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Abstract. Let χ be a primitive Dirichlet character modulo q and L(s, χ) be the Dirichlet
L-function associated to χ. Using a new two-piece mollifier we show that L( 1

2
, χ) 6= 0 for at

least 34% of the characters in the family.

1. Introduction

The behavior of L-functions and their derivatives inside the critical strip is a very important
topic in number theory. In this paper, we study the order of vanishing of Dirichlet L-functions
at the central point, s = 1

2 . Let χ be a primitive character modulo q, and denote by L(s, χ)

the associated L-function. It is widely believed that L(12 , χ) 6= 0 for all χ. For quadratic
characters χ, this appears to have been first conjectured by Chowla [5].

Balasubramanian and Murty [1] were the first to prove that a positive, though very small,
proportion of Dirichlet L-functions in the family of primitive characters, to a sufficiently large
prime modulus q, do not vanish at s = 1

2 . This was subsequently improved by Iwaniec and

Sarnak [10], who showed that at least 1/3 of the central values L(12 , χ) are non-zero for all
sufficiently large q. In this article, we give a modest improvement to the latter result. Our
main theorem is

Theorem 1.1. We have ∑
χ (mod q)

L( 1
2
,χ) 6=0

∗
1 ≥

(
0.3411 + o(1)

) ∑
χ (mod q)

∗
1,

where
∑∗ denotes that the summation is restricted to primitive characters χ.

Our method is to use a new two-piece mollifier, i.e. the sum of two mollifiers of different
shapes. As discussed in [3], it requires a significant amount of work in studying this and
other problems involving two-piece mollifiers, especially when the second mollifier is much
more complicated than the usual one (see the definitions in the next section). However, in
foreseeing how much improvement can be obtained, one can use some heuristic arguments
from the ratios conjecture [6] to express various mollified moments of L-functions as certain
multiple contour integrals. For a variety of examples of such calculations, see [7].

There has been a great deal of attention and extensive literature on the non-vanishing of
various families of L-functions at the center of the critical strip. Most notably, in connection
to this work we mention a result of Soundararajan [15], who showed that L(12 , χ) 6= 0 for at
least 7/8 of the quadratic characters modulo q. For results concerning the central values of
high derivatives of L-functions, see [11,13,4].
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1.1. Notation. For simplicity we only consider even Dirichlet characters χ(mod q), i.e. such
that χ(−1) = 1. The case of odd characters, χ(−1) = −1, is similar. We let Cq denote the set
of primitive characters (mod q) and let C+

q denote the subset of characters in Cq which are

even. We put ϕ+(q) = 1
2ϕ
∗(q) where

ϕ∗(q) =
∑
q=dr

µ(d)ϕ(r) =
∣∣Cq∣∣.

It is not difficult to show that
∣∣C+
q

∣∣ = ϕ+(q) + O(1). In addition, we write
∑+

χ(mod q) to

indicate that the summation is restricted to χ ∈ C+
q and we write

∑∗
a(mod q) to indicate that

the summation is restricted to the residues a(mod q) which are coprime to q. Throughout

the paper, we denote L = log q, y = qϑ, y1 = qϑ1 , y2 = qϑ2 , P [m] = P ( log y1/mlog y1
) and

Q[m] = Q( log y2/mlog y2
), where P (x) and Q(x) are two polynomials satisfying P (0) = Q(0) = 0.

2. Mollifier method

2.1. Various mollifiers. We first illustrate the idea of Iwaniec and Sarnak [10]. To each
character χ ∈ C+

q we associate the function

M(χ) =
∑
m≤y

xmχ(m)√
m

, (1)

where X = (xm) is a sequence of real numbers supported on 1 ≤ m ≤ y with x1 = 1 and
xm � 1. The purpose of the function M(χ) is to smooth out or “mollify” the large values of
L(12 , χ) as we average over χ ∈ C+

q . Consider

S1(M) =
∑

χ(mod q)

+
L(12 , χ)M(χ) and S2(M) =

∑
χ(mod q)

+ ∣∣L(12 , χ)M(χ)
∣∣2.

The Cauchy inequality implies that ∑
χ(mod q)

L( 1
2
,χ)6=0

+
1 ≥

∣∣S1(M)
∣∣2

S2(M)
. (2)

Minimizing the ratio |S1(M)|2/S2(M) with respect to the vector X = (xm), the optimal
mollifier turns out to be

M(χ) =
∑
m≤y

µ(m)χ(m)√
m

(
1− logm

log y

)
with 0 < ϑ < 1

2 . The optimal proportion obtained in (2) is 1
3 , which corresponds to the choice

ϑ = 1
2 .

There are two different approaches to improve the results in this and other problems involv-
ing mollifiers. One can either extend the length of the Dirichlet polynomial, y = qϑ, or use
some “better” mollifiers. The former is certainly much more difficult. For the latter, various
mollifiers have been recently proposed by combining mollifiers of different shapes. We give a
brief description of these mollifiers and explanation of their failure in applying to our problem
below.

Using Soundararajan’s idea in [14], Michel and VanderKam [13] studied the “twisted”
mollifier

M(χ) =
∑
m≤y1

µ(m)χ(m)P [m]√
m

+ εχ
∑
m≤y2

µ(m)χ(m)Q[m]√
m
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with εχ being the root factor in the functional equation Λ(s, χ) = εχΛ(1− s, χ), where

Λ(s, χ) =

(
q

π

)s/2
Γ

(
s

2

)
L(s, χ).

However, the intricate analysis of the arising off-diagonal terms restricts the lengths to ϑ1 +
ϑ2 <

1
2 . Under this limited condition, the optimal proportion obtained is again 1

3 . See the
discussion at the end of [13].

In [8], Feng introduced a mollifier for ζ(s) + ζ′(s)
log T and applied it to various problems on the

distribution of the zeros of the Riemann zeta-function. In our case, that has the shape

M(χ) =
∑
m≤y1

µ(m)χ(m)P [m]√
m

+
1

L2

∑
m≤y2

(Λ ∗ Λ ∗ µ)(m)χ(m)Q[m]√
m

.

We note that this is already included in the general mollifier (1) of Iwaniec and Sarnak.
Finally we mention a mollifier type of Lou [12,3]. Transforming in the context of Dirichlet

L-functions, this is

M(χ) =
∑
m≤y1

µ(m)χ(m)P [m]√
m

+ εχ
∑

mn≤y2

µ2(m)χ(m)χ(n)Q[mn]√
mn

.

Carrying out the evaluation of S2(M) in this case, the only factor involving P (x) in the
asymptotic formula for the cross term is P ′′(x). As a result, when P (x) = x, which is optimal
in Iwaniec and Sarnak [10], the cross term of S2(M) vanishes. In fact, it turns out that the
optimal choice is P (x) = x and Q(x) = 0, and hence we do not gain any improvement.

2.2. A new mollifier. Instead we study a two-piece mollifier of the form ψ(χ) = ψ1(χ) +
ψ2(χ), where

ψ1(χ) =
∑
m≤y1

µ(m)χ(m)P [m]√
m

and

ψ2(χ) =
1

L

∑
mn≤y2

(log ∗µ)(m)µ(n)χ(m)χ(n)Q[mn]√
mn

. (3)

In the corresponding context of the Riemann zeta-function, this is a more natural mollifier for
ζ ′(s), and has been effectively used to show that more than 70.83% of the nontrivial zeros of
ζ(s) are simple on assuming the Riemann Hypothesis and the Generalized Lindelöf Hypothesis
[2].

To see that this is also a useful choice of a mollifier for L(12 , χ), we consider the question
of constructing a mollifier of different shape rather than the familiar type (1). In view of
the discussion in the previous subsection, we want our Dirichlet polynomial to contain the
character χ and not to involve the root factor εχ. Informally we have

1

L(12 , χ)
=

L(12 , χ)

L(12 , χ)L(12 , χ)
=

∑
m1,m2,n≥1

µ(m2)µ(n)χ(m1m2)χ(n)
√
m1m2n

Q(m1,m2, n), (4)

for some certain smooth function Q(u, v, w). We note that (3) is a special case of (4) by
choosing

Q(u, v, w) = L−1(log u)Q[uvw].

Since (4) also covers the familiar mollifier (1), it is probable that studying the general mollifier
(4) would lead to better improvement.

Our Theorem 1.1 is a consequence of the following two theorems.
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Theorem 2.1. Suppose ϑ1, ϑ2 < 1. We have

S1(ψ) = ϕ+(q)

(
P (1) + ϑ2

2 Q1(1)

)
+O(qL−1+ε),

where

Q1(x) =

∫ x

0
Q(u)du.

Theorem 2.2. Suppose ϑ2 < ϑ1 <
1
2 . We have

S2(ψ) = λϕ+(q) +O(qL−1+ε),

where

λ = P (1)2 + 1
ϑ1

∫ 1

0
P ′(x)2dx− ϑ2P (1)Q1(1) + 2ϑ2

∫ 1

0
P
(
1− ϑ2(1−x)

ϑ1

)
Q(x)dx

+ϑ2
ϑ1

∫ 1

0
P ′
(
1− ϑ2(1−x)

ϑ1

)
Q(x)dx+ ϑ22

∫ 1

0
(1− x)Q(x)2dx+ ϑ2

2

∫ 1

0
(1− x)2Q′(x)2dx

−ϑ22
4 Q1(1)2 + ϑ2

4

∫ 1

0
Q(x)2dx.

Deduction of Theorem 1.1. We take ϑ1 = ϑ2 = 1
2 , Q(x) = 0.9x and

P (x) = 1.05x− 0.05x2.

These above theorems and (2) lead to Theorem 1.1.

2.3. Setting up. We collect the results in [10] to obtain

1

ϕ+(q)

∑
χ(mod q)

+
L(12 , χ)ψ1(χ) = P (1) +O(L−1+ε)

for 0 < ϑ1 < 1, and

1

ϕ+(q)

∑
χ(mod q)

+ ∣∣L(12 , χ)ψ1(χ)
∣∣2 = P (1)2 + 1

ϑ1

∫ 1

0
P ′(x)2dx+O(L−1+ε)

for 0 < ϑ1 <
1
2 . Hence we are left to consider

I =
∑

χ(mod q)

+
L(12 , χ)ψ2(χ), J1 =

∑
χ(mod q)

+ ∣∣L(12 , χ)|2ψ1(χ)ψ2(χ)

and

J2 =
∑

χ(mod q)

+ ∣∣L(12 , χ)ψ2(χ)
∣∣2.

2.4. Introducing the shifts. It is no more difficult to work with shifted moments. Instead
we will consider the following more general sums

I(α) =
∑

χ(mod q)

+
L(12 + α, χ)ψ2(χ), (5)

J1(α, β) =
∑

χ(mod q)

+
L(12 + α, χ)L(12 + β, χ)ψ1(χ)ψ2(χ) (6)

and

J2(α, β) =
∑

χ(mod q)

+
L(12 + α, χ)L(12 + β, χ)

∣∣ψ2(χ)
∣∣2. (7)
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Our main goal in the rest of the paper is to prove the following lemmas.

Lemma 2.1. Suppose ϑ2 < 1. Uniformly for α� L−1 we have

I(α) = ϕ+(q)

(
ϑ2

∫ 1

0
y−α(1−x)Q(x)dx− ϑ2

2 Q1(1)

)
+O(qL−1+ε).

Lemma 2.2. Suppose ϑ2 < ϑ1 <
1
2 . Uniformly for α, β � L−1 we have

J1(α, β) = ϕ+(q)
d2

dadb

{
ϑ2
ϑ1

∫ 1

0

∫ 1

0

∫ x

0
yβa1 yαb−βu2 (qya1y

b−u
2 )−(α+β)t

(
1 + ϑ1a+ ϑ2(b− u)

)
(8)

P
(
1− ϑ2(1−x)

ϑ1
+ a
)
Q(x− u+ b)dudxdt− ϑ2

2ϑ1

∫ 1

0

∫ 1

0
yβa1 yαb2 (qya1y

b
2)
−(α+β)t(1 + ϑ1a+ ϑ2b

)
P
(
1− ϑ2(1−x)

ϑ1
+ a
)
Q1(x+ b)dxdt

}∣∣∣∣
a=b=0

+O(qL−1+ε).

Lemma 2.3. Suppose ϑ2 <
1
2 . Uniformly for α, β � L−1 we have

J2(α, β) = ϕ+(q)
d2

dadb

{
ϑ2
2

∫ 1

0

∫ 1

0
yαb+βa2 (qya+b2 )−(α+β)t

(
1 + ϑ2(a+ b)

)
(1− x)2Q(x+ a)Q(x+ b)dxdt

+ϑ2

∫ 1

0

∫ 1

0

∫ x

0

∫ x

0
yαb+βa−αu−βv2 (qya+b−u−v2 )−(α+β)t(

1 + ϑ2(a+ b− u− v)
)
Q(x− u+ a)Q(x− v + b)dudvdxdt

−ϑ2
2

∫ 1

0

∫ 1

0

∫ x

0
yαb+βa−αu2 (qya+b−u2 )−(α+β)t

(
1 + ϑ2(a+ b− u)

)
Q(x− u+ a)Q1(x+ b)dudxdt

−ϑ2
2

∫ 1

0

∫ 1

0

∫ x

0
yαa+βb−βu2 (qya+b−u2 )−(α+β)t

(
1 + ϑ2(a+ b− u)

)
Q(x− u+ a)Q1(x+ b)dudxdt

+ϑ2
4

∫ 1

0

∫ 1

0
yαb+βa2 (qya+b2 )−(α+β)t

(
1 + ϑ2(a+ b)

)
Q1(x+ a)Q1(x+ b)dxdt

}∣∣∣∣
a=b=0

+O(qL−1+ε).

The following corollaries are direct consequences.

Corollary 2.1. Suppose ϑ2 < 1. We have

1

ϕ+(q)

∑
χ(mod q)

+
L(12 , χ)ψ2(χ) = ϑ2

2 Q1(1) +O(L−1+ε).

Corollary 2.2. Suppose ϑ2 < ϑ1 <
1
2 . We have

1

ϕ+(q)

∑
χ(mod q)

+ ∣∣L(12 , χ)
∣∣2ψ1(χ)ψ2(χ) = −ϑ2

2 P (1)Q1(1) + ϑ2

∫ 1

0
P
(
1− ϑ2(1−x)

ϑ1

)
Q(x)dx

+ ϑ2
2ϑ1

∫ 1

0
P ′
(
1− ϑ2(1−x)

ϑ1

)
Q(x)dx+O(L−1+ε).

Corollary 2.3. Suppose ϑ < 1
2 . We have

1

ϕ+(q)

∑
χ(mod q)

+ ∣∣L(12 , χ)ψ2(χ)
∣∣2 = ϑ22

∫ 1

0
(1− x)Q(x)2dx+ ϑ2

2

∫ 1

0
(1− x)2Q′(x)2dx

−ϑ22
4 Q1(1)2 + ϑ2

4

∫ 1

0
Q(x)2dx+O(L−1+ε).

Collecting these results, we obtain Theorem 2.1 and Theorem 2.2.
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3. Various lemmas

In this section we collect some preliminary results which we will use later.

Lemma 3.1. For (mn, q) = 1 we have∑
χ(mod q)

+
χ(m)χ(n) = 1

2

∑
q=dr
r|m±n

µ(d)ϕ(r).

Proof. This is standard. See, for example, Lemma 4.1 [4]. �

Lemma 3.2. Let

V (x) =
1

2πi

∫
(2)
es

2
x−s

ds

s
. (9)

Then for χ ∈ C+
q and any B > 0 we have

L( 1
2

+ α, χ) =
∑
m≥1

χ(m)

m1/2+α
V

(
m

q1+ε

)
+O(q−B).

Proof. Consider

A =
1

2πi

∫
(2)
Xses

2
L(12 + α+ s, χ)

ds

s
.

We move the line of integration to Re(s) = −N , crossing a simple pole at s = 0. On the new

contour, we use the decay of es
2

and the bound L(σ + it, χ)�
(
q(1 + |t|)

)1/2−σ
for σ < 0. In

doing so we obtain
A = L(12 + α, χ) +O(X−NqN ).

We now take X = q1+ε and choose N large enough with respect to ε. Finally expressing the
L-function in the integral as Dirichlet series we obtain the lemma. �

Lemma 3.3. Let

A (h, k) =
∑

χ(mod q)

+
L( 1

2
+ α, χ)χ(h)χ(k).

Then for (hk, q) = 1 and uniformly for α� L−1 we have

A (h, k) = ϕ+(q)
∑
mk=h

∗ 1

m1/2+α
V

(
m

q1+ε

)
+O(E1(h, k) + q−B), (10)

where E1(h, k) satisfies ∑
hk≤y

E1(h, k)√
hk

� (yq)1/2+ε.

Proof. In view of Lemma 3.1 and Lemma 3.2 we have

A (h, k) = 1
2

∑
q=dr

µ(d)ϕ(r)
∑

r|mk±h

∗ 1

m1/2+α
V

(
m

q1+ε

)
+O(q−B). (11)

The diagonal terms mk = h gives the main term visible in (10). All the other terms in (11)
contribute at most

E1(h, k) =
∑
mk 6=h

(mk ± h, q)√
m

∣∣∣∣V ( m

q1+ε

)∣∣∣∣.
Using the estimate V (x)� (1 + |x|)−1 one can easily show that∑

hk≤y

E1(h, k)√
hk

� (yq)1/2+ε.

The lemma follows. �
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Lemma 3.4. Let G(s) = es
2
p(s) and p(s) = (α+β)2−4s2

(α+β)2
. Let

W±α,β(x) =
1

2πi

∫
(2)
G(s)g±α,β(s)x−s

ds

s
, (12)

where

g+α,β(s) =
Γ(1/2+α+s2 )Γ(1/2+β+s2 )

Γ(1/2+α2 )Γ(1/2+β2 )
and g−α,β(s) =

Γ(1/2−α+s2 )Γ(1/2−β+s2 )

Γ(1/2+α2 )Γ(1/2+β2 )
.

Then for χ ∈ C+
q we have

L( 1
2

+ α, χ)L( 1
2

+ β, χ) =
∑
m,n≥1

χ(m)χ(n)

m1/2+αn1/2+β
W+
α,β

(
πmn

q

)

+

(
q

π

)−α−β ∑
m,n≥1

χ(m)χ(n)

m1/2−αn1/2−β
W−α,β

(
πmn

q

)
.

Proof. This is Lemma 4.2 in [4]. �

Lemma 3.5. Let

B(h, k) =
∑

χ(mod q)

+
L( 1

2
+ α, χ)L( 1

2
+ β, χ)χ(h)χ(k).

Then for (hk, q) = 1 and uniformly for α, β � L−1 we have

B(h, k) = ϕ+(q)

( ∑
mk=nh

∗ W+
α,β(πmnq )

m1/2+αn1/2+β
+

(
q

π

)−α−β ∑
mh=nk

∗ W−α,β(πmnq )

m1/2−αn1/2−β

)
+O(E2(h, k)), (13)

where E2(h, k) satisfies ∑
hk≤y

E2(h, k)√
hk

� (yq)1/2+ε.

Proof. In view of Lemma 3.1 and Lemma 3.4 we have

B(h, k) = 1
2

∑
q=dr

µ(d)ϕ(r)
∑

r|mk±nh

∗ W+
α,β(πmnq )

m1/2+αn1/2+β

+1
2

(
q

π

)−α−β∑
q=dr

µ(d)ϕ(r)
∑

r|mh±nk

∗ W−α,β(πmnq )

m1/2−αn1/2−β
. (14)

The diagonal terms mk = nh and mh = nk in the first and second sums on the right-hand side
of (14), respectively, give the main term visible in (13). All the other terms in (14) contribute
at most

E2(h, k) =
∑

mk 6=nh

(mk ± nh, q)√
mn

∣∣∣∣W±α,β(πmnq
)∣∣∣∣.

Using the estimate W±α,β(x)� (1 + |x|)−1 one can easily show that∑
hk≤y

E2(h, k)√
hk

� (yq)1/2+ε.

This completes the proof of the lemma. �
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Lemma 3.6. Suppose y2 ≤ y1, |z| � (log y1)
−1, and that F1 and F2 are smooth functions.

Then ∑
n≤y2

dk(n)

n

(
y2
n

)z
F1

(
log y1/n

log y1

)
F2

(
log y2/n

log y2

)

=
(log y2)

k

(k − 1)!

∫ 1

0
yzx2 (1− x)k−1F1

(
1− (1− x) log y2

log y1

)
F2(x)dx+O((log y2)

k−1).

Proof. This is Lemma 4.4 in [3]. �

Lemma 3.7. Suppose −1 ≤ σ ≤ 0. We have∑
n≤y

dk(n)

n

(
y

n

)σ
� (log y)k−1 min

{
|σ|−1, log y

}
.

Proof. This is Lemma 4.6 in [3]. �

3.1. Mellin transform pairs. Let P (x) =
∑

i≥1 aix
i and Q(x) =

∑
j≥1 bjx

j . We note the
Mellin transform pairs

P [h] =
∑
i≥1

aii!

(log y1)i
1

2πi

∫
(2)

yu1
ui+1

h−udu (15)

and

Q[h] =
∑
j≥1

bjj!

(log y2)j
1

2πi

∫
(2)

yu2
uj+1

h−udu. (16)

4. Evaluating I(α)

4.1. Reduction to a contour integral. We recall that I(α) is defined by (5). Writing out
the definition of M2(χ) we have

I(α) =
1

L

∑
hk≤y2

(log ∗µ)(h)µ(k)Q[hk]√
hk

∑
χ(mod q)

+
L( 1

2
+ α, χ)χ(h)χ(k).

By Lemma 3.3, we can write I(α) = I ′(α) +O((y2q)
1/2+ε), where

I ′(α) =
ϕ+(q)

L

∑
hk≤y2
mk=h

∗ (log ∗µ)(h)µ(k)Q[hk]√
hkm1/2+α

V

(
m

q1+ε

)
.

Using (16) and (9) we obtain

I ′(α) =
ϕ+(q)

L

∑
j≥1

bjj!

(log y2)j

(
1

2πi

)2 ∫
(2)

∫
(2)
es

2
q(1+ε)syu2

∑
mk=h1h2

∗ (log h1)µ(h2)µ(k)

(h1h2k)1/2+um1/2+α+s

ds

s

du

uj+1
.

The sum in the integrand is

− d

dγ

∑
mk=h1h2

∗ µ(h2)µ(k)

h
1/2+u+γ
1 (h2k)1/2+um1/2+α+s

∣∣∣∣
γ=0

.

Hence

I ′(α) = −ϕ
+(q)

L

∑
j≥1

bjj!

(log y2)j
∂

∂γ
I ′′(α, γ)

∣∣∣∣
γ=0

, (17)

where

I ′′(α, γ) =

(
1

2πi

)2 ∫
(2)

∫
(2)
es

2
q(1+ε)syu2

∑
mk=h1h2

∗ µ(h2)µ(k)

h
1/2+u+γ
1 (h2k)1/2+um1/2+α+s

ds

s

du

uj+1
.
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We note that here and throughout the paper, we take γ, γ1, γ2 ∈ C and γ, γ1, γ2 � L−1. Some
standard calculations give∑

mk=h1h2

∗ µ(h2)µ(k)

h
1/2+u+γ
1 (h2k)1/2+um1/2+α+s

= A(α, γ, u, s)
ζ(1 + α+ γ + u+ s)ζ(1 + 2u)

ζ(1 + γ + 2u)ζ(1 + α+ u+ s)
, (18)

where A(α, γ, u, s) is an arithmetical factor given by some Euler product that is absolutely
and uniformly convergent in some product of fixed half-planes containing the origin. We first
move the u-contour to Re(u) = δ, and then move the s-contour to Re(s) = −(1−ε/2)δ, where
δ > 0 is some fixed small constant such that the arithmetical factor converges absolutely. In
doing so we only cross a simple pole at s = 0. By bounding the integral by absolute values,
the contribution along the new line is

� q−(1+ε)(1−ε/2)δyδ2 � (y2q
−1)δ.

Thus

I ′′(α, γ) =
1

2πi

∫
(δ)
yu2A(α, γ, u, 0)

ζ(1 + α+ γ + u)ζ(1 + 2u)

ζ(1 + γ + 2u)ζ(1 + α+ u)

du

uj+1
+O(q−ε).

Moving the contour to Re(u) � L−1 and bounding the integral trivially show that I ′′(α, γ)�
Lj . Hence by the Cauchy theorem we have

∂

∂γ
I ′′(α, γ)

∣∣∣∣
γ=0

= K1(α) +K2(α) +O(Lj), (19)

where

K1(α) =
1

2πi

∫
(L−1)

yu2A(α, 0, u, 0)
ζ ′(1 + α+ u)

ζ(1 + α+ u)

du

uj+1

and

K2(α) = − 1

2πi

∫
(L−1)

yu2A(α, 0, u, 0)
ζ ′(1 + 2u)

ζ(1 + 2u)

du

uj+1
.

4.2. Evaluation of K1(α) and K2(α).

Lemma 4.1. With K11(α) and K12(α) defined above we have

K1(α) = −A(α, 0, 0, 0)(log y2)
j+1

j!

∫ 1

0
y
−α(1−x)
2 xjdx+O(Lj) (20)

and

K2(α) =
A(α, 0, 0, 0)(log y2)

j+1

2(j + 1)!
+O(Lj).

Proof. We shall illustrate the proof for K1(α). The case of K2(α) can be treated similarly.
By bounding the integral with absolute value we have K1(α)� Lj+1. Denote by K ′1(α) the

same integral as K1(α) but with A(α, 0, u, 0) being replaced by A(α, 0, 0, 0). Then we have
K1(α) = K ′1(α) +O(Lj). As in the proof of the prime number theorem, K ′1(α) is captured by
the residues at u = 0 and u = −α, with an error of size O((log y2)

−B) for arbitrarily large B.
Also, we can express the sum of the residues as

A(α, 0, 0, 0)
1

2πi

∮
yu2
ζ ′(1 + α+ u)

ζ(1 + α+ u)

du

uj+1
,

where the contour is a circle with radius � L−1 enclosing the origin. We note that this
is trivially bounded by O(Lj+1). Hence taking the first terms in the Taylor series of the
zeta-functions we obtain

K1(α) = −A(α, 0, 0, 0)
1

2πi

∮
yu2

du

(α+ u)uj+1
+O(Lj).
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We use the identity

1

α+ u
=

∫ 1

1/y2

tα+u−1dt+
y−α−u2

α+ u
,

which is valid for all complex numbers α, u. The contribution of the second term to the integral
is

−A(α, 0, 0, 0)y−α2

1

2πi

∮
du

(α+ u)uj+1
.

This integral can be seen to vanish by taking the contour to be arbitrarily large. Thus

K1(α) = −A(α, 0, 0, 0)

∫ 1

1/y2

tα
1

2πi

∮
(y2t)

u du

uj+1

dt

t
+O(Lj)

= −A(α, 0, 0, 0)

∫ 1

1/y2

tα
(log y2t)

j

j!

dt

t
+O(Lj).

We can write it in a compact form as in (20) after the substitution t = y
−(1−x)
2 . �

4.3. Deduction of Lemma 2.1. By Lemma 4.1, (19) and (17) we have

I ′(α) = ϕ+(q)A(α, 0, 0, 0)

(
ϑ2

∫ 1

0
y
−α(1−x)
2 Q(x)dx− ϑ2

2 Q1(1)

)
+O(qL−1+ε).

It is now sufficient to verify that A(0, 0, 0, 0) = 1. Taking α = γ = 0 and u = s in (18) we
have

A(0, 0, s, s) =
∑

mk=h1h2

∗ µ(h2)µ(k)

(h1h2km)1/2+s
= 1

for all s. This completes the proof of Lemma 2.1.

5. Evaluating J1(α, β)

5.1. Reduction to a contour integral. We recall that J1(α, β) is defined by (6). Writing
out the definitions of M1(χ) and M2(χ) we have

J1(α, β) =
1

L

∑
l≤y1
hk≤y2

µ(l)P [l](log ∗µ)(h)µ(k)Q[hk]√
lhk

∑
χ(mod q)

+
L( 1

2
+ α, χ)L(12 + β, χ)χ(lh)χ(k).

By Lemma 3.5, we can write J1(α, β) = J+
1 (α, β) + J−1 (α, β) +O((y1y2q)

1/2+ε), where

J+
1 (α, β) =

ϕ+(q)

L

∑
l≤y1
hk≤y2
mlh=nk

∗ µ(l)P [l](log ∗µ)(h)µ(k)Q[hk]√
lhkm1/2+αn1/2+β

W+
α,β

(
πmn

q

)

and

J−1 (α, β) =
ϕ+(q)

L

(
q

π

)−α−β ∑
l≤y1
hk≤y2
mk=nlh

∗ µ(l)P [l](log ∗µ)(h)µ(k)Q[hk]√
lhkm1/2−αn1/2−β

W−α,β

(
πmn

q

)
.

The treatments of J+
1 (α, β) and J−1 (α, β) are similar. In fact, it is easy to show that

J−1 (α, β) =
(
q−α−β +O(L−1)

)
J+
1 (−β,−α).
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Using (15), (16) and (12) we obtain

J+
1 (α, β) =

ϕ+(q)

L

∑
i,j≥1

aibji!j!

(log y1)i(log y2)j

(
1

2πi

)3 ∫
(2)

∫
(2)

∫
(2)
G(s)g+α,β(s)

(
q

π

)s
yu1y

v
2

∑
mlh=nk

∗ µ(l)(log ∗µ)(h)µ(k)

l1/2+u(hk)1/2+vm1/2+α+sn1/2+β+s
ds

s

du

ui+1

dv

vj+1
.

The sum in the integrand is

− d

dγ

∑
mlh1h2=nk

∗ µ(l)µ(h2)µ(k)

l1/2+uh
1/2+v+γ
1 (h2k)1/2+vm1/2+α+sn1/2+β+s

∣∣∣∣
γ=0

.

So

J+
1 (α, β) = −ϕ

+(q)

L

∑
i,j≥1

aibji!j!

(log y1)i(log y2)j
∂

∂γ
J ′1(α, β, γ)

∣∣∣∣
γ=0

,

where

J ′1(α, β, γ) =

(
1

2πi

)3 ∫
(2)

∫
(2)

∫
(2)
G(s)g+α,β(s)

(
q

π

)s
yu1y

v
2∑

mlh1h2=nk

∗ µ(l)µ(h2)µ(k)

l1/2+uh
1/2+v+γ
1 (h2k)1/2+vm1/2+α+sn1/2+β+s

ds

s

du

ui+1

dv

vj+1
.

Some standard calculations give∑
mlh1h2=nk

∗ µ(l)µ(h2)µ(k)

l1/2+uh
1/2+v+γ
1 (h2k)1/2+vm1/2+α+sn1/2+β+s

= (21)

B(α, β, γ, u, v, s)
ζ(1 + α+ β + 2s)ζ(1 + u+ v)ζ(1 + β + γ + v + s)ζ(1 + 2v)

ζ(1 + α+ v + s)ζ(1 + β + u+ s)ζ(1 + β + v + s)ζ(1 + γ + 2v)
,

where B(α, β, γ, u, v, s) is an arithmetical factor given by some Euler product that is absolutely
and uniformly convergent in some product of fixed half-planes containing the origin. We first
move the u-contour and v-contour to Re(u) = Re(v) = δ, and then move the s-contour to
Re(s) = −(1 − ε)δ, where δ, ε > 0 are some fixed small constants such that the arithmetical
factor converges absolutely and ϑ1 + ϑ2 < 1 − ε. In doing so we only cross a simple pole at
s = 0. Note that the simple pole at s = −(α + β)/2 of ζ(1 + α + β + 2s) has been cancelled
out by the factor G(s). By bounding the integral by absolute values, the contribution along
the new line is

� q−(1−ε)δ(y1y2)
δ � q(−1+ε+ϑ1+ϑ2)δ.

Thus

J ′1(α, β, γ) =

(
1

2πi

)2 ∫
(δ)

∫
(δ)
yu1y

v
2B(α, β, γ, u, v, 0)

ζ(1 + α+ β)ζ(1 + u+ v)ζ(1 + β + γ + v)ζ(1 + 2v)

ζ(1 + α+ v)ζ(1 + β + u)ζ(1 + β + v)ζ(1 + γ + 2v)

du

ui+1

dv

vj+1
+O(q−ε).

We now take the derivative with respect to γ and set γ = 0. We first note that by moving
the contours to Re(w1) = Re(w2) � L−1 and bounding the integral with absolute values, we
get J ′1(α, β, γ)� Li+j . Hence by the Cauchy theorem

∂

∂γ
J ′1(α, β, γ)

∣∣∣∣
γ=0

= ζ(1 + α+ β)

(
L11(α, β) + L12(α, β)

)
+O(Li+j), (22)
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where

L11(α, β) =

(
1

2πi

)2 ∫
(L−1)

∫
(L−1)

yu1y
v
2B(α, β, 0, u, v, 0)ζ(1 + u+ v)

1

ζ(1 + β + u)

ζ ′(1 + β + v)

ζ(1 + α+ v)ζ(1 + β + v)

du

dui+1

dv

dvj+1

and

L12(α, β) = −
(

1

2πi

)2 ∫
(L−1)

∫
(L−1)

yu1y
v
2B(α, β, 0, u, v, 0)ζ(1 + u+ v)

1

ζ(1 + β + u)

ζ ′(1 + 2v)

ζ(1 + α+ v)ζ(1 + 2v)

du

dui+1

dv

dvj+1
.

5.2. Evaluation of L11(α, β) and L12(α, β).

Lemma 5.1. With L11(α, β) and L12(α, β) defined above we have

L11(α, β) = −(log y1)
i−1(log y2)

j+1

∫ 1

0

∫ x

0
y−βu2

(
β(log y1)(1− ϑ2(1−x)

ϑ1
)i

i!
+

(1− ϑ2(1−x)
ϑ1

)i−1

(i− 1)!

)
(
α(log y2)(x− u)j

j!
+

(x− u)j−1

(j − 1)!

)
dudx+O(Li+j−1) +O(Li−1+ε) (23)

and

L12(α, β) =
(log y1)

i−1(log y2)
j+1

2

∫ 1

0

(
β(log y1)(1− ϑ2(1−x)

ϑ1
)i

i!
+

(1− ϑ2(1−x)
ϑ1

)i−1

(i− 1)!

)
(
α(log y2)x

j+1

(j + 1)!
+
xj

j!

)
dx+O(Li+j−1) +O(Li−1+ε).

Proof. We shall illustrate the proof for L11(α, β). The case of L12(α, β) can be treated simi-
larly.

This is more intricate than the previous section. We cannot move the contours into the
critical strip due to the pole of ζ(1 + u+ v) at u = −v. We will need to separate the variables
u and v first.

Note that by bounding the integral with absolute values, we get L11(α, β) � Li+j . We
denote by L′11(α, β) the same integral as L11(α, β) but with B(α, β, 0, u, v, 0) being replaced
by B(α, β, 0, 0, 0, 0). Then we have L11(α, β) = L′11(α, β) + O(Li+j−1). We will later check
that B(0, 0, 0, 0, 0, 0) = 1 (see the end of the section), a result we will use freely from now on.

Changing the orders of summation and integration we get

L′11(α, β) =
∑
n≤y2

1

n
N11N12, (24)

where

N11 =
1

2πi

∫
(L−1)

(
y1
n

)u 1

ζ(1 + β + u)

du

ui+1

and

N12 =
1

2πi

∫
(L−1)

(
y2
n

)v ζ ′(1 + β + v)

ζ(1 + α+ v)ζ(1 + β + v)

dv

vj+1
.

We have restricted the summation in (24) to n ≤ y2 by moving the v-contour far to the right
otherwise.

We first work on N11. We note that since n ≤ y2, we have log y1/n ≥ (ϑ1− ϑ2)L. Hence as
in Lemma 4.1, the prime number theorem shows that N11 is captured by the residue at u = 0,
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with an error of size O(L−B) for arbitrarily large B. Taking the first term in the Taylor series
of the zeta-function and using the trivial bound lead to

N11 =
1

2πi

∮ (
y1
n

)u
(β + u)

du

ui+1
+O(Li−2).

Thus

N11 =

(
β(log y1/n)i

i!
+

(log y1/n)i−1

(i− 1)!

)
+O(Li−2).

We next evaluate N12. This is more subtle since an error term of size O(1) is not sufficient
for our purpose. Let X = o(q) be a large parameter which we will specify later. We define
the line segments

Γ1 = {w = δ1 + it : |t| ≥ X},
Γ2 = {w = σ ± iX : −c

logX ≤ σ ≤ δ1}
and

Γ3 = {w = −c
logX + it : |t| ≤ X},

where δ1 � L−1, and c is some fixed positive constant such that ζ(1 + α+ v)ζ(1 + β + v) has
no zeros, and 1/ζ(σ + it) � log(2 + |t|) in the region on the right hand side of the contour
determined by

⋃
Γi (see Theorem 3.11 [16]). By Cauchy’s theorem we have

N12 = Resv=0 + Resv=−β +R1 +R2 +R3,

where R1, R2 and R3 are the contributions along Γ1, Γ2 and Γ3, respectively. We have

R1 � (logX)2/Xj � X−j+ε, R2 � (logX)2/Xj+1 � X−j−1+ε

and

R3 � (logX)j+2

(
y2
n

)−c/ logX
.

We choose X � L and obtain an error of size O(L−j+ε) + O((y2n )−νLε), for some ν �
(log log q)−1.

Now the sum of the residues can be written as

1

2πi

∮ (
y2
n

)v ζ ′(1 + β + v)

ζ(1 + α+ v)ζ(1 + β + v)

dv

vj+1
,

where the contour is a circle with radius � L−1 enclosing the origin. This integral is trivially
bounded by O(Lj). Hence by taking the first terms in the Taylor series of the zeta-functions
we get

N12 = − 1

2πi

∮ (
y2
n

)v (α+ v)

(β + v)

dv

vj+1
+O(Lj−1) +O

((
y2
n

)−ν
Lε
)
.

We use the identity
1

β + v
=

∫ 1

n/y2

tβ+v−1dt+
(y2/n)−β−v

β + v
.

The contribution of the second term is

−
(
y2
n

)−β 1

2πi

∮
(α+ v)

(β + v)

dv

vj+1
.

For j ≥ 1, this can be seen to vanish by taking the contour to be arbitrarily large. Thus

N12 = −
∫ 1

n/y2

tβ
1

2πi

∮ (
y2t

n

)v
(α+ v)

dv

vj+1

dt

t
+O(Lj−1) +O

((
y2
n

)−ν
Lε
)

= −
∫ 1

n/y2

tβ
(
α(log y2t/n)j

j!
+

(log y2t/n)j−1

(j − 1)!

)
dt

t
+O(Lj−1) +O

((
y2
n

)−ν
Lε
)
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Changing the variable t = (y2/n)−(1−u) we obtain

N12 = −
(

log
y2
n

)∫ 1

0

(
y2
n

)−β(1−u)(α(u log y2/n)j

j!
+

(u log y2/n)j−1

(j − 1)!

)
du

+O(Lj−1) +O

((
y2
n

)−ν
Lε
)
.

Collecting the evaluations of N11 and N12 we get

N11N12 = −
(

log
y2
n

)(
β(log y1/n)i

i!
+

(log y1/n)i−1

(i− 1)!

)
∫ 1

0

(
y2
n

)−β(1−u)(α(u log y2/n)j

j!
+

(u log y2/n)j−1

(j − 1)!

)
du

+O(Li+j−2) +O

((
y2
n

)−ν
Li−1+ε

)
.

By Lemma 3.7, the contribution of the O-terms to L′11(α, β) in (24) is

� O(Li+j−1) +O(Li−1+ε).

For the main term, we use Lemma 3.6. Simplifying we obtain (23). �

5.3. Simplification. We collect the evaluations of L11(α, β) and L12(α, β) to obtain

J+
1 (α, β) =

ϑ2ϕ
+(q)ζ(1 + α+ β)

ϑ1L
J ′′1 (α, β) +O(qL−1+ε),

where J ′′1 (α, β) is equal to∫ 1

0

∫ x

0
y−βu2

(
β(log y1)P

(
1− ϑ2(1−x)

ϑ1

)
+ P ′

(
1− ϑ2(1−x)

ϑ1

))(
α(log y2)Q(x− u) +Q′(x− u)

)
dudx

−1
2

∫ 1

0

(
β(log y1)P

(
1− ϑ2(1−x)

ϑ1

)
+ P ′

(
1− ϑ2(1−x)

ϑ1

))(
α(log y2)Q1(x) +Q(x)

)
dx.

We write this in a more compact form as

J+
1 (α, β) =

ϕ+(q)ζ(1 + α+ β)

L

d2

dadb

{
ϑ2
ϑ1

∫ 1

0

∫ x

0
yβa1 yαb−βu2 P

(
1− ϑ2(1−x)

ϑ1
+ a
)
Q(x− u+ b)dudx

− ϑ2
2ϑ1

∫ 1

0
yβa1 yαb2 P

(
1− ϑ2(1−x)

ϑ1
+ a
)
Q1(x+ b)dudx

}∣∣∣∣
a=b=0

+O(qL−1+ε).

Next we combine J+
1 (α, β) and J−1 (α, β). We recall that essentially J−1 (α, β) =

(
q−α−β +

O(L−1)
)
J+
1 (−β,−α). Writing

U(α, β;u) =
yβa1 yαb−βu2 − q−α−βy−αa1 y−βb+αu2

α+ β
.

Using the integral formula

1− z−α−β

α+ β
= (log z)

∫ 1

0
z−(α+β)tdt, (25)

we have

U(α, β;u) = Lyβa1 yαb−βu2

(
1 + ϑ1a+ ϑ2(b− u)

) ∫ 1

0
(qya1y

b−u
2 )−(α+β)tdt.

Simplifying we obtain (8).
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Finally we need to verify that B(0, 0, 0, 0, 0, 0) = 1. Letting α = β = γ = 0 and u = v = s
in (21) we have

B(0, 0, 0, s, s, s) =
∑

mlh1h2=nk

∗ µ(l)µ(h2)µ(k)

(mnlh1h2k)1/2+s
= 1,

for all s. This completes the proof of Lemma 2.2.

6. Evaluating J2(α, β)

6.1. Reduction to a contour integral. We recall that J2(α, β) is defined by (7). Writing
out the definition of M2(χ) we have

J2(α, β) =
1

L2

∑
h1k1,h2k2≤y2

(log ∗µ)(h1)µ(k1)Q[h1k1](log ∗µ)(h2)µ(k2)Q[h2k2]√
h1k1h2k2∑

χ(mod q)

+
L( 1

2
+ α, χ)L(12 + β, χ)χ(h2k1)χ(h1k2).

By Lemma 3.5, we can write J2(α, β) = J+
2 (α, β) + J−2 (α, β) +O((y22q)

1/2+ε), where

J+
2 (α, β) =

ϕ+(q)

L2

∑
h1k1,h2k2≤y2
mh2k1=nh1k2

∗ (log ∗µ)(h1)µ(k1)Q[h1k1](log ∗µ)(h2)µ(k2)Q[h2k2]√
h1k1h2k2m1/2+αn1/2+β

W+
α,β

(
πmn

q

)

and J−2 (α, β) is equal to

ϕ+(q)

L2

(
q

π

)−α−β ∑
h1k1,h2k2≤y2
mh1k2=nh2k1

∗ (log ∗µ)(h1)µ(k1)Q[h1k1](log ∗µ)(h2)µ(k2)Q[h2k2]√
h1k1h2k2m1/2−αn1/2−β

W−α,β

(
πmn

q

)
.

Using (16) and (12) we obtain

J+
2 (α, β) =

ϕ+(q)

L2

∑
i,j≥1

bibji!j!

(log y2)i+j

(
1

2πi

)3 ∫
(2)

∫
(2)

∫
(2)
G(s)g+α,β(s)

(
q

π

)s
yu+v2

∑
mh2k1=nh1k2

∗ (log ∗µ)(h1)µ(k1)(log ∗µ)(h2)µ(k2)

(h1k1)1/2+u(h2k2)1/2+vm1/2+α+sn1/2+β+s
ds

s

du

ui+1

dv

vj+1
.

The sum in the integrand is

d2

dγ1dγ2

∑
ml2h2k1=nl1h1k2

∗ µ(h1)µ(h2)µ(k1)µ(k2)

l
1/2+u+γ1
1 l

1/2+v+γ2
2 (h1k1)1/2+u(h2k2)1/2+vm1/2+α+sn1/2+β+s

∣∣∣∣
γ1=γ2=0

.

As in the previous sections, up to an arithmetical factor C(α, β, γ1, γ2, u, v, s), the sum in the
integral is

ζ(1 + α+ β + 2s)ζ(1 + α+ γ1 + u+ s)ζ(1 + β + γ2 + v + s)ζ(1 + γ1 + γ2 + u+ v)

ζ(1 + α+ u+ s)ζ(1 + α+ v + s)ζ(1 + γ1 + u+ v)ζ(1 + γ2 + u+ v)

× ζ(1 + 2u)ζ(1 + 2v)ζ2(1 + u+ v)

ζ(1 + β + u+ s)ζ(1 + β + v + s)ζ(1 + γ1 + 2u)ζ(1 + γ2 + 2v)
.

Here C(α, β, γ1, γ2, u, v, s) is an arithmetical factor given by some Euler product that is ab-
solutely and uniformly convergent in some product of fixed half-planes containing the origin.
Again we first move the u-contour and v-contour to Re(u) = Re(v) = δ, and then move the
s-contour to Re(s) = −(1 − ε)δ, where δ, ε > 0 are some fixed small constants such that the
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arithmetical factor converges absolutely and 2ϑ2 < 1− ε. In doing so we only cross a simple
pole at s = 0 and the contribution along the new line is O(q−ε). We denote

J ′2(α, β, γ1, γ2) =

(
1

2πi

)2 ∫
(δ)

∫
(δ)
yu+v2 C(α, β, γ1, γ2, u, v, 0)

ζ(1 + γ1 + γ2 + u+ v)ζ2(1 + u+ v)

ζ(1 + γ1 + u+ v)ζ(1 + γ2 + u+ v)

ζ(1 + α+ β)ζ(1 + α+ γ1 + u)ζ(1 + β + γ2 + v)ζ(1 + 2u)ζ(1 + 2v)

ζ(1 + α+ u)ζ(1 + α+ v)ζ(1 + β + u)ζ(1 + β + v)ζ(1 + γ1 + 2u)ζ(1 + γ2 + 2v)

du

ui+1

dv

vj+1
,

so that

J+
2 (α, β) =

ϕ+(q)

L2

∑
i,j≥1

bibji!j!

(log y2)i+j
∂2

∂γ1∂γ2
J ′2(α, β, γ1, γ2)

∣∣∣∣
γ1=γ2=0

+O(q1−ε).

We now take the derivative with respect to γ1, γ2 and set γ1 = γ2 = 0. We first note that
by moving the contours to Re(u) = Re(v) � L−1 and bounding the integral with absolute
values, we get J ′2(α, β, γ1, γ2)� Li+j . Hence by the Cauchy theorem

∂2

∂γ1∂γ2
J ′2(α, β, γ1, γ2)

∣∣∣∣
γ1=γ2=0

= ζ(1 + α+ β)

(
L21(α, β) + L22(α, β)

)
+O(Li+j+1),

where

L21(α, β) =

(
1

2πi

)2 ∫ ∫
(L−1)

yu+v2 C(α, β, 0, 0, u, v, 0)(
ζ ′′(1 + u+ v)− ζ ′(1 + u+ v)2

ζ(1 + u+ v)

)
1

ζ(1 + β + u)ζ(1 + α+ v)

du

ui+1

dv

vj+1

and

L22(α, β) =

(
1

2πi

)2 ∫ ∫
(L−1)

yu+v2 C(α, β, 0, 0, u, v, 0)ζ(1 + u+ v)(
ζ ′(1 + α+ u)

ζ(1 + α+ u)ζ(1 + β + u)
− ζ ′(1 + 2u)

ζ(1 + β + u)ζ(1 + 2u)

)
(

ζ ′(1 + β + v)

ζ(1 + α+ v)ζ(1 + β + v)
− ζ ′(1 + 2v)

ζ(1 + α+ v)ζ(1 + 2v)

)
du

ui+1

dv

vj+1
.

6.2. Evaluation of L21(α, β) and L22(α, β).

Lemma 6.1. With L21(α, β) defined above we have

L21(α, β) =
(log y2)

i+j+1

2

d2

dadb

∫ 1

0
yαb+βa2 (1− x)2

(x+ a)i

i!

(x+ b)j

j!
dx

∣∣∣∣
a=b=0

+O(Li+j) +O(Li+ε) +O(Lj+ε).

Lemma 6.2. With L22(α, β) defined above we have

L22(α, β) = (log y2)
i+j+1 d2

dadb

{∫ 1

0

∫ x

0

∫ x

0
yαb+βa−αu−βv2

(x− u+ a)i

i!

(x− v + b)j

j!
dudvdx

−1
2

∫ 1

0

∫ x

0
yαb+βa−αu2

(x− u+ a)i

i!

(x+ b)j+1

(j + 1)!
dudx (26)

−1
2

∫ 1

0

∫ x

0
yαa+βb−βu2

(x+ b)i+1

(i+ 1)!

(x− u+ a)j

j!
dudx

+1
4

∫ 1

0
yαb+βa2

(x+ a)i+1

(i+ 1)!

(x+ b)j+1

(j + 1)!
dx

}∣∣∣∣
a=b=0

+O(Li+j) +O(Li+ε) +O(Lj+ε).
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Proof. We shall illustrate the proof for L22(α, β). The case of L21(α, β) can be treated simi-
larly.

We first note that by bounding the integral with absolute values, we get L22(α, β)� Li+j+1.
We denote by L′22(α, β) the same integral as L22(α, β) but with C(α, β, 0, 0, u, v, 0) being
replaced by C(α, β, 0, 0, 0, 0, 0). Then we have L22(α, β) = L′22(α, β) +O(Li+j). We will later
check that C(0, 0, 0, 0, 0, 0, 0) = 1 (see the end of the section), a result we will use freely from
now on.

Changing the orders of summation and integration we have

L′22(α, β) =
∑
n≤y2

1

n
N2(α, β, i)N2(β, α, j), (27)

where

N2(α, β, i) =
1

2πi

∫
(L−1)

(
y2
n

)u( ζ ′(1 + α+ u)

ζ(1 + α+ u)ζ(1 + β + u)
− ζ ′(1 + 2u)

ζ(1 + β + u)ζ(1 + 2u)

)
du

ui+1
.

This integral has been implicitly evaluated in the proof of Lemma 5.1. Collecting the infor-
mation from that we get

N2(α, β, i) = −
(

log
y2
n

)∫ 1

0

(
y2
n

)−α(1−u)(β(u log y2/n)i

i!
+

(u log y2/n)i−1

(i− 1)!

)
du

+1
2

(
β(log y2/n)i+1

(i+ 1)!
+

(log y2/n)i

i!

)
+O(Li−1) +O

((
y2
n

)−ν
Lε
)
.

Hence

N2(α, β, i)N2(β, α, j) = N21+N22+N23+N24+O(Li+j−1)+O

((
y2
n

)−ν
Li+ε

)
+O

((
y2
n

)−ν
Lj+ε

)
,

where

N21 =

(
log

y2
n

)2 ∫ 1

0

∫ 1

0

(
y2
n

)−α(1−u)−β(1−v)(β(u log y2/n)i

i!
+

(u log y2/n)i−1

(i− 1)!

)
(
α(v log y2/n)j

j!
+

(v log y2/n)j−1

(j − 1)!

)
dudv

N22 = −1
2

(
log

y2
n

)∫ 1

0

(
y2
n

)−α(1−u)(β(u log y2/n)i

i!
+

(u log y2/n)i−1

(i− 1)!

)
(
α(log y2/n)j+1

(j + 1)!
+

(log y2/n)j

j!

)
du

N23 = −1
2

(
log

y2
n

)∫ 1

0

(
y2
n

)−β(1−v)(β(log y2/n)i+1

(i+ 1)!
+

(log y2/n)i

i!

)
(
α(v log y2/n)j

j!
+

(v log y2/n)j−1

(j − 1)!

)
dv,

and

N24 = 1
4

(
β(log y2/n)i+1

(i+ 1)!
+

(log y2/n)i

i!

)(
α(log y2/n)j+1

(j + 1)!
+

(log y2/n)j

j!

)
.

By Lemma 3.7, the contribution of the O-terms to L′22(α, β) in (27) is

� O(Li+j) +O(Li+ε) +O(Lj+ε).

For the main terms, we use Lemma 3.6. Simplifying we obtain (26). �
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6.3. Simplification. We collect the evaluations of L21(α, β) and L22(α, β) and have

J+
2 (α, β) =

ϑ2ϕ
+(q)ζ(1 + α+ β)

L
J ′′2 (α, β) +O(qL−1+ε),

where

J ′′2 (α, β) =
d2

dadb

{
1
2

∫ 1

0
yαb+βa2 (1− x)2Q(x+ a)Q(x+ b)dx

+

∫ 1

0

∫ x

0

∫ x

0
yαb+βa−αu−βv2 Q(x− u+ a)Q(x− v + b)dudvdx

−1
2

∫ 1

0

∫ x

0
yαb+βa−αu2 Q(x− u+ a)Q1(x+ b)dudx

−1
2

∫ 1

0

∫ x

0
yαa+βb−βu2 Q(x− u+ a)Q1(x+ b)dudx+ 1

4

∫ 1

0
yαb+βa2 Q1(x+ a)Q1(x+ b)dx

}∣∣∣∣
a=b=0

.

Next we combine J+
2 (α, β) and J−2 (α, β). Essentially we have J−2 (α, β) =

(
q−α−β +

O(L−1)
)
J+
2 (−β,−α). We proceed as in the previous section. Writing

V (α, β;u, v) =
yαb+βa−αu−βv2 − q−α−βy−βb−αa+βu+αv2

α+ β
.

Using (25) we get

V (α, β;u, v) = Lyαb+βa−αu−βv2

(
1 + ϑ2(a+ b− u− v)

) ∫ 1

0
(qya+b−u−v2 )−(α+β)tdt.

Simplifying we obtain Lemma 2.3.
Finally we need to verify that C(0, 0, 0, 0, 0, 0, 0) = 1. Taking α = β = γ1 = γ2 = 0 and

u = v = s we have

C(0, 0, 0, 0, s, s, s) =
∑

ml2h2k1=nl1h1k2

∗ µ(h1)µ(h2)µ(k1)µ(k2)

(mnl1l2h1h2)1/2+s
= 1,

for all s. This completes the proof of Lemma 2.3.
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