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Abstract

The problem of group extension can be divided into two sub-problems. The first is to find all the

possible extensions of H by K. The second is to find the different ways a group G can arise as an

extension of H by K. Here we prove that the direct product H × K can arise as an extension of H by

K in an essentially unique way: that is the direct extension. I would like to thank Yacine Dolivet for

drawing my attention to the direct “extension theorem”, Anne-Marie Aubert as well as Charles-Antoine

Louet for their support and Robert Guralnick for suggesting me better proofs of propositions 2.3 and 3.1

Contents

1 Statement of the theorem 2

2 A few preliminary general results 2

2.1 Subgroups of a direct product G = H.K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Coprime direct factors of a finite group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Strongly decomposable subgroups of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Two special cases of the theorem 3

3.1 The case of commutative groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 The case where G′ = G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 A few preliminary lemmas 4

5 The proof of the theorem 5

6 Some additional remarks 6

NOTATIONS:

• 1: is the identity group

• G, H , K, L... will denote finite groups

• H 6 G: “H is a subgroup of G”

• H < G: “H is a subgroup of G distinct from G”

• H E G: “H is a normal subgroup of G”

• Z(G): is the center of G

• G′: is the derived group of G

• Card(G) or |G|: is the order of the finite group G
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1 Statement of the theorem

In this paper, we prove the following theorem, which we call the “direct extension” theorem.

Theorem 1.1 — Let G, H and K be three finite groups. If G and H × K are isomoprhic, then every
group extension 1 7−→ H 7−→ G 7−→ K 7−→ 1 is a direct extension.

We may reformulate the theorem as follows.

Theorem 1.2 — Let G = H.K be a decomposition of the finite group G into direct factors and H0 be a
normal subgroup of G. Assume that H0 and H are isomorphic, as well as G/H0 and K. Then H0 is a direct
factor of G (that is, there exists K0 E G such that G = H0.K0 and H0 ∩ K0 = 1).

We use the latter statement of the theorem in the proof. Assume that the theorem does not hold, then
there is counter-example (G = H.K; H0), which is minimal with respect to CardG. We shall derive a
contradiction from the existence of G.

2 A few preliminary general results

In this section, G is any finite group, not necesseraly the group that appears in the theorem.

2.1 Subgroups of a direct product G = H.K

We give here some useful simple results:

Proposition 2.1 — Let L be a subgroup of G, which we do not assume to be normal, and G = H.K a
decomposition of G into direct factors. Assume that H ⊆ L. Then L = H.(L ∩ K). In particular, H is a
direct factor of L.

Proof — It is clear that H.(L∩K) ⊆ L. Now, every l ∈ L may be written l = h.k, with h ∈ H and k ∈ K.
H ⊆ L, which shows that h ∈ L. Thus k ∈ L ∩ K and l ∈ H.(L ∩ K). Q.E.D.

Proposition 2.2 — Let G = H.K be a decomposition of G into direct factors. Then G′ = H ′.K ′ and
Z(G) = Z(H).Z(K).

Proof — The first assertion comes from the following formula [h1.k1, h2.k2] = [h1, h2].[k1, k2] which is true
for hi ∈ H and ki ∈ K. The second assertion is trivial. Q.E.D.

2.2 Coprime direct factors of a finite group G

In this paragraph, we make use of the famous Remak-Krull-Schmidt theorem on the decomposition of finite
groups into indecomposable direct factors.

Definition 2.1 — Let A and B be two finite groups. A and B are said to be factor coprime if no
non-trivial direct factor of A is isomorphic to a direct factor of B.

Proposition 2.3 — Let A and B be two direct factors of the finite group G. Assume that A and B are
factor coprime. Then A ∩ B = 1 and A.B is a direct factor of G.

Proof — Let K = AB. We show that K = A ×B (and this implies that G = K ×L some L, for let e and
f be projections of G onto A and B resp., then the map e + f : G 7−→ K defined by (e + f)(g) = e(g)f(g)
is a homomorphism since the images of e and f commute and the image is K and (e + f)2 = e + f (since
ef = fe = 0)).

Write K = A × C, then by Remak-Krull-Schmidt, since B is a direct factor of K, B is isomorphic to a
direct summand of C and since |C| = |B : A ∩ B|, B and C are isomorphic. It follows that the projection
map from B to C is onto, whence B = {(f(c), c); c ∈ C} for some homomorphism f : C 7−→ A and since B
is normal, f(c) is in the center of A and so K = A × B as well. Q.E.D.

Corollary 1 — Let G = B.C be a decomposition of G into direct factors. Let A be a direct factor of G,
such that A and B are coprime. Then the projection of A onto C is a direct factor of G.

Proof — We know that B.A is a direct factor of G. But B.A = B.pC(A), where pC is the projection onto
C with respect to B. This shows that pC(A) is a direct factor of B.A, hence also of G. Q.E.D.
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2.3 Strongly decomposable subgroups of G

In this paragraph, we define the concept of strongly decomposable subgroups, and show two propositions
that will be needed later on.

Definition 2.2 — Let G be a finite group and D a subgroup of G. D is said to be strongly decomposable
in G if D = (H ∩ D).(K ∩ D) for every decomposition G = H.K of G into direct factors.

Proposition 2.4 — If D is strongly decomposable in G, then for every decomposition G = H1...Hm of
G into direct factors we have D = (H1 ∩ D)...(Hm ∩ D). Furthermore, if D is a normal subgroup of G,
G/D = ((H1.D)/D)...((Hm.D)/D) is a decomposition of G/D into direct factors.

Proof — We start with the proof of the first part of the statement. Consider a fixed decomposition
G = H1...Hm of G into direct factors . It is easy to see that D = (H1 ∩ D)...(Hm ∩ D) is equivalent to the
following statement : for all d = h1...hm ∈ D with hi ∈ Hi, hi ∈ D. Let d = h1...hm ∈ D. As D is strongly
decomposable in G, D = (Hi ∩ D).((H1...Hi−1.Hi+1...Hm) ∩ D) for all 1 6 i 6 m. But then hi ∈ Hi ∩ D.

Assume now that D is normal in G. We have G/D = ((H1.D)/D)...((Hm.D)/D). Since (Hi.D)/D '
Hi/(Hi ∩ D), it is true that

|(H1.D)/D| × ... × |(Hm.D)/D| = (
|H1|

|H1 ∩ D|
) × ... × (

|Hm|

|Hm ∩ D|
) = |G|/|D| = |G/D|,

which shows that G/D = ((H1.D)/D)...((Hm.D)/D) is necessarily a decomposition of G/D into direct
factors. This completes the proof of our statement. Q.E.D.

Proposition 2.5 — If T is a normal subgroup of G such that T ′ = T∩G′, then T ′ is strongly decomposable
in G.

Proof — Let G = L.M be a decomposition of G into direct factors. Write T = (A, A; B, B)ϕ. Clearly

T ⊆ A.B, so T ′ ⊆ A
′

.B
′

. But T is a normal subgroup of G so according to paragraph 2.1 A
′

⊆ A and

B
′

⊆ B. Thus, using A.B ⊆ T , we get the following chain of inclusions:

T ′ ⊆ A
′

.B
′

⊆ (A.B) ∩ G ⊆ T ∩ G′ = T ′.

These inclusions are then necessarily equalities, so we have T ′ = A
′

.B
′

= (T ′ ∩ L).(T ′ ∩ M). This shows
that the subgroup is strongly decomposable. Q.E.D.

3 Two special cases of the theorem

In this section, we prove the theorem in the two special cases:

• G is a commutative group,

• G′, the derived subgroup of G, is equal to G.

As in part 2, G stands for any finite group.

3.1 The case of commutative groups

We show the following result wich is a special case of [4] or [5]:

Proposition 3.1 — Let G be a commutative finite group and G = H.K a decomposition of G into direct
factors. Let H0 be a subgroup of G, such that H and H0 are isomorphic, as well as G/H0 and K. Then H0

is a direct factor of G.

Proof — Actually, me only need to assume that H is abelian. Consider the obvious map r : hom(G, H0) 7−→
hom(H0, H0). Since H0 is abelian, the sets hom(−, H0) are abelian groups and r is a group homomorphism.
The kernel of r is hom(G/H0, H0) so that we have an exact sequence of abelian groups:

0 7−→ hom(G/H0, H0) 7−→ hom(G, H0) 7−→ hom(H0, H0)
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Since G = H × K, we have hom(G, H0) = hom(H, H0) × hom(K, H0) so that:

| hom(G, H0)| = | hom(H, H0)|| hom(G/H0, H0)|

and we see that r is onto. So there is a homomorphism f : G 7−→ H0 that is the identity on H0. The kernel
of f give the desired complement. Q.E.D.

3.2 The case where G′
= G

Proposition 3.2 — Let G be a finite group such that G is equal to the derived group G′ and G = H.K
a decomposition of G into direct factors. Let H0 E G be isomorphic to H and such that G/H0 is isomorphic
to K. Then H0 is a direct factor of G.

Proof — Consider a minimal counter-example (G = H.K; H0).
We show that H0 is strongly decomposable in G. H ′

0 = H0 because H0 is isomorphic to H and G′ =
H ′.K ′ = H.K. It follows that H ′

0 = H0 ∩ G = H0 ∩ G′. Proposition 2.5. then gives the result.
Moreover, H0 does not contain a non-trivial direct factor of G. It is an exercise to show that, proceeding

in rather the same way as in lemma 3.1.
Now, let G = H1...Hm.K1...Kn be a decomposition of G into indecomposable direct factors such that

H = H1...Hm and K = K1...Kn. As H0 is strongly decomposable in G, proposition 2.4 shows that

G/H0 ' (H1/(H1 ∩ H0)) × ... × (Hm/(Hm ∩ H0)) × (K1/(K1 ∩ H0)) × ... × (Kn/(Kn ∩ H0)).

But none of the Hi/(Hi ∩ H0) and none of the Kj/(Kj ∩ H0) are trivial. So G/H0 ' K contains at
least n+m indecomposable direct factors in a decomposition into irreducible direct factors. We deduce that
n + m 6 n, and m 6 0. We have reached a contradiction and out proposition is proved. Q.E.D.

We have shown that if (G = H.K; H0) is a counter-example to the theorem, then 1 < G′ < G. It is the
starting point of our proof of the theorem.

4 A few preliminary lemmas

From now on, (G = H.K; H0) is our minimal counter-example to the theorem. A few lemmas follow, which
are useful to describe H ′

0 and Z(H0) in G.

Lemma 4.1 — We have the following properties.

1. H ′

0 = H0 ∩ G′,

2. There exists M E G such that G = M.H0 and M ∩ H0 = H ′

0,

3. G/H ′

0 and G/H ′ are isomorphic, as well as M/H ′

0 and K,

4. G/H ′

0 = (H0/H ′

0).(M/H ′

0) is a decomposition of G/H ′

0 into direct factors.

In what follows, we fix a subgroup M once and for all, which complies with point 3 of lemma 4.1.We now
prove the lemma.

Proof — Let us start with point 1. Clearly G′ = H ′.K ′ is a decomposition of G′ into direct factors.
Therefore G′/H ′ ' K ′ ' (G/H0)

′. But (G/H0)
′ = (G′.H0)/H0 ' G′/(H0 ∩ G′). It follows that CardH0 ∩

G′ = CardH ′ = CardH ′

0. But H ′

0 ⊆ H0 ∩ G′, so the two subgroups are actually equal.
To show point 2, notice two things. First, G/G′ = (HG′/G′).(KG′/G′) ' (H/H ′) × (K/K ′). Then

(G/G′)/((H0.G
′)/G′) ' (G/(H0.G

′)) ' ((G/H0)/(G′.H0)/H0) = (G/H0)/(G/H0)
′ ' K/K ′. As G/G′ is

commutative, we may use part 3 to show that there exists a normal subgroup M of G containing G′ such
that G/G′ = ((H0.G

′)/G′).(M/G′) is a decomposition of G/G′ into direct factors. This proves point 2.
We now proceed to prove the two last statements. G/H ′

0 = (H0/H ′

0).(M/H ′

0) is a decomposition into
direct factors. Moreover M/H ′

0 ' (G/H ′

0)/(H0/H ′

0) ' G/H0 ' K, and H0/H ′

0 ' H/H ′. So G/H ′

0 and
G/H ′ are isomorphic. Q.E.D.
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We now state a corollary of the above lemma, which is crucial in the proof of the "direct extension"
theorem.

Corollary 1 — H ′

0 is strongly decomposable in G.

Proof — It is an immediate consequence of proposition 2.5 and the above lemma. Q.E.D.

The corollary shows that taking the quotient by H ′

0 is compatible with any decomposition of G into
direct factors. More precisely, if G = L.M is a decomposition of G into direct factors then G/H ′

0 =
((L.H ′

0)/H ′

0).((M.H ′

0)/H ′

0) is also a decomposition into direct factors.

Lemma 4.2 — We have the following properties:

1. Z(H0) = H0 ∩ Z(G),

2. Z(H0) is a direct factor of Z(G),

3. Z(M/H ′

0) = (M ∩ (Z(G).H0))/H ′

0.

Proof — Z(H0) ' Z(H) and Z(K) ' Z(G)/Z(H). But Z(K) ' Z(G/H0) ⊇ (Z(G).H0)/H0 '
Z(G)/(H0 ∩ Z(G)). Therefore |H0 ∩ Z(G)| > |Z(H)| = |Z(H0)|. But we know that H0 ∩ Z(G) ⊆ Z(H0).
Hence the equality of the two groups. We have also achieved Z(G/H0) = (Z(G).H0)/H0. This completes
the proof of the first point.

For point number 2, notice that Z(G)/Z(H0) = Z(G)/(H0 ∩ Z(G)) ' (Z(G).H0)/H0 = Z(G/H0). As
G is not equal to its center, it follows from the minimality of G that Z(H0) is a direct factor of Z(G).

To prove the 3rd point, consider the natural isomorphism σ : M/H ′

0 7−→ G/H0. We have

Z(M/H ′

0) = σ−1((Z(G).H0)/H0) = {x.H ′

0 ∈ M/H ′

0/x.H0 ∈ (Z(G).H0)/H0}

= {x.H ′

0/x ∈ Z(G).H0, x ∈ M} = ((Z(G).H0) ∩ M)/H ′

0.

Hence the announced result. Q.E.D.

Lemma 4.3 — H0 does not contain a direct factor of G other than 1. Similarly, H0 is not contained in a
direct factor of G other than G.

Proof — The first statement is left as an exercise. We prove the second one, which is as simple as the first
one.

Let G = L.N be a decomposition of G into direct factors. Assume N > 1 and H0 ⊆ L. Clearly
G/H0 = (L/H0).((N.H0)/H0) is a decomposition of G/H0 into direct factors. Since K ' G/H0, N '
(N.H0)/H0 is isomorphic to a direct factor of K. We may therefore assume that N ⊂ K. We may then
write G/N ' H × K/N . But H ' (H0.N)/N , and (G/N)/((H0.N)/N) ' (G/H0)/((N.H0)/H0) ' K/N ,
because (N.H0)/H0 is a direct factor of G/H0 which is isomorphic to N . It follows that (H0.N)/N is a
direct factor of G/N , using minimality of G. Thus we have a normal subgroup P of G containing N such
that G = (H0.N).P with (H0.N) ∩ P = N . It is now clear that G = H0.P is a decomposition of G into
direct factors. That contradicts our assumption on G. Q.E.D.

5 The proof of the theorem

We may now proceed with the actual proof of our theorem.

Proposition 5.1 — H contains no non-trivial commutative direct factor.

Proof — Again ab absurdo. Let A be a non-trivial commutative direct factor of H0, which exists since
H ' H0. We know that G/H ′

0 = (H0/H ′

0).(M/H ′

0) is a decomposition of G/H ′

0 into direct factors. It is easy
to see that (A.H ′

0)/H ′

0 is a direct factor of H0/H ′

0 and hence also of G/H ′

0. Thus there exists a direct factor
N/H ′

0 of G/H ′

0 which contains M/H ′

0 and is a supplementary subgroup of (A.H ′

0)/H ′

0. But G = A.N is then
a decomposition of G into direct factors since (A.H ′

0) ∩ N = H ′

0 and it follows that A ∩ N ⊆ A ∩ H ′

0 = 1
(since A is a commutative direct factor of H0). We have shown that A ⊂ H0 is also a direct factor of G.
This contradicts lemma 4.3. Q.E.D.
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Proposition 5.2 — If L is a non-commutative direct factor of G, then L ∩ H ′

0 > 1.

Proof — Ab absurdo. Let L be a non-commutative direct factor of G such that L ∩ H ′

0 = 1. We may
suppose that L is indecomposable. Then as H ′

0 is strongly decomposable in G, (L.H ′

0)/H ′

0 is a direct factor
of G/H ′

0 isomorphic to L. But L and H0/H ′

0 are coprime because L is a non-commutative indecomposable
group and H0/H ′

0 is commutative. Then ((L.H0)
′/H ′

0).(H0/H ′

0) is a direct factor of G/H ′

0 by proposition
2.3.

Now let H ′

0 6 P EG, such that G/H ′

0 = ((L.H ′

0)/H ′

0).(H0/H ′

0).(P/H ′

0) be a decomposition of G/H ′

0 into
direct factors. Then we have G = L.(P.H0) and L ∩ (P.H0) = L ∩ (L.H ′

0) ∩ H0 = L ∩ H ′

0 = 1. We have
reached a contradiction since this implies that P.H0 is a direct factor of G distinct from G and containing
H0. Q.E.D.

Proposition 5.3 — If A is a commutative direct factor of G then H0 ∩ A = 1

Proof — Consider H0.A ⊂ G. Clearly Z(H0).A ⊂ Z(G) and Z(H0) is a direct factor of Z(G) (by lemma
4.2). Proposition 2.2 shows that there exists B a supplementary of Z(H0) in Z(H0).A. It follows that
H0.A=H0.B with H0 ∩ B = Z(H0) ∩ B = 1. Thus H0 is a direct factor of H0.A. In the same way, A is
a direct factor of H0.A because it is a direct factor of G. But according to proposition 5.1 H0 and A are
coprime. Therefore H0 ∩ A = 1, using once again proposition 2.3. Q.E.D.

We may now prove the theorem. Clearly K is non-commutative, otherwise, H0 ∩ K = 1, because of
the above proposition, and we would then have G = H0.K. This shows that K contains at least one
non-commutative indecomposable direct factor.

Let X be the class up to isomorphism of an indecomposable non-commutative direct factor of K of
minimal order. If L is a direct factor of G which is a member of X then L′ ⊂ H ′

0. That is true because
L/(L ∩ H ′

0) is isomorphic to a direct factor of G/H ′

0 ' (H0/H ′

0) × K. But L ∩ H ′

0 > 1 according to the
corollary of proposition 5.2, which shows that all the indecomposable direct factors of L/(L ∩ H ′

0) have
strictly less elements than a member of X . By construction of X , all the indecomposable direct factors of
L/(L ∩ H ′

0) are commutative, so L/(L ∩ H ′

0) is itself commutative. We have shown that L′ ⊆ H ′

0.
Let N be a direct factor of G isomorphic to a direct product of members of X . Also assume that N is

maximal in that respect. It now suffices to prove that N is isomorphic to a direct factor of H0 (for then one
can find a bigger such N), and we will have shown that a counter-example to our theorem cannot exist.

Clearly N ′ ⊆ H ′

0. H0/H ′

0 is a subset of the center of G/H ′

0 because it is a commutative direct factor
of that group. Likewise, (N.H ′

0)/H ′

0 is a commutative direct factor of G/H ′

0 because N ′ ⊆ H ′

0. Therefore
(N.H0)/H0 ⊆ Z(G/H ′

0) = (H0/H ′

0).(((Z(G).H0) ∩ M)/H ′

0) (by lemma 4.2). So H0.N ⊂ H0.Z(G).
Now H0.Z(G) = H0.S, where S is a supplementary of Z(H0) in Z(G). Clearly H0 ∩S = 1 and therefore

H0 is a direct factor of H0.Z(G) ⊃ H0.N . We have shown that H0 is a direct factor of H0.N and that its
supplementary is commutative. On the other hand, N is a direct factor of G and thereby also of H0.N . We
now use the Remak-Krull-Schmidt theorem on H0.N . Notice that N has no non-trivial commutative direct
factors to obtain that N is isomorphic to a direct factor of H0. This is precisely what we have striven to
show. Our theorem is now proven.

6 Some additional remarks

1. The theorem no longer holds if G is infinite. We give a simple counter-example. Let G = (Z/p.Z)N ×
(Z/p2.Z)N, H (resp. K) the subgroup of G consisting of all pairs (f, g) such that f : N 7−→ Z/p.Z and
g : N 7−→ Z/p2.Z with f(2n) = g(n) = 0 (resp. f(2n + 1) = 0).

Take H0 the subgroup of G consisting of all pairs (f, g) with g(2n) = 0 and g(2n + 1) ∈ p.Z/p2.Z.

Clearly, G = H.K and H ∩ K = 1. Moreover H0 is not a direct factor of G. But H ' H0 ' (Z/p.Z)N

and K ' G/H0 ' (Z/p.Z)N × (Z/p2.Z)N.

2. The following statement does not hold: "Let G be a finite group. If there exists a split extension
1 7−→ H 7−→ G 7−→ K 7−→ 1 then any extension 1 7−→ H 7−→ G 7−→ K 7−→ 1 also splits".

We give a counter-example. Let A, B, C and D be four groups, each one of them isomorphic to Z/p.Z,
and eA a generator of A. A acts on B × C by φ : k.eA 7−→ [(b, c) 7−→ (b, c + k.b)].
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Set G = (A nφ (B ×C))×D. Clearly B ×C is a normal subgroup of G, with A×D a supplementary
subgroup. This defines a split extension 1 7−→ (Z/p.Z)2 7−→ G 7−→ (Z/p.Z)2 7−→ 1.

However C × D is in the center of G and G/(C × D) is isomorphic to (Z/p.Z)2. On the other hand
C × D cannot have a supplementary because as it is in the center, the semi-direct product would be
trivial and G and (Z/p.Z)4 would be isomorphic. So 1 7−→ (Z/p.Z)2 7−→ G 7−→ (Z/p.Z)2 7−→ 1 is an
extension which does not split.
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