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Abstract

The problem of group extension can be divided into two sub-problems. The first is to find all the
possible extensions of H by K. The second is to find the different ways a group G can arise as an
extension of H by K. Here we prove that the direct product H X K can arise as an extension of H by
K in an essentially unique way: that is the direct extension. I would like to thank Yacine Dolivet for
drawing my attention to the direct “extension theorem”, Anne-Marie Aubert as well as Charles-Antoine
Louet for their support and Robert Guralnick for suggesting me better proofs of propositions 2.3 and 3.1
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NOTATIONS:

1: is the identity group

e G, H, K, L... will denote finite groups

e H<G: “H is a subgroup of G”

e H < G: “H is a subgroup of G distinct from G”
e H<G: “H is a normal subgroup of G”

o Z(G): is the center of G

G': is the derived group of G

Card(G) or |G|: is the order of the finite group G
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1 Statement of the theorem

In this paper, we prove the following theorem, which we call the “direct extension” theorem.

THEOREM 1.1 — Let G, H and K be three finite groups. If G and H x K are isomoprhic, then every
group extension 1 — H —— G —— K +—— 1 is a direct extension.

We may reformulate the theorem as follows.

THEOREM 1.2 — Let G = H.K be a decomposition of the finite group G into direct factors and Hgy be a

normal subgroup of G. Assume that Hy and H are isomorphic, as well as G/Hy and K. Then Hy is a direct
factor of G (that is, there exists Ko < G such that G = Hy. Ko and HyN Ky =1).

We use the latter statement of the theorem in the proof. Assume that the theorem does not hold, then
there is counter-example (G = H.K;Hj), which is minimal with respect to CardG. We shall derive a
contradiction from the existence of G.

2 A few preliminary general results

In this section, GG is any finite group, not necesseraly the group that appears in the theorem.

2.1 Subgroups of a direct product G = H. K

We give here some useful simple results:

PROPOSITION 2.1 — Let L be a subgroup of G, which we do not assume to be normal, and G = H.K a
decomposition of G into direct factors. Assume that H C L. Then L = H.(LNK). In particular, H is a
direct factor of L.

PROOF — It is clear that H.(LNK) C L. Now, every [ € L may be written [ = h.k, with h € H and k € K.
H C L, which shows that h € L. Thusk€ LN K and ! € H. (LN K). Q.E.D.

PROPOSITION 2.2 — Let G = H.K be a decomposition of G into direct factors. Then G' = H'.K' and
Z(G)=Z(H).2(K).

PROOF — The first assertion comes from the following formula [hy.k1, ho.ka] = [h1, ha].[k1, k2] which is true
for h; € H and k; € K. The second assertion is trivial. Q.E.D.

2.2 Coprime direct factors of a finite group G

In this paragraph, we make use of the famous Remak-Krull-Schmidt theorem on the decomposition of finite
groups into indecomposable direct factors.

DEFINITION 2.1 — Let A and B be two finite groups. A and B are said to be factor coprime if no
non-trivial direct factor of A is isomorphic to a direct factor of B.

PROPOSITION 2.3 — Let A and B be two direct factors of the finite group G. Assume that A and B are
factor coprime. Then AN B =1 and A.B is a direct factor of G.

PrOOF — Let K = AB. We show that K = A x B (and this implies that G = K x L some L, for let e and
f be projections of G onto A and B resp., then the map e + f : G — K defined by (e + f)(g) = e(g)f(g)
is a homomorphism since the images of ¢ and f commute and the image is K and (e + f)? = e + f (since
ef = fe=0)).

Write K = A x C, then by Remak-Krull-Schmidt, since B is a direct factor of K, B is isomorphic to a
direct summand of C' and since |C| = |[B: AN B|, B and C are isomorphic. It follows that the projection
map from B to C' is onto, whence B = {(f(c), c); ¢ € C} for some homomorphism f : C —— A and since B
is normal, f(c) is in the center of A and so K = A x B as well. Q.E.D.

COROLLARY 1 — Let G = B.C be a decomposition of G into direct factors. Let A be a direct factor of G,
such that A and B are coprime. Then the projection of A onto C is a direct factor of G.

PROOF — We know that B.A is a direct factor of G. But B.A = B.pc(A), where p¢ is the projection onto
C with respect to B. This shows that pc(A) is a direct factor of B.A, hence also of G. Q.E.D.
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2.3 Strongly decomposable subgroups of GG

In this paragraph, we define the concept of strongly decomposable subgroups, and show two propositions
that will be needed later on.

DEFINITION 2.2 — Let G be a finite group and D a subgroup of G. D is said to be strongly decomposable
in G if D= (HND).(KND) for every decomposition G = H.K of G into direct factors.

PROPOSITION 2.4 — If D is strongly decomposable in G, then for every decomposition G = Hy...Hp, of
G into direct factors we have D = (Hy; N D)...(H,, N D). Furthermore, if D is a normal subgroup of G,
G/D = ((H,.D)/D)...((H,.D)/D) is a decomposition of G/D into direct factors.

PROOF — We start with the proof of the first part of the statement. Consider a fixed decomposition
G = H;...H,, of G into direct factors . It is easy to see that D = (Hy N D)...(H,, N D) is equivalent to the
following statement : for all d = hy...h,, € D with h; € H;, h; € D. Let d = hy...h,,, € D. As D is strongly
decomposable in G, D = (H; N D).((Hy...H;—1.H;y1...Hy,) N D) for all 1 <4 < m. But then h; € H; N D.

Assume now that D is normal in G. We have G/D = ((H,.D)/D)...((Hn,.D)/D). Since (H;.D)/D ~
H;/(H; N D), it is true that

|Hi|
|H1 n D|

| Hom|

|(H,.D)/D| x ... x |(H,,.D)/D| = ( |H» N D)

) X e ( ) =|G|/ID] = |G/DJ,

which shows that G/D = ((H1.D)/D)...((Hnm.D)/D) is necessarily a decomposition of G/D into direct
factors. This completes the proof of our statement. Q.E.D.

PROPOSITION 2.5 — If T is a normal subgroup of G such that T' = TNG’, then T" is strongly decomposable
in G.

PROOF — Let G = L.M be a decomposition of G into direct factors. Write 7' = (A, A; B, B),. Clearly
T CAB, soT C A.B. But T is a normal subgroup of G so according to paragraph 2.1 A’ C A and
B C B. Thus, using A.B C T, we get the following chain of inclusions:

T"CAB C(AB)NGCTNG =T

These inclusions are then necessarily equalities, so we have T/ = A B = (T'NL).(T" " M). This shows
that the subgroup is strongly decomposable. Q.E.D.

3 Two special cases of the theorem

In this section, we prove the theorem in the two special cases:
e (G is a commutative group,
e G', the derived subgroup of G, is equal to G.

As in part 2, G stands for any finite group.

3.1 The case of commutative groups
We show the following result wich is a special case of [4] or [5]:

PROPOSITION 3.1 — Let G be a commutative finite group and G = H.K a decomposition of G into direct
factors. Let Hy be a subgroup of G, such that H and Hy are isomorphic, as well as G/Hy and K. Then Hy
is a direct factor of G.

PROOF — Actually, me only need to assume that H is abelian. Consider the obvious map r : hom(G, Hy) —
hom(Hy, Hp). Since Hy is abelian, the sets hom(—, Hy) are abelian groups and r is a group homomorphism.
The kernel of r is hom(G/Hy, Hp) so that we have an exact sequence of abelian groups:

0 — hom(G/Hy, Hy) — hom(G, Hy) — hom(Hy, Hy)
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Since G = H x K, we have hom(G, Hy) = hom(H, Hy) x hom(K, Hy) so that:
| hom(G, Hy)| = | hom(H, Hy)|| hom(G/Hy, Hp)|

and we see that r is onto. So there is a homomorphism f : G —— Hj that is the identity on Hy. The kernel
of f give the desired complement. Q.E.D.

3.2 The case where G' =G

PROPOSITION 3.2 — Let G be a finite group such that G is equal to the deried group G' and G = H.K
a decomposition of G into direct factors. Let Hy <G be isomorphic to H and such that G/Hg is isomorphic
to K. Then Hy is a direct factor of G.

PROOF — Consider a minimal counter-example (G = H.K; Hy).

We show that Hj is strongly decomposable in G. H} = Hy because Hy is isomorphic to H and G’ =
H'.K' = HK. It follows that H) = Hy NG = Hy N G'. Proposition 2.5. then gives the result.

Moreover, Hy does not contain a non-trivial direct factor of G. It is an exercise to show that, proceeding
in rather the same way as in lemma 3.1.

Now, let G = H;y...H,,.K1...K,, be a decomposition of G into indecomposable direct factors such that
H=H,..H, and K = K;...K,,. As Hy is strongly decomposable in G, proposition 2.4 shows that

G/HO >~ (Hl/(Hl n H())) X ... X (Hm/(Hm n H())) X (Kl/(Kl n H())) X ... X (Kn/(Kn ﬂH()))

But none of the H;/(H; N Hy) and none of the K;/(K; N Hy) are trivial. So G/Hy ~ K contains at
least n + m indecomposable direct factors in a decomposition into irreducible direct factors. We deduce that
n+m < n, and m < 0. We have reached a contradiction and out proposition is proved. Q.E.D.

We have shown that if (G = H.K; Hy) is a counter-example to the theorem, then 1 < G’ < G. It is the
starting point of our proof of the theorem.

4 A few preliminary lemmas

From now on, (G = H.K; Hy) is our minimal counter-example to the theorem. A few lemmas follow, which
are useful to describe Hj and Z(Hp) in G.

LEMMA 4.1 — We have the following properties.
1. Hy=HyNG',
2. There exists M <G such that G = M.Hy and M N Hy = Hy,
3. G/H} and G/H' are isomorphic, as well as M/H{ and K,
4. G/H} = (Ho/H{}).(M/HY{) is a decomposition of G/H] into direct factors.

In what follows, we fix a subgroup M once and for all, which complies with point 3 of lemma 4.1.We now
prove the lemma.

PROOF — Let us start with point 1. Clearly G’ = H'.K’ is a decomposition of G’ into direct factors.
Therefore G'/H' ~ K' ~ (G/Hy)'. But (G/Hy) = (G'.Hy)/Hy ~ G'/(HoNG"). Tt follows that Card Hy N
G’ = Card H' = Card H|,. But H) C Hy N G’, so the two subgroups are actually equal.

To show point 2, notice two things. First, G/G' = (HG'/G").(KG'/G') ~ (H/H') x (K/K'). Then
(G/G)/(Ho.G')/G') = (G/(Ho.G')) = ((G/Ho)/(G-Ho)/Ho) = (G/Ho)/(G/Ho) = K/K'. As'G/G is
commutative, we may use part 3 to show that there exists a normal subgroup M of G containing G’ such
that G/G' = ((Hyo.G")/G").(M/G") is a decomposition of G/G’ into direct factors. This proves point 2.

We now proceed to prove the two last statements. G/H|, = (Ho/H}).(M/H]) is a decomposition into
direct factors. Moreover M/Hy ~ (G/H{)/(Ho/H}) ~ G/Hy ~ K, and Hy/H} ~ H/H'. So G/H/, and
G/H' are isomorphic. Q.E.D.



We now state a corollary of the above lemma, which is crucial in the proof of the "direct extension"
theorem.

COROLLARY 1 — H{ is strongly decomposable in G.
PROOF — It is an immediate consequence of proposition 2.5 and the above lemma. Q.E.D.

The corollary shows that taking the quotient by H{ is compatible with any decomposition of G into
direct factors. More precisely, if G = L.M is a decomposition of G into direct factors then G/H|} =
((L.Hy)/HY).((M.H})/H{) is also a decomposition into direct factors.

LEMMA 4.2 — We have the following properties:
1. Z(Ho) =HynN Z(G),
2. Z(Hy) is a direct factor of Z(G),

3. Z(M/H) = (M n(Z2(G).Hy))/Hj.
PrROOF — Z(Hy) ~ Z(H) and 2(K) ~ Z(G)/Z(H). Buwt Z(K) ~ Z(G/Hy) 2 (2(G).Hy)/Hy ~
Z(G)/(Ho N Z(G)). Therefore |[Hy N Z(GQ)| = |Z(H)| = |Z(Hp)|- But we know that Hy N Z(G) C Z(Hyp).
Hence the equality of the two groups. We have also achieved Z(G/Hy) = (Z(G).Hy)/Hp. This completes
the proof of the first point.

For point number 2, notice that Z(G)/Z(Hy) = Z(G)/(Ho N Z2(G)) ~ (2(G).Hy)/Ho = Z(G/Hy). As
G is not equal to its center, it follows from the minimality of G that Z(Hj) is a direct factor of Z(QG).

To prove the 3rd point, consider the natural isomorphism o : M/H{j — G/Hy. We have

Z(M/Hg) = o~ ((2(G).Ho)/Ho) = {x.Hg € M/Hy/x.Ho € (2(G).Ho)/Ho}

={z.H\/x € Z(G).Hy,x € M} = ((Z(G).Hy) N M)/ Hj.
Hence the announced result. Q.E.D.

LEMMA 4.3 — Hy does not contain a direct factor of G other than 1. Similarly, Hy is not contained in a
direct factor of G other than G.

PRrROOF — The first statement is left as an exercise. We prove the second one, which is as simple as the first
one.

Let G = L.N be a decomposition of G into direct factors. Assume N > 1 and Hy C L. Clearly
G/Hy = (L/Hy).((N.Hy)/Hp) is a decomposition of G/H, into direct factors. Since K ~ G/Hy, N ~
(N.Hy)/Hy is isomorphic to a direct factor of K. We may therefore assume that N C K. We may then
write G/N ~ H x K/N. But H ~ (Hy.N)/N, and (G/N)/((Hy.N)/N) ~ (G/Hy)/((N.Hy)/Hp) ~ K/N,
because (N.Hy)/Hp is a direct factor of G/Hy which is isomorphic to N. It follows that (Ho.N)/N is a
direct factor of G/N, using minimality of G. Thus we have a normal subgroup P of G containing N such
that G = (Ho.N).P with (Ho.N) N P = N. It is now clear that G = Hy.P is a decomposition of G into
direct factors. That contradicts our assumption on G. Q.E.D.

5 The proof of the theorem

We may now proceed with the actual proof of our theorem.
PROPOSITION 5.1 — H contains no non-trivial commutative direct factor.

PROOF — Again ab absurdo. Let A be a non-trivial commutative direct factor of Hy, which exists since
H ~ Hy. We know that G/H{, = (Ho/H{).(M/H]) is a decomposition of G/H] into direct factors. It is easy
to see that (A.H{))/H| is a direct factor of Hy/H/, and hence also of G/H{,. Thus there exists a direct factor
N/H| of G/H], which contains M/H/, and is a supplementary subgroup of (A.H()/H}. But G = A.N is then
a decomposition of G into direct factors since (A.H{) N N = H{ and it follows that ANN C ANHj =1
(since A is a commutative direct factor of Hp). We have shown that A C Hy is also a direct factor of G.
This contradicts lemma 4.3. Q.E.D.



PROPOSITION 5.2 — If L is a non-commutative direct factor of G, then L N H} > 1.

PROOF — Ab absurdo. Let L be a non-commutative direct factor of G such that L N H) = 1. We may
suppose that L is indecomposable. Then as H is strongly decomposable in G, (L.H})/H| is a direct factor
of G/H{, isomorphic to L. But L and Hy/H| are coprime because L is a non-commutative indecomposable
group and Hy/H( is commutative. Then ((L.Hy)'/H{).(Ho/H}) is a direct factor of G/H{, by proposition
2.3.

Now let H) < P <G, such that G/Hjy = ((L.H|)/H}).(Ho/H}).(P/H)) be a decomposition of G/H/, into
direct factors. Then we have G = L.(P.Hy) and LN (P.Hy) = LN (L.H))NHy = LN H), = 1. We have
reached a contradiction since this implies that P.Hy is a direct factor of G distinct from G and containing
Hy. Q.E.D.

PROPOSITION 5.3 — If A is a commutative direct factor of G then HoN A =1

PROOF — Consider Hy.A C G. Clearly Z(Hy).A C Z(G) and Z(Hy) is a direct factor of Z(G) (by lemma
4.2). Proposition 2.2 shows that there exists B a supplementary of Z(Hy) in Z(Hp).A. It follows that
Hy.A=Hy.B with HyN B = Z(Hy) N B = 1. Thus H is a direct factor of Hy.A. In the same way, A is
a direct factor of Hy.A because it is a direct factor of G. But according to proposition 5.1 Hy and A are
coprime. Therefore Hy N A = 1, using once again proposition 2.3. Q.E.D.

We may now prove the theorem. Clearly K is non-commutative, otherwise, Hy N K = 1, because of
the above proposition, and we would then have G = Hy.K. This shows that K contains at least one
non-commutative indecomposable direct factor.

Let X be the class up to isomorphism of an indecomposable non-commutative direct factor of K of
minimal order. If L is a direct factor of G which is a member of X’ then L’ C H{. That is true because
L/(L N HY) is isomorphic to a direct factor of G/H} ~ (Ho/H(}) x K. But L N Hj > 1 according to the
corollary of proposition 5.2, which shows that all the indecomposable direct factors of L/(L N H}) have
strictly less elements than a member of X'. By construction of X, all the indecomposable direct factors of
L/(L N H{) are commutative, so L/(L N H}) is itself commutative. We have shown that L' C H|).

Let N be a direct factor of G isomorphic to a direct product of members of X'. Also assume that N is
maximal in that respect. It now suffices to prove that N is isomorphic to a direct factor of Hy (for then one
can find a bigger such N), and we will have shown that a counter-example to our theorem cannot exist.

Clearly N’ C H|,. Ho/H{ is a subset of the center of G/H| because it is a commutative direct factor
of that group. Likewise, (N.H{))/H) is a commutative direct factor of G/H( because N C H|,. Therefore
(N.Hy)/Hy C Z(G/H}) = (Ho/H}).((Z(G).Hy) N M)/H) (by lemma 4.2). So Hy.N C Hy.Z(G).

Now Hy.Z(G) = Hy.S, where S is a supplementary of Z(Hp) in Z(G). Clearly HyNS = 1 and therefore
Hj is a direct factor of Hy.Z(G) D Hy.N. We have shown that Hy is a direct factor of Hy.N and that its
supplementary is commutative. On the other hand, N is a direct factor of G and thereby also of Hy.N. We
now use the Remak-Krull-Schmidt theorem on Hg.N. Notice that N has no non-trivial commutative direct
factors to obtain that IV is isomorphic to a direct factor of Hy. This is precisely what we have striven to
show. Our theorem is now proven.

6 Some additional remarks

1. The theorem no longer holds if G is infinite. We give a simple counter-example. Let G = (Z/p.Z)N x
(Z/p*.Z)N, H (resp. K) the subgroup of G consisting of all pairs (f, g) such that f : N +—— Z/p.Z and
g:N+—— Z/p*.Z with f(2n) = g(n) =0 (resp. f(2n+ 1) =0).

Take Hy the subgroup of G consisting of all pairs (f,g) with g(2n) =0 and g(2n + 1) € p.Z/p?.Z.
Clearly, G = H.K and H N K = 1. Moreover Hj is not a direct factor of G. But H ~ Hy ~ (Z/p.Z)"
and K ~ G/Hy ~ (Z/p.Z)" x (Z/p*.Z)".

2. The following statement does not hold: "Let G be a finite group. If there exists a split extension

1+ H +—— G +— K +— 1 then any extension 1 — H ——— G — K +— 1 also splits".

We give a counter-example. Let A, B, C' and D be four groups, each one of them isomorphic to Z/p.Z,
and e4 a generator of A. A acts on B x C by ¢ : k.ea — [(b,¢) — (b,c + k.b)].
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Set G = (A x4 (B x(C))x D. Clearly B x C is a normal subgroup of G, with A x D a supplementary
subgroup. This defines a split extension 1 +— (Z/p.Z)? — G —— (Z/p.Z)? — 1.

However C' x D is in the center of G and G/(C x D) is isomorphic to (Z/p.Z)?. On the other hand
C x D cannot have a supplementary because as it is in the center, the semi-direct product would be
trivial and G and (Z/p.Z)* would be isomorphic. So 1 — (Z/p.Z)? — G — (Z/p.Z)? — 1 is an
extension which does not split.
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