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1. INTRODUCTION

These Notes base on two short courses and series of lectures held at the University of
Thai Nguyen and the Vietnam Institute for Advanced Study in Mathematics Hanoi in
October — December 2013. For readers, who aim to get a more complete presentation of
the subject, we recommend to consider the notes [6] or [7], which also are available on
the authors homepage at the Institute of Mathematics of the University of Ziirich or on
request by e-mail.

Weyl algebras, sometimes called algebras of differential operators, are a fascinating and
important subject, which relates Non-Commutative and Commutative Algebra, Algebraic
Geometry and Analysis in very appealing way. The bridging nature of the Theory of Weyl
Algebras and D-modules shows uo in a number of surprising applications. Let us mention
as an example Luybeznik’s finiteness results for local cohomology modules of regular local
rings in characteristic 0 (see [15] and [16]), which brought a break-through in Commutative
Algebra, as they base on the use of D-modules — and hence present a very important link
between these two fields. A further example is an application to Mathematical Physics
and relating characteristic varieties of D-modules with Castelnuovo-Mumford regularity
(see [2]) — an application lead to the result presented in Section 14 of this course.
Another interesting relation between Weyl algebras and Commutative Algebra is the
Theory of Grobner bases. Indeed, the Theory of Grobner bases in Weyl algebras proves
to be a very fertile tool in the study of D-modules and their characteristic varieties. This
lead to the Master and PhD theses of Boldini (see [3], resp. [4]) and the resulting article
[5]. We present some of the basic results in these papers in Sections 12 and 13 of this
course.
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2. FILTERED ALGEBRAS

Our first preliminary theme are filtered algebras over a field. Throughout N is under-
stood to be the set of Positive integers and Ny is understood to be the set of non-negative
integers.

2.1. Definition and Remark. (A) Let K be a field and let A be an associative unital
K-algebra. By a filtration of A we mean a family

A. = (Ai)iENo
such that the following conditions hold:
(a) Each A; is a K-vector subspace of A;
(b) Az Q AH—I for all ¢ S No,
(C) 1e Ao,
(d) A= UiENo AZ’ o
(e) A'LA] = Z(f,g)EAiXAJ‘ ng g AZ+] for all 1,79 € N(].
To simplify notation, we also often set
A;=0foralli<0
and then write our filtration in the form
Ae = (Adiez.

If a filtration of A is given, we say that (A, A,) or — by abuse of language — that A is a
filtered K -algebra.

(B) Let (A, A,) be a filtered K-algebra. Then, the degree of an element f € A is defined
by:
min{: € Ny | a € 4; if f#£0,
degy, (f) = t 0| } : 7_é
—00 if f=0.

Observe that we have
Ai = {f € Al degy (f) < i}
(C) Keep the above notations and hypotheses and let A, = (A4;);ez be a filtered K-
algebra. Observe that we have the following statements:
(a) Ag is a K-sub-algebra of A.
(b) For all ¢ € Z the K-vector space A; is a left- and a right- Ap-submodule of A.

2.2. Example. (A) ( Weighted degree filtrations of a commutative polynomial ring) Let
n € N and let A = K[X;, Xs,...,X,] be the commutative polynomial algebra over the
field K in the indeterminates Xi, X», ..., X,,. Let

w = (w1, W, ..., w,) € N\ {0}
Now, for each ¢ € Z we set

AL = ) EXpxye. . Xr= Ex-

1 =
v1,U2,...vn€Np: Z;L:I viw;<i veNy:  vw<i
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Then
AT = (A%)ZEZ

defines a filtration on A.

With the convention that sup(f)) = —oo and using the standard notations
f= Z C(Zf)iﬂ (C(gf) € K,Vv € Njj) and supp(f) :={v € Ny | C(zf) £ 0}
PASA)
we have

deg®(f) 1= deg2(f) = sup{v - w | v € supp(f)}.
The map
deg?: A — NoU {oo}, [ deg?(f)
is called degree with weight w and the filtration A is called the weighted degree filtration
of the polynomial algebra A = K[X3, X5, ..., X,,] with respect to w.

Choosingw =1 := (1,1,...,1) we get the standard degree respectively the standard degree
filtration of A = K[X1, Xa, ..., X,].

Clearly filtrations also may occur in non-commutative algebras. The next example
presents somehow the “generic occurrence” of this.

2.3. Example. (The standard filtration of a free associative algebra) Let n € N, let K be
field and let A = K(X;, Xs,...,X,) be the free central associative algebra over K in the
indeterminates X1, Xs,..., X,,. We suppose in particular that cX; = X,c for all ¢ € K
and all . =1,2,...,n, so that ¢f = fcfor all ce K and all f € A. Let ¢ € Ny. If

o= (01,09,...,0;) € {1,2,...,n}’
we write

X, =]][Xo, = X0 X0, ... X,
j=1

Then, with the usual convention that the product ]
equals 1 and using the notation

S, = UieNo{l’ 2,...,n}

we can write A as a K-space over its monomial basis as follows:

A= K(X), Xo,...,X,) = D KX,

gESy,

jep X of an empty family of factors

Clearly, as in the case of a commutative polynomial ring, each f € A may be written
uniquely in the form

f=Y x,= Y WX, (f)eKweN)
gESy oesupp(f)
with finite support supp(f) :=={c €S, | cg) # 0}. Finally, we get a filtration
A, defined by A; := @ KX, forallieZ

oel;<;i{1,2,...,n}J
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with corresponding degree
degye : A — NoU{oo}, frrsup{i € Ny |3o €supp(f)N{L,2,...,n}'}.
This filtration and its degree are called the standard filtration respectively the standard
degree for A = K(X1, Xo,..., X,).
3. ASSOCIATED GRADED RINGS

3.1. Remark and Definition. (A) Let K be a field and let A = (A, A,) be a filtered
K-algebra. We consider the K-vector space

Gr(A) = Gra,(A) = @ Ai/Ai.
i€No
For all i € Ny we also use the notation
Gr(A); = Gra,(A); :== A;JA; 4,
so that we may write

Gr(A) = Gra,(A) = @ Gra.(A):.

(B) Let 4,5 € Ny, let f, f' € A;and let g, ¢’ € A; such that f—f' € A;_jandg—¢ € A;_;.
Then we have fg — f’gl < Ai+jfl' So in Ai+j/Ai+jfl = GYA. (A)Hrj C GI‘A. (A) we get the
relation fg+A;+;—1 = f'¢'+ Airj_1. This allows to define a multiplication on the K-space
Gry, (A) which is induced by

(f+Ai)(g+ A1) = fg+ Airjq foralli,j € Ny, all f e A; and all g € Aj.

(C) Keep the above notations and hypotheses. Observe in particular, that Gra,(A)g is a
K-subalgebra of Grg,(A), and that there is an isomorphism of K-algebras

GI‘A. (A)O = Ao.
Moreover, with respect to our multiplication on Gryu,(A) we have the relations
Gryg, (A);Gra,(A); C Gra,(A);y, for all 4,5 € Z.
So, the K-vector space Gra,(A) is turned into a (positively) graded ring
Gran(4) = (Gra,(4), (Gra,(A))ics,) = €D Gra (4),
i€Np
by means of the above multiplication. We call this ring the associated graded ring of A

with respect to the filtration A,. From now on, we always furnish Gryu, (A) with this
multiplication.

We now introduce a class of filtrations, which will be of particular interest for our
lectures.

3.2. Definition. Let K be a field and let A = (A, A,) be a filtered K-algebra. The
filtration A, is said to be commutative if

fg—9gf € Aiyjq forall i, 5 € Ny and for all f € A; and all g € A;.

It is equivalent to say that the associated graded ring Gra,(A) is commutative.
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We now shall define three special types of commutative filtrations, which will play a
particularly important role in Weyl algebras.

3.3. Definition and Remark. (A) Let (A, A,) be a filtered K-algebra. The filtration
A, is said to be of finite type if it satisfies the following conditions:

(a) The filtration A, is commutative;

(b) Ag is a K-algebra of finite type;

(c) There is an integer 0 € N such that A; is finitely generated as a (left-)module over

Ag for all j <6 and

(d) A; =0, AjA;; for all i > 4.
In this situation, we call the minimal number § = 4, € N the generating degree of the
filtration A,.
Observe that now, the associated graded ring Gra,(A) is a commutative Noetherian
graded Ag-algebra, which is generated by finitely many homogeneous elements of degree
<.
If A, is a filtration of A, which is of finite type, we say that (A, A,) is a filtered algebra of
finite type.

(B) A filtration A, of a K-algebra A is called a good filtration, if it is of finite type with
0 =04, = 1. If in addition it holds Ag = K, we speak of a very good filtration. We then
also say that (A, A,) is a well-filtered respectively a very well-filtered K-Algebra.

3.4. Example and Exercise. (A) Let n € N, let w = (wy,wa,...,w,) € Nj \ {0}, Let
K be a field and consider the commutative polynomial ring A = K[X;, X5, ..., X,], fur-
nished with its weighted degree filtration A¢ with respect to w. Then, it is easy to see,
that A is a very well filtered K-algebra if and only if w = (1).

More generally A is a well-filtered K-algebra if and only if w; € {0,1} for all ¢ €
{1,2,...,n}. In this situation we then have K[X; | w; = 0] = Aj and an isomorphism of
graded rings

e Grye(A), induced by X; — X; + A5, 1 foralli € {1,2,...,n},

where 9; ; denotes the Kronecker symbol.

(B) Let n € N, with n > 1, let K be a field and consider the free associative K-
algebra A = K(Xi, Xs,...,X,), furnished with its standard filtration A,. For each
i€ {1,2,...,n}, let X; = (X;+ Ag) € A;/Ag = Gry,(A); C Grya,(A). Then it is easy
to see that Yiyj = 7]-7,» if and only if ¢ = j. Therefore the filtration A, cannot be
commutative.

4. DERIVATIONS

Derivations (or derivatives) are also a basic ingredient for the theory of Weyl algebras.
The present section is devoted to this subject.

4.1. Definition and Remark. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. A K-derivation (or K-derivative) on A with values in M is
amap d : A — M such that:
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(a) d is K-linear: d(aa + Bb) = ad(a) + £d(b) for all a, f € K and all a,b € A.
(b) d satisfies the Leibniz Product Rule: d(ab) = ad(b) + bd(a) for all a,b € A.
We denote the set of all K-derivations on A with values in M by Derg (A, M), thus:

Derg (A, M) :={d € Homg (A, M) | d(ab) = ad(b) + bd(a) for all a,b € A}.
To simplify notations, we also write
Derg (A, A) =: Derg(A).
(B) Keep in mind, that Homg (A, M) carries a natural structure of A-module, with scalar
multiplication given by
(ah)(z) := a(h(zx)) for all a € A, all h € Homg (A, M) and all z € A.
It is easy to verify:

Derg (A, M) is a submodule of the A-module Homg (A, M).

It is also easy to verify that “derivations vanish on constants®, thus if we identify ¢ € K
with ¢l4 € A we have:

d(c) =0 for all c € K.

Next, we shall look at the arithmetic properties of derivations and gain an important
embedding proceedure for modules of derivations of K-algebras of finite type.

4.2. Exercise and Definition. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. Let d € Derg (A, M), let r € N, let v4,15,...,1, € Ny and

let ai,as,...,a, € A. Use induction on r to prove the Generalized Product Rule
Vj v;i—1 Vj
d(HajJ) = Z via; (Haj])d(ai)
Jj=1 1€{1,2,...,r|v; >0} Jj#i

and the resulting Power Rule
d(a") = ra"'d(a) for all a € A.

(B) Let the notations and hypotheses be as in part (A). Assume in addition that A =
Klay,as,...,a,]. Let d,e € Derg(A, M). Prove that

e = d if and only if e(a;) = d(a;) for all t =1,2,...,r.

(C) Yet assume that A = Klay,aq,...,a,]. Prove that there is a monomorphism of
A-modules
o) = @?gmzm,ar) : Derg (A, M) — M", given by d — (d(a1),d(as), ..., d(a,)).

This monomorphism @g/[ is called the canonical embedding of Derg (A, M) with respect
to the generators ay, as,. .., a,.

(D) Let the notations and hypotheses be as in part (C). Assume that M is finitely
generated. Prove, that the A-module Derg (A, M) is finitely generated.

Now, we turn to derivatives in polynomial algebras.
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4.3. Exercise and Definition. (Partial Derivatives in Polynomial Rings) (A) Let n €
N, let K be a field and consider the polynomial algebra K[Xi, Xs,..., X,]. Fix i €
{1,2,...,n}. Then, using the monomial basis of K[X;, Xs,..., X,] we see that there is a
unique K-linear map

0
8,~: GTIK[XMXQ,...,X”] —)K[Xl,XQ,...,Xn]
such that for all v = (vy,1s,...,1,) € Ny we have
0 T v, v X0 L, X7, if >0
ai XZ = XV] = e JFELG v

(B) Keep the notations and hypotheses of part (A). Let
o= (1, oy ooy pin), V= (v1,V,...,0,) €N

and prove that -
0 (X1XY) = X10;(X¥) + X¥0,(X%).

Use the K-linearity of 0; to conclude that

0; = 81)( € Derg (K[X1, Xo,...,X,]) forall 1 =1,2...,n.

The derivation 0; = 8LX7-, is called the i-th partial derivative in K[X7, Xo, ..., X,].

As we shall see in the proposition below, the canonical embedding introduced in Exercise
and Definition 4.2 (C) takes a particularly favorable shape in the case of polynomial
algebras. The exercise to come is aimed to prepare the proof of this.

4.4. Exercise. Let the notations and hypotheses be as in Exercise and Definition 4.3.
Check that 0;(X;) = ¢;;, for alli,j € {1,2...,n}. and show that:

(a) For each i € {1, 2, . ,n} it holds K[Xl,XQ, c. 7X7:717X/L'+17 . 7Xn] - Ker(@l)

with equality if and only if Char(K) = 0.

(b) K C N, Ker(9;) with equality if and only if Char(K) = 0.
4.5. Proposition. (The Canonical Basis for the Derivations of a Polynomial
Ring) Letn € N, let K be a field and consider the polynomial algebra K[X1, Xo, ..., X,].
Then the canonical embedding of Derg (K[Xl, X, ..., Xy] into K[Xy, Xo, ..., X,]" with

respect to X1, X, ..., X, (see Ezxercise and Definition 4.2 (C)) yields an isomorphism of
K[Xy, Xa,. .., X,]-modules

0 := Ox, x5, x, : Derg (K[X1, Xo, ..., X,]) — K[X1, Xo,..., X,]",
gien by

for all d € DerK(K[Xl,XQ, . ,Xn]).
In particular, the n partial derivatives Oy, Ds, . . ., O, form a free basis of the K[X1, Xs, ..., X,]-
module DerK(K[Xl, Xo, ... ,Xn]).

Proof. We suggest the proof as an exercise. If you need hints, consult [6]. OJ
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5. WEYL ALGEBRAS

Now, we are ready to introduce Weyl algebras.

5.1. Reminder and Remark. Let K be a field and let A be a commutative K-algebra,
let M be an A-module and consider the endomorphism ring

Endg (M) := Homg (M, M)
of M together with the canonical homomorphism of rings
ey : A — Endg (M) given by a — €y/(a) := aidy, for all a € A,

which becomes injective if M = A and hence allows to consider A as a sub-algebra of its
endomorphism ring Endg (A).

5.2. Remark and Definition. (A) Let K be a field and let A be a commutative K-
algebra. We obviously also have Derg(A) C Endg(A). So we may consider the K-algebra

WK(A) = K[A, DerK(A)] = A[DGI‘K<A)] Q EIldK<A>,
which is called the Weyl algebra of the K-algebra A.

(B) Keep the hypotheses and notations of part (A). Assume in addition, that the
commutative K-algebra A is of finite type, so that we find some r € Ny and elements
ai,as,...,a, € Asuch that A = Klay,as,...,a,]. Then according to Exercise and Defini-
tion 4.2 (D), the A-module Derf (A) is finitely generated. We thus find some s € Ny and
derivations dy, dy, .. .,ds € Derg(A) such that

Derg(A) = ZAdi.
i=1

A straight forward computation now allows to see, that
Wk(A) = Klay,az ..., a,;dy,da, . .., ds] € Endg(A).

In particular we may conclude, that the K-algebra Wi (A) is finitely generated.

(C) Keep the above notations and let n € N. The n-th standard Weyl algebra W(K,n)
over the field K is defined as the Weyl algebra of the polynomial ring K[X;, Xs, ..., X,],
thus

W(K,n) := Wk (K[X1,Xs,...,X,]) C Endg (K[X1, Xa, ..., X))

Observe, that by Propsition 4.5 and according to the observations made in part (B) we
may write

W(K,n) = K[Xl,XQ, Ce ,Xn;81,82, e ,8n] g EndK(K[Xl,Xg, . 7Xn])

The elements of W(K,n) are called polynomial differential operators in the indetermi-
nates X1, Xy, ..., X, over the field K. They are all K-linear combinations of products of
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indeterminates X; and partial derivatives 0;.
The differential operators of the form

Xt =Xy Xpmop o = [ X [] 0 € W(K,n)
i=1 j=1

with

vi= (v, v), = (... pn) € NG
are called elementary differential operators in the indeterminates X, X, ..., X,, over the
field K.

Next, we aim to consider a class of important relations in standard Weyl algebras: the
so-called Heisenberg relations. We begin with the following preparations.

5.3. Remark and Exercise. (A) If K is a field and B is a K-algebra, we introduce the
Poisson operation, that is the map

[e,0] : B x B — B, defined by [a,b] := ab — ba for all a,b € B.
Show, that the Poisson operation is anti-commutative and K-bilinear, thus:
(a) [a,b] = —[b,a] for all a,b € B.
(b) [[a,b],c] + [[b, c],a] + [[c, a],b] = 0 for all a,b,c € B.
(¢) [aa+ /d, b+ B'V] = aBla,b] + af'[a, V] + o' Bld’, b] + o/ B[, V]
for all o, o/, 3,8 € K and all a,d’,b,b’ € B.

(B) Now, let K be a field, let A be a commutative K-algebra and consider the Weyl
algebra Wi (A) := K[A, Derg(A)]. Show that the following relations hold:
(a) [a,b] =0 for all a,b € A.
(b) [a,d] = —d(a) for all a € A and all d € Derg(A).
(c) [d,e] € Derg(A) for all d,e € Derg(A).
(C) Let the notations and hypotheses be as in part (B). Let d, e € Derg(A), let r € N,
let v1,v9,...,1, € Ny and let ay,a9,...,a, € A. Use statement (c¢) of part (B) and the
Generalized Product Rule of Exercise and Definition 4.2 (A) to prove that

d.e](TTa?) = > wal " (T a7)1d. e)(ay).
j=1 it >0 i
Give an alternative proof of this equality, which uses Exercise (c) of the above part (B).

5.4. Proposition. (The Heisenberg Relations) Letn € N, and let K be a field. Then,
i the standard Weyl algebra

W(K,n) = K[Xl,XQ, ce 7Xn;81,82, ce ,3n]
the following relations hold:
(a) [Xi, X;] =0, foralli,je{l,2,...,n};

(b) [Xl,ﬁj] = _51',]'7 fOT’ all ’L,j S {1, 2, c. ,n};

(c) [05,0;]=0,  foralli,je{l,2,...,n}.
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Proof. (a): This is clear on application of Remark and Exercise 5.3 (B)(a) with a = X;
and b = X;.

(b): If we apply Remark and Exercise 5.3 (B)(b) with a = X; and d = 0;, and observe
that 0;(X;) = d;; = 0;; we get our claim.

(c): Observe that for all i,k € {1,2,...,n} we have 0;(X}) € {0,1} C K. So for all
i,7,k € {1,2,...,n} we obtain

(05, 0;)(Xx) = 9;(05(Xx)) — 9;(9i(X1)) € 0i(K) + 0;(K) =0+0=0.

Now, we get our claim by Exercise and Definition 4.2 (B) and Remark and Exercise 5.3
(B) (c) and (C). O

In the next section we shall establish an important product formula for elementary
differential operators. The exercise to come is is aimed to prepare this.

5.5. Exercise. (A) Let n € N, let K be a field, let B be a K-algebra and let
al,al,...,an;dl,dg,...,dn eB

be elements mimicking the Heisenberg relations, which means:

(1) [ai,aj] =0, for all 4,5 € {1,2,...,n};
(2) [ai,dj] = —0;4, foralli,je{l,2,...,n};
(3) [di,d;j] =0, for all i,j € {1,2,...,n}.

Let p,v € Ny. To simplify notations, we set
00F := 0 for all b € B and all k € Z.

prove the following statements (using induction on p and v):

(a)
(b) d”d” d”d“

(c) d“a —a”d“ for all i,j € {1,2,...,n} with i # j.
(d )da —a”d +val™ for all i € {1,2,...,n}.

(B) Keep the notations and hypotheses of part (A). For all (A, Ag,...,\,) € Ny and
each sequence (by,bs,...,b,) € B" we use again our earlier standard notation

A= (A Ag, .o Ag) and 0 =00y ) = [

Now, let p, v, i, € Nj and prove that the following relations hold:

(a) (QZC_ZEXQV;C_ZIL/) = (H:L laz H] ldf])(Hz—l z Hg 1 Z ) Hz 1 zyldm 1dfl
(b) ardh = H:'L:l ai HJ 1d5] = H:L 1 fldm
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6. ARITHMETIC IN WEYL ALGEBRAS

This section provides the basic tools for computations with differential operators. We
begin with the following auxiliary result.

6.1. Lemma. Let n € N, let K be a field, let B be a K-algebra and let

CLl,CLQ,...,an;dl,dg,...,dnGB

such that:
(1) [ai,aj] =0, foralli,j € {1,2,...,n};
(2) [a;,dj] = —0;j,  foralli,je{1,2,...,n};
(3) [di,d;] =0, foralli,j €{1,2,...,n}.

Then, the following statements hold:
(a) For all p,v € Ny and all i € {1,2,...,n} we have

min{,u,y} ILL k_l
v __ v—k ju—k
dj'aj = Z (k’) H(V —p)a; ;"

k=0 p=0
(b) Let p,v, ', € N, set
I:={k:= (ki ke,...,kn) €Ny | ki <min{u;, v/} fori=1,2,... n},
and let

n n k;

A= (]] (Z))(H _I(V; —p)) foralkel

i=1 i=1 p=0
Then, we have the relation
(ch_lﬁ) (Q'jflc_l“—/) _ QHJF”—IQEL/L/ + Z )\EQZJFV—/’EQH*/L/’E_
kel\{0}

Proof. The proof consist of tedious computation making repeatedly use of the exercises
of the previous section. We recommend to consult [6]. 0J

As an application we now get the announced product formula for elementary differential
operators.

6.2. Proposition. (The Product Formula for Elementary Differential Opera-
tors) Let n € N, let K be a field and consider the standard Weyl algebra

W(K, n) = K[Xl,XQ, .. .Xn;81,82 ce ,an]
Moreover, let all further notations be as in Lemma 6.1. Then, we have the equality

(X2 (X QM) = X/ gl 4o N~ N X ket k,
kel\{0}

Proof. 1t suffices to apply Lemma 6.1 (b) with a; := X; and d; := 0; fori =1,2...,n. O

To approach the main result of this section, we need some more preparations.



12 MARKUS BRODMANN

6.3. Notation and Remark. (A) Let n € N. For £ := (K1,K2,...,kn), A =
(A1, A2, ..., Ay) € Ni we define

ESA:(:)(Vizl,Q,...,ﬂ:/{iS)\i) and 5<A:©(5§A A @%A).
(B) Keep the notations of part (A). Observe that
E<Ae (A-keN]) and r<Ae (A—reNy\{0}).

(C) We now introduce a few notations, which we will have to use later very frequently.
Namely, for a = (a1, a9,...,ay), 8= (1, B2, . .., Bn) € Ny we set

Mg, 8) i= {(a—k. =k) | k € N\{0} with & < o, 8} and Fl(a 8) i~ M(a, H)U{(a )}
Moreover, we write

Mc(a, B) = {(A, k) € Nf x Nj | A < v and & < p for some (v, 1) € M(q, 8)}.
Observe that M(a, f) € M<(a, 5).

6.4. Exercise. (A) Let n € N, let K be a field and consider the standard Weyl algebra
W(K,n) = K[X1,Xs,...,X,;01,0,,...,0,]. In addition, let p, v, p',’ € Nj. Prove that

(XM (XL’Q}L’) _ Xz+z’@g+u7’ e Z ZX 0",
(A k)EM(v+v/ ptp')
and
xXomxreh e Y zxtes
(A8)EM(v+v/ putpr')
(B) Let the notations be as in part (A). Prove that
[(X¥on, X 0] € > ZX 0",

(Ar)EM(v+r/ utp')

6.5. Theorem. (The Reduction Principle) Let n € N, let K be a field and consider
the standard Weyl algebra W(K,n) = K[X1, Xa, ..., X,;01,09,...,0,]. Let r € N and let
y(i),ﬁ(i) eNy (i=1,2,...,r). Moreover set

M := MS(Zy(i), Zﬂ(i)) C Ny x N
i=1 i=1
Then, we have

Hiz(i)Qﬁ(i) _XZle(")QZLw“) c Z ZXAQE - Z ZXAQE.

i=1 (£.A)EM AT v, m<T

Proof. We proceed by induction on r. The case r = 1 is obvious. The case r = 2 follows
from Exercise 6.4 (A). So, let > 2. We set

r—1 r—1
M’ := M ( Zz(i)’ Zﬁ(i))'
i=1 i=1
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By induction we have

Q—HX"()(‘)“() XZ POP zrluu) Z ZX)\an_

i=1 (N &) EM
By the case r = 2 we have (see once more Exercise 6.4 (A))

(er 11/(2 az (U)X,/(T)au(’") XZ 11/( )az 1H(z) e Z Z A 5 — =: M.
(Ak)EM

,
NOPWO) T A6 () A
[[Xx70" — x> ePoxiat™ = o 4 oX2" 00",

i=1
it remains to show that QXZ(T) Qﬁm € M. Observe that
XZ(T)QE(T) c NXZ(T)QE(T) _ Z ZKA/QE/XZ(T)QE(M .
(A ) eM

Observe also that (X' 41, & +,u(7“ ) € M for all (), k") € M Therefore we have the inclu-
sion M()\ 4 v, & + ,u( ) C M for all (), ") € M. Thus, on application of Exercise 6.4
(A) it follows that

XA/QEIXKO")Q&(T) c Z ZKAQE C Z ZKAQE - M
M) MY 27 7+ 7)) (Am)EM
and this shows that indeed QXZ(T) Qﬁm e M. O

To prepare what we aim for in the next section, we suggest the following exercise.

6.6. Exercise. (A) Let n € N and consider the polynomial ring K[X;, Xs, ..., X,]. More-
over, let p = (p1, fi1, ..., fn), v = (V1,00,...,v,) € N§. Fix i € {1,2,...,n} and prove
by induction on p;, that

i i—1 J 3 .

o' (XY) = 8“"(HX'7]') _ hmo (i = R)XYTHTLL X570 it > s

i\ % P J 07 if vi < Wi.

(B) Let the notations and hypotheses be as in part (A) and use what you have shown
there to prove that

0, otherwise .

n n n pi—ly y—ps ) ‘
) - flar ([ - [T T2
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7. THE STANDARD BASIS

Now, we are aim prove that — over a base field of characteristic 0 — the elementary
differential operators form a vector space basis of the standard Weyl algebra.

7.1. Theorem. (The Standard Basis) Let n € N and let K be a field of characteristic
0. Then, the elementary differential operators

XYoH = ﬁ XV ﬁ o
i=n i=1

form a K-vector space basis of the standard Weyl algebra
W(K,n) = K[X1,Xs,...,X,;01,02,...,0,]
So, in particular we can say
(a) W(K,n) = @z,geNQ KX*o".
(b) Each differential operator d € W(K,n) can be written in the form

with a unique family
(d) _ NP xNg
<CZ’H)27H€N6L c H K= K" Oa

v,p€Ng
whose support
supp(d) = supp (i) )vpen) = {(, ) € Ny x Ni | ), # 0}

18 a finite set.
Proof. We first show that
W(K,n)= > KX"0"=:M.

v,pueNg
Indeed, each d € W(K, n) is a K-linear combination of products of elementary differential
operators. But by the Reduction Principle of Theorem 6.5 each product of elementary
differential operators is contained in the K-vector space M.
It remains to show, that the elementary differential operators are linearly independent
among each other. Assume to the contrary, that there are linearly dependent elementary
differential operators in W(K, n). Then, we find a positive integer r € N, families

pP v eNy,  (i=1,2,...,r) with (u@,09) # (9 W) if i £ j,

and elements

e K\{0} (i=1,2,...,r) such that d := Zc(i)ik(i)Qﬁw =0.
i=1

Using the standard notation || := 7", s, for all p € Nf, we may assume, that

\H(’")| = max{\ﬂ(i)] li=1,2,... ,r},H(i) # H(T) for all i < s and H(i) = /_L(T) for all i > s
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for some s € {1,2,...,r}. Then, it follows easily by what we have seen in Exercise 6.6
(B), that
n r (1) . .
X2 (xe7) = [T X2, ifs<i<r
= T 0, if i < s.
So, we get
0=d(xt"”) = cOx o (x7) = O [ x”.
i=1 i=s  j=1
As Char(K) = 0, and as the monomials Xﬁm are pairwise different for i = s,s+1,...,r,
the last sum does not vanish, and we have a contradiction. O

7.2. Definition and Remark. (A) Let the notations and hypotheses be as in Theo-
rem 6.5. We call the basis of W(K, n) which consists of all elementary differential opera-
tors the standard basis. If we present a differential operator d € W(K,n) with respect to
the standard basis and write

as in statement (b) of Theorem 6.5, we say that d is written in standard form. The support
of a differential operator d in W(K, n) is always defined with respect to the standard form
as in statement (b) of Theorem 7.1. We therefore call the support of d also the standard
support of d.

(B) Keep the above notations and hypotheses. It is a fundamental task, to write an
arbitrarily given differential operator d € W(K, n) in standard form. This task actually
is reduced by the Reduction Principle of Theorem 6.5 to make explicit the coefficients of
the differences

Ag(')ﬁ(') — HKZ“)QHM . Xzzrzl Z(i)QZZTZIH(i) c Z ZXAQE.
i=1 (Ak)EM

This task can be solved by a repeated application of the Product Formula of Propsition 6.2
or — directly — by a repeated application of the Heisenberg relations. Clearly, today this
task usually is performed by means of Computer Algebra systems.

As an application, one has the following result on supports of differential operators:

7.3. Proposition. (Behavior of Supports) Letn € N, let K be a field of characteristic
0 and consider the differential operators

d,e € W(K,n) = K[Xl,Xg,. .. ,Xn;al,ag,. .. ,an]
For all (a, B) € Ny x Niy, let the sets

: M(a, ) € Mi(a, 8) C NI x N2

be defined according to Notation and Remark 6.3 (C). Then, we have
(a) (supp(d) Usupp(e)) \ (supp(d) Nsupp(e)) C supp(d + €) C supp(d) U supp(e).
(b) supp(cd) = supp(d) for all c € K \ {0}.
(C) Supp(de) C U(g,ﬁ)Esupp(d),(g’,ﬁ’)ésupp(e) M<Z + 2,7 M + El) ’
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(d) supp([d. ]) € Uy, esupp(a) o w)esupp(e) ML + 15 1+ 1),

Proof. Statements (a) and (b) are straight forward from our definition of support.
Statements (c) and (d) follow by Theorem 7.1, Exercise 6.4 (A) respectively Exercise 6.4
(B) and an repeated application of statements (a) and (b). For further hints see [6]. O

7.4. Exercise. (A) Let n € N, let K be a field of characteristic 0 and consider the
standard Weyl algebra W(K,n) = K[X;, Xs,..., X,,;01,0s,...,0,]. Prove in detail state-
ments (a), (b), (c) and (d) of Proposition 7.3.

(B) Let the notations and hypotheses be as in part (A). Present in standard form the
following differential operators:

0IX? — X100X, — 1, X207 —0,X2, 0uX1X00, + 01X, Xy € W(K,n).

(C) Keep the notations of part (A), but assume that n = 1 and Char(K) = 2. Compute
01(XY) for all v € Ny and comment your findings in view of the Standard Basis Theorem.

As another application of the Standard Basis Theorem we now can prove

7.5. Corollary. (The Universal Property of Weyl Algebras) Let the notations and
hypotheses be as in Theorem 7.1. Let B be a K-algebra and let

¢i{XhXQ,...,Xn,al,ag,...,an} —>B

be a map "which respects the Heisenberg relations “ and hence satisfies the requirements

(1) [¢(X5), 0(X;)] =0, foralli,j € {1,2,...,n};
(2) [gﬁ(Xz), (b(ajﬂ = _(Si,j; fOT’ all Z,j € {17 2, RN ,n};
(3) [¢(0), 9(0;)] = 0, foralli,j €{1,2,...,n}.

Then, there is a unique homomorphism of K-algebras
¢: W(K,n) — B
such that B B
o(X;) = o(X;) and ¢(0;) = ¢(0;) for alli=1,2,... n.
Proof. According to Theorem 7.1 there is a K-linear map
¢ W(K,n) — B given by ¢(X*0") =[] o(X:)" [] 6(0:)". (v € Np).
i=1

=1

Next, we show, that 5 is multiplicative, hence satisfies the condition that

o(de) = ¢(d)g(e) for all d;e € W(K,n).
As the multiplication maps
W(K,n) x W(K,n) — W(K,n),(d,e) —»de and BxB— B,(a,b)— ab

are both K-bilinear, it suffices to verify the above multiplicativity condition in the special
case where
d:=X%0" and e:=XY0% with p,v, vV €N
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But this can be done by a straight forward computation, on use of the Product For-
mula of Proposition 6.2 and on application of Lemma 6.1 with a; : ¢(X;) and d; :=
¢(0;) for alli =1,2,...,n.

It remains to show, that ¢ : W(K,n) — B is the only homomorphism of K algebras
which satisfies the requirement that

O(X;)=d(X;) and  G(8) = p(9;) foralli=1,2,... n.

But indeed, if a map $ satisfies this requirement and is multiplicative, it must be defined
on the elementary differential operators as suggested above. This proves the requested
uniqueness. 0

7.6. Exercise. (A) Let n € N, let K be a field of characteristic 0. Show, that there is a
unique automorphism of K-algebras

a: W(K,n) — W(K,n) with a(X;) = 9; and a(8;) = — X, for all i = 1,2,...,n.
(B) Keep the notations and hypotheses of part (A). Present in standard form all elements
a(XYo') € W(K,n) with u,v € Ny.

8. WEIGHTED DEGREES AND FILTRATIONS

We now study a class of particularly important filtrations of standard Weyl algebras,
induced by weighted degrees.

8.1. Convention. Throughout this section we fix a positive integer n, a field K of char-
acteristic 0 and we consider the standard Weyl algebra

W = W(K,n) = K[Xl,XQ, oo ,Xn;al,ag, ‘e ,8n]
8.2. Definition and Remark. (A) By a weight we mean a pair
(v, w) = ((vl,v2, cey ), (W, we, . ,wn)) € NfxNi with (v;,w;) # (0,0) (i =1,2,...,n).

For a := (ai,as,...,a,), b := (b1,by,...,b,) € R™ we frequently shall use the scalar

product
a- l_) = Z CLzbz
i=1

(B) Fix a weight (v,w) € Nj x Nj. We define the degree associated to the weight (v, w)
(or just the weighted degree) of a differential form d € W by

deg™*(d) :=sup{v-v+w-p| (v,p) € supp(d)}.
with the usual convention that sup(()) = —oo. Observe that for all d € W and all u, v € Ny
— and using the notations of Notation and Remark 6.3 (C)— we can say:
(a) deg™(d) € Ng U {—o0} with deg™(d) = —o0 if and only if d = 0.

(b) If A <vand k < p for all (A, ) € supp(d), then deg™*(d) <v-v+w- p.
(c) If supp(d) € M<(v, p), then deg™(d) <v-v+w- pu.
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(C) Keep the notations and hypotheses of part (B). We fix some non-negative integer
1 € Ny and set

W2 = {d € W | deg®(d) < i} = &y K XY0".
v,peNgwv+w-pu<i

8.3. Lemma. Let (v,w) € N} x Nj be a weight and let d,e € W. Then we have
(a) deg™(d + e) < max{deg®(d),deg™(d)}, with equality if deg®*(d) # deg®(e);
(b) deg™(cd) = deg™(d) for all c € K \ {0}.
(c) deg™(de) < deg™(d) + deg™(e);
(d) deg™* ([ ]) < deg®™(d) + deg™(e).

Proof. We Leave the proof to the reader, with the hint to eventually consult [6]. O

8.4. Theorem. (Weighted Filtrations) Let ((vl, Vo, vy Uy), (W1, W, . .. ,wn)) = (v,w) €
Ny x Ny be a weight. Then, the family

W2 = (W = {d € W | deg™(d) < i}),,,

is a commutative filtration of the the K-algebra W = W(K,n). Moreover, the following

statements hold:
(a) ngw = K[Xz,a] | v, = O,U}j = O]
(b) If i > 0 := max{vy, Vg, ..., Uy, Wy, Wa, ..., Wy}, then Wi = Z?:l W%W%’j
(c) The filtration We* = (W?w) i, B8 ofﬁmte type.

Proof. 1t is clear from our definitions and by Lemma 8.3 (c) that for all 4, j € Ny we have:
1eWgs, WP CWpy, W= | )W Wrewsecwy
i€Np

So the family (W7*) constitutes indeed a filtration on the K-algebra W.

i€Np
Now, let i, j € Ny, let d € Wi and let e € W*. Then by Lemma 8.3 (d) we have
deg” (de — ed) < deg™“(d) + deg™(e) —1 <i+j — 1, hence de —ed € W, .
This proves, that our filtration is commutative (see Definition 3.2).
(a): Wedefine S:={1=1,2,....,n|v;#0}, T:={j=12,....n|w; #0}, S =
{1,2,...,n}\S, T:={1,2,...,n} \ T and chose v, u € Nj. Then
v-v+w-p=0if and only if v; =0 for all i € S and p; =0 for all j € T,
But this means that
W — > K [ xrof =K[X;,0;|vi=0uw;=0]
(vi);c5€Ng and (u));7ENG ie§ and jeT

(b): Let i > 0. Let v, u € Nj with o := deg™* (X”@”):y-yjtm-ggi.Weaimto

show that 5
DWW
YOt e Y T WEEWEE = M
j=1
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If & <0 this is clear as
Wyt = WtWi* C Wi=W.2, C M.
So, let ¢ > 0. Then either
(1) there is some p € {1,2,...,n} with v, > 0 and v, > 0, or else,
(2) there is some ¢ € {1,2,...,n} with w, > 0 and p, > 0.
In the above case (1) we can write

X¥9" = X,d, with d .= (] X7"") o

k=1
As deg™(X,) = v, < ¢ and deg”™(d) = o — v, it follows that
X¥ot = Xpd € WirW,2, C WieW;=  C M.
In the above case (2) we may first assume, that we are not in the case (1). This means in
particular that either v, = 0 or v, = 0, hence v,v, = 0, so that deg®(X49,) = w, < 0.

Now, in view of the Heisenberg relations, we may write

X¥0" = X["0,e with e := HX;’ ﬁ@,’:"'_(s’“’q.
stq k=1
As vyv, = 0, we have deg”™(e) = 0 — wy, and it follows that
X0k = X1d,e € WEEWEE, C WERWE C M.
But this shows that X%0" € M.

(c): This is an immediate consequence of statements (a) and (b) (see Definition and
Remark 3.3 (C)). O

8.5. Definition. Let the notations and hypotheses be as in Theorem 8.4. Then, the
filtration

Wit = (Wi%), = ({d € W | deg™(d) < i})

t JieNg 1€Np

is called the filtration induced by the weight (v, w). Generally, we call weighted filtrations
all fitrations which are induced in this way by a weight.
8.6. Definition and Remark. (A) We consider the strings

0:=(0,0,...,0), 1:=(1,1,...,1)eN?
and a differential form d € W. We define the standard degree or just the degree deg(d) of
d as the weighted degree with respect to the weight (1,1) € Ny x N, hence

deg(d) := degt(d).

Observe that

deg(d) := sup{lu| + |p| | (v, p) € supp(d)}.
The corresponding induced weighted filtration

Wi = Wit = (W), = ({d € W | deg(d) <i}),
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is called the standard degree filtration or just the degree filtration of W.

(B) Keep the notations and hypotheses of part (A). The order of the differential oper-

ator d is defined by
ord(d) := deg®(d).
Observe that
ord(d) = sup{|u| | (z, p) € supp(d)}.
The corresponding induced weighted filtration

Word = Wt = (W), = ({d e Word(d) <i}), .,

is called the order filtration of W.
Now, as an immediate application of Theorem 8.4 we obtain:

8.7. Corollary. Let the notations be as in Convention 8.1. Then it holds

(a) The degree filtration W is very good.
(b) The order filtration W is good and W' = K[X1, Xo, ..., X,].

Proof. In the notations of Theorem 8.4 (b) we have
5(1,1) = 1 and §(0,1) = 1.
Moreover, by Theorem 8.4 (a) we have
Wit = K and Wit = K[X, Xo, ..., X,)]
This proves our claim (see Definition and Remark 3.3 (C)).

O

8.8. Exercise. (A) Show that the degree filtration is the only very good filtration on W.

(B) Write down all weights (v,w) € Nj x NI for which the induced filtration Wg* is

good.

9. WEIGHTED ASSOCIATED GRADED RINGS

This Section is devoted to the study of the associated graded rings of weighted filtrations

of standard Weyl algebras.

9.1. Convention. Again, throughout this section we fix a positive integer n, a field K of

characteristic 0 and consider the standard Weyl algebra
W = W(K,n) = K[Xl,XQ, .. ,Xn;al,ag, ce ,0n]
In addition, we introduce the polynomial ring

]P)::K[levyv%"'>Yn;Z17Z27"'7Zn}

in the indeterminates Y1,Ys,...,Y,; Z1, Zs, ..., Z, with coefficients in the field K.
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9.2. Definition and Remark. (A) Fix a weight (v,w) € Nj x NI and consider the
induced weighted filtration Wg*. To write down the corresponding associated graded
ring, we introduce the following notation:

G¥ = @ G := Gryyue (W) = @ Gryyge (Ww)z
ieNo 1€Ng

(B) Keep the above notations and hypotheses. For each j € Z we introduce the
notations:

IN

I ={(v,p) eNg xNg [v-v+
IZ5 = {(v,p) e Ng x N§ |v-v+
Fix some i € Ny. Observe that
G =wr/WE = (P KXo @ kX)) P KX

vw VW

(welsy (v,p)€l=; (vwels;

w-p
w-p

it
i}

As a consequence, we get an isomorphism of K-vector spaces
e EB KXYor =, G
(v,p)€elzy
given by
€ (X0") = (X" + Wit)) € Wit/Wity = G, ((wp) € I).
In particular we can say:

The family ((X20L)* := e(X%0L)) ( w 18 a K-basis of GJ*.

v, )€l

We call this basis the standard basis of G7*. Its elements are called standard basis ele-
ments of the associated graded ring G*“.

(C) Keep the previously introduced notation. We add a few more useful observations
on standard basis elements. First, observe that we may write

(a) (XP0H)* € Gyypyup for all (v, p) € N x Np.

(b) X; € Gy and 05 € Gyp foralld, j € {1,2,...,n}.
Moreover, by the observations made in part (B) we also can say that all standard basis
elements form a basis of the whole associated graded ring, thus:

(¢) The family ((X¥0")*) is a K-basis of G*“.

(v,pu)ENG xNE
Finally, as the associated graded ring is commutative, and keeping in mind how the
multiplication in this ring is defined (see Remark and Definition 3.1 (B)) we get the
following product formula

(d) (X*0")" = (1T X7 1T 09) "