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Abstract. Combining the amplifiers, we exhibit other choices of coefficients that improve
the results on large gaps between the zeros of the Riemann zeta-function. Precisely, assum-
ing the Generalized Riemann Hypothesis (GRH), we show that there exist infinitely many
consecutive gaps greater than 3.033 times the average spacing.

1. Introduction

Assuming the Riemann Hypothesis (RH), we can write the nontrivial zeros of the Riemann
zeta-function as ρ = 1

2 + iγ, where γ ∈ R. For 0 < γ ≤ γ′ two consecutive ordinates of zeros,
we define the normalized gap

δ(γ) = (γ′ − γ)
log γ

2π
.

It is a well-known theorem that the number of nontrivial zeros of ζ(s) with ordinates in [0, T ]
is 1

2πT log T +O(T ). Hence on average δ(γ) is 1. In 1973, by studying the pair correlation of
the zeros of the Riemann zeta-function, Montgomery [8] suggested that there exist arbitrarily
large and small gaps between consecutive zeros of ζ(s). That is to say

λ = lim sup
γ

δ(γ) =∞ and µ = lim inf
γ

δ(γ) = 0,

where γ runs over all the ordinates of the zeros of the Riemann zeta-function.
In this article, we will focus only on the large gaps. Our main theorem is

Theorem 1.1. Assuming GRH. Then we have λ > 3.033.

Selberg [13] remarked that he could prove λ > 1. Assuming RH, Mueller [11] showed that
λ > 1.9, and later, by a different approach, Montgomery and Odlyzko [9] obtained λ > 1.9799.
The work of Mueller [11] is based on the following idea.

Let H : C→ C and consider the following functions

M1(H,T ) =

∫ 2T

T
|H( 1

2
+ it)|2dt

and

M2(H,T ; c) =

∫ c/L

−c/L

∑
T≤γ≤2T

|H( 1
2

+ i(γ + α))|2dα,

where L = log T
2π . One notes that if

h(c) :=
M2(H,T ; c)

M1(H,T )
< 1, (1)

then λ > c/π, and if h(c) > 1, then µ < c/π.
Mueller [11] applied this idea to H(s) = ζ(s). Using H(s) =

∑
n≤T 1−ε d2.2(n)n−s, Conrey,

Ghosh and Gonek [2] deduced that λ > 2.337. Here dr(n) is the coefficient of n−s in the
1
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Dirichlet series of ζ(s)r. Later, assuming GRH, they applied to H(s) = ζ(s)
∑

n≤T 1/2−ε n−s

and obtained λ > 2.68 [3]. By considering a more general amplifier

H(s) = ζ(s)
∑
n≤y

dr(n)P [n]

ns
,

where y = T 1/2−ε and P [n] = P ( log y/nlog y ), Ng [12] improved that result to λ > 3. In the last

two papers, the assumption of GRH is necessary in order to estimate the discrete mean value
over the zeros in M2(H,T ; c). In connection to this work, we also mention a result of Hall
[7], who showed that λ > 2.6306. The results in Hall’s paper are actually unconditional, but
a lower bound for λ can only be obtained if the Riemann Hypothesis is assumed.

As an extension of Mueller’s idea, we are going to use

H(s) = H1(s) + ζ(s)H2(s),

where

H1(s) =
∑
n≤y

dr+1(n)P1[n]

ns
and H2(s) =

∑
n≤y

dr(n)P2[n]

ns
.

Here y = T ϑ, 0 < ϑ ≤ 1 ≤ r, and P1[n] = P1(
log y/n
log y ), P2[n] = P2(

log y/n
log y ), where P1(x), P2(x)

are two polynomials which will be specified later.

Remark 1.1. It is not clear how to choose some “good” r, P1(x) and P2(x) to get the
best result the method would give. Theorem 1.1 is obtained by numerically optimising over
polynomials P1(x) and P2(x) with degree less than or equal to 10. We note that Ng’s amplifier
numerically gives λ > 3.023. It is probable that with a better choice of coefficients our theorem
can be significantly improved. Nevertheless, our primary goal here is to exhibit a more general
amplifier that could improve the work of [11],[3],[12].

The work was commenced while the author was visiting the University of Rochester. The
author would like to thank Professor Steve Gonek for his support and encouragement during
that time. Thanks also go to Professor Micah Milinovich for various stimulating discussions.

2. Main lemmas

We state our various lemmas concerning the “square” terms and “cross’ terms, which come
up in the evaluations of M1(H,T ) and M2(H,T ; c).

Lemma 2.1. Suppose 0 < ϑ < 1
2 . We have∫ 2T

T
|H1(

1
2 + it)|2dt ∼ ar+1T (log y)(r+1)2

Γ((r + 1)2)

∫ 1

0
(1− x)(r+1)2−1P1(x)2dx,

where

ar =
∏
p

((
1− 1

p

)r2 ∑
n≥0

dr(p
n)2

pn

)
.

The “cross” term of M1(H,T ) is given by

Lemma 2.2. Suppose 0 < ϑ < 1
2 . We have∫ 2T

T
ζ(12 + it)H1(

1
2 − it)H2(

1
2 + it)dt ∼ ar+1T (log y)(r+1)2

Γ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1Qr(x)P2(x)dx,

where

Qu(x) =

∫ x

0
tuP1(x− t)dt.
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These lemmas are proved in Section 5. The other square term of M1(H,T ) comes from a
theorem of Conrey and Ghosh (cf. Theorem 1 [1]).

Lemma 2.3. Suppose 0 < ϑ < 1
2 . We have∫ 2T

T
|ζH2(

1
2 + it)|2dt ∼ ar+1T (log y)(r+1)2

Γ(r)2Γ(r2)

∫ 1

0
(1− x)r

2−1
(
ϑ−1Rr−1(x)2 − 2Rr(x)Rr−1(x)

)
dx,

where

Ru(x) =

∫ x

0
tuP2(x− t)dt.

The next two lemmas concern the first “square” term and the “cross” term in the integrand
of M2(H,T ; c).

Lemma 2.4. Suppose 0 < ϑ < 1
2 . We have∑

T≤γ≤2T
H1(ρ+ iα)H1(1− ρ− iα) ∼ ar+1TL(log y)(r+1)2

2πΓ((r + 1)2)∫ 1

0
(1− x)(r+1)2−1

(
P1(x)2 − 2ϑ(r + 1)P1(x)

∫ x

0
cos(α log yt)P1(x− t)dt

)
dx.

Lemma 2.5. Suppose 0 < ϑ < 1
2 . On GRH we have∑

T≤γ≤2T
ζH2(ρ+ iα)H1(1− ρ− iα) ∼ ar+1TL(log y)(r+1)2

2πΓ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1A(r, ϑ;x)dx,

where

A(r, ϑ;u) = (1− (iαL)−1)Qr(u)P2(u)

−ϑ(r + 1)

∫ u

0
yiαtQr(u− t)P2(u)dt− ϑr

∫ u

0
y−iαtQr(u)P2(u− t)dt

+
T−iα

iαL

∫ u

0
tryiαtP1(u− t)

( r∑
n=1

(
r

n

)
(iα log y)n

(n− 1)!
Rn−1(u) + P2(u)

)
dt.

We prove Lemma 2.4 and Lemma 2.5 in Section 6 and Section 7, respectively. The second
“square” term is given by Ng (cf. Theorem 2 [12]).

Lemma 2.6. Suppose 0 < ϑ < 1
2 . On GRH we have∑

T≤γ≤2T
|ζH2(ρ+ iα)|2 ∼ ar+1TL(log y)(r+1)2

πΓ(r)2Γ(r2)

∫ 1

0
(1− x)r

2−1<
( ∞∑
j=1

(iα log y)jB(r, ϑ, j;x)

)
dx,

where

B(r, θ, j;u) = − r
j!

∫ u

0
tjRr−1(u)Rr−1(u− t)dt

+
θr

j!

∫ u

0
tjRr(u)Rr−1(u− t)dt+

θr

j!

∫ u

0
tjRr−1(u)Rr(u− t)dt

−θΓ(r)

min{j,r−2}∑
n=−2

(−1)n
(
r

n+2

)
(j − n)!(r + n+ 1)!

∫ u

0
tr−1(θ−1 − t)j−nRr+n+1(u)P2(u− t)dt.

Remark 2.1. It is possible to establish these above lemmas for real r ≥ 1 by using the
Selberg-Delange method (cf. Chapter II.5 [14]). However, we are not going to elaborate in
this direction here.
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Remark 2.2. We note that Lemmas 2.1–2.4 are unconditional. Lemma 2.5 and Lemma 2.6, as
mentioned in [12], can probably be proved only assuming the Generalized Lindelöf Hypothesis
by following the work of Conrey, Ghosh and Gonek [4]. Even this assumption may possibly
be removed since an upper bound for the sixth moment of Dirichlet L-functions L(s, χ) on
average is sufficient for the main theorem in [4]. If so, our Theorem 1 would hold on assuming
only the Riemann Hypothesis.

In Section 8, we illustrate how our theorem follows from Lemmas 2.1–2.6. Throughout
the paper, we denote L = log T

2π , e(x) = e2πix. To facilitate the proofs of some lemmas, we

sometimes allow α ∈ C. However, α is always restricted to α � L−1. We also assume that
y = T ϑ, where 0 < ϑ < 1/2, and r ≥ 1.

3. Initial manipulations for Lemma 2.5

By Cauchy’s theorem we have

S12 =
∑

T≤γ≤2T
ζH2(ρ+ iα)H1(1− ρ− iα) =

1

2πi

∫
C

ζ ′

ζ
(s− iα)ζ(s)H1(1− s)H2(s)ds,

where C is the positively oriented rectangle with vertices at 1 − a + i(T + α), a + i(T + α),
a+ i(2T + α) and 1− a+ i(2T + α). Here a = 1 + L−1 and T is chosen so that the distances
from T + α and 2T + α to the nearest γ are � L−1. Now for s inside or on C we have

H1(s), H2(s)� y1−σT ε and ζ(s)� T (1−σ)/2+ε.

Also, for each large T , we can choose T ′ such that T − 2 < T ′ < T , T ′ +α is not the ordinate
of a zero of ζ(s) and ζ ′(σ+ iT ′)/ζ(σ+ iT ′)� L2, uniformly for −1 < σ < 2 (cf. [5]). A simple
argument using Cauchy’s residue theorem then yields that the contribution of the bottom
edge of the contour is � yT 1/2+ε. The same argument holds for the top edge. Hence the
contribution from the horizontal lines is O(yT 1/2+ε).

We denote the contribution from the right edge by

J1(H1, H2) =
1

2πi

∫ a+i(2T+α)

a+i(T+α)

ζ ′

ζ
(s− iα)ζ(s)H1(1− s)H2(s)ds. (2)

From the functional equation we have

ζ ′

ζ
(1− s− iα) =

χ′

χ
(1− s− iα)− ζ ′

ζ
(s+ iα). (3)

Hence the contribution from the left edge, by substituting s by 1− s, is

1

2πi

∫ a−i(2T+α)

a−i(T+α)

ζ ′

ζ
(1− s− iα)ζ(1− s)H1(s)H2(1− s)ds

=
1

2πi

∫ a−i(2T+α)

a−i(T+α)
χ(1− s)

(
χ′

χ
(1− s− iα)− ζ ′

ζ
(s+ iα)

)
ζ(s)H1(s)H2(1− s)ds

= −J3(H1, H2) + J2(H1, H2),

where

J2(H1, H2) =
1

2πi

∫ a+i(2T+α)

a+i(T+α)
χ(1− s)ζ

′

ζ
(s− iα)ζ(s)H1(s)H2(1− s)ds, (4)

and

J3(H1, H2) =
1

2πi

∫ a+i(2T+α)

a+i(T+α)

χ′

χ
(1− s+ iα)ζ(1− s)H1(s)H2(1− s)ds.

Thus
S12 = J1(H1, H2)− J3(H1, H2) + J2(H1, H2) +O(yT 1/2+ε).
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The evaluations of J1, J2 and J3 will be carried out in Section 7.

4. Auxiliary lemmas

In this section, we present all the lemmas which we will require for later calculations. We
recall a lemma from [4] (cf. Lemma 2).

Lemma 4.1. Suppose that A(s) =
∑∞

h=1 a(h)h−s, where a(h) � dr1(h)(log h)l1 for some

non-negative r1 and l1. Also let B(s) =
∑

k≤y b(k)k−s, where b(k)� dr2(k)(log k)l2 for some
non-negative r2 and l2. Then we have

1

2πi

∫ a+i2T

a+iT
χ(1− s)A(s)B(1− s)ds =

∑
k≤y

b(k)

k

∑
kT/2π≤h≤kT/π

a(h)e(−h/k) +O(yT 1/2+ε).

Lemma 4.2. For (h, k) = 1 with k > 0, we define

L(s, h/k) =
∞∑
n=1

e(nhk )

ns
(σ > 1).

Then L(s, h/k) is regular in the entire complex plane except when k = 1. For k = 1 we have
L(s, h/k) = ζ(s) and the function has a simple pole at s = 1 with residue 1.

The proof of Lemma 4.2 is trivial. The L-function defined above is a special case of the
Lerch zeta-function.

Lemma 4.3. For (h, k) = 1, we define

Q(s, α, h/k) = −
∞∑

m,n=1

Λ(n)

msns−iα
e

(
−mnh
k

)
(σ > 1).

Then Q(s, α, h/k) has a meromorphic continuation to the entire complex plane. For α 6= 0,
Q(s, α, h/k) has
(i) a simple pole at s = 1 with residue

ζ′

ζ (1− iα) if k = 1
− log p

p(1−iα)λ(1−p−1+iα)
if k = pλ > 1

0 otherwise;

(ii) a simple pole at s = 1 + iα with residue

−ζ(1 + iα)

kiαϕ(k)

∏
p|k

(1− piα).

Moreover, on GRH, Q(s, α, h/k) is regular in σ > 1/2 except for these two poles.

Proof. For σ > 1 we have

Q(s, α, h/k) =
k∑
a=1

L(s,−ah/k)L(s− iα, a, k) =
∑
d|k

k/d∑
a=1

∗L(s,−ahd/k)L(s− iα, ad, k), (5)

where L(s, h/k) is the function defined in the previous lemma and

L(s, a, k) = −
∑

n≡a(mod k)

Λ(n)n−s, (σ > 1),

with
∑∗ denotes summation over a coprime to k/d. It is known that L(s, a, k) has a meromor-

phic continuation to the entire complex plane and is regular on σ = 1 except for a simple pole
at s = 1 if, and only if, (a, k) = 1. Also, by Lemma 4.2, L(s,−ahd/k) is regular everywhere
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except for a simple pole at s = 1 (when d = k). Thus, by (5), Q(s, α, h/k) has a meromorphic
continuation to the entire complex plane and if α 6= 0, Q(s, α, h/k) has simple poles at s = 1
and s = 1 + iα.

From Lemma 4.2, the residue at s = 1 is

L(1− iα, k, k) = −
∞∑
n=1

Λ(kn)

(kn)1−iα
=


ζ′

ζ (1− iα) if k = 1
− log p

p(1−iα)λ(1−p−1+iα)
if k = pλ > 1

0 otherwise.

To evaluate the residue at s = 1 + iα, we note that in (5), L(s − iα, ad, k) is regular on
σ = 1 unless d = 1. In the case d = 1, it has a pole at s = 1+ iα with residue −1/ϕ(k). Hence
the residue of Q(s, α, h/k) at s = 1 + iα is

− 1

ϕ(k)

k∑
a=1

∗L(1 + iα,−ah/k) = − 1

ϕ(k)

∞∑
n=1

ck(n)

n1+iα
,

where ck(n) is the Ramanujan sum. From Titchmarsh [15], this is equal to

−ζ(1 + iα)

kiαϕ(k)

∑
d|k

µ(d)diα = −ζ(1 + iα)

kiαϕ(k)

∏
p|k

(1− piα).

The lemma follows. �

We need a lemma to deal with product of several Dirichlet series (Lemma 3 of [3]).

Lemma 4.4. Suppose that Aj(s) =
∑

n≥1 αj(n)n−s is absolutely convergent for σ > 1, for
1 ≤ j ≤ l, and that

A(s) =

∞∑
n=1

α(n)

ns
=

l∏
j=1

Aj(s).

Then for any positive integer d, we have

∞∑
n=1

α(nd)

ns
=

∑
d1...dl=d

l∏
j=1

( ∑
n≥1

(n,
∏
i<j di)=1

αj(ndj)

ns

)
.

The previous three lemmas lead to the following.

Lemma 4.5. Assume GRH. Let k ∈ N with k ≤ y. We define

Q∗(s, α, k) =
∞∑
h=1

a(h)e(−h/k)

hs
, (6)

where

a(h) = −
∑
nuv=h
n≤y

dr+1(n)P1[n]Λ(u)uiα. (7)

Then Q∗(s, α, k) has an analytic continuation to σ > 1
2 except for possible poles at s = 1 and

s = 1 + iα. Moreover we have

Q∗(s, α, k)� y1/2T ε,

for 1
2 + L−1 ≤ σ ≤ a, |t| ≤ T and |s− 1|, |s− 1− iα| � 1.

Proof. For χ a character (mod k), the Gauss sum τ(χ) is given by

τ(χ) =
k∑

h=1

χ(h)e

(
h

k

)
.



LARGE GAPS BETWEEN CONSECUTIVE ZEROS OF THE RIEMANN ZETA-FUNCTION 7

It is standard to show that

e

(
−h
k

)
=
∑
d|(h,k)

1

ϕ(k/d)

∑
χ(mod k/d)

τ(χ)χ

(
−h
d

)
.

Inserting this into (6) leads to

Q∗(s, α, k) =
∑
d|k

1

ϕ(k/d)ds

∑
χ(mod k/d)

τ(χ)χ(−d)A(s, d),

where

A(s, d) =

∞∑
h=1

a(hd)χ(hd)

hs
(σ > 1).

By expanding P1(x) =
∑

j≥0 cjx
j in (7) we obtain

Q∗(s, α, k) =
∑
j≥0

cj
(log y)j

Q∗j (s, α, k), (8)

where

Q∗j (s, α, k) =
∑
d|k

1

ϕ(k/d)ds

∑
χ(mod k/d)

τ(χ)χ(−d)
∂j

∂zj
A(s, d; z)|z=0, (9)

A(s, d; z) =
∞∑
h=1

az(hd)χ(hd)

hs
, and az(h) = −

∑
nuv=h
n≤y

dr+1(n)yzΛ(u)uiα

nz
.

Let
F (s, r, χ) =

∏
p|r

(1− χ(p)p−s).

We note that

A(s, 1; z) =

(∑
n≤y

χ(n)dr+1(n)yz

ns+z

)
L(s, χ)

(
−
∞∑
u=1

χ(u)Λ(u)

us−iα

)
.

Hence, by Lemma 4.4,

A(s, d; z) =
∑

h1h2h3=d

A1(s, h1; z)A2(s, h2, h1)A3(s, h3, h1h2),

where

A1(s, h; z) =
∑
n≤y/h

χ(hn)dr+1(hn)yz

ns(hn)z
,

A2(s, h, l) =
∑

(n,l)=1

χ(hn)

ns
= χ(h)L(s, χ)F (s, l, χ),

A3(s, h, l) = −
∑

(n,l)=1

χ(hn)Λ(hn)(hn)iα

ns
.

It is obvious that A1 and A2 are regular everywhere except when χ is principal. In this case
A2 has a simple pole at s = 1. Also, assuming GRH, A3 is regular in σ > 1/2, except for a
possible simple pole at s = 1 + iα. Thus, A(s, d; z) is regular in σ > 1/2 with the possible
exception of poles at s = 1 and s = 1 + iα. Hence the required continuation of Q∗(s, α, k)
follows.

To bound Q∗(s, α, k) we will need to bound A(s, d; z). In the considered region we have

Aj(s, h, l)� T ε,
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for j = 2, 3 and if h, l divide d (cf. (3.10) [3]), and (cf. (50) and (54) [12])

A1(s, h; z)�
{
y1/2T ε if χ is principal
T ε otherwise.

Hence in the region under consideration we have

A(s, d; z)�
{
y1/2T ε if χ is principal
T ε otherwise,

uniformly for |z| � L−1. Applying the Cauchy integral formula with a circle of radius � L−1
leads to

∂j

∂zj
A(s, d; z)|z=0 �

{
y1/2T ε if χ is principal
T ε otherwise.

Combining this with (9) we obtain

Q∗j (s, α, k) � T ε
∑
d|k

1

ϕ(k/d)d1/2

(
y1/2|τ(χ0)|+

∑
χ 6=χ0(mod k/d)

|τ(χ)|
)

� T ε
(

(y/k)1/2
∑
d|k

d1/2

ϕ(d)
+ k1/2

∑
d|k

d−1
)

� y1/2T ε.

Thus, by (8) the lemma follows. �

We require the following version of the Landau-Gonek explicit formula [6].

Lemma 4.6. For x > 1 we have∑
T≤γ≤2T

xρ = − T

2π
Λ(x) +O(x log(xT ) log log x)

+O

(
log xmin

(
T,

x

〈x〉

))
+O

(
Lmin

(
T,

1

log x

))
,

where 〈x〉 denotes the distance from x to the closest prime power other than x itself, and
Λ(x) = log p if x is a positive integral power of a prime p and Λ(x) = 0 otherwise.

We also need various lemmas concerning divisor sums and other divisor-like sums. We first
introduce some notation which we will use throughout. Let Dr(n) = Dr(n, 1), where

Dr(n, s) :=

( ∞∑
m=1

dr(mn)

ms

)
ζ(s)−r =

∏
pλ||n

((
1− 1

ps

)r ∞∑
j=0

dr(p
j+λ)

pjs

)
(σ > 1).

We define
Fτ (n) =

∏
p|n

(1 +O(p−τ )),

for τ > 0 and the constant in the O-term is implicit and independent of τ . We note that

Dr(n, s)� dr(n)Fτ (n) (σ ≥ τ > 0).

Lemma 4.7. For f ∈ C1([0, 1]), there exists an absolute constant τ0 such that∑
n≤y/k

dr(kn)f [kn]

n
=
Dr(k)(log y)r

Γ(r)
gr−1[k] +O(dr(k)Fτ0(k)Lr−1),

∑
n≤y/k

Λ(n)dr(kn)f [kn]

n1−iα
= rdr(k) log y

∫ log y/k
log y

0
yiαtf

(
log y/k

log y
− t
)
dt+O(dr(k)Fτ0(k)), (10)
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and ∑
mn≤y/k

Λ(n)dr(kmn)f [kmn]

mn1−iα
=

rDr(k)(log y)r+1

Γ(r)

∫ log y/k
log y

0
yiαtgr−1

(
log y/k

log y
− t
)
dt

+O(dr(k)Fτ0(k)Lr),

where

gu(x) =

∫ x

0
tuf(x− t)dt.

Proof. We note that (cf. Lemma 4 [1])∑
n≤y

dr(kn)

n
=
Dr(k)(log y)r

Γ(r + 1)
+O(dr(k)Fτ0(k)Lr−1),

uniformly for all k. Hence by Stieltjes integration we have∑
n≤y/k

dr(kn)f [kn]

n
=
Dr(k)

Γ(r)

∫ y/k

1

(log η)r−1

η
f [kη]dη +O(dr(k)Fτ0(k)Lr−1).

Substituting log η/ log y = t, the first statement of the lemma follows.
We will now only prove the second statement as the last statement is similar. We note that

the terms for which n = pλ, where λ ≥ 2, or n is a prime divisor of k may be included in the
error term. So∑

n≤y/k

Λ(n)dr(kn)f [kn]

n1−iα
= rdr(k)

∑
p≤y/k

log p

p1−iα
f [kp] +O(dr(k)Fτ0(k)).

By the prime number theorem and Stieltjes integration, the above main term is

rdr(k)

∫ y/k

1

1

η1−iα
f [kη]dη +O(dr(k)Fτ0(k)).

We obtain (10) by the substitution log η/ log y = t. �

We need a lemma concerning the size of the function Fτ0(n) on average.

Lemma 4.8. For any τ0 > 0, we have∑
k≤y

dr1(k)dr2(k)Fτ0(k)

k
� Lr1r2 .

Proof. We have

Fτ0(k) ≤
∏
p|k

(1 +Ap−τ0) =
∑
n|k

n−τ0Aw(n)

for some A > 0, where w(d) is the number of prime factors of d. Hence∑
k≤y

dr1(k)dr2(k)Fτ0(k)

k
�

∑
n≤y

Aw(n)

n1+τ0

∑
k≤y/n

dr1(kn)dr2(kn)

k

� Lr1r2
∑
n≤y

Aw(n)dr1(n)dr2(n)

n1+τ0

� Lr1r2 ,

since Aw(n)dr1(n)dr2(n)� nτ0/2 for sufficiently large n. �
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Lemma 4.9. We have ∑
k≤y

dr(k)2

k
=
ar(log y)r

2

Γ(r2 + 1)
+O(Lr

2−1),

and ∑
k≤y

Dr+1(k)dr(k)

k
=
ar+1(log y)r(r+1)

Γ(r(r + 1) + 1)
+O(Lr(r+1)−1).

Also let

A(n) =
∏
p|n

(1− p−(1+iα)).

Then ∑
k≤y

Dr+1(k)dr(k)A(k)

ϕ(k)
=
ar+1(log y)r(r+1)

Γ(r(r + 1) + 1)
+O(Lr(r+1)−1).

Proof. The first statement is a well-known result. The other two statements can be proved
very similarly with minor changes. �

The above lemma leads to

Lemma 4.10. For f ∈ C1([0, 1]), we have∑
k≤y

dr(k)2f [k]

k
=
ar(log y)r

2

Γ(r2)

∫ 1

0
(1− x)r

2−1f(x)dx+O(Lr
2−1),

and∑
k≤y

Dr+1(k)dr(k)f [k]

k
=
ar+1(log y)r(r+1)

Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1f(x)dx+O(Lr(r+1)−1).

Proof. These formulae easily follow from Lemma 4.9 and Stieltjes integration. �

The next lemma is an easy consequence of Lemma 4.7, Lemma 4.8 and Lemma 4.10.

Lemma 4.11. We have∑
h,k≤y
h=kn

dr+1(h)P1[h]dr(k)P2[k]

h
∼ ar+1(log y)(r+1)2

Γ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1Qr(x)P2(x)dx,

∑
h,k≤y
h=kn

Λ(n)dr(h)P [h]dr(k)P [k]

hn−iα
∼ rar(log y)r

2+1

Γ(r2)

∫ 1

0

∫ x

0
(1− x)r

2−1yiαtP (x− t)P (x)dtdx,

and ∑
h,k≤y
h=kmn

Λ(n)dr+1(h)P1[h]dr(k)P2[k]

hn−iα
∼ rar+1(log y)(r+1)2+1

Γ(r + 1)Γ(r(r + 1))

∫ 1

0

∫ x

0
(1− x)r(r+1)−1yiαtQr(x− t)P2(x)dtdx,

where each formula is valid up to a saving of L in the error term.

Lemma 4.12. Assume RH. Let

g(k) =
∏
p|k

(1− piα).
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Then we have, for some τ0 > 0,∑
k≤y

dr(km)g(k)

ϕ(km)
=

( r∑
j=0

(
r

j

)
(−iα log y)j

j!

)
dr(m)

ϕ(m)
+O

(
dr(m)Fτ0(m)

m
L−1

)
.

Proof. We first consider the generating series of the above sum

H(s, α) =

∞∑
k=1

dr(km)g(k)

ϕ(km)ks
.

By multiplicativity we have

H(s, α) =
∏
p

( ∞∑
j=0

dr(p
j)g(pj)

ϕ(pj)pjs

) ∏
pλ||m

(∑∞
j=0 dr(p

j+λ)g(pj)/ϕ(pj+λ)pjs∑∞
j=0 dr(p

j)g(pj)/ϕ(pj)pjs

)
= Z1(s, α)Z2(s, α), (11)

say. We also decompose Z1(s, α) as

Z1(s, α) =
ζ(1 + s)r

ζ(1 + s− iα)r
Z11(s, α), (12)

where

Z11(s, α) =
∏
p

[(
1− 1

p1+s

)r(
1− 1

p1+s−iα

)−r( ∞∑
j=0

dr(p
j)g(pj)

ϕ(pj)pjs

)]

=
∏
p

[(
1− 1

p1+s

)r(
1− 1

p1+s−iα

)−r(
1 +

r(1− piα)

(p− 1)ps
+
∞∑
j=2

dr(p
j)g(pj)

(1− p−1)pj(s+1)

)]
.

The product for Z11(s, α) is absolutely and uniformly convergent for σ ≥ −1/3, |α| � L−1.
Hence it represents a bounded analytic function of s and α in that region. We next consider
Z2(s, α). We have, for s = σ + it,

∞∑
j=0

dr(p
j)g(pj)

ϕ(pj)pjs
=

(
1− 1

ps+1

)−r(
1− r

ps+1−iα +O(p−2−σ)

)
. (13)

Furthermore, we note that (cf. [12])

∞∑
j=0

dr(p
j+λ)

pj(s+1)
=

(
1− 1

ps+1

)−r−1
dr(p

λ)(1 +O(p−1−σ)).

It is then standard to verify that

∞∑
j=0

dr(p
j+λ)g(pj)

ϕ(pj+λ)pjs
=

(
1− 1

ps+1

)−r dr(pλ)

pλ
(1 +O(p−1−σ)).

Combining this with (11) and (13) we obtain

|Z2(s, α)| ≤
∏
pλ||m

dr(p
λ)

pλ
(1 +O(p−1−σ))|1− rp−s−1+iα|−1 ≤ dr(m)Fτ0(m)

m
, (14)

for some positive constant τ0, in the region σ ≥ −1/3, |α| � L−1. Here τ0 = 1/3 is admissible.
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Now by Perron’s formula∑
k≤y

dr(km)g(k)

ϕ(km)
=

1

2πi

∫ 1+iU

1−iU
H(s, α)

ys

s
ds

+O

(
ydr(m)

∞∑
k=1

dr(k)|g(k)|
ϕ(km)k

min

(
1,

1

U | log y/k|

))
. (15)

By splitting the sum in the O-term into the ranges [1, y/2), [y/2, 3y/2) and [3y/2,∞), we find
that the sum is

� ydr(m)Fτ0(m)

Um
.

We now move the line of integration in (15) to σ = −1/4 and use Cauchy’s theorem. On RH

ζ(s), ζ(s)−1 �ε (1 + |t|)ε (σ ≥ 1/2 + ε, |s− 1| � 1),

so by (11), (12) and (14) we have

H(s, α)�ε
U εdr(m)Fτ0(m)

m
on the new path of integration. So the contribution along the horizontal lines is

�ε
ydr(m)Fτ0(m)

Um
,

and that along the left edge is

�ε
U εdr(m)Fτ0(m)

y1/4m
.

Thus, taking U = y log y leads to∑
k≤y

dr(km)g(k)

ϕ(km)
= Ress=0

(
H(s, α)

ys

s

)
+O

(
dr(m)Fτ0(m)

m
L−1

)
. (16)

To compute the residue, we use the Laurent expansion of each factor in

H(s, α)
ys

s
= ζ(1 + s− iα)−rZ11(s, α)Z2(s, α)ysζ(1 + s)rs−1.

We have

ζ(1 + s)rs−1 = s−r−1(1 + a1s+ a2s
2 + . . .),

ys = 1 + (log y)s+
(log y)2

2!
s2 + . . . ,

ζ(1 + s− iα)−r = f(−iα) + f ′(−iα)s+
f ′′(−iα)

2!
s2 + . . . ,

where we put f(z) = ζ(1 + z)−r. It is standard to check that

f (j)(−iα) = r(r − 1) . . . (r − j + 1)(−iα)r−j +O(|α|r−j+1) (0 ≤ j ≤ r).
We also note that since Z11(s, α) and Z2(s, α) are analytic and uniformly bounded in σ ≥ −1/3,
|α| � L−1, by Cauchy’s theorem(

∂

∂s

)j
Z11(0, α)� 1, and

(
∂

∂s

)j
Z2(0, α)� dr(m)/ϕ(m).

The analyticity in α also implies that

Z11(0, α) = Z11(0, 0) +O(|α|) = 1 +O(|α|),
and

Z2(0, α) = Z2(0, 0) +O(|α|dr(m)/ϕ(m)) = dr(m)/ϕ(m)(1 +O(|α|)).
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Thus the residue at s = 0 is

Ress=0 =
∑

u1+u2+u3+u4+u5=r

au1(log y)u2f (u3)(−iα)Z
(u4)
11 (0, α)Z

(u5)
2 (0, α)

u1!u2!u3!u4!u5!

=
∑

u2+u3=r

(log y)u2f (u3)(−iα)

u2!u3!
Z11(0, α)Z2(0, α) +O

(
dr(m)

ϕ(m)
L−1

)
=

( ∑
0≤u2≤y

(−iα log y)u2

u2!

(
r

u2

))
dr(m)

ϕ(m)
+O

(
dr(m)

ϕ(m)
L−1

)
.

Combining this with (16), the lemma follows. �

5. Proofs of Lemma 2.1 and Lemma 2.2

From Montgomery-Vaughan’s mean value theorem [10] we have

M1 =

∫ 2T

T
|H1( 1

2
+ it)|2dt ∼ T

∑
k≤y

dr+1(k)2P1[k]2

k
.

By Lemma 4.10,

M1 ∼
ar+1T (log y)(r+1)2

Γ((r + 1)2)

∫ 1

0
(1− x)(r+1)2−1P1(x)2dx.

This proves Lemma 2.1.
For Lemma 2.2, we first move the line of integration to <s = a = 1 +L−1. As in Section 3,

the contribution from the horizontal lines is � yT 1/4+ε. Now we have

ζ(s) =
∑

n≤T 1/2

1

ns
+O(L).

Hence

M12 =

∫ 2T

T
ζ( 1

2
+ it)H1( 1

2
− it)H2( 1

2
+ it)dt =

∫ 2T

T

∑
n≤T 1/2

1

ns
H1(1− s)H2(s)dt

+O

(
L

∫ 2T

T
|H1( 1

2
− it)H2( 1

2
+ it)|dt

)
+O(yT 1/4+ε), (17)

where s = a+ it. Here the line of integration in the first O-term has been moved back to the
1
2 -line with an admissible error. By Cauchy’s inequality and Lemma 2.1 this term is

� L

(∫ 2T

T
|H1( 1

2
+ it)|2

)1/2(∫ 2T

T
|H2( 1

2
+ it)|2

)1/2

� TLr
2+r+3/2.

Furthermore from Montgomery-Vaughan’s mean value theorem, the main term is asymptotic
to

T
∑
h,k≤y
h=kn

dr+1(h)P1[h]dr(k)P2[k]

h
.

So, by Lemma 4.11,

M12 ∼
ar+1T (log y)(r+1)2

Γ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1Qr(x)P2(x)dx.

This proves Lemma 2.2.
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6. Proof of Lemma 2.4

We have

S1 =
∑

T≤γ≤2T
H1(ρ+ iα)H1(1− ρ− iα) =

∑
h,k≤y

dr+1(h)P1[h]dr+1(k)P1[k]

h1−iαkiα

∑
T≤γ≤2T

(
h

k

)ρ
= I + I1 + I2,

where I, I1 and I2 are the contributions of the terms h = k, h > k and h < k, respectively.
In view of Lemma 4.10

I =
TL

2π

∑
k≤y

dr+1(k)2P1[k]2

k
∼ ar+1TL(log y)(r+1)2

2πΓ((r + 1)2)

∫ 1

0
(1− x)(r+1)2−1P1(x)2dx. (18)

Next we note that I2 = I1. We obtain from Lemma 4.6 that

I1 = − T

2π

∑
h,k≤y

dr+1(h)P1[h]dr+1(k)P1[k]

h1−iαkiα
Λ

(
h

k

)
+O

(
L logL

∑
k<h≤y

dr+1(h)dr+1(k)

h

)

+O

(
L
∑

k<h≤y

dr+1(h)dr+1(k)

h〈h/k〉

)
+O

(
L
∑

k<h≤y

dr+1(h)dr+1(k)

h log h/k

)
.

We denote these four terms by I11, I12, I13 and I14, respectively. We have

I11 = − T

2π

∑
h,k≤y
h=kn

Λ(n)dr+1(h)P1[h]dr+1(k)P1[k]

hn−iα
.

Using Lemma 4.11 we get

I11 ∼ −
(r + 1)ar+1T (log y)(r+1)2+1

2πΓ((r + 1)2)

∫ 1

0

∫ x

0
(1− x)(r+1)2−1yiαtP1(x− t)P1(x)dtdx. (19)

Combining (18) and (19), we obtain the main term in Lemma 2.4.
We are left show that the error terms I12, I13 and I14 are admissible. The bound for I12 is

trivial,

I12 � T ε
∑
h,k≤y

1

h
� yT ε.

To estimate I13, we write h = uk + v where |v/k| ≤ 1
2 . We observe that 〈h/k〉 = |v/k| if u is

a prime power and v 6= 0, otherwise 〈h/k〉 ≥ 1
2 . So

I13 � T ε
( ∑
uk�y

∑
1≤v≤k/2

1

v
+
∑
h,k≤y

1

h

)
� yT ε.

Finally for I14, we note that log h/k ≥ log h/(h − 1) � 1/h. So I14 � y2T ε. The proof is
complete.

7. Proof of Lemma 2.5

7.1. Evaluation of J1(H1, H2). We truncate the Dirichlet series of the product of the first

two terms in (2) at T 1/2,

ζ ′

ζ
(s− iα)ζ(s) = −

∑
mn≤T 1/2

Λ(m)

ms−iαns
+O

( ∑
n>T 1/2

log n

n1+L−1

)

= −
∑

mn≤T 1/2

Λ(m)

ms−iαns
+O(L2).
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Hence

J1(H1, H2) = − 1

2πi

∫ a+i(2T+α)

a+i(T+α)

∑
mn≤T 1/2

Λ(m)

ms−iαns
H1(1− s)H2(s)ds

+O

(
L2

∫ 2T+α

T+α
|H1(a+ it)H2(1− a− it)|dt

)
.

As before we can move the line of integration in the O-term to the 1
2 -line with an admissible

error of size O(yT ε). The same argument as in (17) then implies that the O-term is �
TLr

2+r+5/2. From Montgomery-Vaughan’s mean value theorem, the main term is asymptotic
to

− T

2π

∑
h,k≤y
h=kmn

Λ(n)dr+1(h)P1[h]dr(k)P2[k]

hn−iα
.

Thus, by Lemma 4.11,

J1(H1, H2) ∼ −
(r + 1)ar+1T (log y)(r+1)2+1

2πΓ(r + 1)Γ(r(r + 1))

∫ 1

0

∫ x

0
(1− x)r(r+1)−1yiαtQr(x− t)P2(x)dtdx.(20)

7.2. Evaluation of J2(H1, H2). We recall that

J2(H1, H2) =
1

2πi

∫ a+i(2T+α)

a+i(T+α)
χ(1− s)ζ

′

ζ
(s− iα)ζ(s)H1(s)H2(1− s)ds.

By Lemma 4.1 we obtain

J2(H1, H2) =
∑
k≤y

dr(k)P2[k]

k

∑
kT/2π≤h≤kT/π

a(h)e(−h/k) +O(yT 1/2+ε),

where

a(h) = −
∑
nuv=h
n≤y

dr+1(n)P1[n]Λ(u)uiα.

We write

Q∗(s, α, k) =

∞∑
h=1

a(h)e(−h/k)

hs
.

From Perron’s formula, we have∑
h≤kT/2π

a(h)e(−h/k) =
1

2πi

∫ a+iT

a−iT
Q∗(s, α, k)

(
kT

2π

)sds
s

+O(kT ε). (21)

Lemma 4.5 asserts that Q∗(s, α, k) has at most two poles in σ > 1
2 at s = 1 and s = 1+ iα (we

are assuming that α 6= 0). Hence we move the line of integration in (21) to σ = a0 = 1
2 +L−1

and obtain

1

2πi

∫ a+iT

a−iT
Q∗(s, α, k)

(
kT

2π

)sds
s

= R1 +R1+iα

+
1

2πi

(∫ a0−iT

a−iT
+

∫ a0+iT

a0−iT
+

∫ a+iT

a0+iT

)
Q∗(s, α, k)

(
kT

2π

)sds
s
,

where R1 and R1+iα are the residues of the integrand at s = 1 and s = 1 + iα, respectively.
By Lemma 4.5, the left edge of the contour contributes

� y1/2T ε(kT )a0
∫ T

−T

dt

1 + |t|
� yT 1/2+ε.
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Also, the contribution along the horizontal lines is

� y1/2T ε
(kT )a

T
� y3/2T ε.

Thus ∑
h≤kT/2π

a(h)e(−h/k) = R1 +R1+iα +O(yT 1/2+ε + y3/2T ε).

We now compute the residues R1 and R1+iα. Let Q(s, α, h/k) be as in Lemma 4.3. Then
we have

Q∗(s, α, k) =
∑
h≤y

dr+1(h)P1[h]

hs
Q(s, α, h/k).

Hence by Lemma 4.3(i), we obtain

R1 =
kT

2π

∑
h≤y

dr+1(h)P1[h]

h
×


ζ′

ζ (1− iα) if K = 1
− log p

p(1−iα)λ(1−p−1+iα)
if K = pλ > 1

0 otherwise,

where K = k/(h, k). Also, by Lemma 4.3(ii) we have

R1+iα = − 1

1 + iα

(
kT

2π

)1+iα∑
h≤y

dr+1(h)P1[h]

h1+iα
ζ(1 + iα)

Kiαϕ(K)

∏
p|K

(1− piα).

Thus

J2(H1, H2) =
T

2π

ζ ′

ζ
(1− iα)

∑
h,k≤y
h=kn

dr+1(h)P1[h]dr(k)P2[k]

h

− T

2π

∑
1<pλ≤y

log p

p(1−iα)λ(1− p−1+iα)

∑
(h,p)=1
hk≤y
k≤y/pλ

dr+1(hk)P1[hk]dr(p
λk)P2[p

λk]

hk

−ζ(1 + iα)

1 + iα

(
T

2π

)1+iα ∑
h,k≤y

dr+1(h)P1[h]dr(k)P2[k]

hk−iα

∏
p|K(1− piα)

(hK)iαϕ(K)
+O(yT 1/2+ε).

We denote the three main terms by J21, J22 and J23, respectively. The first expression
follows from Lemma 4.11. By noting that ζ ′(1 − iα)/ζ(1 − iα) = (iα)−1 + O(1), J21 is
asymptotic to

ar+1T (log y)(r+1)2

2πiαΓ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1Qr(x)P2(x)dx. (22)

For the second expression, we first note that the contribution of the terms for which λ ≥ 2,
or p is a prime divisor of h or k is

� T
∑
h,k≤y
h=nk

dr+1(h)dr(k)

h
� TL(r+1)2 .

Hence, we have, up to an error term of size O(TL(r+1)2),

J22 = −rT
2π

∑
p≤y

log p

p1−iα − 1

∑
h≤y,k≤y/p
h=nk

dr+1(h)P1[h]dr(k)P2[pk]

h
.
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By Lemma 4.11, the sum over h and k is

ar+1(log y)(r+1)2

Γ(r + 1)Γ(r(r + 1))

∫ log y/p
log y

0
xr(r+1)−1Qr(1− x)P2

(
log y/p

log y
− x
)
dx,

up to an error term of size O(L(r+1)2−1). The contribution of this O-term to J22 is� TL(r+1)2 .
Hence the leading term of J22 is

− rar+1T (log y)(r+1)2

2πΓ(r + 1)Γ(r(r + 1))

∑
p≤y

log p

p1−iα − 1
g(p),

where

g(p) =

∫ log y/p
log y

0
xr(r+1)−1Qr(1− x)P2

(
log y/p

log y
− x
)
dx.

Now from the prime number theorem, it is standard to check that∑
p≤y

log p

p1−iα − 1
=
yiα − 1

iα
+O(1).

So by Stieltjes integration,∑
p≤y

log p

p1−iα − 1
g(p) =

∫ y

1

g(t)dt

t1−iα
+O(1) = log y

∫ 1

0
g(yt)yiαtdt+O(1).

Thus

J22 ∼ −
rar+1T (log y)(r+1)2+1

2πΓ(r + 1)Γ(r(r + 1))

∫ 1

0

∫ x

0
(1− x)r(r+1)−1yiαtQr(x)P2(x− t)dtdx. (23)

We are left to evaluate J23. Using the Möbius inversion

f((h, k)) =
∑
m|h
m|k

∑
n|m

µ(n)f

(
m

n

)
,

the sum over h and k is∑
h,k≤y

dr+1(h)P1[h]dr(k)P2[k]

hk−iα

∑
m|h
m|k

∑
n|m

µ(n)

∏
p|kn/m(1− piα)

(hknm )iαϕ(knm )
. (24)

By writing hm and km for h and k, respectively, the above expression is∑
m≤y

1

m

∑
h≤y/m

dr+1(hm)P1[hm]

h1+iα

∑
k≤y/m

dr(km)P2[km]
∑
n|m

µ(n)

niα

∏
p|kn(1− piα)

ϕ(kn)
.

We let

f(k) =

∏
p|k(1− piα)

ϕ(k)
.

It is standard to verify that f(k) is multiplicative. Hence the sum over n is∑
n|m

µ(n)f(kn)

niα
= f(k)

∏
p|m

(
1− f(kp)

f(k)piα

)
= f(k)

∏
p|m
p-k

(
1− f(p)

piα

)∏
p|m
p|k

(
1− ϕ(k)

ϕ(kp)piα

)
.



18 H. M. BUI

This can be simplified further as∏
p|k(1− piα)

ϕ(k)

∏
p|m
p-k

p(1− p−(1+iα))
p− 1

∏
p|m
p|k

(1− p−(1+iα)) =
mA(m)g(k)

ϕ(km)
,

where

A(m) =
∏
p|m

(1− p−(1+iα)) and g(k) =
∏
p|k

(1− piα).

So (24) is equal to∑
m≤y

A(m)
∑

h≤y/m

dr+1(hm)P1[hm]

h1+iα

∑
k≤y/m

dr(km)g(k)P2[km]

ϕ(km)
.

By Stieltjes integration and Lemma 4.12, the sum over k is

dr(m)

ϕ(m)

( r∑
j=1

(
r

j

)∫ y/m

1

(−iα log t)j

(j − 1)!t log t
P2[mt]dt+ P2[m]

)
+O

(
dr(m)Fτ0(m)

m
L−1

)

=
dr(m)

ϕ(m)

( r∑
j=1

(
r

j

)
(−iα log y)j

(j − 1)!
Rj−1[m] + P2[m]

)
+O

(
dr(m)Fτ0(m)

m
L−1

)
.

Using Lemma 4.7 and Lemma 4.8, the contribution of the O-term to J23 is

� TLr+1
∑
m≤y

dr+1(m)dr(m)Fτ0(m)

ϕ(m)
� TL(r+1)2+ε.

Now Lemma 4.7 gives∑
h≤y/m

dr+1(hm)P1[hm]

h1+iα
=

Dr+1(m)(log y)r+1

Γ(r + 1)∫ log y/m
log y

0
try−iαtP1

(
log y/m

log y
− t
)
dt+O(dr+1(m)Fτ0(m)Lr).

Again, the contribution of this O-term to J23 is � TL(r+1)2+ε. Thus, up to an error term of

size O(TL(r+1)2+ε),

J23 = −ζ(1 + iα)

1 + iα

(
T

2π

)1+iα (log y)r+1

Γ(r + 1)

∑
m≤y

Dr+1(m)dr(m)A(m)

ϕ(m)∫ log y/m
log y

0
try−iαtP1

(
log y/m

log y
− t
)( r∑

j=1

(
r

j

)
(−iα log y)j

(j − 1)!
Rj−1[m] + P2[m]

)
dt.

By Lemma 14 and Stieltjes integration, the sum over m is

ar+1

Γ(r(r + 1))

∫ y

1

∫ log y/x
log y

0

(log x)r(r+1)−1

x
try−iαtP1

(
log y/x

log y
− t
)

( r∑
j=1

(
r

j

)
(−iα log y)j

(j − 1)!
Rj−1[x] + P2[x]

)
dtdx+O(Lr(r+1)−1).

We note that

ζ(1 + iα)

1 + iα

(
T

2π

)1+iα

=
T 1+iα

2πiα
+O(T ).
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Hence, substituting 1− log x/ log y by x leads to

J23 ∼ − ar+1T
1+iα(log y)(r+1)2

2πiαΓ(r + 1)Γ(r(r + 1))

∫ 1

0

∫ x

0
(1− x)r(r+1)−1try−iαt

P1(x− t)
( r∑
j=1

(
r

j

)
(−iα log y)j

(j − 1)!
Rj−1(x) + P2(x)

)
dtdx. (25)

7.3. Evaluation of J3(H1, H2). We will first consider

J4(t) =
1

2πi

∫ a+i(2t+α)

a+i(t+α)
ζ(1− s)H1(s)H2(1− s)ds.

As before, we move the line of integration to the 1
2 -line. The contribution along the horizontal

lines is O(yt1/4+ε). The integral along the left edge is

1

2π

∫ 2t+α

t+α
ζ(12 + it)H1(

1
2 − it)H2(

1
2 + it)dt.

Hence, by Lemma 2.2 we have

J4(t) =
ar+1t(log y)(r+1)2

2πΓ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1Qr(x)P2(x)dx

+O(yt1/4+ε) +O(tL(r+1)2−1). (26)

By Stirling’s formula we have

χ′

χ
(12 − it+ iα) = − log

t

2π
+O(t−1) (t ≥ 1).

Hence

J3(H1, H2) = −
∫ 2T

T
log

t

2π
J ′4(t)dt

+O

(∫ 2T+α

T+α
|χ(1− a− it)ζ(a+ it)H1(a+ it)H2(1− a− it)|

dt

t

)
.

The integrand in the error term is� yT−1/2+ε. So the O-term is bounded by yT 1/2+ε. Hence,
integration by parts leads to

J3(H1, H2) = −(log T )
(
J4(2T )− J4(T )

)
+O

(∣∣∣∣ ∫ 2T

T

J4(t)

t
dt

∣∣∣∣)+O(yT 1/2+ε).

In view of (26), we deduce that

J3(H1, H2) ∼ − ar+1TL(log y)(r+1)2

2πΓ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1Qr(x)P2(x)dx.

This, (20), (22), (23) and (25) establish Lemma 2.5.

8. Deduction of Theorem 1.1

In this section, we will demonstrate how Theorem 1.1 follows from Lemmas 2.1–2.6. Our
arguments show that we can choose ϑ = 1

2 − ε. Hence Lemmas 2.1–2.3 give

M1(H,T ) ∼ ar+1T (log y)(r+1)2U, (27)
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where

U =
1

Γ((r + 1)2)

∫ 1

0
(1− x)(r+1)2−1P1(x)2dx

+
2

Γ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1Qr(x)P2(x)dx

+
2

Γ(r)2Γ(r2)

∫ 1

0
(1− x)r

2−1(Rr−1(x)−Rr(x))Rr−1(x)dx.

Now from Lemma 2.4,∫ c/L

−c/L

∑
T≤γ≤2T

|H1(
1
2 + i(γ + α))|2dα ∼ ar+1T (log y)(r+1)2

π
V1, (28)

where

V1 =
1

Γ((r + 1)2)

∫ 1

0
(1− x)(r+1)2−1P1(x)

(
cP1(x)− 2(r + 1)

∫ x

0

sin( ct2 )P1(x− t)
t

dt

)
dx.

Similarly, by Lemma 2.5 we have

2<
(∫ c/L

−c/L

∑
T≤γ≤2T

ζH2(ρ+ iα)H1(1− ρ− iα)dα

)
∼ ar+1T (log y)(r+1)2

π
V2, (29)

where

V2 =
1

Γ(r + 1)Γ(r(r + 1))

∫ 1

0
(1− x)r(r+1)−1

(
2cQr(x)P2(x)

−2(r + 1)P2(x)

∫ x

0

sin( ct2 )Qr(x− t)
t

dt− 2rQr(x)

∫ x

0

sin( ct2 )P2(x− t)
t

dt

+P2(x)

∫ x

0

∫ c/2

−c/2

sin((t− 2)η)

η
trP1(x− t)dηdt

+
∑

2j+1≤r

(−1)j

(2j)!

(
r

2j + 1

)
R2j(x)

∫ x

0

∫ c/2

−c/2
cos((t− 2)η)η2jtrP1(x− t)dηdt

+
∑

2j+2≤r

(−1)j+1

(2j + 1)!

(
r

2j + 2

)
R2j+1(x)

∫ x

0

∫ c/2

−c/2
sin((t− 2)η)η2j+1trP1(x− t)dηdt

)
dx.

Furthermore, we note that <(iα log y)j = (−1)l(α log y)2l for j = 2l, and <(iα log y)j = 0 for
j = 2l + 1. Hence Lemma 2.6 gives∫ c/L

−c/L

∑
T<γ≤2T

|ζH2( 1
2

+ i(γ + α))|2dα ∼ ar+1T (log y)(r+1)2

π
V3, (30)

where

V3 =
1

Γ(r)2Γ(r2)

∞∑
j=1

(−1)jc2j+1

22j−1(2j + 1)

∫ 1

0
(1− x)r

2−1B(r, 12 , 2j;x)dx.

Here B(r, θ, j;x) is defined as in Lemma 2.6.
Combining (27), (28), (29) and (30) we obtain that

h(c) =
1

π

V1 + V2 + V3
U

+ o(1).
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Consider the polynomials P1(x) =
∑

j≤M cjx
j and P2(x) =

∑
j≤M djx

j . Choosing r = 2,
M = 10 and running Mathematica’s Minimize command, we obtain λ > 3.033. Precisely,
with

P1(x) = −3 + 97x− 1730x2 + 14830x3 − 70248x4 + 172217x5 − 154805x6 − 109555x7

+188895x8 + 130288x9 − 186298x10

and

P2(x) = −258 + 9245x− 96770x2 + 428888x3 − 856147x4 + 592829x5 + 169210x6

+94624x7 − 716274x8 + 230263x9 + 154420x10,

we have

h(3.033π) = 0.998885 . . . < 1.

This and (1) complete the proof of the theorem.
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[2] J. B. Conrey, A. Ghosh, S. M. Gonek, A note on gaps between zeros of the zeta function, Bull. London
Math. Soc. 16 (1984), 421–424.

[3] J. B. Conrey, A. Ghosh, S. M. Gonek, Large gaps between zeros of the zeta-function, Mathematika 33 (1986),
212–238.

[4] J. B. Conrey, A. Ghosh, S. M. Gonek, Simple zeros of the Riemann zeta function, Proc. London Math. Soc
76 (1998), 497–522.

[5] H. Davenport, Multiplicative number theory, GTM 74, Springer-Verlag (2000).
[6] S. M. Gonek, An explicit formula of Landau and its applications to the theory of the zeta function, Contemp.

Math. 143 (1993), 395–413.
[7] R. R. Hall, A new unconditional result about large spaces between zeta zeros, Mathematika 52 (2005),

101–113.
[8] H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic Number Theory, Proc. Sym.

Pure Math. 24 (1973), 181–193.
[9] H. L. Montgomery, A. M. Odlyzko, Gaps between zeros of the zeta function, Topics in Classical Number

Theory, Coll. Math. Soc. Janos Bolyai 34, North-Holland (1984), 1079–1106.
[10] H. L. Montgomery, R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[11] J. Mueller, On the difference between consecutive zeros of the Riemann zeta function, J. Number Theory

14 (1982), 327–331.
[12] Nathan Ng, Large gaps between the zeros of the Riemann zeta function, J. Number Theory 128 (2008),

509–556.
[13] A. Selberg, The zeta-function and the Riemann hypothesis, Skandinaviske Mathematikerkongres 10 (1946),

187–200.
[14] G. Tenenbaum, Introduction to analytic and probabilistic number theory, CUP, 1995.
[15] E. C. Titchmarsh, The theory of the Riemann zeta-function, revised by D. R. Heath-Brown, Clarendon

Press, second edition, 1986.

Mathematical Institute, University of Oxford, OXFORD, OX1 3LB
E-mail address: hung.bui@maths.ox.ac.uk


