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ABSTRACT. In this paper we propose a new protocol for Group Key Management. The protocol is
based on the use of orthogonal systems in vector spaces. The main advantage in comparison to other
existing multicast key management protocols consists in small communications overheads, i.e. length
and number of messages to be sent, as well as key storage, especially with respect to a comparable
security level. This makes the protocol especially attractive when the number of legitimate receivers
is large.
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1. INTRODUCTION

Traditional security measures are mainly applicable to a unicast environment, i.e. communi-
cations take place between two single parties. For instance, data confidentiality, one of the most
important features in network security, can be offered in this environment by means of a pair of
keys. However there exist many different situations where the usual secure unicast protocols can-
not be used, mainly due to the nature of the information to be transmitted. This usually happens
when trying to deliver data from a sender to multiple receivers, especially when a huge amount of
data needs to be delivered very quickly. One of the most efficient ways to do this is the so-called
multicast. In a multicast protocol a certain group of people receives the information and this group
is usually highly dynamic. In a typical situation users join and leave the group constantly ([14]).

There are a number of exciting multimedia applications that make good use of multicast
capability, such as stock quote services, video-conferencing, pay-per-view TV, Internet radio, and
so on. Many of the aforementioned multicast applications require security in data transmission,
i.e., data can only be accessed or exchanged among an exclusive group of users. In the Pay-TV
system, for example, the service providers usually employ Conditional Access System (CAS) to
avoid unauthorized accessing of their video/audio streams, and only allow access to services
based on payment.

The natural approach to establish secure multicast communications is to agree on one or sev-
eral symmetric encryption keys in order to encrypt messages. However, the key, or keys, must be
renewed periodically to prevent outer or inner attacks. Depending on how key distribution and
management are carried out, secure multicast schemes are divided into centralized, decentralized
and distributed schemes. Centralized schemes depend directly on a single entity to distribute ev-
ery cryptographic key. A typical scenario is an IPTV or P2PTV platform, in which clients receive
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2 JOSÉ ANTONIO ALVAREZ-BERMEJO, JUAN ANTONIO LOPEZ-RAMOS, JOACHIM ROSENTHAL, AND DAVIDE SCHIPANI

a TV signal from a Content Server via Internet. In a decentralized scheme users are distributed
into groups with a group manager that distributes the session key group, thereby allowing an
increase of the audience. Finally distributed schemes involve collaboration of users in building
the secret, which can make key management rather complex ([14]). A big issue concerns secu-
rity: in a centralized system there is just one server to secure, while in the decentralized and
distributed cases security efforts have to be multiplied. In the papers [14] and [25] a survey can be
found about rekeying in wired networks. Wireless networks show additional challenges due to
member mobility and increase in the number of members. In [9] a survey is provided about group
key management network dependent and independent protocols in wireless mobile environments
that employ multicast communication.

Our aim in this paper is to introduce a novel protocol applicable for both centralized and
decentralized multicast schemes that is shown to be secure, efficient and scalable. We focus our
efforts on the algorithm to encrypt the session key more than on the way that this is distributed.
To show its competitiveness we have considered typical arrangement of users in a centralized
scheme considering both a single group and a tree arrangement of users.

In the following lines we recall some centralized schemes for key management, although
the reader can find a recent survey on secure multicast in [25]. A very well-known protocol is
Hierarchical Tree Approach (HTA) [20]. It uses a logical tree arrangement of the users in order to
facilitate key distribution. The benefit of this idea is that the storage requirement for each client
and the number of transmissions required for key renewal are both logarithmic in the number of
members. Other key tree approaches and extensions are LKH [22], LKH++ [4], OFT [16] or ELK
[13].

In [3] the so-called Secure Lock protocol is introduced. The authors approach the problem
in a computational manner and make use of the Chinese Remainder Theorem instead of a tree
arrangement. Users are distributed into groups, that in the case of PayTV could be represented
by those subscribers with the same Pay-Per-Channels (PPC) or Pay-Per-View (PPV) options. The
PPC and PPV programs should be encrypted previously to their distribution and there is only a
content server and a key server (that might be different or not). Its main drawback is the large
computational cost required at the key server side on each rekeying operation: the length of the
rekeying messages and the computing time needed becomes quickly problematic as the number
of members in one of the PPC or PPV groups grows [12].

In [15], a divide-and-conquer extension of the Secure Lock is proposed. It combines the
Hierarchical Tree Approach and the Secure Lock: members are arranged in a HTA fashion, but
the Secure Lock is used to refresh keys on each tree level. Therefore, the number of computations
required by the Secure Lock is reduced.

Another computational approach with the same distribution by groups of users and a unique
key server is introduced in [8] with the particular application on Pay-TV but extendable to any
other secure multicast application. The idea is to use polynomials over a finite field interpolating
hashes of secret values belonging to the authorized users. The main drawbacks are that the hash
function must be renewed with any rekeying operation, due to security concerns, and the large
size of the polynomials involved. The length of the messages grows linearly with the number of
users in every group, so that if this number is huge, users might be forced to be distributed into
subgroups, e.g., groups of users are established inside every PPC or PPV group.

The distribution by groups is in fact often beneficial and is used by most key managing pro-
tocols. A first benefit is the parallelization of the process which speeds up the rekeying operations.
Secondly a compromised key in one of the groups does not affect the others. Last but not least,
in most applications of secure multicast the group distribution is connected with the scalability
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of the system, i.e., the efficiency of the communication protocols concerning the rekeying process,
with particular reference to leave and join operations. Groups are usually highly dynamic and the
joining or the leaving of users implies a rekeying operation, but key refreshment due to this fact
in one group does not affect the others.

More recently in [11] the authors introduce another solution with the same philosophy of Se-
cure Lock and of that introduced in [8] and based on the Extended Euclidean Algorithm. Through-
out this paper we will refer to this protocol as Euclid. The server distributes a secret via the inverse
of an integer modulo a product of coprime secret numbers, each one of them belonging to an au-
thorized user. The authors show [11] that a former user could try a factorization attack, which
forces to consider prime numbers of an adequate size. This implies a division by groups of the
audience, in the case of PayTV a subdivision of every PPC or PPV group, since the length of the
rekeying messages could become unaffordable. Some recent contributions developing further on
these ideas appear to require more affordable computational costs [17, 18].

In this paper we are assuming a scenario, fairly general and suitable for many applications,
especially for multimedia distribution purposes, with a Key Server and a set of members (other
hosts) that either send or receive multicast messages. Any multicast topology can be used under-
neath, including the scheme considered in [23], where a topology-matching key management tree
scheme is introduced. All setup tasks are carried out by the Key Server. Data communications
are then either one-to-many or many-to-many, and consist of encrypted contents and/or rekeying
messages, which are created by the Server (or the two servers, Content Server and Key Server).
Members can enter and leave the system at any time. The key must be refreshed upon mem-
ber arrival or departure to achieve perfect backward and forward secrecy, respectively. However
this might depend on the application, since there exist cases, such as some audio and/or video
streaming distributions, where backward secrecy is not an issue, as contents can be out of date.

The protocol we are introducing presents some nice features that make it competitive, e.g.
it requires just a single message per group, of affordable length, for every rekeying operation,
the operations at the Key Server and the Client sides require low computational cost and the key
storage requirements are minimal.

The main idea behind the protocol is the use of orthogonal systems in vector spaces. Ex-
ploiting orthogonality comes probably as a natural tool in multicast applications, as this appears
also e.g. in CDMA and [21]. How orthogonality is exploited here appears though to be new, and
brings with it several advantages. In particular the scalars will play an important role in order to
have fast rekey and reset operations and avoid involving large vectors to be replaced or generated.
Moreover this structure will make the protocol not only agile and flexible, but also more robust
and secure against all conceivable attacks, as will be shown later, also in comparison with many
existing protocols of similar communication overheads.

In the next Section we describe the new protocol, analyze its security, and compare it with
other existing and aforementioned protocols. Section 3 demonstrates an efficient implementation
of the protocol.

2. THE PROPOSED PROTOCOL

Let the potential users be denoted with the integers 1, . . . , n and assume that they all belong
to the same group.

(1) Initialization step:
Let K be a field and V be a K vector space of dimension m ≥ n (see also next subsection

for the choice of m). Let <,> be a bilinear form which we assume to be nondegenerate and
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symmetric. Let B = {e1, . . . , en} be a set of n mutually orthogonal vectors in V having the
property that < ei, ei >6= 0 for i = 1, . . . , n. Note that these two requirements, namely the
mutual orthogonality and the non self-orthogonality, also imply the linear independence
of the vectors. For security reasons, as we will show later, the vectors should not be part
of the canonical basis or anyway the basis used to represent vectors. We select a family
{xi}ni=1 of random nonzero scalars in K. Note that B′ = {x1e1, . . . , xnen} spans the same
subspace as B. These two sets are kept secret by the server and each user i is assigned the
vector vi = xiei. By our assumptions we know that < vi,vi >6= 0 for i = 1, . . . , n. Then
we will consider two subsets in B′ at a determined point in time in the communications.
On one hand B′1 will be formed by those vectors in B′ that are assigned to some user and
B′2 will be the set of vectors in B′ that do not correspond to any user. We also consider two
subsets in B′2, B′2,1 and B′2,2, that contain those vectors that were not previously used and
those that are a multiple of a vector corresponding to a former no more legitimate user,
respectively.

(2) Sending the information:
Suppose that we want to distribute the secret s ∈ K. Then we compute and multicast

(broadcast) c = s(
∑

vj∈B′
1
vj + y

∑
v′
j∈B

′
2
v′j) for some random y ∈ K different for each new

secret.
(3) Recovering the information:

Each user computes g =< c,vi >= s < vi,vi >.
The secret s is then recovered by computing s = g < vi,vi >

−1.
(4) Key refreshment:

(a) Join:
If user j joins, then she is assigned one of the vectors in B′2,1, say xjej. The server
selects a new secret s′ ∈ K and multicasts as above c′ = s′(

∑
vj∈B′

1
vj + y′

∑
v′
j∈B

′
2
v′j)

for some random y′ ∈ K.
(b) Leave:

If user j leaves, then her vector vj = xjej is deleted from B′1 and the vector v′j = x′jej
is included into B′2,2 where x′j ( 6= xj) is selected at random in K. To distribute a new
secret s′, we do similarly as after a join operation.

We remark that, if we are managing with ` groups, then we can use ` different orthogonal
bases. A particular interesting case of managing groups is shown in Figure 1. In this case one
can profit from a tree-like distribution as in the HTA and the Secure Lock + HTA approaches ([20]
and [15] respectively) using a divide and conquer strategy. The main advantage is that we can
use smaller vector spaces, so that we can serve a much bigger number of users without delaying
in rekeying operations. Let us consider for example a hierarchical tree with a depth of 3, i.e.,
the number of levels below root is 3, and a degree of n, i.e., the number of children below each
parent node is n (see Figure 1). In this situation, we have n3 users who are located at the leaves of
the tree. Intermediate nodes store group keys in the form of vectors known to the correspondent
descendants. For example, users 1 to n2 share a common vector stored at P1, users 1 to n share
another common vector stored at P1,1 and so on, so that user 1 knows her private vector plus the
vectors P1 and P1,1. Then, when a rekeying message is to be sent, this will be made using the
orthogonal system given by {P1, . . . , Pn} as described above, and any authorized user will be able
to retrieve the key.

Now, let us assume without loss of generality that user 1 wants to leave. It can be easily
observed that we need the following messages to refresh the key and preserve forward secrecy.
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FIGURE 1. Hierarchical Tree

After determining a new vector for position 1, the server uses the new basis, including the private
vectors of users 2 to n, to send them a scalar (by posting an encrypted version, as described in the
protocol). Users 2 to n use this scalar to renew P1,1, i.e. they keep the same vector but substitute
the scalar associated to it. Analogously the server uses the new basis for P1,1 to P1,n, to send the
users 1 to n2 another scalar. These use this scalar to renew P1. At last the server can send a new
key for all users using the new orthogonal system for {P1, . . . , Pn}.

Notice that in order to send a scalar of k-bits length we need a message of nk bits length. If
we deal with a tree distribution as above where n = 100, then three rather short messages will
give us the possibility of handling audiences of up to 1 million users, and the computing time to
generate the rekeying messages will not depend on the number of users.

In fact, building the tree for our protocol comes up naturally. When designing the tree dis-
tribution we have to fix the number of descendants of each node, that will give us the required
dimension for our vector space. And the tree distribution allows to have flexibility on the num-
ber of users: if a bigger structure has to be considered in order to deal with more users, then
intermediate nodes can be easily inserted.

2.1. Security. Let us suppose that K is a finite field, which is the usual setting for application. As a
first step we will show that, by choosing m appropriately, we can be sure that there are sufficiently
many n-tuples of mutually orthogonal vectors in V , so that a brute force attack to find B is not
feasible.

As we require also the property < ei, ei >6= 0, for i = 1, . . . , n, we consider the set {x =
(x1, . . . , xm) ∈ V | < x,x >= x21 + · · · + x2m = 0}. This set forms a hypersurface H of dimension
m− 1 and degree 2.

Theorem 1. Let V := Fm
q and m > 2n. Then there exists at least

(1 + o(1))
q

3
2
n2

n!

n-tuples of mutually orthogonal vectors (e1, . . . , en) in V having the property that < ei, ei >6= 0, i =

1, . . . , n. For characteristic bigger than 2 we may require (1 + 5·213/3
q )qm−1 � qm.

Proof. We divide the proof in different scenarios, as the estimate can be made more precise de-
pending on the particular setting involved.
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In characteristic 2 (which is probably the most interesting case for cryptographic applica-
tions), x21 + · · · + x2m = (x1 + · · · + xm)2 so that the cardinality of the hypersurface |H| = qm−1.
Now Iosevich and Senger [6, 19] derived a lower bound on the number of n-tuples of mutually
orthogonal vectors in a subset X ⊂ V in situations where a lower bound on the cardinality of X
is known. Applying this result to our situation with X := V \H one derives the thesis.

In characteristic greater than 2, we can exploit estimates on the number of points in hyper-
surfaces, namely the Lange-Weil bound and connected results (e.g. [2] or [7] where probably the
best general bounds can be found). If H is absolutely irreducible, then |H| = (1 + C)qm−1, where
|C| can be estimated, independently of any regularity conditions, as less than 5·213/3

q ([2, Theorem
5.2]); here we may require q to be large enough to make |H| neglectable with respect to qm. If H is
not absolutely irreducible, then |H| ≤ qm−1 ([2, Lemma 2.3]). In any case we can apply again the
same argument as in characteristic 2 and derive the thesis. �

The condition m > 2n might also be convenient in order to avoid any collusion attack, that
is to avoid that a big group of, say, k users share their private vectors with each other, trying to
retrieve information belonging to other authorized users. Since m − k > 2(n − k), the inequality
above guarantees that there would be anyway more than

(1 + o(1))
q

3
2
(n−k)2

(n− k)!

(n− k)-tuples of mutually orthogonal vectors in the remaining unknown vector space.
From the above one can infer, as noted, not only a resilience to collusions, but also that the

disclosure of a private key does not compromise other users’ keys.
Let us assume now that the set B is known, instead of being kept secret. Since B is a linearly

independent set, one can compute readily the unique coefficients z1, . . . , zn such that

c = z1e1 + · · ·+ znen.

An authorized user knowing the vector vj = xjej and having computed zjej readily computes s
and xj . Then since all the private numbers xi verify the equality zi = sxi, i = 1, . . . , n, all of them
can be readily computed by this user. Such a user would have the chance to use them later in her
own interest. Thus it is clear that B should be kept secret.

Here follows a tentative attack based on the collection of many subsequent pieces of in-
formation, in a ciphertext-only attack scenario. We show below that this is feasible when B,
against our hypothesis, is the canonical basis used to represent vectors of the vector space V .
Namely, anybody observing the information flow could get n linearly independent key refresh-
ments c1, . . . , cn. Note that this is the case whenever a user i leaves and in that case, the set
B′ = {x1e1, . . . , xiei, . . . , xnen}would change to B′′ = {x1e1, . . . , yx′iei, . . . , xnen}. Now, suppose
without loss of generality that n = m; if the server sends (six1, . . . , sixn) as a rekeying message
ci = (ci,1, . . . , ci,n), then we would consider the matrix

M =

 c1,1 · · · cn,1
...

...
...

c1,n · · · cn,n


where each column (ci,1, . . . , ci,n) represents the coordinates of the refreshment ci with respect
to B (as ci,j = sixj for i, j = 1, . . . , n); then M represents the change of basis from the basis
C = {c1, . . . , cn} to B. The inverse of M will reveal then B in terms of the basis C. And knowing
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a pair (s, c) would compromise all the secrets (of the other users) used to get this pair (s, c), as
noted at the beginning of this subsection.

Therefore it is convenient, as pointed out before, that B is chosen not to be the canonical basis,
so that what is sent by the server is not plainly (six1, . . . , sixn), but its representation in another
basis.

Let us illustrate this with the following easy example:

Example 2. Let B = {(1, 1, 1), (1,−2, 1), (−1, 0, 1)} be an orthogonal basis of the Euclidean vector
space R3 (with the usual scalar product <,>) and assume x1 = 2, x2 = 3, x3 = 5. Then B′ =
{(2, 2, 2), (3,−6, 3), (−5, 0, 5)}. If we want to rekey with s = 4, then we have to multicast

c1 = 4(2, 2, 2) + 4(3,−6, 3) + 4(−5, 0, 5) = (0,−16, 40).
User 1 can recover s by calculating

h =< (0,−16, 40), (2, 2, 2) >= 48,

and then
s = h < (2, 2, 2), (2, 2, 2) >−1= 4.

Users 2 and 3 act similarly.
Now suppose that user 2 leaves and x2 is changed to x2 = 2. B′2,2, that was previously

empty, contains now the vector (2,−4, 2). Then the rekeying message for s = 3, and choosing
y = 2 is c2 = 3(2, 2, 2) + 3 · 2(2,−4, 2) + 3(−5, 0, 5) = (3,−18, 33). Finally, suppose that user 1
leaves, x1 becomes 3 and the new secret s is 2, so that, choosing y = −1, c3 = 2 · (−1)(3, 3, 3) + 2 ·
(−1)(2,−4, 2) + 2(−5, 0, 5) = (−8, 2, 8). Now the basis given by {c1, c2, c3} does not tell anything
about the basis B.

Remark 3. It should be remarked that, if we restrict ourselves to work in a subring of the base
field that admits an algorithm to compute GCDs, then s divides the GCD of the coordinates of
c. Observe, for instance, that in the example above s divides GCD(0,−16, 40) and after the first
rekeying s = GCD(3,−18, 33). Thus this situation should be avoided for a security issue, so finite
fields rather than the ring of integers should be used.

Remark 4. To add additional security and prevent any sort of statistical or brute force attacks, it is
anyway advisable to perform periodic key refreshments, as is commonly done for other protocols.

As it is often the case, inner attacks are more dangerous than outer ones. Inner attacks are
carried out by new or former users that hold information on the system at a determined moment
and try to get advantage from this on the previously or newly distributed information. We next
show how forward and backward secrecy is preserved, i.e., a former user is not able to get any
information after leaving the system or a new user cannot access the previously distributed infor-
mation.

Proposition 5. Forward (resp. backward) secrecy is preserved under a ciphertext-only attack.

Proof. Let us assume first without any loss of generality that the set B′2,2 is formed by just one
vector corresponding to a single former user. Then she can try to get the new s′ using her vector,
say vi. If she multiplies < c′,vi >, then she gets

< c′,vi >=< s′(x1e1 + · · ·+ yx′iei + · · ·+ xrer), xiei >= s′yxix
′
i < ei, ei > .

for some random y. However she only knows the value x2i < ei, ei > that does not let her discover
the new secret s′ nor the new vector given by x′i.



8 JOSÉ ANTONIO ALVAREZ-BERMEJO, JUAN ANTONIO LOPEZ-RAMOS, JOACHIM ROSENTHAL, AND DAVIDE SCHIPANI

The same argument works to show that backward secrecy is preserved. �
Let us assume now that the attacker has additional means, for example suppose a valid user

shares a new (resp. predistributed) secret s with a former (resp. new) user. Then we can show the
following.

Proposition 6. Forward (resp. backward) secrecy is preserved under known plain text attack.

Proof. Suppose the former (resp. the new) user owns vi = xiei for some i and let v′i = x′iei be
(as previously) the unique element of B′2,2. With the rekeying procedure let c = s(x1e1 + · · · +
yx′iei+ · · ·+xrer), for some random y, be a new (resp. old) multicasted message. Then < vi, c >=
sxiyx

′
i < ei, ei >. If somehow this former (resp. new) user has access to the corresponding

decrypted message, s, then she will be able to get xiyx′i < ei, ei > by multiplying by s−1. However
if c′ = s′(x1e1 + · · ·+ y′x′iei + · · ·+ xrer), for y′ random, is a new (resp. older) message, and this
user computes < vi, c

′ >= s′xiy
′x′i < ei, ei >, then she cannot get any information about s′ by

using xiyx
′
i < ei, ei > unless y = y′, which is highly unlikely. �

2.2. Comparison with other schemes. We compare here our new proposal with some of the other
key managing protocols existing in the literature and cited in the introduction. The main param-
eters we will focus on are the key storage cost, the length of the messages and the number of
messages per join and leave operation. These may look comparable to those in other protocols for
the same number of users but often with the additional advantage of offering a higher security
protection.

As for the protocol we are introducing in this paper, the server has to store one scalar per
user, the xi’s, and an orthogonal system, B, for each considered group, each user stores her vector
vi, while the length of the rekeying messages is n · C, where C is the bit-length of the elements in
a finite field IK.

In the following table we have a summary containing a comparison among some of the above
cited protocols concerning key storage at both the Server and the Client and number of messages
per leave and join operations, with h and d denoting, respectively, the depth and the degree of
a tree. We are considering two different versions of our protocol: by Ortog we are denoting our
protocol for a single group and by Ortog+HTA a Hierarchical Tree Arrangement of users as pre-
viously cited.

LKH++ OFT ELK Euclid Ortog SecLock+HTA CAS+HTA Ortog+HTA
Keys Server 2n− 1 2n− 1 2n− 1 n+ 1 n+ 1 dh−1

d−1
dh−1
d−1

dh−1
d−1

Keys Client h+ 1 h+ 1 h+ 1 2 2 h+ 1 h+ 1 h+ 1
Mess. Join h+ 1 h+ 1 0 1 1 h h h
Mess. Leave h+ 1 h+ 1 h 1 1 h h h

This table shows that our protocol compares favourably with respect to existing protocols
as it was shown for Euclid in [11], however the present proposal offers an additional advantage
concerning the length of the messages with respect to a fixed security requirement. In Euclid, for
example, the key storage cost can be of the same order as here, but the length of the messages
could become a problem unless some key management by groups is used. In fact, by security re-
quirements every private key held by any user, an integer, has to be of appropriate length to avoid
a factorization attack by a former user (cf. [11]). In this way integers of length 1024 bits onwards
should be considered and since the rekeying messages are of the same order as the product of all
these integers, then for large groups these could be unaffordable.
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On the other hand, in this new protocol messages can be considerably shorter than in Euclid,
depending on the number of users in the group and on the cardinality of the field chosen for the
scalars.

Suppose for example that we are dealing with a field of 64-bits elements and we are using a
vector space of dimension 10000. Then rekeying messages would be shorter than 80Kbytes length,
which is perfectly affordable by any multicast network used for this purpose. In the case of Euclid,
using primes of 64-bits length produces messages of the same length, i.e. 80Kbytes. However, any
user, as it is shown in [11], has access to a multiple of the product of all the secret keys and so this
bit-length of the primes is not enough for a secure rekeying process since a factorization attack
would succeed very quickly. To avoid this we are forced to deal with 1024-bits primes, at least.
This leads to over 1Mbyte of length for rekeying messages. Otherwise we have to divide this
audience in at least 12 groups in order to deal with messages of length comparable to that of the
new proposal.

In the case of Secure Lock each user holds a pair of keys, an integer Ri and a symmetric key
ki. The server encrypts the secret using the symmetric key ki of every user, obtaining a number for
each one of them, Ni. Then the server solves the congruence system x ≡Ri Ni and multicasts the
solution U of this system. We observe that, as in the case of Euclid, the length of the messages is of
the same order as the product of all the integers Ri and that with every refreshment a congruence
system has to be solved, which can quite slow down the rekeying process. Recall also that the
server has to encrypt as many times as the number of authorized users. In order to speed it up it
is commonly used jointly with HTA.

As far as the Conditional Access Service introduced in [8] is concerned, amid a good behav-
ior regarding key storage, the high degree of the polynomials involved again generally forces a
partition of the users into groups. Moreover the hash function used to create the interpolator
polynomial that is used to distribute the secret has to be changed with every rekeying process, as
mentioned above. Potential vulnerabilities on this type of systems are also presented in [10]. In
our case, the rekeying process only requires a few simple operations.

3. IMPLEMENTATION OF THE PROPOSED METHOD

The application was designed using three main computational objects, the Key Sharing Frame-
work object (KSF), a Server object and a Client object. The Server object is the hotspot in terms of com-
putation due to the size of the matrix that it hosts (namely the vector space). The KSF manages
clients and interfaces the GPU device, if present. The application was organized in the following
stages:

• Vector space setup: The KSF object creates the 2D matrix consisting of mutually orthogonal
vectors.
• Coder generation: The Vector space can be reduced by column order into a 1-D vector (using

the addition). This 1-D key is used by the Server to encode the content to be distributed.
• User/Client login: Prepares the necessary data structures to hold users claiming a key to

decode content from the Server. Once the client is authorized to log in, the key to decode
messages, is provided.
• Server initialization and startup: The KSF framework permits the Server to accept requests

from clients.

3.1. Results. Jcuda ([5]), which is a Java binding for CUDA (Compute Unified Device Archi-
tecture), a set of development tools that allows programmers to use graphic cards for parallel
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TABLE 1. Execution of the protocol CPU-only threaded version (time in ms, vector
and user # in thousands, i.e. 5v x 5u stands for 5000v x 5000u)

core i7 ee(12 hw threads) dualcore T9500 (2 hw threads)
stage 5v x 5u 10v x 5u 10v x 10u 5v x 5u 10v x 5u 10v x 10u

Orthogonalization 114240 913866 913596 169909 1339753 1371083
Key Refreshment 30 197 198 66 231 235
Generator Coder 30 197 198 66 231 235
Server activation 0 1 0 2 1 3

Client setup 1 1 2 46 80 168
Broadcast 12 16 33 1 1 0

Client refresh 1 1 1 45 300 556

C
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I
D
E

Provide a client interface to 
enable the login/logout 

Provide a medium to multicast
secrets to the clients.

E
R
V
E
R

S
I
D
E

KEY SHARING FRAMEWORK

CONNECTED CLIENTS

GPU DEVICE VECTOR SPACE

Build a Basis to Support
the protocol.

LOG IN

ENCODE A SECRET

DECODE A SECRET

S
BUILD BASIS

Secret’s Module

REFRESHING

FIGURE 2. Cuda implementation schema

computing- was used to interface the GPU and impersonate it as a new computational entity to
which we were able to send requests (cf. Figure 2). To build and prepare the vector space Matrix
in the GPU device, a kernel (code able to run on a GPU device) was written. Figure 2 depicts
how the protocol is organized. Two main entities are in charge of providing the needed scenario.
The server object is in charge of communicating with the GPU and maintaining the basis and the
server object keeps a pool of connected clients.
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FIGURE 3. Effect of using the GPU in the orthogonalization stage

Table 1 shows the execution scenarios and the timings in milliseconds for each protocol stage.
Tests were executed on a Intel Core-i7 processor (see orthogonalization Ci7 in Figure 3). The
Server was run using vector spaces from 10 up to 10000. All the cases used 4 bytes for each vector
component, so that the messages produced, using a vector space of dimension 10000, are less than
40 Kbytes. The orthogonalization stage is the most time consuming step, so setup is affected as
it depends on the dimension of the vector space. For test purposes, the protocol was run on a
conventional core i7, Table 1 and the server was also tested in a conventional processor, core 2
duo. Although this is a laptop processor’s architecture, the trend reflected in Table 1 follows the
one observed in the core 2 duo case.

TABLE 2. Hardware acceleration of the orthogonalization process (in ms). The
GPU used was a GForce GTX-460.

5000vx5000u 10000vx5000u 10000vx10000u
GPU Orthog. 18878.9 39000.2 40183.4
GPU to CPU 89.3 130.3 221.2

As Table 2 shows, the time spent in the Setup of the server, affected by the orthogonalization
process, was reduced if a GPU was present. Another issue was the client removal and the time to
renew its key to make it available for new users. This time is reflected in the stage named Client
setup. As it can be seen, the time to refresh a client is not dependent on the dimension of the vector
space.

Figure 3 shows that orthogonalization is optimized when the GPU is used as a part of the
server logic. It can be seen that performance is affected whenever the vector space is incremented
(for both cpu based versions) but this lack of performance is not that severe when the GPU is
present. The protocol was tested on conventional Intel based architectures (one of them was a
commodity laptop) and their low performance profile GPUs. The main part of the protocol (ob-
jects) were implemented using Charm++ high performance C++ based language; in [24] the fault
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tolerance performance issues are discussed (which was implemented using the migration mecha-
nism inherited from its load balancing framework). Therefore, the code is organized in migratable
Charm++ objects that are able to move to other cores (or processors if needed). The GPU was in-
cluded using the Java interface (jcuda) to connect directly through Charm++’s ccs port. Charm++
offers an offload API to use GPUs efficiently. We tried to create the lower perfomance bound to
test the protocol (conventional processors and common APIs). Using Charm++ in High Perfor-
mance Servers (a cluster with 18 computing nodes (288 cores and 1152 GB of RAM) with 2 x Intel
Xeon E5-2650 2 GHz (8 cores), 64 GB RAM and 128 GB SSD, Infiniband QDR network links, and
8 x GPU NVIDIA Tesla M2090) the rekeying is improved dramatically (23,11 ms) as well as the
orthogonalization if the Tesla GPU is used (1809,473142199339 ms for the 10v x 10u case). Nev-
ertheless the main issue was to test if the protocol was light enough as to be run on conventional
commodity hardware. To load balance the computation related to the client objects we are using
the RefineLB load balancing strategy, a refiner load balancing strategy (for the supercomputer test
only) which is a refinement load balancer that migrates objects from processors with greater than
average load (starting with the most overloaded processor) to those with less than average load.
The aim of this strategy is to reduce the number of objects migrated; the work in [1] gives further
details.

4. CONCLUSIONS

We have introduced a new protocol for managing keys applicable in both centralized and
decentralized secure multicast schemes. This protocol is proved to be secure against possible inner
and/or outer attacks, showing that both forward and backward secrecy is preserved, as well as
key independence and collusion resistance. We also showed its advantages with respect to other
existing methods for key management in secure multicast schemes, namely minimal requirements
for computational costs, key storage at both client and server sides, length and number of rekeying
messages per join and/or leave operation. Finally we provided results showing that an efficient
implementation is indeed feasible.
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SPAIN

URL: www.ual.es/∼jlopez

(Joachim Rosenthal) MATHEMATICS INSTITUTE, UNIVERSITY OF ZURICH, CH-8057 ZURICH, SWITZERLAND

URL: www.math.uzh.ch/aa

(Davide Schipani) MATHEMATICS INSTITUTE, UNIVERSITY OF ZURICH, CH-8057 ZURICH, SWITZERLAND

URL: www.math.uzh.ch/aa


