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Abstract

In this work we provide a suite of protocols for group key management
based on general semigroup actions. Construction of the key is made in
a distributed and collaborative way. Examples are provided that may in
some cases enhance the security level and communication overheads of
previous existing protocols. Security against passive attacks is considered
and depends on the hardness of the semigroup action problem in any
particular scenario.

1 Introduction

Traditional cryptographic tools for key exchange may not be useful when the
communication process is carried out in a group of nodes or users. There exist
several approaches for group key management, which may be divided into three
main classes [12]:

• centralized protocols, where a single entity is in charge of controlling the
whole group, minimizing storage requirements, computational power on
both the client and server side and communication overheads,

• decentralized, where a large group is divided into subgroups in order to
avoid concentrating the workload in a single point,

• distributed, where key generation is carried out in a distributed and col-
laborative way.
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This last class of approaches has become particularly important since the emer-
gence of ad hoc networks, where a set of nodes, possibly consisting of light and
mobile devices, create, operate and manage a network, which is therefore solely
dependent on the cooperative and trusting nature of the nodes. Moreover the
limited capacity of the involved devices imposes both key storage and computa-
tional requirements. Such a network is commonly created to meet an immedi-
ate demand and specific goal, and nodes are continuously joining or leaving it.
Thus, group key management based on distributed and collaborative schemes
has proved to be of great interest (cf. for instance [17] and its references).

One of the most cited approaches in the distributed setting is due to Steiner
et al. in [14] and [15]. In these works the authors provide two different group
key management schemes that extend the traditional Diffie-Hellman key ex-
change [4] and feature very efficient rekeying procedures.

In [8], the authors generalize the aforementioned classical Diffie-Hellman key
exchange to arbitrary group actions:

Protocol 1 (Semigroup Diffie-Hellman Key Exchange). Let S be a finite set,
G an abelian semigroup, and Φ : G × S → S a G-action on S. The semigroup
Diffie-Hellman key exchange in (G,S,Φ) is the following protocol:

1. Alice and Bob publicly agree on an element s ∈ S.

2. Alice chooses a ∈ G and computes Φ(a, s). Alice’s private key is a, her
public key is Φ(a, s).

3. Bob chooses b ∈ G and computes Φ(b, s). Bob’s private key is b, his public
key is Φ(b, s).

4. Their common secret key is then

Φ(a,Φ(b, s)) = Φ(ab, s) = Φ(ba, s) = Φ(b,Φ(a, s)).

In the original Diffie-Hellman proposal, if an adversary is able to solve the
so-called Discrete Logarithm Problem (DLP), then she is able to break the
Diffie-Hellman key exchange. In this setting we can analogously consider the
following more general problem:

Problem 1 (Semigroup Action Problem, SAP). Given a semigroup G acting
on a set S and elements x, y ∈ S, find g ∈ G such that Φ(g, x) = y.

It is clear that if an adversary, Eve, finds a g ∈ G such that Φ(g, s) = Φ(a, s),
then she can find the shared secret by computing Φ(g,Φ(b, s)) = Φ(gb, s) =
Φ(bg, s) = Φ(b,Φ(a, s)).

We can say that the security of the preceding protocol is equivalent to the
following problem.

Problem 2 (Diffie-Hellman Semigroup Action Problem, DHSAP). Given a
finite abelian semigroup G acting on a finite set S and elements x, y, z ∈ S with
y = Φ(g, x) and z = Φ(h, x) for some g, h ∈ G, find Φ(gh, x).
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Although, as noted above, solving the SAP implies solving the DHSAP,
we do not know if both problems are (in general) equivalent, just like in the
traditional setting of Diffie-Hellman, where however some equivalence results
for particular scenarios are known [6].

Motivated by the above, our idea is now to define extensions of the semigroup
Diffie-Hellman key exchange protocol to n users, by first generalizing those in-
troduced in [14] and [15], and then considering other settings, which can feature
more favorable characteristics compared to the original protocol. Since the ca-
pability of devices is often limited and authentication processes may be difficult
to implement in a distributed network, we focus our attention on confidentiality
under passive attacks. As in [8], some non-standard settings are introduced as
more general examples, although the hardness of the SAP there may not be
proven yet, so the security of the protocols in those cases is conditional on that.

The structure of the paper is as follows. In Section 2 we consider a suite of
three protocols for group key management based on one-sided actions. While
these naturally extend the results of [14] and [15], we consider different settings
for a general semigroup action. Section 3 considers the security of the preced-
ing protocols against passive attacks, including forward and backward secrecy.
Finally, in Section 4, we introduce two protocols based on linear actions, i.e.
semigroup actions on other groups satisfying a certain distributivity property.
We give two different group key protocols in this setting, one of which runs very
efficiently in only two rounds, independently of the number of members in the
communicating group.

Throughout this paper we will consider a group of n users, U1, . . . ,Un, who
would like to share a secret element of a finite set S, and G will denote a finite
abelian semigroup acting on S.

2 Group key communication based on one-sided
actions

In this section we consider three different extensions of the semigroup Diffie-
Hellman key exchange with different computing requirements and communi-
cation overheads, but with possible applications in different cases. They are
natural extensions of [14] and [15]. For completeness we report proofs in ap-
pendix to show soundness of the schemes.

2.1 A sequential key agreement

The first approach to extend the key exchange protocol consists of a sequence
of messages, built using pieces of private information, along a chain of users and
an analogous second sequence of messages in the opposite way. Therefore every
user will send and receive two messages except for the user that initiates the
communication and the last user receiving the sequence of messages.

The protocol is defined by the following steps.
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Protocol 2 (GSAP-1). Users agree on an element s in a finite set S, a finite
abelian semigroup G, and a G-action on S given by Φ. For every i = 1, . . . , n,
the user Ui holds a private element gi ∈ G.

1. For i = 1, . . . , n− 1, user Ui sends to user Ui+1 the message

{C1, . . . , Ci} =
{

Φ(g1, s), Φ(g2g1, s), . . . ,Φ
( i∏

j=1

gj , s
) }

.

2. User Un computes Φ(gn, Cn−1).

3. For k = n, . . . , 2, user Uk sends to user Uk−1 the message
{
fk1 , . . . , f

k
k−1

}
,

where fkj = Φ(gk, f
k+1
j ) for 2 ≤ k ≤ n − 1 and fnj = Φ(gn, Cj−1), j =

1, . . . , n− 1, with C0 = s.

4. User Uk computes Φ(gk, f
k+1
k ).

2.2 A key agreement in broadcast

The following protocol presents a lower communication overhead than GSAP-1.
The idea is again to get a first sequence of messages from user U1 to user Un,
but now Un will broadcast a message that allows the rest of the users to recover
the common key.

Protocol 3 (GSAP-2). Users agree on an element s in a finite set S, a finite
abelian semigroup G, and a G-action Φ on S. For every i = 1, . . . , n, the user
Ui holds a private element gi ∈ G.

1. For i = 1, . . . , n− 1, user Ui sends to user Ui+1 the message{
Ci−1

i−1 , C
i
1, . . . , C

i
i

}
,

where C0
0 = s, C1

1 = Φ(g1, s), and for i ≥ 2, Ci
1 = Φ(gi, C

i−2
i−2 ), Ci

j =

Φ(gi, C
i−1
j−1) (with j = 2, . . . , i).

2. User Un computes Φ(gn, C
n−1
n−1 ).

3. User Un broadcasts
{
fn1 , . . . , f

n
n−1, f

n
n

}
, where fni = Φ(gn, C

n−1
n−1−i) for

i = 1, . . . , n− 2, fnn−1 = Φ(gn, C
n−2
n−2 ) and fnn = Cn−1

n−1 .

4. User Ui computes Φ(gi, f
n
i ).

Remark 2.1. It can be observed that the element fnn contained in the broadcast
message in step 3 of Protocol GSAP-2, is not needed by any of the users Ui,
i = 1, . . . , n − 1 to recover the shared key. However, the distribution of this
value is required for future rekeying operations, as we will later show.

4



2.3 Examples

a) The two previous protocols are extensions of those introduced in [14] and
[15] for the action of the multiplicative semigroup N∗ on a cyclic group S of
order q generated by g, given by Φ(y, gx) = (gx)y. It was pointed out that
the first protocol presents excessive communication overheads mainly due to
both the number of rounds and messages to be sent. Because of this, only the
second one, referred to as IKA.1 in [15], was recommended. However, the first
protocol could be interesting on its own when applied to a sensor network whose
communications need to be secure and where it should be assessed whether
every node is working properly. After user Un receives the message in step 1,
the absence of any of the messages (excepting the last one) in the descending
chain of rounds would alert that the corresponding sender node is not working
or the communication was interrupted.

b) In particular, consider a finite field GF (q) and an element g of prime order.
The semigroup N∗ acts on the subgroup 〈g〉 ⊂ GF (q)∗ by Φ(y, gx) = (gx)y for
x, y ∈ N∗.

c) Let ε be the set of points in an elliptic curve. Then the action Φ : N∗ × ε→
ε given by Φ(n, P ) = nP for every n ∈ N∗ and every P ∈ ε provides the
corresponding versions of the preceding protocols for elliptic curves. In [11] an
implementation of the second protocol can be found.

d) In [8, Example 5.13] the authors illustrate the use of a semiring of order 6 to
construct an example of a practical SAP. This was later cryptanalyzed in [16]
due not to a general attack, but rather to the structure of this ring. However,
we can use the semiring of order 20 given in [8, Example 5.8] to analogously
define another SAP and its cryptanalysis is still an open question. This shows
an example where SAP does not coincide with a traditional DLP on a semigroup
and it is applicable to both preceding protocols.

e) In [10, Protocol 80] the author defines a key exchange protocol whose security
is based on the SAP derived from the following semigroup action: let S be a
semiring, T a finitely generated additive subsemigroup of S and let End+(T)
be its (additive) endomorphisms semigroup. Then the semigroup action that
defines the security of this protocol is given by Φ : (S, T op) × End+(T) →
End+(T), ((s, t), f) 7→ (x 7→ s ∗ f(x) ∗ t).

Remark 2.2. Many examples of semigroup actions suitable to defining a Diffie-
Hellman type key exchange protocol can be found in [7]. The corresponding SAP
is shown to be computationally equivalent to a DLP for some of them.

2.4 A key agreement given by a group action

The existence of inverses in the semigroup G acting on the set S can provide a
way to agree on a common key with reduced communication overheads. More-
over, computations can be made more equally distributed among the users. We
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remark that in the protocols given in the two previous sections, these require-
ments are higher the further away the user is from the one that initialized the
protocol.

Thus we assume that G is a group. The protocol is given by the following
steps.

Protocol 4 (GSAP-3). Users agree on an element C0 = s in a finite set S, a
finite abelian group G, and a G-action Φ on S. For every i = 1, . . . , n, the user
Ui holds a private element gi ∈ G.

1. For i = 1, . . . , n − 2, user Ui sends to user Ui+1 the message Ci =
Φ(gi, Ci−1).

2. User Un−1 computes Cn−1 = Φ(gn−1, Cn−2) and broadcasts it to the other
users {U1, . . . ,Un−2,Un}.

3. User Un computes the element Φ(gn, Cn−1).

4. For i = 1, . . . , n− 1, user Ui computes Di = Φ(g−1
i , Cn−1) and sends it to

user Un.

5. For i = 1, . . . , n − 1, user Un computes Φ(gn, Di) and sends to users
{U1, . . . ,Un−2,Un−1} the set of values {Φ(gn, D1), . . . ,Φ(gn, Dn−1), Cn−1}.

6. For i = 1, . . . , n− 1, user Ui computes Φ(gi,Φ(gn, Di)).

After protocol GSAP-3, the users U1, . . . ,Un share a common key given

by Φ
( n∏
i=1

gi, s
)

. This follows easily from the commutativity of G and the fact

that for every gi, gj ∈ G, i, j = 1, . . . , n and s ∈ S, we get that Φ(gigj , s) =
Φ(gi,Φ(gj , s)).

Remark 2.3. As in Protocol GSAP-2, we also point out that the element Cn−1,
which is broadcast by Un in step 5 of Protocol GSAP-3, is needed only for future
rekeying purposes.

Remark 2.4. Using the action Φ(y, gx) = (gx)y for x, y ∈ Z∗q , with g a gen-
erator of a cyclic group S of order q, we get the third protocol introduced in
[14] and [15] and referred to as IKA.2 in CLIQUES [15]. In this case, user Ui
sends to user Un the message g

∏n−1
j=1,j 6=i xj , which is computed with the element

x−1
i mod q, given that the xi’s are selected either to be coprime with q or, as

the authors suggest, q is chosen to be a prime.
An elliptic curve version is clearly also feasible. An implementation in this

sense can be found in [11].
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3 Security of the key agreements and rekeying
operations

In [8] it was pointed out that if an adversary is able to solve the SAP, then she
will be able to break the two party Diffie-Hellman key exchange, i.e. solve the
DHSAP. It is easy to observe that being able to solve the DHSAP allows getting
the shared key in all the protocols proposed above.

Proposition 3.1. If an adversary is able to solve the DHSAP, then she can get
the shared key in GSAP-1, GSAP-2 and GSAP-3.

Proof. This follows from the fact that the adversary can access the pair of values

• (C1, f
2
1 ) =

(
Φ
(
g1, s

)
,Φ
(∏n

i=2 gi, s
))

in GSAP-1;

• (C1
1 , f

n
1 ) =

(
Φ
(
g1, s

)
,Φ
(∏n

i=2 gi, s
))

in GSAP-2;

•
(
C1,Φ

(
gn, D1

))
=
(
Φ
(
g1, s

)
,Φ
(∏n

i=2 gj , s
))

in GSAP-3.

The preceding result shows, as could be expected, that the multiparty key
exchange protocols do not enhance the security that the corresponding two-
party protocol offers. However, as in [14] and [15], it is possible to show that
increasing the number of messages does not produce any information leakage
whenever the corresponding key exchange based on the SAP for two communi-
cating parties is secure. Here we are referring to security against passive attacks;
a totally different picture would arise if we assume that the attacker can control
communications from and to one or more particular users, see e.g. [13].

Let X = {g1, . . . , gn} be a set of elements of the semigroup G, s an element
of a set S and Φ a G-action on S. Let us define the (ordered) set of elements of
S

V G
Φ (s, n,X) =

{
Φ
( im∏

j=i1

gj , s
)

: {i1, . . . , im} ( {1, . . . , n}
}

and the value KG
Φ (s, n,X) = Φ

(∏n
j=1 gj , s

)
∈ S.

We point out that the messages that any adversary observes in any of the
protocols is a subset of V G

Φ (s, n,X), and the key that the users agree on is
precisely KG

Φ (s, n,X). Let us assume now that Φ is a transitive action, i.e.,
for every pair of elements s, s′ ∈ S there always exists a g ∈ G such that
Φ(g, s) = s′. Thus if s ∈ S is a public element, given any two elements in
S, s1, s2, there always exist g1, g2 ∈ G such that φ(gi, s) = si, i = 1, 2. Let
s3 = Φ(g1,Φ(g2, s)) = Φ(g1g2, s). If, given s, s1 and s2, it is not feasible
to distinguish s3 from a random value in polynomial time, then an induction
argument like that given in [15, Theorem 1] allows us to show the following
result.
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Theorem 3.2. Let Φ be a transitive G-action on S. Then the group key that
users derive as a result of any of the protocols GSAP-1, GSAP-2 and GSAP-3
is indistinguishable in polynomial time from a random value, given only the
values exchanged between users during the protocol, whenever the corresponding
Diffie-Hellman protocol induced by Φ for two users satisfies this property.

Another important issue in any group key management is rekeying after
the initial key agreement. There exist three different situations that require a
rekeying operation. The first is simply due to key caducity and the group of
users remains the same. In the other two cases, we may find a new user that
wishes to join the group or a user who leaves the group. In both situations it is
required that the new (resp. former) user cannot access the former (resp. new)
distributed key. In the following lines we describe the procedures as well as their
security.

Let us start by considering the protocol GSAP-1 described in Section 2.1.
In this case, we could simply require that a new initial key agreement is needed.
However, we may shorten the rekeying process, keeping somehow the spirit
of the protocol. If rekeying is due to key caducity, then user Un chooses a
new private element g′n ∈ G and defines a new sequence fnj = Φ(g′ngn, Cj−1),
j = 1, . . . , n − 1, with C0 = s, as is done in step 3 of GSAP-1. The rest of the
users also proceed as in step 3 and recover (using their private keys as described

in GSAP-1) the new key Φ
(
g′n
∏n

j=1 gj , s
)

.

In case some user, say Ui, leaves the group, then the corresponding value fni
is omitted in the new message made by Un.

Finally, in case a user Un+1 joins the group, then user Un chooses a new
element g′n and sends the message

{
Φ(g′ng1, s), Φ(g′ng2g1, s), . . . ,Φ

(
g′n

n∏
j=1

gj , s
) }

to user Un+1. Then this user starts step 3 of GSAP-1.
Security of all new subsequent key distributions follows from Theorem 3.2.

In the case of protocols GSAP-2 and GSAP-3, described in Sections 2.2 and
2.4 respectively, we may use the information that every user holds after the
initial key agreement to rekey very efficiently as is suggested in [15]. In this
case, given that every user remembers the same information, say

{
Φ
( n∏
r=2

gr, s
)
,Φ
( n∏
r=1;r 6=2

gr, s
)
, . . . ,Φ

( n∏
r=1;r 6=c

gr, s
)
, . . . ,Φ

(n−1∏
r=1

gr, s
)}
,

the rekeying process may be carried out by any one of them. Let us call this user
Uc. If rekeying is due to key caducity, then he chooses a new g′c ∈ G, changes
his private key to g′cgc and sends the following rekeying message:
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{
Φ
(
g′c

n∏
r=2

gr, s
)
,Φ
(
g′c

n∏
r=1;r 6=2

gr, s
)
, . . . ,Φ

( n∏
r=1;r 6=c

gr, s
)
, . . . ,Φ

(
g′c

n−1∏
r=1

gr, s
)}
.

Then every user, using his private information, recovers the new common

key given by Φ
(
g′c

n∏
r=1

gr, s
)

.

In case some user leaves the group, the corresponding position in the rekeying
message is omitted. If a new user joins the group, then Uc adds the element

Φ
(
g′c

n∏
r=1

gr, s
)

and sends the following to the new user Un+1:

{
Φ
(
g′c

n∏
r=2

gr, s
)
, . . . ,Φ

( n∏
r=1;r 6=c

gr, s
)
, . . . ,Φ

(
g′c

n−1∏
r=1

gr, s
)
,Φ
(
g′c

n∏
r=1

gr, s
)}
.

This user proceeds (in both protocols GSAP-2 and GSAP-3) to step 5 of protocol
GSAP-3.

Again, security in every case is a consequence of Theorem 3.2.

4 Secure group communication based on linear
actions

As can be observed in the protocols given in the previous section, user Un plays
a central role, and in two of them, every user is required to do a different num-
ber of computations and store a different number of values, depending on his
proximity to Un. The aim of this section is twofold. On one hand, we give a
similar approach to that of GSAP-3 in order to get a protocol with the same
advantages that is applicable in situations where the semigroup G acting on S
does not contain inverses. On the other hand, we give a new approach based
on linear actions that in some cases not only significantly decreases communi-
cation overheads, but also reduces the number of rounds to just 2, which will
significantly enhance the efficiency.

We say that, given G and S semigroups, an action Φ : G × S → S defined
by Φ(g, s) = g · s is linear in case Φ(g, ss′) = Φ(g, s)Φ(g, s′).

The following protocol is a modification of GSAP-3 for a linear G-action Φ
on S, but instead of requiring G to be a group, we require this of S. We get
a similar protocol that is also an extension of Diffie-Hellman to the multiparty
case.

Protocol 5 (GSAP-3’). Users agree on an element s in a finite group S, a finite
abelian semigroup G, and a linear G-action Φ on S. For every i = 1, . . . , n, the
user Ui holds a private element gi ∈ G.
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1. For i = 1, . . . , n − 2, user Ui sends to user Ui+1 the message Ci =
Φ(gi, Ci−1).

2. User Un−1 computes Cn−1 = Φ(gn−1, Cn−2) and broadcasts it to the other
users {U1, . . . ,Un−2,Un}.

3. User Un computes the element Φ(gn, Cn−1).

4. For i = 1, . . . , n − 1, user Ui computes Di = Φ(gi, s)
−1Cn−1 and sends it

to user Un.

5. For i = 1, . . . , n − 1, user Un computes Φ(gn, Di) and sends to users
{U1, . . . ,Un−2,Un−1} the set of values {Φ(gn, D1), . . . ,Φ(gn, Dn−1),
Φ(gn, Dn)} and his public key Φ(gn, s), where Dn = Φ(gn, s)

−1Cn−1.

6. For i = 1, . . . , n− 1, user Ui computes Φ(gi,Φ(gn, s))Φ(gn, Di).

Theorem 4.1. After protocol GSAP-3’, the users U1, . . . ,Un share a common

key given by Φ
( n∏
i=1

gi, s
)

.

Proof. This follows from the linearity of the action Φ. Φ(gi,Φ(gn, s))Φ(gn, Di) =

Φ(gign, s)Φ
(
gn,Φ(gi, s)

−1Φ
(∏n−1

r=1 gr, s
))

= Φ
(∏n

r=1 gr, s
)
, since Φ(gi, e) = e,

e being the neutral element in S, and Φ(gi, s)
−1 = Φ(gi, s

−1), again by the
linearity of the action.

Example 1. a) Given again a cyclic group S of order q generated by g, the
action Φ : N∗×S → S defined by Φ(y, gx) = (gx)y is clearly linear, so the above

argument applies. Di assumes the form g
∏n−1

j=1 xjg−xi .
b) If ε is the group of points of an elliptic curve, then ε is a Z-module via

the linear action Φ(k, P ) = kP for every k ∈ Z and P ∈ ε. Di assumes the form

(
∏n−1

i=1 kj)P − kiP .
c) Let us introduce an example where the preceding protocols can be run

over a module structure. Let us recall from [2] the following ring:

E(m)
p =

{
[aij ] ∈ Matm×m(Z) | aij ∈ Zpi if i ≤ j, and aij ∈ pi−jZpi if i > j

}
,

with addition and multiplication defined, respectively, as follows[
aij
]

+
[
bij
]

=
[
(aij + bij) mod pi

]
,[

aij
]
·
[
bij
]

=

[(
m∑

k=1

aikbkj

)
mod pi

]
.

Here Matm×m(Z) denotes the set of m × m matrices with entries in Z, and
prZps denotes the set {pru | u ∈ {0, . . . , ps − 1}} ⊂ Z for positive integers r
and s. This ring is clearly non-commutative and its product defines an action of

the multiplicative semigroup E
(m)
p on the set Zp×Zp2 ×· · ·×Zpm . However, to
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ensure that the key exchange works, we need that the elements in the semigroup
commute. In this non-commutative setting, this may be achieved by considering

that the selected elements in the semigroup E
(m)
p are of the form

r∑
i=0

CiM
i, such

that for every i = 0, . . . , r, Ci is in the center Z of E
(m)
p and M ∈ E(m)

p is a
public element such that its set of powers is large enough. In other words, if we
denote the set of elements of this form by Z[M ], then we are using for G the

multiplicative subsemigroup Z[M ] of E
(m)
p .

From [3, Theorem 2] we can deduce conditions on the public information
that will be sent in order to prevent an attacker from solving the SAP in the
subsemigroup of Z[M ] given by the center Z of the ring, with cardinality pm

(cf. [2]). Thus if M has high order, i.e. M is such that the least integer n
satisfying Mk+n = Mk for every sufficiently large k is high, we will obtain that
Z[M ] is big enough.

Note that our aim in this paper is not to prove the hardness of the SAP
for this particular example, but rather to present protocols which rely on the
hardness of the SAP in a particular scenario once it has been established there.
The non-commutative scenario in particular may present hidden vulnerabilities,
as was shown in recent cryptanalyses, e.g. [5, 9], although these seem not to
directly apply in this setting. For example [5] introduces a cryptanalysis for

the case of two users when the ring E
(m)
p acts on itself, which can be countered

by choosing p and m appropriately in order to avoid the existence of inverses
[2]. In the case of [9], the cryptanalysis requires building a system of equations,
which does not seem to be straightforward in this new setting of Z[M ]. In
[7, Proposition 3.9] it is asserted that if the commutative semigroup has a big
number of invertible elements, then it is possible to develop a square root attack

to the SAP. Again we point out that E
(m)
p could be chosen in order to avoid

this attack.

Given that both Φ
(n−1∏

i=1

gi, s
)

and Φ(gn, s) are public we immediately get the

following.

Proposition 4.2. If an adversary is able to solve the DHSAP, then she can get
the shared key in GSAP-3’.

Let us recall from [8] that given any G-action Φ on S, we can easily define
an ElGamal type of public key cryptosystem. We define the following ElGamal
type of protocol.

1. Alice and Bob publicly agree on an element s ∈ S.

2. Bob chooses b ∈ G and computes Φ(b, s). Bob’s private key is b, his public
key is Φ(b, s).

3. If Alice wants to send the message m ∈ S to Bob, then she gets Bob’s
public key Φ(b, s).

11



4. Alice chooses randomly a ∈ G and computes Φ(a, s) and Φ(a,Φ(b, s)).

5. Alice sends to Bob the pair (c, d) =
(
Φ(a, s),mΦ(a,Φ(b, s)

)
.

6. Bob recovers m = dΦ(b, c)−1 = mΦ(a,Φ(b, s))Φ(b,Φ(a, s))−1, given that
S has a group structure.

It can be easily observed that solving the DHSAP is equivalent to breaking
the preceding algorithm: if given the public information

(s,Φ(a, s),Φ(b, s),mΦ(ab, s))

one is able to get m, then the input (s,Φ(a, s),Φ(b, s), e), for e ∈ S the neutral
element, produces Φ(ab, s)−1, which solves the DHSAP. Conversely, given Bob’s
public key Φ(b, s) and the pair

(
Φ(a, s),mΦ(a,Φ(b, s))

)
, one can use Φ(ab, s)

from the DHSAP to recover m.

Now using the above we are able to show the security of GSAP-3’.

Theorem 4.3. The group key that users derive as a result of GSAP-3’ is indis-
tinguishable in polynomial time from a random value whenever the corresponding
Diffie-Hellman protocol induced by Φ for two users also satisfies this property.

Proof. Given that both Cn−1 = Φ
(n−1∏

i=1

gi, s
)

and Di = Φ(gi, s)
−1Cn−1 are pub-

lic, an adversary is able to get all the public values Φ(gi, s), i = 1, . . . , n. Now
user Un sends the message {Φ(gn, Di)}n−1

i=1 jointly with Φ(gn, s), in other words,
due to linearity of Φ, user Un sends a “a family of pairs”, i = 1, . . . , n,

(
Φ(gn, s),Φ(gn,Φ(gi, s)

−1)Φ
(
gn,Φ

(n−1∏
j=1

gj , s
)))

,

which can be seen as a set of ElGamal encryptions of the message

Φ
( n∏
i=1

gi, s
)

= Φ
(
gn,Φ

(n−1∏
i=1

gi, s
))

using the public keys Φ(gi, s), i = 1, . . . , n. Alternatively, one can consider the
pairs

(
Φ(gi, s),Φ(gn,Φ(gi, s)

−1)Φ
(
gn,Φ

(n−1∏
j=1

gj , s
)))

,

which can also be seen, given the commutativity in G, as a set of ElGamal
encryptions of the message

Φ
( n∏
i=1

gi, s
)

= Φ
(
gn,Φ

(n−1∏
i=1

gi, s
))

12



using the public key Φ(gn, s
−1), and the gi’s as random numbers, for i = 1, . . . , n.

Thus, as we pointed out above, given the equivalence of the security of the
ElGamal type of public key cryptosystem and the DHSAP, the result follows.

The rekeying process in this setting is analogous to that described in Section
3 for protocols GSAP-2 and GSAP-3.

We first note that every user remembers the following keying information.

{Φ(gn, D1), . . . ,Φ(gn, Dn−1),Φ(gn, Dn)}

In case of key caducity, user Uc for some c = 1, . . . , n chooses a new element

g′c ∈ G, computes a new key given by Φ
(
g′c

n∏
i=1

gi, s
)

and his keying information

Φ((g′c)
2gcgn, s)

−1Φ
(
g′c

n∏
i=1

gi, s
)

and broadcasts the following message

{Φ(g′c,Φ(gn, D1)), . . . ,Φ((g′c)
2gcgn, s)

−1Φ
(
g′c,Φ

( n∏
i=1

gi, s
))
, . . . ,

Φ(g′c,Φ(gn, Dn−1)),Φ(g′c,Φ(gn, Dn))},

jointly with the value Φ(g′c,Φ(gn, s)). User Uc changes his private information
to gcg

′
c.

In case rekeying is due to some user leaving the group, then the corresponding
value is omitted in the above message.

Finally, let us assume that Un+1 joins the group. The process corresponds in
this case to something similar to a “double rekeying”as above. First, Uc sends
to Un+1

{
Φ(g′c,Φ(gn, D1)), . . . ,Φ((g′c)

2gcgn, s)
−1Φ

(
g′c,Φ

( n∏
i=1

gi, s
))
, . . . ,

Φ(g′c,Φ(gn, Dn−1)),Φ(g′c,Φ(gn, Dn)),Φ
(
g′c,Φ

( n∏
i=1

gi, s
))}

jointly with the value Φ(g′c,Φ(gn, s)). Then, Un+1 broadcasts a rekeying message
given by

{
Φ(gn+1g

′
c,Φ(gn, D1)), . . . ,Φ(gn+1(g′c)

2gcgn, s)
−1Φ

(
g′c,Φ

(n+1∏
i=1

gi, s
))
, . . . ,

Φ(gn+1g
′
c,Φ(gn, Dn−1)),Φ(gn+1g

′
c,Φ(gn, Dn)),

Φ(g2
n+1g

′
cgn, s)

−1Φ
(
g′c,Φ

(n+1∏
i=1

gi, s
))}

13



jointly with the value Φ(gn+1g
′
cgn, s).

Security of these processes is shown with a similar argument as in Theo-
rem 4.3.

A more symmetrical use of linear actions is the following protocol, which
decreases the number of rounds to just 2, but which is only applicable in some
cases.

Protocol 6 (GSAP-4). Users agree on an element s in a finite abelian semigroup
S, a finite abelian semigroup G, and a linear G-action Φ on S. For every
i = 1, . . . , n, the user Ui holds a private element gi ∈ G.

1. For every i = 1, . . . , n, user Ui makes public Φ(gi, s) = gi · s.

2. For some j = 1, . . . , n, user Uj computes and makes public

Di = Φ
(
gj ,

∏
r 6=j,i

Φ(gr, s)
)
, i 6= j, i = 1, . . . , n.

3. For every i = 1, . . . , n, i 6= j, user Ui computes DiΦ(gi,Φ(gj , s)). User Uj
computes Φ(gj ,

(∏
r 6=j Φ(gr, s)

)
.

Theorem 4.4. After protocol GSAP-4, the users U1, . . . ,Un share a common
key given by Φ(gj ,

∏
r 6=j Φ(gr, s)).

Proof. For every i = 1, . . . , n, i 6= j,

DiΦ(gi,Φ(gj , s)) = Φ
(
gj ,
∏

r 6=j,i Φ(gr, s)
)
Φ(gi,Φ(gj , s))

= Φ
(
gj ,
∏

r 6=j,i Φ(gr, s)
)
Φ(gigj , s)

= Φ
(
gj ,
∏

r 6=j,i Φ(gr, s)
)
Φ(gjgi, s)

= Φ
(
gj ,
∏

r 6=j,i Φ(gr, s)
)
Φ(gj ,Φ(gi, s))

= Φ
(
gj ,
∏

r 6=j Φ(gr, s)
)
.

Example 2. a) Let us consider again a cyclic group S of order q generated by
g, with the action Φ : N∗ × S → S given by Φ(y, gx) = (gx)y. Then GSAP-4

implies sharing a key of the form K = gkj
∑n

r=1,r 6=j kr . An adversary can access
the messages

Di = Φ
(
gj ,

∏
r 6=j,i

Φ(gr, s)
)
, i 6= j, i = 1, . . . , n,

from which she can compute
∏n

r=1,r 6=j Dr = Kn−2. In the case where the

order q of S is known, the adversary can now recover the key K from Kn−2 by
inverting n−2 modulo q. This is in particular the case where S is a subgroup of
a finite field, or where it is the group of points of an elliptic curve. However, we
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can avoid this weakness by adding some authentication information as is done
in [1].

b) Let m = pq with p and q two large primes and let G = Z∗(p−1)(q−1). Then

the action Φ : G × Zm → Zm given by Φ(x, g) = gx mod m shows an example
where the above attack cannot be developed unless the adversary is able to
factorize m. The shared key in this case is of the form gxj

∑n
i=1,i 6=j xi mod m.

c) We recall that a semiring R is a semigroup with respect to both addition
and multiplication and the distributive laws hold. It is also understood that a
semiring is commutative with respect to addition and the existence of neutral
elements is not required, although some authors do require it. Then given a
semiring R, a left R-semimodule M is an abelian semigroup with an action
Φ : R×M →M , Φ(r,m) = rm, satisfying r(sm) = (rs)m, (r+s)m = rm+sm
and r(m + n) = rm + rn for all r, s ∈ R and m,n ∈ M . Thus, based on the
previous two examples, we can assert in general that any semimodule S over a
semiring R fits with GSAP-4 and the shared key is of the form kj(

∑n
r=1,r 6=j kr)s

for ki ∈ R, i = 1, . . . , n private and s ∈ S public.

Remark 4.5. Due to the attack shown in example a), the hardness of the
Diffie-Hellman problem is not enough to show security in this case. We leave it
as an open question whether the hardness of factoring would be enough to do
so.

Remark 4.6. We can also give protocols based on two-sided actions. To this
end we recall that given a semiring S, right S-semimodules are defined dually
to left ones. Then, given two semirings R and S, an (R,S)-bisemimodule M is
both a left R-semimodule and a right S-semimodule such that (rm)s = r(ms)
for every r ∈ R, m ∈M and s ∈ S.

Now we are able to provide key exchange protocols similar to those given in
the previous sections based on two-sided linear actions over a (R,S)-bisemimodule
M . In the case of GSAP-3’, since we need the existence of inverses with respect
to addition in M , we may suppose that M has an (R,S)-bimodule structure for
some rings R and S.

5 Appendix GSAP1

Theorem 5.1. After protocol GSAP-1, users U1, . . . ,Un agree on the common

key Φ
(∏n

j=1 gj , s
)

.

Proof. User Un computes

Φ(gn, Cn−1) = Φ
(
gn,Φ

( n−1∏
j=1

gj , s
))

= Φ
( n∏

j=1

gj , s
)
.

Let us show now that the rest of the users recover exactly the same key. For
k = 1, . . . , n− 1, user Uk computes Φ(gk, f

k+1
k ).
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It is straightforward to show that for every i = 1, . . . , n−2, j = 1, . . . , n−i−1,
the following equality holds:

fn−ij = Φ
(( n∏

r=n−i
gr

)( j−1∏
r=1

gr

)
, s
)
,

with the empty product being equal to 1.
We then have:

fk+1
k = f

n−(n−k−1)
k

= Φ
((∏n

r=k+1 gr

)(∏k−1
r=1 gr

)
, s
)

= Φ
(∏n

r=1;r 6=k gr, s
)
.

Thus, user Uk computes

Φ(gk, f
k+1
k ) = Φ

(
gk,Φ

( n∏
r=1;r 6=k

gr, s
))

= Φ
( n∏

r=1

grs
)
,

as we wanted to show.

6 Appendix GSAP2

Theorem 6.1. After protocol GSAP-2, users U1, . . . ,Un agree on a common

key given by Φ
( n∏
r=1

gr, s
)

.

Proof. User Un computes Φ(gn, C
n−1
n−1 ) = Φ

(
gn,Φ

(n−1∏
r=1

gr, s
))

= Φ
( n∏
r=1

gr, s
)

.

Now, let us show that fni = Φ
( n∏
r=1;r 6=i

gi, s
)

for i = 1, . . . , n.

To do so, we will prove that Ci+s
s = Φ

( i+s∏
r=1;r 6=i

gr, s
)

for s = 1, . . . , n − 2
and i = 1, . . . , n− s− 1.

Let us make induction on s. For s = 1, we get by definition that Ci+1
1 =

Φ(gi+1, C
i−1
i−1 ). Now it is clear that Cj

j = Φ
( j∏
r=1

gr, s
)

for every j = 1, . . . , n− 1.

Therefore

Ci+1
1 = Φ(gi+1, C

i−1
i−1 ) = Φ

(
gi+1,Φ

(i−1∏
r=1

gr, s
))

= Φ
( i+1∏
r=1;r 6=i

gr, s
)
.

Suppose now that Ci+s−1
s−1 = Φ

( i+s−1∏
r=1;r 6=i

gr, s
)

. Then, by definition,
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Ci+s
s = Φ(gi+s, C

i+s−1
s−1 ) = Φ

(
gi+s,Φ

( i+s−1∏
r=1;r 6=i

gr, s
))

= Φ
( i+s∏
r=1;r 6=i

gr, s
)
.

Thus Cn−1
n−1−i = Ci+n−1−i

n−1−i = Φ
(i+(n−1−i)∏

r=1;r 6=i

gr, s
)

= Φ
( n−1∏
r=1;r 6=i

gr, s
)

.

Therefore

fni = Φ
(
gn,Φ

( n−1∏
r=1;r 6=i

gr, s
))

= Φ
( n∏
r=1;r 6=i

gr, s
)
,

and so user Ui computes Φ(gi, f
n
i ) = Φ

(
gi,Φ

( n∏
r=1;r 6=i

gr, s
))

= Φ
( n∏
r=1

gr, s
)

, as
we wanted to show.
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