h.
Prove the following:

a) If V is a K-vector space of finite dimension, then the above natural trans-
formation yields an isomorphism of K ′-vector spaces

ιV : K ′ ⊗K HomK(V,K)
∼=−→ HomK′(K

′ ⊗K V,K ′).

B) (Graded Duals and Base Field Extensions) Keep the above notations and
hypotheses. Let R =

⊕
n∈ZRn be a graded K-algebra, so that R0 = K.

Consider the graded K ′-algebra R′ := K ′⊗K R =
⊕

n∈Z(K ′⊗K Rn). For each
graded R-module M =

⊕
n∈ZMn we furnish K ′ ⊗K M ∼=

⊕
n∈Z(K ′ ⊗K Mn)

with its canonical structure as a graded R′-module.

We consider the functor D of taking graded duals of graded R-modules and
the functor D′ of taking graded duals of graded R′-modules as introduced in
(9.1). Show that the natural transformation ι of part A) gives rise to a natural
transformation of functors from graded R-modules to graded R′-modules

ω : K ′ ⊗K D(•)→ D′(K ′ ⊗K •)

such that for each integer t ∈ Z and each graded R-module M we have

(ωM)t = (ιM)�K′⊗KD(M)t .

Prove the following statement.

a) For each graded R-module M and each t ∈ Z we have have the commutative
diagram

K ′ ⊗K HomK(M−t, K)
K′⊗KτMt
∼=

//

ιM−t
��

K ′ ⊗K D(M)t

(ωM )t
��

HomK′(K
′ ⊗K M−t, K ′)

τ
K′⊗KM
t

∼=
// D′(K ′ ⊗K M)t

where the maps τMt and τK
′⊗KM

t are the natural isomorphisms defined accord-
ing to (9.1)A)d),C)a). Use this to show

b) If the graded R-module has finite components (and hence belongs to the
class FR of (9.3)B)) the natural transformation ω yields an isomorphism of
graded R′-modules

ωM : K ′ ⊗K D(M)
∼=−→ D′(K ′ ⊗K M).

C) (Modules of Deficiency and Base Field Extensions) Let K and K ′ be as
above and assume this time that R = K ⊕ R1 ⊕ R2 . . . is a Noetherian and
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homogeneous K-algebra. Keep in mind, that then R′ is a Noetherian homoge-
neous K ′-algebra. Let i ∈ N0. For any graded R-module M we may identify

K ′ ⊗K Ki(M) = K ′ ⊗K D(H i
R+

(M)), D′(H i
R′+

(K ′ ⊗K M)) = Ki(K ′ ⊗K M)

and consider the homomorphisms of graded R′-modules

ψiM : K ′ ⊗K Ki(M)→ Ki(K ′ ⊗K M)

given as the composition

K ′⊗KD(H i
R+

(M))
ω
Hi
R+

(M)

−−−−−→ D′(K ′⊗KH i
R+

(M))
D′( ∗τ

i,R+,K
′⊗K•

M )−1

−−−−−−−−−−−−→ Ki(K ′⊗KM)

where
∗τ
i,R+,K′⊗K•
M : K ′ ⊗K H i

R+
(M)

∼=−→ H i
R′+

(K ′ ⊗K M))

is the natural isomorphism of (1.15)B),C). Observe that in this way we get
a natural transformation of functors from graded R-modules to graded R′-
modules

ψi : K ′ ⊗K Ki(•)→ Ki(K ′ ⊗K •)
given by

M p ψiM : K ′ ⊗K Ki(M)→ Ki(K ′ ⊗K M).

Use what was established in part B) to show the following Base Change Prop-
erty of Modules of Deficiency:

a) If M is a finitely generated graded R-module, the natural transformation
ψi yields an isomorphism of graded R′-modules

ψiM : K ′ ⊗K Ki(M)
∼=−→ Ki(K ′ ⊗K M).

10.8. Exercise. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, let M be a finitely generated graded R-module, let
t ∈ N and let x ∈ Rt be filter-regular with respect to M . Show that for all
i ∈ N0 and all n ∈ Z we have the inequality

diM/xM(n) ≤ diM(n) + di+1
M (n− t).

Now, we are ready to formulate and to prove the announced main result.

10.9. Theorem. Let d ∈ N, let i ∈ {0, 1, . . . , d}, let K be a field, let R =
K⊕R1⊕R2 . . . be a Noetherian homogeneous K-algebra and let M be a finitely
generated graded R-module with dimR(M) = d. Then

reg
(
Ki(M)

)
≤ Gi

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

Proof. We proceed by induction on i. By (9.5)A)b) we have dimR(K0(M)) ≤ 0.
So, in view of (9.4)C)b) we get

reg(K0(M)) = end(K0(M)) = −beg(H0
R+

(M)) ≤ −beg(M) =

G0
d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

This clearly proves the case i = 0.
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So let i > 0. Let K ′ be an infinite extension field of K, consider the Noetherian
homogeneous K ′-algebra R′ := K ′⊗KR = K ′⊕(K ′⊗KR1)⊕(K ′⊗KR2) . . . and
the finitely generated graded R′-module M ′ := K ′ ⊗K M =

⊕
n∈ZK

′ ⊗K Mn.
Then clearly beg(M ′) = beg(M), dimR′(M

′) = d (see (2.4)C)b) and moreover
djM ′(n) = djM(n) for all j ∈ N0 and all n ∈ Z (see (8.1)C)e)). In addition
we have an isomorphism of graded R′-modules Ki(M ′) ∼= K ′ ⊗K Ki(M) (see
(10.7)C)a)) so that reg(Ki(M ′)) = reg(Ki(M)) (see (3.3)B)h)). This allows
to replace R and M respectively by R′ and M ′ and hence to assume that K is
infinite.

Let M̄ := M/ΓR+(M). Then dimR(M̄) = d, dj
M̄

(n) = djM(n) for all j ∈ N0

and all n ∈ Z (see (8.1)B)c)). In addition clearly begM ≤ beg(M̄), whence by
(10.6)A) we get

Gi
d

(
d0
M̄(0), d1

M̄(−1) . . . , dd−1
M̄

(1− d), beg(M̄)
)
≤

≤ Gi
d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

As moreover we have an isomorphism of graded R-modules Ki(M̄) ∼= Ki(M)
(see (9.5)A)c)), we thus may replaceM by M̄ and hence assume that ΓR+(M) =
0. Therefore we find some element x ∈ R1 ∩ NZDR(M). By Homogeneous
Prime Avoidance we may assume in addition, that x is filter-regular with
respect to the modules K0(M), K1(M), . . . Kd(M). In particular, by (10.3)
(indeed even by (9.5)B)b)) there is an exact sequence of graded R-modules

a) 0→
(
Kj+1(M)/xKj+1(M)

)
(+1)→ Kj(M/xM)→ (0 :Kj(M) x)→ 0,

for all j ∈ N0. Since H0
R+

(M) = 0 we have K0(M) = 0 (see (9.7)c) for
example), so that the sequence a) gives rise to an isomorphism of graded R-
modules

b)
(
K1(M)/xK1(M)

)
(+1) ∼= K0(M/xM).

As dimR(K0(M/xM)) ≤ 0 (see (9.7)f)), the above isomorphism shows that
K1(M)/xK1(M) is R+-torsion, so that (see (9.7)c))

reg
(
K1(M)/xK1(M)

)
= reg

(
K0(M/xM)

)
+ 1 = end

(
K0(M/xM)

)
+ 1 =

1− beg
(
H0
R+

(M/xM)
)
≤ 1− beg(M/xM) ≤ 1− beg(M).

It follows that

c) reg
(
K1(M)/xK1(M)

)
≤ 1− beg(M).

We first assume that d = 1. Then clearly i = 1, whence Ki(M) = K1(M) =
K(M) so that by (9.10) we get gradeK1(M)(R+) = 1 hence H0

R+
(K1(M)) = 0,

so that reg(K1(M)) = reg1(K1(M)). It follows that (see (10.1))

reg
(
K1(M)

)
≤ reg

(
K1(M)/xK1(M)

)
≤ 1− beg(M) = G1

1(d0
M(0), beg(M)

)
.

This proves our claim if d = 1.
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So, assume from now on, that d ≥ 2. We first treat the case i = 1. To do so,
we consider the sequence a) for j = 1, hence

d) 0→
(
K2(M)/xK2(M)

)
(+1)→ K1(M/xM)→ (0 :K1(M) x)→ 0.

If d = 2, we have dimR(M/xM) = 1 and so by the aleady treated case d = 1
we get

reg
(
K1(M/xM)

)
≤ 1− beg(M/xM) ≤ 1− beg(M).

Consequently by (3.4) we have

gendeg
(
(0 :K1(M) x)

)
≤ gendeg

(
K1(M/xM)

)
≤

≤ reg
(
K1(M/xM)

)
≤ 1− beg(M).

Assume first that m0 := 1 − beg(M) ≤ 0. Then, by (10.2) (applied with
m = 0) we obtain (see (9.7)c))

reg
(
K1(M)

)
≤ 0 + h0

K1(M)(0) ≤ dimK

(
K1(M)0

)
= h1

M(0) ≤ d0
M(0).

Now, assume that m0 := 1 − beg(M) > 0. Then d0
M(−m0) ≤ d0

M(0) (see
(8.11)b)). So by statement c), by (10.2) and by (9.7)c) we get

reg
(
K1(M)

)
≤ m0 + h0

K1(M)(m0) ≤ m0 + dimK(K1(M)m0) =

= 1− beg(M) + h1
M(−m0) ≤ 1− beg(M) + d0

M(−m0) ≤ 1− beg(M) + d0
M(0).

Therefore, bearing in mind (10.5)(iii) we finally obtain

reg
(
K1(M)

)
≤ max{d0

M(0), 1− beg(M) + d0
M(0)} ≤

≤ max{0, 1− beg(M)}+ d0
M(0) = G1

2

(
d0
M(0), d1

M(−1), beg(M)
)
.

This proves the case in which d = 2 and i = 1.

Now, let d ≥ 3, but still let i = 1. Then, by induction on d we may write (see
(10.5)(iii))

reg
(
K1(M/xM)

)
≤ G1

d−1

(
d0
M/xM(0), . . . , dd−2

M/xM(2− d), beg(M/xM)
)

=

= max{0, 1− beg(M/xM)}+
d−3∑
i=0

(
d− 2

i

)
dd−i−3
M/xM(i+ 3− d).

According to (10.8) we have

dd−i−3
M/xM(i+3−d) ≤ dd−i−3

M (i+3−d)+dd−i−2
M (i+2−d), ∀i ∈ {0, 1, . . . , d−3}.

Therefore we obtain

reg
(
K1(M/xM)

)
≤

≤ max{0, 1−beg(M)}+
d−3∑
i=0

(
d− 2

i

)[
dd−i−3
M (i+3−d)+dd−i−2

M (i+2−d)
]

=: t0.

By the exact sequence d) and (3.4) we now get

gendeg
(
(0 :K1(M) x)

)
≤ reg

(
K1(M/xM)

)
≤ t0.
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By the above inequality c) and the definition of t0 we have

reg
(
K1(M)/xK1(M)

)
≤ t0.

As t0 ≥ 0 we also have d0
M(−t0) ≤ d0

M(0). So, by (10.2) and (9.7)c) we obtain
the inequalities

reg
(
K1(M)

)
≤ t0 + h0

K1(M)(t0) ≤ t0 + dimK

(
K1(M)t0

)
=

= t0 + h1
M(−t0) ≤ t0 + d0

M(−t0) ≤ t0 + d0
M(0) =

= max{0, 1−beg(M)}+
d−3∑
i=0

(
d− 2

i

)[
dd−i−3
M (i+3−d)+dd−i−2

M (i+2−d)
]
+d0

M(0) =

= max{0, 1−beg(M)}+dd−2
M (2−d)+

d−3∑
i=1

[(d− 2

i− 1

)
+

(
d− 2

i

)]
dd−i−2
M (i+2−d)+

+(d− 2)d0
M(0) + d0

M(0) =

= max{0, 1− beg(M)}+
d−3∑
i=0

(
d− 1

i

)
dd−i−2
M (i+ 2− d) + (d− 1)d0

M(0) =

= max{0, 1− beg(M)}+
d−2∑
i=0

(
d− 1

i

)
dd−i−2
M (i+ 2− d).

In view of (10.5)(iii) this means that

reg
(
K1(M)

)
≤ G1

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

So, we have settled the case i = 1 for all d ∈ N.

We now attack the cases with i ≥ 2. We begin with the case in which d = 2 and
hence i = 2. In view of the exact sequence d) we obtain (see (3.3)B)b),C)a))

reg
(
K2(M)/xK2(M)

)
≤ max{reg

(
K1(M/xM)

)
, reg

(
(0 :K1(M) x)

)
+ 1}+ 1.

Observe that dimR(M/xM) = 1, so that by what we know from the already
treated case i = d = 1 we get

reg
(
K1(M/xM)

)
≤ G1

1

(
d0
M/xM(0), beg(M/xM)

)
=

beg(M/xM)− 1 ≤ beg(M)− 1.

As x is filter-regular with respect to K1(M), we have (0 :K1(M) x) ⊆ H0
R+

(M),
so that

reg
(
(0 :K1(M) x)

)
= end

(
(0 :K1(M) x)

)
≤ end

(
H0
R+

(K1(M))
)
≤ reg

(
K1(M)

)
.

By what we know from the already treated case with i = 1 and d = 2 we have

reg
(
K1(M)

)
≤ G1

2

(
d0
M(0), d1

M(−1), beg(M)
)

= max{0, 1− beg(M)}+ d0
M(0).

Therefore we get

reg
(
K2(M)/xK2(M)

)
≤ max{1−beg(M),max{0, 1−beg(M)}+d0

M(0)+1}+1

≤ max{0, 1− beg(M)}+ d0
M(0) + 2.
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As gradeK2(M)(R+) = gradeK(M)(R+) ≥ min{2, d} = 2 = d (see (9.10)) we

have gradeK2(M)(R+) = 2, whence Hj
R+

(K2(M)) = 0 for j = 0, 1. This means,

that reg(K2(M)) = reg1(K2(M)). So by(10.1) we obtain

reg
(
K2(M)

)
≤ reg

(
K2(M)/xK2(M)

)
≤

≤ max{0, 1− beg(M)}+ d0
M(0) + 2 = G2

2

(
d0
M(0), d1

M(−1), beg(M)
)
.

This completes our proof in the cases with i ≥ 2 and d = 2.

So, let d > 2 and i ≥ 2. By (10.8) we have

djM/xM(−j) ≤ djM(−j) + dj+1
M (−j − 1), ∀j ∈ N0.

Let k ∈ {0, 1, . . . , d− 1}. Then, by induction on d and in view of (10.6)A) we
have

reg
(
Kk(M/xM)

)
≤ Gk

d−1

(
d0
M/xM(0), . . . , dd−2

M/xM(2− d), beg(M/xM)
)
≤

≤ Gk
d−1

(
d0
M(0) + d1

M(−1), . . . , dd−2
M (2− d) + dd−1

M (1− d), beg(M)
)

=: nk.

Therefore

e) reg
(
Kk(M/xM)

)
≤ nk for all k ∈ {0, 1, . . . , d− 1}.

Clearly, by induction on i we have

f) reg
(
Ki−1(M)

)
≤ Gi−1

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
=: vi−1.

If we apply the exact sequence a) with j = i− 1 we get (see (3.3)B)b),C)a))

reg
(
Ki(M)/xKi(M)

)
≤ max{reg

(
Ki−1(M/xM)

)
, reg

(
(0 :Ki−1(M) x)

)
+1}+1.

By the inequality e) we have

reg
(
Ki−1(M/xM)

)
≤ ni−1.

Moreover, as x is filter-regular with respect to Ki−1(M) we have once more
reg
(
(0 :Ki−1(M) x)

)
≤ end

(
H0
R+

(Ki−1(M))
)
≤ reg

(
Ki−1(M)

)
, so that by the

inequality f) we have

reg
(
(0 :Ki−1(M) x)

)
≤ vi−1.

Thus, gathering together we we obtain

g) reg
(
Ki(M)/xKi(M)

)
≤ max{ni−1, vi−1 + 1}+ 1 =: mi.

Assume first, that 2 ≤ i ≤ d− 1. Observe that by (10.6)B)a) we have

ti := max{mi, ni} ≥ i.

Moreover, if we apply the sequence a) with j = i and keep in mind the in-
equality e) we get (see also (3.4))

gendeg
(
(0 :Ki(M) x)

)
≤ reg

(
Ki(M/xM)

)
≤ ni.
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So, by (10.2), applied to the graded R-module Ki(M) with m := ti and with
(10.4) applied with n = ti and with i− 1 instead of i we obtain

reg
(
Ki(M)

)
≤ ti + h0

Ki(M)(ti) ≤ ti + dimK

(
Ki(M)ti

)
≤

≤ ti +
i−1∑
j=0

(
ti − j − 1

i− j − 1

)[ i−j−1∑
l=0

(
i− j − 1

l

)
di−l−1
M (l − i+ 1)

]
.

In view of (10.5)(viii),(ix) this means that

reg
(
Ki(M)

)
≤ Gi

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

This completes our proof in the cases with i ≤ d− 1.

It remains to treat the cases with i = d > 2. Observe that by (9.10) we have
gradeKd(M)(R+) = 2, so that again reg

(
Kd(M)

)
= reg1

(
Kd(M)

)
. Keep in

mind, that x is filter-regular with respect to Kd(M). So, if we apply (10.1) to
this latter module and bear in mind the previous inequality g) we obtain

reg
(
Kd(M)

)
≤ reg

(
Kd(M)/xKd(M)

)
≤ md.

In view of (10.5)(x) this means that

reg
(
Kd(M)

)
≤ Gd

d

(
d0
M(0), d1

M(−1), . . . , dd−1
M (1− d), beg(M)

)
.

This completes our proof. �

Finally, we now have reached the last peak of the mountain we have attacked
and shall do just one last tiny step forward on the top platform.

10.10. Corollary. Let K be a field, let R = K ⊕ R1 ⊕ R2 . . . be a Noetherian
homogeneous K-algebra, let d ∈ N, let x0, x1, . . . , xd−1 ∈ N0 and let y ∈
Z. Then for each finitely generated graded R-module M which satisfies the
conditions

dimR(M) ≤ d, djM(−j) ≤ xj ∀j ∈ {0, 1, . . . , d− 1}, beg(M) ≥ y

it holds

reg
(
Ki(M)

)
≤ Gi

d(x0, x1, . . . , xd−1, y),∀i ∈ {0, 1, . . . , d}.

Proof. If M=0, our claim is obvious. If dimR(M) = 0 we have M = H0
R+

(M),

Ki(M) = 0 for all i > 0 (see (9.7)e)) and dimR(K0(M)) = 0 (see (9.7)f)).
Therefore we can say that (see (9.7)c) and (10.5)(i))

reg
(
K0(M)

)
= end

(
K0(M)

)
= −beg

(
H0
R+

(M)
)

= beg(M) ≤

≤ −y = G0
1(x0, x1, . . . , xd−1, y).

So, we may assume from now on, that dimR(M) > 0. But in this situation we
may conclude by (10.9) and (10.6)A),B). �



161

As a first and immediate application we now get a lower bound on the coho-
mological postulation numbers

νiM := inf{n ∈ Z | piM(n) 6= hiM(n)}
of a finitely generated graded module M over a Noetherian homogeneous K-
algebra R, as they were introduced in (9.8)C).

10.11. Corollary. Let d ∈ N, let i ∈ {0, 1, . . . , d−1}, let x0, x1 . . . , xd−1 ∈ N0,
let y ∈ Z, let K be a field, let R = K⊕R1⊕R2 . . . be a Noetherian homogeneous
K-algebra and let M be a finitely generated graded R-module which satisfies
the conditions

dimR(M) ≤ d, djM(−j) ≤ xj ∀i ∈ {0, 1, . . . , d− 1}, beg(M) ≥ y.

Then
νiM ≥ −Gi

d(x0, x1, . . . , xd−1, y).

Proof. This is immediate by (10.10) and (9.8)C)d). �

In order to be able to deduce some further conclusions from the last bounding
result, we now introduce some appropriate notions.

10.12. Exercise and Definition. A) (Cohomological Serre Polynomials of
Coherent Sheaves) Let K be a field, let R = K ⊕R1 ⊕R2 . . . be a Noetherian
homogeneous K-algebra, set X := Proj(R) and let F be a coherent sheaf of
OX-modules. Moreover let M be a finitely generated graded R-module such

that F = M̃ . Let i ∈ N0. Show that for the (i + 1)-st cohomological Hilbert
polynomial pi+1

M of M (see (9.8)A)) we have (see also (4.11)A))

a) pi+1
M (n) = hi(X,F(n)) = hiF(n) for all n� 0.

In particular, we can say, that for each i ∈ N0 there is a unique polynomial

piF = piF(X) ∈ Q[X],

characterized by the property that

hi(X,F(n)) = piF(n), ∀n� 0.

This numerical polynomial piF ∈ Q[X] is called the i-th cohomological Serre
polynomial of F . Prove that in the above notations we have

b) piF = pi+1
M .

c) deg(piF) ≤ i, with equality if i = dim(F) ≥ 0.

d) If i > dim(F), then piF = 0.

e) piF(r)(X) = piF(X + r) for all r ∈ Z.

f) The Serre polynomial PF of F (see (4.11)B)) satisfies

PF =

dim(F)∑
i=0

(−1)ipiF =
∑
i∈N0

(−1)ipiF .
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B) (Cohomological Postulation Numbers of Coherent Sheaves) Let the nota-
tions be as in part A). Then clearly

νiF := inf{n ∈ Z | piF(n) 6= hi(X,F(n))} ∈ Z ∪ {∞}.
The number νiF is called the i-th cohomological postulation number of F . Prove
the following statements, in which νi+1

M denotes the (i + 1)-th cohomological
postulation number of the module M (see (9.8)C))

a) If i ∈ N, then νiF = νi+1
M .

b) ν0
F ≥ min{ν1

M , beg(M)}.
c) If i = dim(F) ≥ 0, then νiF ∈ Z.

d) If i > dim(F), then νiF =∞.

e) νiF(r) = νiF − r for all r ∈ Z.

To simplify the notational form of our next result, we prefer to introduce the
following bounding functions.

10.13. Notation. Let s ∈ N0 and let i ∈ {0, 1, . . . , s}. We then define the
bounding function

Lis : Ns+1
0 → Z

by the prescription

Lis(x0, x1, . . . , xs) := −Gi+1
s+1(x0, x1, . . . , xs, 0), ∀x0, x1, . . . , xs ∈ N0,

where the function

Gi+1
s+1 : Ns

0 × Z→ Z

is defined according to (10.5).

Now, we are ready to formulate and to prove our first main application of
(10.10), which says that the cohomology diagonal of a coherent sheaf F over
a projective K-scheme X bounds the cohomological postulation numbers of the
sheaf F .

10.14. Theorem. Let s ∈ N0, let i ∈ {0, 1, . . . , s}, let x0, x1, . . . , xs ∈ N0, let
X be a projective scheme over some field K and let F be a coherent sheaf of
OX-modules which satisfies the conditions

dim(F) ≤ s, hi(X,F(−j)) ≤ xj ∀j ∈ {0, 1, . . . , s}.
Then

νiF ≥ Lis(x0, x1, . . . , xs).

Proof. We write X = Proj(R), where R = K ⊕ R1 ⊕ R2 . . . is a Noetherian
homogeneous K-algebra. We may chose some finitely generated graded R-

module M such that F = M̃ . As M̃ = M̃≥0 we may replace M by M≥0 and
hence assume that

beg(M) ≥ 0.



163

Observe that
dimR(M) ≤ dim(F) + 1 ≤ s+ 1.

Moreover, in view of (8.1)B)g) we have

djM(−j) = hj(X,F(−j)) ≤ xj, ∀j ∈ {0, 1, . . . , s}.
So, we may apply (10.11) with y = 0 and with i+ 1 instead of i and obtain

νi+1
M ≥ −Gi+1

s+1(x0, x1, . . . , xs, 0) = Lis(x0, x1 . . . , xs).

By (10.12)B)a) we have in addition that νiF = νi+1
M provided that i > 0. In

these cases we therefore have our claim. So, it remains to consider the case
i = 0. By (10.12)B)b) and the previous estimate we have

ν0
F ≥ min{ν1

M , 0} ≥ min{L0
s(x0, x1, . . . , xs), 0}.

According to (10.5)(iii) we have

L0
s(x0, x1, . . . , xs) = −G1

s+1(x0, x1, . . . , xs, 0) < 0,

so that indeed ν0
F ≥ L0

s(x0, x1, . . . , xs), as requested. �

Now, it is at about the time, to comment on the previous results. We try
to present the special flavour or ”spirit“ of our basic bounding result (10.9)
and its corollary (10.10). Then we discuss the ”historic background“ of the
bounding result (10.14). We also tie the link to our quantitative version
[Br-Fu-Ro](10.17) of the Vanishing Theorem of Severi-Enriques-Zariski-Serre.

10.15. Exercise and Remark. A) (Around Regularity of Modules of Defi-
ciency) The bounding result (10.9) is given in a more general form in [Br-Ja-Li1],
namely for finitely generated graded modules over Noetherian homogeneous
rings with Artinian local base ring. Here we did restrict ourselves to modules
over Noetherian homogeneous K-algebras, as we did develop the theory of
modules of deficiency only in this special context in our course. The bounding
result (10.9) and its corollary (10.10) are results in the spirit of the first bound-
ing result given expressis verbis for regularities: Mumford’s bounding result in
[Mu1], which we presented in an extended form in section 4 of these lectures,
(see (4.7), (4.8), (4.12), (4.13), (4.14)C)(i) and (4.14)D)). The typical property
of Mumford’s original result is the fact that it gives an explicit and universal
upper bound on the regularity of a coherent sheaf of ideals over a projective
space over a field in terms of the Serre coefficients of this sheaf. Clearly our
extensions of Mumford’s result given in section 4 have the same characteristic
property.

Let us recall once more, that Mumford’s result did open a new view to Hilbert
schemes: instead of using non-constructive compactness and semicontinuity
arguments to show the boundedness of regularities and cohomologies of the
class of ideals parametrized by a given Hilbert scheme, one now had an explicite
and algorithmic ”a priori bound“ at hands. It would be rather surprising, if
Mumford’s result (and related results of the same type, as found in for example
in Kleiman’s contribution to [Gro4] for example) would not have been one of
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the driving forces for the revival of Computational Algebraic Geometry around
the year 1980 (see [B-Mu] for example).

Let us admit, that we dare compare (10.9) with Mumford’s previously quoted
bounding result. Namely: our bounding result answers a ”classical” question
(suggested by Mumford [Mu1], indeed), and it does this in an explicit and
algorithmic way by giving universal upper bounds on the regularities of the
deficiency modules of a graded module - only in terms of the cohomology
diagonal and the beginning of this module. Clearly, we also aim to remain
modest and dare not think at all, that our bounding results (10.9) and (10.10)
open a new view to some basic objects of algebraic geometry, as this was
the case for Mumford’s result. One should not forget, that meanwhile 44 years
have passed - and algorithmic results have become a common issue in Algebraic
Geometry. To convince the reader, that our bounding results might have some
significance beyond themselves, we shall use them to study classes of finite
cohomology, as they were introduced and treated towards the end of section
8.

B) (Around Cohomological Postulation Numbers) First, let us briefly recall the
“history” of our bounding theorem (10.14). In [Matt] it was shown, that the
cohomological postulation numbers of a coherent sheaf F over a projective
scheme X over a field K are bounded merely in terms of the cohomology
diagonal and the cohomological Serre polynomials of F . In [Br-Matt-Mi2] we
did show that the same holds for coherent sheaves over projective schemes over
Artinian rings.

In [L] and [Br-L2] it is shown by a completely different method, that the
cohomological postulation numbers of a coherent sheaf F over a projective
scheme X over a field K are bounded in terms of the cohomology diagonal of
F . Due to the method used in those papers, the attained bounds are essentially
weaker than those given in (10.14). The bounding result (10.14) actually is
given in a more general setting in [Br-Ja-Li1]: this bound again holds for all
coherent sheaves over projective schemes over local Artinian rings. Let us
just mention, that unlike to our first approach practiced in [L] and [Br-L2]
the bounding result (10.9) (resp. its generalization to projective schemes over
local Artinian rings) is the basic tools to obtain (10.14) (resp. its corresponding
generalization). This points out once more the significance of (10.9).

C) (Revisiting once more the Vanishing Theorem of Severi-Enriques-Zariski-
Serre) Now, let K be (an algebraically closed) field, let X be a projective
scheme over K and let F be a coherent sheaf of OX-modules. Use [Br-Fu-Ro]
(10.17) to show the following statements, in which

δ(F) := inf{depthOX,x | x ∈ mX}

denotes the subdepth of F (see [Br-Fu-Ro](12.15)B)).

a) δ(F) = inf{i ∈ N0 | piF 6= 0}.
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b) For all i < δ(F) it holds

νiF >
(
2

δ(F)−1∑
j=0

(
δ(F)− 1

i

)
hj(X,F(−j))

)2δ(F)−1

.

(You may indeed use (7.11)D) to eliminate the condition that K is algebraically
closed). These statements obviously are the Sheaf Theoretic Formulation of
the Quantitative Version of the Vanishing Theorem of Severi-Enriques Zariski-
Serre given in [Br-Fu-Ro](10.17). Observe that the above statements a) and
b) are a substitute for the bounding result (10.14), but only available in the
range i < δ(F). Observe also, that the bound of statement b), in the range
it applies at all, is sharper than the corresponding bound of (10.14). Never-
theless, (10.14) gives indeed an extension of the bounding result formulated in
statements a) and b) beyond the critical level i = δ(F)− 1. Therefore we may
consider our bounding result (10.14) as an Ultimate Quantitative Version of
the Vanishing Theorem of Severi-Enriques-Zariski-Serre.

We now give a last application of (10.9). It will be devoted to classes of finite
cohomology as they where introduced in (8.14). We namely shall establish
an essential improvement of our earlier result (8.20). This application should
help to illuminate the significance of the bounding result (10.9), as we hope
to make clear in our final discussion. For the occurring notations and notions
occurring in this result, the reader should consult (8.13), (8.14)A) and (8.18).

10.16. Theorem. Let s ∈ N0, let Σ ⊆ {0, 1, . . . , s} × Z be a quasi-diagonal
subset and let D ⊆ Ss be a subclass which is of finite cohomology on Σ. Then
the class D is of finite cohomology at all.

Proof. According to (8.20) the class D is of finite cohomology on the set
{0, 1, . . . , s} × Z≥−s. In particular there are numbers x0, x1, . . . , xs ∈ N0 such
that

hj(X,F(−j)) ≤ xj, ∀j ∈ {0, 1, . . . , s}, ∀(X,F) ∈ D.
Now, in the notations of (10.13) let

l := min{Lis(x0, x1, . . . , xs) | i = 0, 1, . . . , s}.
Then, according to (10.14) we have

νiF ≥ l, ∀i ∈ {0, 1, . . . , s}, ∀(X,F) ∈ D.
Next, fix some integer t < l− d. Let (X,F) ∈ D. Then for each n < l we have
hi(X,F(n)) = piF(n). As deg(piF) ≤ i ≤ s (see (10.12)A)c)) it follows that the
family

(
hi(X,F(n))

)
n<l

is uniquely determined by its finite subfamily

FF :=
(
hi(X,F(n))

)
t≤n<l .

According to (8.20) the class D is of finite cohomology on the set {0, 1, . . . , s}×
Z≥t. This clearly shows that the set of finite families

{FF | (X,F) ∈ D}



166

is finite. By the previous observation this implies that the class D is of finite
cohomology on the set {0, 1, . . . , s} × Z<l. As D is of finite cohomology on
{0, 1, . . . , s} × Z≥t and as t < l it follows that D is of finite cohomology on
{0, 1, . . . , s} × Z (see (8.14)B)f)). This proves our claim. �

We now give a number of applications of the previous result, which gener-
alize what is known in the theory of Hilbert schemes: The sheaves of ideals
parametrized by a given Hilbert scheme form a class of finite cohomology.
We give these applications in the spirit of what we said towards the end of
(10.15)A), namely in order to illustrate the ease and the great generality of
conclusions that may be drawn from our Bounding Theorem (10.9). We begin
with linking classes of finite cohomology to classes of bounded regularity.

10.17. Exercise and Remark. A) (Specifying classes of Finite Cohomology)
Let s ∈ N0 and let D ⊆ Ss be a subclass. Fix a quasi-diagonal subset

Σ = {(i, ni) | i = 0, 1, . . . , s} ⊆ {0, 1, . . . , s} × Z, ns < ns−1 < . . . < n0.

Then our previous result says that the class D is of finite cohomology if and
only if the set

{hi(X,F(ni)) | (X,F) ∈ D} = {hiF(ni) | (X,F) ∈ D}

is finite for all i ∈ {0, 1, . . . , s}. So, the s+ 1 numerical invariants hiF(ni) with
i = 0, 1, . . . , s may be used to specify subclasses D ⊆ Ss of finite cohomology.
Indeed, specifying classes of finite cohomology by subjecting numerical invari-
ants to some conditions, is a basic issue. In this spirit we suggest to prove the
following statement as an exercise.

a) The class D ⊆ Ss is of finite cohomology if and only if there are integers
r ∈ Z and h ∈ N0 such that reg(F) ≤ r and h0(X,F(r)) ≤ h for all pairs
(X,F) ∈ D.

We say that the class D ⊆ Ss is of bounded regularity if the set of integers

{reg(F) | (X,F) ∈ D}

has an upper bound. Prove the following statement.

b) The class D ⊆ Ss is of finite cohomology if and only if it is of bounded
regularity and the set of Serre polynomials {PF | (X,F) ∈ Ss} is finite.

B) (Regularity and Classes of Subsheaves and Quotient Sheaves) Let s ∈ N0.
we consider the class

S≤s := ∪si=0S i

of all pairs (X,F) in which X is a projective scheme over some field K and F
is a coherent sheaf of OX-modules with dim(F) ≤ s. The notions of subclass
D ⊆ S≤s of finite cohomology and of bounded regularity are defined in the
obvious way. Now, let C,D ⊆ S≤s. We say that D is a class of subsheaves with



167

respect to C if for all pairs (X,F) ∈ D there is a monomorphism of sheaves

0→ F h−→ G with (X,G) ∈ C. Prove the following statement

a) Let C,D ⊆ S≤s be such that C is of finite cohomology and D is a class of
subsheaves with respect to C. Then the class D is of finite cohomology if
and only if it is of bounded regularity.

If X is a projective scheme over some field K and F ,G are two coherent sheaves
of OX-modules we say that F is a quotient of G if there is an epimorphism of

sheaves G h−→ F → 0. Accordingly we say that D is a class of quotient sheaves
with respect to C if for each pair (X,F) ∈ D there is a pair (X,G) ∈ C such
that F is a quotient of G. Prove the following statement.

b) Let C,D ⊆ S≤s be such that C is of finite cohomology and D is a class of
quotient sheaves with respect to C. Then the class D is of finite cohomology
if and only if it is of bounded regularity.

C) (Serre Polynomials and Classes of Subsheaves and Quotient Sheaves) This
part generalizes what was said above about Hilbert schemes. Keep the no-
tations and hypotheses of part B). Let C,D ⊆ Ss be subclasses. Prove the
following statement

a) Let D be a class of subsheaves (resp. of quotient sheaves) with respect to
C and assume that C is of finite cohomology. Then the class D is of finite
cohomology if and only if the set of Serre polynomials {PF | (X,F) ∈ D}
is finite

The following special case of the previous statement covers most closely our
previous observation on Hilbert schemes: Fix a pair (X,G) ∈ S≤s and let D
be a class of subsheaves or of quotient sheaves of G. Show that the following
statements are equivalent.

(i) D is a class of finite cohomology.

(ii) D is a class of bounded regularity.

(iii) The set {PF | (X,F) ∈ D} is finite.

Now we give another remark, which concerns sets which bound cohomology.

10.18. Exercise and Remark. A) (Subsets which Bound Cohomology) Let
the notations and hypotheses as in (10.17). We say that the subset

S ⊆ {0, 1, . . . , s} × Z

bounds cohomology if each class D ⊆ S≤s which is of finite cohomology on S
is of finite cohomology at all. According to (10.16) we can say

a) It the set S ⊆ {0, 1, . . . , s} × Z contains a quasi-diagonal subset Σ, then S
bounds cohomology.



168

This result is shown in greater generality in [Br-Ja-Li2]. It namely holds even
if S≤s is replaced by the class of pairs (X,F) in which X is a projective
scheme over some Artinian ring and F is a coherent sheaf of OX-modules. It
is natural to ask whether the condition to contain a quasi-diagonal subset is
also necessary for a subset S ⊆ {0, 1, . . . , s}×Z to bound cohomology (for the
class S≤s). This is indeed true, as is shown in [Br-Ja-Li2], too.

B) (Bounding Sets for Classes of Vector Bundles) It is natural to ask, whether
for appropriate subclasses of D ⊆ S≤s there are more sets which bound coho-
mology than those specified above. A particularly interesting setting for this
question is given as follows: Let K be a field and let

V ⊆ S≤s

be the family of all algebraic vector bundles over the projective space PsK =
Proj(K[X0, X1, . . . , Xs]) and let S ⊆ {0, 1, . . . , s} × Z. We say that S bounds
cohomology of vector bundles (over) PsK , if each subclass D ⊆ V which is
of finite cohomology on S is of finite cohomology at all. We do not know
yet a precise combinatorial characterization of those subsets S which bound
cohomology of vector bundles. What is shown in the Master thesis [Ke] is the
following special result

a) If the sets S ∩ (s × Z<0) and S ∩ (0 × Z>0) are both finite, then the set
S bounds cohomology of vector bundles if and only if it contains a quasi-
diagonal subset of {0, 1, . . . , s} × Z.

Clearly this means in particular;

b) A finite subset S ⊆ {0, 1, . . . , s} ×Z bounds cohomology of vector bundles
if and only if it contains a quasi-diagonal subset.

So, here is a problem;

c) Is there a (necessarily infinite) set S ⊆ {0, 1, . . . , s} × Z which contains no
quasi-diagonal subset Σ ⊆ {0, 1, . . . , s} × Z but which does bound coho-
mology of vector bundles?

C) (Counting Cohomology Tables) Keep the notations of part A). Fix an arbi-
trary (quasi-)diagonal subset

Σ = {(i, ni) | i = 0, 1, . . . , s} ⊆ {0, 1, . . . , s} × Z, (ns < ns−1 < . . . < n0).

and fix a family of non-negative integers

h̄ := (hi)si=0.

Then clearly we know by (10.17), that the number of cohomology tables

NΣ,h̄ := #{hF | (X,F) ∈ S≤s : hi(X,F(ni)) = hi, i = 0, 1 . . . , s}
is finite. Going tediously through our arguments on could indeed get out some
upper bound for this number, at least in the case where Σ is the standard
diagonal subset {(i,−i) | i = 0, 1, . . . , s}. So, one could get stuck to the idea
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of counting all possible cohomology tables with a given standard cohomology
diagonal, or at least to bound there number in a satisfactory way. Clearly, one
cannot expect, that a bound which is obtained on use of the arguments of our
proves will be satisfactory. The enormous discrepancy between the expected
and the actual number of cohomology tables is made evident in the Master
thesis [Cat].

So roughly speaking, our bounding results are not appropriate to perform
quantitative arguments in the sense of counting cohomology tables in a sat-
isfactory way. On the other hand our bounding results furnish at least the
equivalence of the following statements, which also follows from the properties
of cohomological patterns (see (2.15) and (2.16)) - and whose proof we suggest
as an exercise.

(i) F = 0.

(ii) hi(X,F(−i)) = 0 for all i ∈ {0, 1, . . . , s}.
(iii) There is some t ∈ Z such that H i(X,F(t− i)) = 0 for all i ∈ {0, 1, . . . , s}.
(iv) hi = 0 for all i ∈ {0, 1, . . . , s}.

Finally, let us have another short glance from the top we have reached and
look back to the landscape we ware traveling through at an early stage of our
excursion. We content ourselves to look back just to one quite fascinating
side valley at which we had only a very short and limited look look when
we came across its entrance. We even missed to mention the name of the
wide landscape hidden behind the narrow entrance to this valley: asymptotic
behaviour of cohomology.

10.19. Remark. A) (Revisiting Cohomological Tameness) The existence of co-
homological Serre polynomials clearly tells us, that the cohomological pattern
(see (2.17))

P = P(X,F) = {(i, n) | hi(X,F(n)}
of a coherent a sheaf F over a projective scheme X over a field K is always tame
in the sense of (2.17). We mentioned already that in the case, where the base
field K is replaced by an arbitrary Noetherian ring R0 (even if this latter has
very nice properties) F need not be cohomologically tame (see (2.11)C)). Let us
mention here once more, that cohomological Hilbert (resp. Serre) polynomials
always exist in the case where dim(R0) = 0, so that also in this case the sheaf F
is cohomologically tame. But clearly tameness is only a very week consequence
of the existence of cohomological Hilbert (resp. Serre) polynomials.

B) (Asymptotic Behaviour of Cohomology) (See [Br6]) Let R = R0 ⊕ R1 ⊕
R2 . . . be a Noetherian homogeneous ring, let X = Proj(R) let M be a finitely

generated graded R-module and let F = M̃ be the coherent sheaf of OX-
modules induced by M . It is natural to ask “how the R0 modules H i

R+
(M)n

(or equivalently: the R0-modules H i(X,F(n))) behave if n→ −∞”, that is to
ask for the asymptotic behaviour of these modules for n→ −∞. In particular,
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one may ask whether certain invariants of these modules ultimately become
constant or- equivalently-are asymptotically stable for n→ −∞. In the case of
numerical invariants one could ask whether these are presented by a polynomial
for all n� 0 or-equivalently-whether they are anti-polynomial.

A very week form of asymptotic stability for n → −∞ is tameness. A very
satisfactory form of asymptotic stability is the anti-polynomiality of the coho-
mological Hilbert-functions hiM (resp. hiF). Keep in mind that tameness fails
in general if dim(R0) ≥ 3 whereas in the case dim(R0) = 0 the cohomological
Hilbert functions are indeed anti-polynomial. So, if dim(R0) increases, the as-
ymptotic behaviour of cohomology quickly becomes more and more unstable.
In between the two extrema of tameness and anti-polynomiality one has the
important issues of asymptotic stabilty of associated primes which says that the
set AssR0

(
H i
R+

(M)n
)

ultimately stabilizes if n→ −∞. This nice behaviour is
always given if either:

a) (R0,m0) is local and of dimension one (see [Br-Fu-T]),

or

b) essentially of finite type over a field and of dimension ≤ 2 (see [Br-Fu-Lim]
and [Br7]).

In geometric terms, one may draw the following conclusion from this (see
[Br7]):

c) If X
π−→ X0 is a proper morphism such that X0 is essentially of finite

type over a field, F is a coherent sheaf of OX-modules and L is an ample
invertible sheaf of OX-modules, then for each i ∈ N0 the set

{x0 ∈ AssX0

(
Ri(π∗)(L⊗n ⊗OX F)

)
| dim(OX0,x0) ≤ 2}

of points x0 ∈ X0 of codimension ≤ 2 and associated to the i-th direct
image sheaf of the n-th L-twist of F with respect to π ultimately becomes
constant if n→ −∞.

In fact, one may say even more (see [Bä-Br]), namely:

d) In the notations and hypotheses of statement a), for each x0 ∈ X0 with
dim(OX0,x0) ≤ 2, the number

depthOX0,x0

(
Ri(π∗)(L⊗n ⊗OX F)

)
ultimately becomes constant if n→ −∞

If either (R0,m0) is local and of dimension 1 or at specific levels i, quite a lot
can be said on the anti-polynomiality of numerical invariants of the R0-modules
H i
R+

(M)n. We do not spell out the corresponding statements here. Instead we
just mention the references [Br-Fu-T], [Br-Ro], [Br-Ro-Sa] and [Br-Ku-Ro].



11. Bibliographical Hints

We append to these notes a rough classification of the references occurring in
our bibliography We do this in the hope that interested readers get help and en-
couragement to penetrate further into the subject or to clarify the background
which we considered as known in our lectures. The reader should be aware of
the fact, that our bibliography is far from covering the topics we list below.
The quoted Diploma-, Master-, and PhD thesis written at the University of
Zürich are available on request in form of PDF.

1. General Commutative Algebra, Homological Algebra and Algebraic Geome-
try:

[Br0], [Br-Bo-Ro], [Bru-Her], [E1], [Ev-Gri], [Gro-D], [Gro5], [H1], [Kun1],
[Mat], [Rot], [Sh].

2. General Local Cohomology and Sheaf Cohomology:

[Br-Fu-Ro], [Br-Sh1], [Gro-D], [Gro2], [H1], [Se].

3. Structure, Vanishing and Bounding Results for Local Cohomology and Sheaf
Cohomology:

[A-Br], [B-Mu], [Br1], [Br2], [Br3], [Br4], [Br8], [Br-He], [Br-Ja-Li1], [Br-Ja-Li2],
[Br-K-Sh], [Br-L1], [Br-L2], [Br-Matt-Mi1], [Br-Matt-Mi2], [Br-N], [Br-Sh1],
[Br-Sh2], [Br-Sh3], [Cat], [Ch2], [En], [Fa1], [Fa2], [Fu2], [Gro4], [H1], [H2],
[K], [Ke], [Kl], [Ko], [L], [M], [Matt], [Mi-N-P], [Mu2], [R], [Ro], [Se], [Sev],
[Si], [Tru], [Z].

4. Castelnuovo-Mumford regularity and its Historic Background:

[B-Mu], [B-St], [Bäc], [Be1], [Be2], [Br2], [Br4], [Br5], [Br8], [Br-Gö], [Br-Ja-Li1],
[Br-Matt-Mi1], [Br-Sh1], [Br-Vo], [Bu], [C], [Cav], [Cav-Sb], [Ch1], [Ch4],
,[Ch-DA], [Ch-D’C], [Ch-F], [Ch-F-N], [Ch-Ha-Ho], [Ch-Mi-Tr], [Ch-MS], [Ch-Ph],
[Ch-U], [E-G], [G], [Gi], [Go1], [Gru-La-P], [Hen-Noe], [Herm], [Hi1], [Hi2],
[Ho], [Ho-Hy], [La], [Mas-W], [Ma-Me], [Mu1], [O], [Pi], [Ros-Tr-V], [Sei].

5. Hilbert Schemes:

[Fu2], [Go1], [Go2], [Gro6], [H1], [H3], [Mal], [P], [Pe-St].

5. Vector Bundles and their Cohomology:

[A-Br], [Br4], [Cat], [El-Fo], [En], [Ev-Gri], [Gr-Ri], [Gro0], [Gro4], [H1], [Hor],
[Ke], [Ko], [Matt], [Mu1], [Mu2], [Se], [Sev], [Z].
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6. Cohomology Tables, Cohomological Patterns, Tameness and Asymptotic
Behaviour of Cohomology:

[Bä-Br], [Br4], [Br6], [Br7], [Br-Fu-Lim], [Br-Fu-T], [Br-He], [Br-K-Sh], [Br-Ku-Ro],
[Br-Ro], [Br-Ro-Sa], [Cat], [Ch-Cu-Her-Sr], [K], [Ke], [Lim1], [Lim2], [Lim3],
[Mat], [M], [Mi-N-P], [Rott-Seg], [Si].

7. Deficiency and Canonical Modules:

[Br8], [Br-Sh1], [Bru-Her], [Her-Kun], [Sc1], [Sc2].

8. Related Work on Projective Varieties:

[A-Br], [Be1], [Be2], [Br1], [Br4], [Br-Sc1], [Br-Sc3], [Br-Sc3], [Br-Vo], [C],
[Ch3], [En], [Gru-La-P], [H1], [Ko], [La], [Mat], [Mi-N-P], [Mu2], [Pi], [Se],
[Sev], [Z].
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locale, Ann. Inst. Fourier 29 (1979) 107–184.

[Gi] M. GIUSTI: Some effectivity problems in polynomial ideal theory, in: Eu-
rosam 84, Springer Lecture Notes in Computer Science 174 (1984) 159-171.

[Go1] G. GOTZMANN: Eine Bedingung für die Flachheit und das Hilbertpolynom
eines graduierten Ringes, Math. Z. 158 (1978) 61-70.

[Go2] G. GOTZMANN: Durch Hilbertfunktionen definierte Unterschemata des
Hibert-Schemas, Comment. Math. Helvetici 63 (1988) 114-149.

[Gr-Ri] H. GRAUERT, O. RIEMENSCHNEIDER: Verschwingungssätze für an-
alytische Kohomologiegruppen auf komplexen Räumen, Invent. Math 11
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