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Abstract

We prove that in the transitive case the obstruction to the integrability of a Lie
algebroid coincides with the lifting obstruction of a crossed module of Lie groupoids
associated naturally with the given Lie algebroid. Then we investigate the generalisation
of this result for extensions of transitive Lie algebroids, giving explicitly the corresponding
lifting obstruction and classifying the lifts in case the obstruction vanishes.
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1 Introduction

Lie algebroids can be thought of as generalisations of the notion of the tangent bundle of a
manifold. More formally, they are vector bundles whose module of sections is equipped with
a Lie bracket, preserved by a certain morphism of vector bundles with values in the tangent
bundle of the base, which is called the anchor. Their global counterparts are Lie groupoids,
and roughly speaking these can be thought of as categories where every arrow is invertible,
plus a suitable smooth structure. Formal definitions to both notions can be easily found in
the literature, for example in [11]. They both have profound importance in geometry, as they
provide the framework for the development of various areas, such as symplectic and Poisson
geometry, quantization, foliation theory, and non commutative geometry.

Many of the results on the above areas of geometry stem from the relation between Lie
algebroids and Lie groupoids. For example it is often possible to realise a singular foliation
on a manifold as the image of the anchor map of a certain Lie algebroid (not always though!).
This gives a description of the foliation on the infinitesimal level, and if the algebroid arises
from a Lie groupoid, then it is also possible to realise the integral submanifolds of the foliation
as the orbits of this groupoid. This method finds extensive use in the process of quantization;
the cotangent bundle of a given Poisson manifold is an algebroid and it realises its symplectic
foliation on the infinitesimal level. If it is integrable then the orbits of the induced groupoid
are exactly the symplectic leaves.

The construction of one given the other resembles the corresponding constructions for Lie
algebras and Lie groups, but in the "-oid" case it is not always possible to apply Lie’s third
theorem. The obstructions to the integrability of a general Lie algebroid were given in [7] by
Crainic and Fernandes. In this paper we focus on the transitive case; that is those algebroids
whose anchor map is surjective, therefore the foliation they define on the base manifold has
only one leaf. This category includes important examples, such as the algebroid associated
with a symplectic manifold and the Atiyah sequence of a principal bundle. Moreover, the
restriction of any Lie algebroid to a leaf of the corresponding foliation is transitive.

The transtitive case was examined thoroughly by Mackenzie in [11]. The account given there
brings to the foreground the fact that such "-oids" are in fact short exact sequences. More
precisely, any transitive Lie algebroid A over a manifold M can be written as an extension
of Lie algebroids

L >−−−> A
ρ

−−−� TM (1)

where ρ is the anchor map with kernel the Lie algebra bundle L over M . The notion of
transitivity for a groupoid Ω over M is exactly that there exists an arrow in Ω over any two
given points in M . This implies that Ω can be written as an exact sequence of groupoids

F >−−−> Ω
(t,s)
−−−�M ×M, (2)

where t and s are the maps associating to every arrow in Ω its target and source in M
respectively. Moreover, in [11] the integrability obstruction was given. For a transitive Lie
algebroid A over a simply connected case, this is a certain element of Ȟ2(M,ZG̃) , where
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G̃ is the connected and simply connected Lie group integrating the fiber of the Lie algebra
bundle L .

On the other hand, extensions such as the above give rise to crossed modules. This notion was
introduced by Whitehead in [15] in the context of groups, and was used in the classification
of extensions of Lie groups to circumvent the problem that the inner automorphism group
may not be closed in the group of full automorphisms. A small reference to this is given
in the introduction to section 3 of this paper. Later, Brown et al ([6], [4], [5]) used crossed
modules in the context of groupoids and pointed out their relation with double structures.
Last, Mackenzie in [12] used crossed modules to show that it is possible to classify principal
bundles by Čech cohomology with abelian coefficients, which is computable in all cases.

The main aim of this paper is to give a different interpretation to the integrability obstruction
of a transitive Lie algebroid. Namely, we show that every transitive Lie algebroid (1) gives
rise to the Lie algebroid version of the notion of a crossed module which always integrates to
a crossed module of Lie groupoids. Then we show that the integrability obstruction is exactly
the obstruction to this crossed module to arise from an extension (2). This approach to the
meaning of the integrability obstruction can be traced to the integration of Lie algebras given
by Van Est, expressing them as abelian extensions of Lie algebras. On the other hand, crossed
modules seem to provide a suitable framework for the handling of non-abelian problems, and
this exposition of the integrability obstruction aims to enhance this point of view.

After the account on the integrability obstruction, we extend these ideas to general extensions
of transitive Lie algebroids. To this end, we use the notion of a PBG structure, introduced by
Mackenzie in [10]. It was shown there that such extensions correspond to a single transitive
Lie algebroid plus a certain group action. This calls for an equivariant version of our previous
results. In particular, it suffices to give an equivariant form of the lifting of a crossed module
described in [12]. Such a generalisation is not immediate, because the methods used there
involve Čech cohomology cocycles, and an equivariant version of this particular cohomology
does not exist in general. We show that the isometablic cohomology developed in [2] is suitable
for this purpose.

This paper is structured as follows: Sections 2 to 4 are concerned with the relation of the
integrability obstruction with the lifting obstruction of crossed modules. In section 2 we
postulate the notion of a crossed module for Lie algebroids, and show that it is a generalisation
of the notion of a coupling used in [11]. In section 3 we recall crossed modules of transitive
Lie groupoids and show that they differentiate to the ones we defined on the algebroid level.
We also investigate the nature of the lifting obstruction for crossed modules of Lie groupoids
which arise from extensions of Lie algebroids. Section 4 identifies the integrability obstruction
with the lifting obstruction of a certain crossed module of Lie groupoids arising naturally from
the given Lie algebroid.

The remaining sections give the generalisation of Mackenzie’s results in [12] to any exten-
sion of transitive Lie groupoids. Section 5 is an account of the PBG version of the crossed
modules on the algebroid level and section 6 deals with the groupoid level. The full details
of the differentiation and integration procedure (when possible) for crossed modules of PBG
structures is also given there. In section 7 we give a classification for PBG-groupoids which
is a reformulation of the one given in [2], and can be used for the purpose of this paper. This
classification clearly differentiates to the classification of transitive Lie algebroids given by
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Mackenzie in [11]. Finally, sections 8 and 9 prove the corresponding results of [12] for crossed
modules of PBG-groupoids.
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2 Crossed modules and couplings of Lie algebroids

We begin with the notion of a crossed module on the infinitesimal level in this section. It will
be proven that it generalises the notion of coupling used by Mackenzie in [11].

Definition 2.1 A crossed module of Lie algebroids over the manifold M is a quadruple
(K, ∂,A, ρ) where K −→ M is a Lie algebra bundle, A −→ M is a transitive Lie algebroid,
∂ : K −→ A is a morphism of Lie algebroids and ρ : A −→ CDO[K] is a representation of
A in K such that:

(i). ρ(∂(V ))(W ) = [V,W ] for all V,W ∈ ΓK and

(ii). ∂(ρ(X)(V )) = [X, ∂(V )] for all X ∈ ΓA, V ∈ ΓK .

Since ∂ is a morphism of Lie algebroids, we have a ◦ ∂ = 0 , where a is the anchor of A . So
im(∂) lies entirely in the adjoint bundle L of A . Regarding ∂ temporarily as a morphism
of Lie algebra bundles, condition (ii) is equivariance with respect to ρ and the adjoint action
of A on L . It is therefore of locally constant rank (see [11, IV 1.14]), and so has a kernel
Lie algebra bundle which we denote ker ∂ . Condition (i) now ensures that ker ∂ lies in ZK .
Likewise, the quotient Lie algebroid A/ im(∂) exists and is a Lie algebroid over M (see [11,
IV§1]). This is called the cokernel of the crossed module, and we usually denote it A . All
this is described in figure 1:

Notice that ρ induces a representation of A on the vector bundle ker ∂ , denoted ρker ∂ , by

ρker ∂(X)(V ) = ρ(X)(V ).

This is well defined because if we consider X,Y ∈ ΓA such that X = Y ∈ A , then there is a
W ∈ ΓK such that X = Y + ∂(W ) . So

ρ(X)(V ) = ρ(Y )(V ) + ρ(∂(W ))(V ) == ρ(Y )(V ) + [W,V ] = ρ(Y )(V )

since ker ∂ ⊆ ZK .
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ker ∂

ρ : A → CDO[K]

K
↓

?

im(∂)

∂

↓↓
- → A

\
� A/ im(∂) = A

Figure 1:

Throughout the rest of the paper we will be working with crossed modules with fixed cokernel,
as well as fixed K and ker ∂ . Two such crossed modules (K, ∂,A, ρ) and (K, ∂′, A′, ρ′) are
equivalent if there is a morphism of Lie algebroids θ : A −→ A′ such that θ ◦ ∂ = ∂ , \ ◦ θ = \′

and ρ′ ◦ θ = ρ . The 3–lemma then shows that every such morphism is an isomorphism of Lie
algebroids. From now on, every time we mention a crossed module of Lie algebroids we will
refer to its equivalence class and denote it by 〈K, ∂,A, ρ〉 .

There are three special types of crossed modules particularly worth noting. First of all,
crossed modules of Lie algebroids with trivial kernel. These are merely extensions of Lie

algebroids K
∂

>−−−> A
\

−−−� A/K where K ⊆ L is an ideal of A , and the representation
ρ of A in K is the restriction to K of the adjoint representation of A on L . Namely,
∂(ρ(X)(V )) = adX(∂(V )) for all X ∈ ΓA and V ∈ ΓK . We will also frequently need crossed
modules for which the kernel is exactly the centre of K and crossed modules for which the
cokernel is the tangent bundle TM .

Definition 2.2 A crossed module of Lie algebroids 〈K, ∂,A, ρ〉 over the manifold M is called

(i). a coupling crossed module if ker ∂ = ZK ;

(ii). a pair crossed module if coker ∂ = TM .

If both ker ∂ = ZK and coker ∂ = TM , then 〈K, ∂,A, ρ〉 is called a coupling pair crossed
module.

We usually regard a coupling crossed module as a structure on the cokernel; if coker(∂) = A
we say that 〈K, ∂,A, ρ〉 is a coupling crossed module of A with K .

The notion of coupling crossed module is equivalent to the concept of coupling of Lie alge-
broids, introduced in [11, IV 3.2] as the Lie algebroid form of the notion of “abstract kernel”
in the sense of MacLane [9]. It will take us to the end of the section to establish this.
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Consider a Lie algebra bundle K over the manifold M . The adjoint bundle of CDO[K]
is Der(K) , the derivations of K , and ad(K) = im(ad: K −→ Der(K)) is a Lie subalge-
bra bundle of Der(K) , and an ideal of CDO[K] . We denote the quotient Lie algebroid
CDO[K]/ ad(K) by OutDO[K] , and call elements of Γ OutDO[K] outer covariant differen-
tial operators on K .

Definition 2.3 A coupling of the Lie algebroid A with the Lie algebra bundle K (both over
the same manifold M ) is a morphism of Lie algebroids Ξ: A −→ OutDO[K].

Fix a coupling Ξ of the Lie algebroid A with the Lie algebra bundle K . Since the map
\ : CDO[K] −→ OutDO[K] is a surjective submersion as a map of vector bundles over M ,
there is a vector bundle morphism ∇ : A −→ CDO[K], X 7→ ∇X , such that \ ◦ ∇ = Ξ . We
call ∇ a Lie derivation law covering Ξ .

Let ∇ be any such Lie derivation law. Then for X ∈ ΓA the operator ∇X : ΓK −→ ΓK
restricts to ΓZK −→ ΓZK , for if Z ∈ ΓZK and V ∈ ΓK then

[V,∇X(Z)] = ∇X([V,Z])− [∇X(V ), Z] = ∇X(0)− 0 = 0,

since Z is central. Further, the restriction is independent of the choice of ∇ ; write ρΞ for the
restriction of ∇X to ΓZK −→ ΓZK . Then ρΞ defines a vector bundle map A −→ CDO(ZK)
which is easily seen to be a Lie algebroid morphism; that is, ρΞ is a representation of A on
ZK , called the central representation of Ξ .

Now we can proceed to prove the equivalence of couplings in the sense of 2.3 with coupling
crossed modules of Lie algebroids.

Consider first a coupling crossed module 〈K, ∂,A, ρ〉 of the Lie algebroid A with the Lie
algebra bundle K . Condition (i) of 2.1 shows that ρ sends im(∂) to ad(K) ⊆ CDO[K] and
ρ therefore descends to a morphism Ξρ : A −→ OutDO[K] as in the diagram

A
ρ
- CDO[K]

A
?

Ξρ
- OutDO[K]

?

where the two vertical maps are the natural projections. This Ξρ is the coupling corresponding
to 〈K, ∂,A, ρ〉 . Note that equivalent coupling crossed modules induce the same coupling.
It is also easy to see that the representation of A on ZK induced by Ξρ is equal to the
representation induced directly from ρ as in the passage following 2.1.

For the construction of the coupling crossed module corresponding to a coupling we use the
construction principle of [11, IV 3.20]. Take a coupling Ξ: A −→ OutDO[K] of the Lie
algebroid A with the Lie algebra bundle K . Choose a Lie derivation law ∇ : A −→ CDO[K]
covering Ξ . This is an anchor–preserving vector bundle morphism, and so its curvature is a
well defined map

R∇ : A⊕A −→ CDO[K], X ⊕ Y −→ ∇[X,Y ] − [∇X ,∇Y ].
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Since \ ◦ ∇ = Ξ is a morphism of Lie algebroids, it follows that \ ◦R∇ = 0 and so R∇ takes
values in ad(K) ⊆ Der(K) .

Define a map ∇ : A −→ CDO[ad(K)] by

∇X(adV ) = ad∇X(V )

for all X ∈ ΓA and V ∈ ΓK . This is also an anchor preserving morphism, so its curvature
is a well defined map R∇ : A ⊕ A −→ CDO[ad(K)] . It is easily verified that R∇ = ad ◦R∇
and ∇(R∇) = 0 . Moreover, the map \ ◦ ∇ : A −→ OutDO[ad(K)] has zero curvature.

Now [11, IV 3.20] shows that the formula

[X ⊕ adV , Y ⊕ adW ] = [X,Y ]⊕ {ad∇X(W )− ad∇Y (V ) +ad[V,W ]−R∇(X,Y )}

defines a Lie bracket on Γ(A ⊕ ad(K)) which makes A ⊕ ad(K) a Lie algebroid over M .
Denote A⊕ ad(K) by A . Define ∂ : K −→ A and ρ : A −→ CDO[K] by

∂(V ) = 0⊕ adV , ρ(X ⊕ adV ) = ∇X(W ) + [V,W ]

for all X ∈ ΓA and V,W ∈ ΓK . These are both morphisms of Lie algebroids and the
remaining steps in the following proof are straightforward.

Theorem 2.4 The Lie algebroid A just defined, together with ∂ and ρ , constitute a coupling
crossed module for A , which induces the given Ξ.

A transitive Lie algebroid A over M is in fact an extension of the tangent bundle TM by
its adjoint bundle L . From this point of view, an arbitrary exptension of Lie algebroids
K

ι
>−−−> A

π
−−−� A over a manifold M gives rise to a crossed module of Lie algebroids once

we choose an ideal I of ZK , the center of the Lie algebra bundle K . The construction is
described in figure 2:

I ========= I

K
↓

?

-
ι

→ A
↓

?

π
� A

im(∂I)

∂I

↓↓
-

ι\
→ A/ι(I)

\

↓↓
π\

� A

wwwwwwwwww
Figure 2:

Here ∂I is the quotient map K → A/ι(I) and the other maps are ι\(∂I(V )) = 〈ι(V )〉 for
all V ∈ K and π\(〈X〉) = π(X) for all X ∈ A . These maps are well defined because the
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sequence K
ι

>−−−> A
π

−−−� A is exact. Now the representation ρI : A/ι(I) → CDO[K]
defined by

ι(ρI(〈X〉)(V )) = [X, ι(V )]

is well defined because we assumed I to be an ideal of ZK and it makes the quadruple
〈K, ∂I , A/ι(I), ρ〉 a crossed module of Lie algebroids. The question whether every crossed
module arises from an extension of Lie algebroids gives rise to the notion of an operator
extension.

Definition 2.5 Let xm = 〈K, ∂,A, ρ〉 be a crossed module of Lie algebroids ofA with K . An

operator extension of xm is a pair (K
ι′

>−−−> Â
π

−−−� Ā, µ∗) of an extension of Lie algebroids
together with a morphism of Lie algebroids µ : Â→ A which is a surjective submersion such
that:

(i). The following diagram commutes:

K-
ι′

→ Â
π

� Ā

Im∂

∂

↓↓

?

-
ι

→ A

µ∗

↓↓

?

\
� Ā

wwwwwwwwww

(ii). For all X̂ ∈ ΓA, V ∈ ΓK we have:

ι(ρ(µ∗(X̂))(V )) = [X̂, ι(V )]

Definition 2.6 The operator extensions (K
ι′1

>−−−> Â1

π1

−−−� Ā, µ1
∗) and (K

ι′2
>−−−> Â2

π2

−−−�
Ā, µ2

∗) of the crossed module of Lie algebroids xm = 〈K, ∂,A, ρ〉 are equivalent if there is a
Lie algebroid morphism κ∗ : Â1 → Â2 such that µ2

∗ ◦ ψ = µ1
∗ and the following diagram

commutes:

K-
ι′1 → Â1

π1
� Ā

K

wwwwwwwwww
-

ι′2 → Â2

κ∗

↓
π2

� Ā

wwwwwwwwww
We denote Opext(xm) the set of equivalence classes of operator extensions of the crossed
module xm .

We briefly recall from [11, IV§3] the construction of the obstruction class associated to a
coupling 〈K, ∂,A, ρ〉 over the manifold M . Choose a connection γ : TM → A of the Lie
algebroid im(∂) >−−−> A −−−� TM . Regard its curvature Rγ : TM ⊕ TM → im(∂) and
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choose a lift Λ : TM ⊕ TM → K such that ∂ ◦ Λ = Rγ . The representation ρ induces a
representation ρ∂ : TM → CDO[ker ∂] defined by

ρ∂(X)(V ) = ρ(γ(X))(V )

for all X ∈ ΓTM and V ∈ Γ ker ∂ . This representation is well defined and does not depend
on the choice of a connection for A . Consider the map f : TM ⊕TM ⊕TM → K defined by

f(X,Y, Z) =
⊙

{ρ∂(X)(Λ(Y, Z))− Λ([X,Y ], Z)}

where
⊙

denotes the cyclic sum with repsect to the permutations of X,Y and Z . Notice
that

∂(f(X,Y, Z)) =
⊙

{∂(ρ(γ(X))(Λ(Y, Z)))−Rγ([X,Y ], Z)} =

=
⊙

{[γ(X), ∂(Λ(Y, Z))]−Rγ([X,Y ], Z)} =
⊙

{[γ(X), Rγ(Y, Z)]−Rγ([X,Y ], Z)}.

The latter is zero because of the Bianchi identity, so the map f takes values in ker ∂ =
ZK . Moreover f is easily seen to satisfy df = 0 where d denotes the exterior derivative of
Lie algebroid cohomology. Therefore it defines an element [f ] in Lie algebroid cohomology
H3(TM, ρ∂ , ZK) . This element does not depend on the choice of γ and Λ . Moreover [f ] = 0
if and only if ∇γ(Λ) = 0 , where ∇γ : TM → CDO[K] is defined by the same formula as ρ∂ .
This is no longer a representation though, unless the Lie algebra bundle K is abelian. It is
what is called a Lie derivation law in [11, IV§3]. It follows from the construction principle
[11, IV§3] that the formula

[X ⊕ V, Y ⊕W ] = [X,Y ]⊕ {∇γ
X(W )−∇γ

Y (V )− Λ(X,Y )}

defines a Lie bracket on Γ(TM ⊕ K) which makes K >−−−> TM ⊕ K −−−� TM a Lie
algebroid over M and an operator extension for the coupling 〈K, ∂,A, ρ〉 under consideration.
Conversely, it is easily verified that if the coupling has an operator extension then [f ] = 0 .
The element [f ] is the obstruction associated with the coupling 〈K, ∂,A, ρ〉 and we denote it
by Obs〈K, ∂,A, ρ〉 . If Obs〈K, ∂,A, ρ〉 = 0 then the equivalence classes of operator extensions
for the coupling 〈K, ∂,A, ρ〉 are classified by H2(TM, ρ∂ , ZK) (see [11, IV§3] and [1, 4.7]).

3 Crossed modules of Lie groupoids

Crossed modules of Lie groups were introduced by Whitehead [15] in the context of homotopy
theory. They were used later in the classification of extensions of Lie groups to overcome the
problem that the group of inner automorphisms of a Lie group may not be closed in the full
automorphism group. Namely, consider an extension of groups

A
ι

>−−−> H
π

−−−� G.

If A is abelian, the map ρ : G → Aut(A) defined by ρ(g) = Ih |A , where h is any element
of H such that π(h) = g , is a well defined representation. Now if A is non-abelian, the
automorphism ρ is no longer well defined. The usual way around this problem is to consider
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the map ρ : G→ Out(A) = Aut(A)
Inn(A) , given by g 7→ 〈Ih |A〉 , where π(h) = g . Here, Inn(A) is

the group of inner automorphisms of A . This is a well defined morphism, called the abstract
kernel of the original extension, and there is a standard classification of such extensions with
a prescribed abstract kernel.

If, however one is dealing with Lie groups, the previous approach is problematic, because
Inn(N) need not be closed in Aut(N) , and the smoothness of the representation ρ : G →
Out(A) has no longer a meaning. An alternative approach, circumventing this problem, was
given by Mackenzie in [12], using crossed modules of Lie groups.

Crossed modules of Lie groupoids were considered by Brown and Spencer [6], Brown and
Higgins [4], and by Mackenzie in [12] to classify principal bundles with prescribed gauge
group bundle. We recall here the construction of a crossed module of Lie groupoids from [12].

Definition 3.1 Let Ω be a Lie groupoid on a base manifold M and let (F, π,M) be a Lie
group bundle on M . A representation of Ω on F is a smooth map ρ : Ω ∗ F → F , where
Ω ∗ F is the pullback manifold {(ξ, f) ∈ Ω× F : α(ξ) = π(f)} , such that

(i). π(ρ(ξ, f)) = β(ξ) for (ξ, f) ∈ Ω ∗ F ;

(ii). ρ(η, ρ(ξ, f)) = ρ(ηξ, f) for all f, η, ξ such that (ξ, f) ∈ Ω ∗ F and (η, ξ) ∈ Ω ∗ Ω ;

(iii). ρ(1π(f), f) = f for all f ∈ F ;

(iv). ρ(ξ) : Fα(ξ) → Fβ(ξ), f 7→ ρ(ξ, f) is a Lie group isomorphism for all ξ ∈ Ω .

Representations of groupoids on fibered manifolds were introduced by Ehresmann. One can
also think of a groupoid representation as a Lie groupoid morphism Ω → Φ(F ) , where Φ(F )
is Lie groupoid of isomorphisms between the fibers of the Lie group bundle F , otherwise
known as the frame groupoid of F .

Definition 3.2 A crossed module of Lie groupoids is a quadruple xm = (F, ∂,Ω, ρ) , where
Ω −→−→M is a Lie groupoid over M, F is a Lie group bundle on the same base, ∂ : F → Ω is
a morphism of Lie groupoids over M , and where ρ is a representation of Ω on F , all such
that

(i). ∂(ρ(ξ, f)) = ξ∂(f)ξ−1 for all (ξ, f) ∈ Ω ∗ F ;

(ii). ρ(∂(f), f ′) = ff ′f−1 for all f, f ′ ∈ F with π(f) = π(f ′) ;

(iii). Im(∂) is a closed embedded submanifold of Ω .

The conditions of this definition show that im ∂ lies entirely in IΩ and is normal in Ω . The
normalcy of im ∂ then ensures that it is a Lie group bundle. The quotient Ω/ im ∂ therefore
exists and is a Lie groupoid over M . This is called the cokernel of the crossed module and
we usually denote it by Ω . On the other hand, condition (ii) ensures that ker ∂ lies in ZF .
All this is described in figure 3.
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ker ∂

ρ : Ω ∗ F → F

F
↓

?

Im(∂)

∂

↓↓
- → Ω

\
� Ω/Im(∂) = Ω

Figure 3:

Notice that ρ here also induces a representation of Ω on ker ∂ , denoted by ρker ∂ , by

ρker ∂(ξ, f) = ρ(ξ, f).

This is well defined because if we consider ξ, η ∈ Ω such that ξ = η then there is a f ′ ∈ F
such that η = ξ · ∂(f ′) . So

ρ(η, f) = ρ(ξ, ρ(∂(f ′), f)) == ρ(ξ, f ′f(f ′)−1) = ρ(ξ, f)

since ker ∂ ⊆ ZF .

The definition of equivalence of crossed modules of Lie groupoids is identical in form to
that of Section 1, and we denote an equivalence class of Lie groupoid crossed modules by
〈F, ∂,Ω, ρ〉 . Again, we regard a crossed module of Lie groupoids as a structure on the cokernel;
if coker(∂) = Ω we say that 〈F, ∂,Ω, ρ〉 is a crossed module of Ω with F .

There are three special types of crossed modules worth noting on the groupoid level also.
First, crossed modules of Lie groupoids with trivial kernel. These are merely extensions of

Lie groupoids F
∂

>−−−> Ω
\

−−−� Ω/F where F ⊆ IΩ is a normal subbundle of IΩ and the
representation ρ of Ω to F is the restriction of the inner representation of Ω on IΩ . namely,
∂(ρ(ξ, f)) = Iξ(f) for all (ξ, f) ∈ Ω ∗ F . The other two types are crossed modules for which
the center is exactly the centre of F and crossed modules for which the cokernel is the pair
groupoid M ×M .

Definition 3.3 A crossed module of Lie groupoids 〈F, ∂,Ω, ρ〉 over the manifold M is called

(i). a coupling crossed module if ker ∂ = ZK ;

(ii). a pair crossed module if coker ∂ = M ×M .

If both ker ∂ = ZK and coker ∂ = M ×M , then 〈F, ∂,Ω, ρ〉 is called a coupling pair crossed
module.
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We describe briefly now the differentiation of Lie groupoid crossed modules to crossed modules
of Lie algebroids. Given a crossed module of Lie groupoids 〈F, ∂,Ω, ρ〉 over M it is well
known that the Lie group bundle F differentiates to a Lie algebra bundle F∗ over M , the
Lie groupoid Ω to a Lie algebroid AΩ over M and the morphism ∂ to a morphism of
Lie algebra bundles ∂∗ : F∗ → LΩ ⊆ AΩ . The part that needs some attention is the
differentiation of the representation ρ . For every ξ ∈ Ω the map ρ(ξ) : Fα(ξ) → Fβ(ξ) is a
Lie group isomorphism. The Lie functor then shows that it differentiates to an isomorphism
of Lie algebras (ρ(ξ))∗ : (Fα(ξ))∗ → (Fβ(ξ))∗ . Denoting Φ(F∗) −→−→M the Lie groupoid of
isomorphisms between the fibers of the Lie algebra bundle F∗ (otherwise known as the frame
groupoid of F∗ ), we get a well defined morphism of Lie groupoids

ρ̃ : Ω → Φ(F∗), ξ 7→ (ρ(ξ))∗

Now apply the Lie functor to ρ̃ to get the morphism of Lie algebroids ρ∗ : AΩ → CDO[F∗] .
This is the representation ρ differentiates to. It remains to show that it satisfies

(i). ρ∗(∂∗(V )) = adV for all V ∈ F∗ and

(ii). ∂∗ ◦ ρ∗(X) = adX ◦∂∗ for all X ∈ AΩ .

Using the definitions of ρ∗ and ∂∗ we have:

ρ∗(∂∗(V )) = ρ∗(Tex∂(V )) = (T1x ρ̃ ◦ Tex∂)(V ) = Tex(ρ̃ ◦ ∂)(V )

for any V ∈ (F∗)x and x ∈M . On the other hand, for all f ∈ F we have

(ρ̃ ◦ ∂)(f) = Teπ(f)
(ρ(∂(f))) = Teπ(f)

(If ) = Adf

So,
ρ∗(∂∗(V )) = Tex(ρ̃ ◦ ∂)(V ) = TexAd(V ) = adV .

For (ii) we know that ∂ ◦ ρ(ξ) = Iξ ◦ ∂ for all ξ ∈ Ω . Therefore,

Teα(ξ)
(∂ ◦ ρ(ξ)) = Teα(ξ)

(Iξ ◦ ∂) = Adξ ◦ Teα(ξ)
∂ ⇒ Teβξ

∂ ◦ ρ̃(ξ) = Adξ ◦ Teα(ξ)
∂.

By differentiating the last equality and using the fact that Tex∂ is linear, therefore it is its own
derivative, we get ∂∗ ◦ ρ∗(X) = adX ◦ ∂∗ . We have therefore proven the following proposition

Proposition 3.4 If xm = 〈F, ∂,Ω, ρ〉 is a crossed module of Lie groupoids then xm∗ =
〈F∗, ∂∗, AΩ, ρ∗〉 is a crossed module of Lie algebroids.

Extensions of Lie groupoids give rise to crossed modules of Lie groupoids in a manner
analogous to the one described in Section 1. Namely, given an extension of Lie groupoids
F

ι
>−−−> Ω

π
−−−� Ω then the choice of a normal subbundle N of F which lies entirely in

ZF allows the construction of the crossed module 〈F, ∂,Ω/N, ρ〉 of Ω with F , where ∂ is
the projection F → F/N and ρ : Ω/N ∗ F → F is the representation defined by

ρ(〈ξ〉, f) = ξ · ι(f) · ξ−1

Again, the question whether every crossed module of Lie groupoids arises in this manner from
an extension leads to the notion of an operator extension.
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Definition 3.5 An operator extension of the crossed module of Lie groupoids (F, ∂,Ω, ρ) over
the manifold M with cokernel Ω is a pair (Ω̂, µ) where Ω̂ −→−→M is a Lie groupoid extension
of Ω by F and µ : Ω̂ → Ω is a morphism of Lie groupoids over M such that:

(i). The following diagram commutes:

F-
ι

→ Ω̂ � Ω

im ∂

∂

↓↓
- → Ω

µ

↓↓
� Ω

wwwwwwwwww
(ii). ι(ρ(µ(ξ̂), f)) = ξ̂ · ι(f) · ξ̂−1 for all (ξ̂, f) ∈ Ω̂ ∗ F .

Definition 3.6 Let (F, ∂,Ω, ρ) be a pair crossed module of Lie groupoids over the manifold
M . Two operator extensions (Ω̂, µ) and (Ω̂′, µ′) are called equivalent if there is an isomor-
phism of Lie groupoids κ : Ω̂ → Ω̂′ such that µ′ ◦ κ = µ.

Notice that if an operator extension exists (for an arbitrary crossed module of Lie groupoids)
then it differentiates to an operator extension for the corresponding crossed module of Lie
algebroids. The obstruction associated with a pair crossed module of Lie groupoids was given
by the second author in [12]. We will show in Section 4 that in order to understand the
obstruction associated with a general crossed module of Lie groupoids it suffices to under-
stand the obstruction in the particular case of pair crossed modules. Let us recall now the
construction of the obstruction from [12].

A pair crossed module of Lie groupoids 〈F, ∂,Ω, ρ〉 is, as we discussed earlier, a crossed module
of M ×M with F . This means that the gauge group bundle of the Lie groupoid Ω is the
image of ∂ . The groupoid Ω can therefore be written as an extension of groupoids in the
form

im ∂ >−−−> Ω
(β,α)
−−−�M ×M.

Fix an element x0 ∈ M and denote the Lie group Fx0 by H . Choose an open simple cover
{Ui}i∈I of M . We write Uij for the intersection of two open sets Ui and Uj , also Uijk for
the intersection of three open sets, etc. Let {sij : Uij → ∂(H)}i,j∈I be a cocycle of transition
functions for the Lie groupoid Ω −→−→M and {ŝij : Uij → H}i,j∈I be smooth lifts of the
transition functions to H , such that sij = ∂ ◦ ŝij . Now consider the failure of these lifts to
form a cocycle

eijk : Uijk → H, eijk = ŝjk · ŝ−1
ik · ŝij .

It follows from the fact that the sij ’s form a cocycle that this function takes values in ZH .
Therefore it defines a class [e] ∈ Ȟ2(M,ZH) . This class depends neither on the choice of
cocycle for Ω nor from the choice of lifts for this cocycle. Of course it is zero if and only if
the lifts ŝij form a cocycle and in this case they define a Lie groupoid Ω̂ −→−→M . It is proven
in [12] that Ω̂ is an operator extension for the crossed module. This element is called the
obstruction of the crossed module and we denote it by Obs〈F, ∂,Ω, ρ〉 . In [12] it was also
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shown that if Obs〈F, ∂,Ω, ρ〉 = 0 then the equivalence classes of operator extensions of the
crossed module 〈F, ∂,Ω, ρ〉 are classified by Ȟ1(M,ZH) .

Proposition 3.7 If a pair crossed module of Lie groupoids differentiates to a coupling crossed
module of Lie algebroids for which the obstruction class vanishes, then the obstruction class
for the crossed module of Lie groupoids takes values in Čech cohomology with coefficients in
constant functions.

Proof. Consider a pair crossed module of Lie groupoids 〈F, ∂,Ω, ρ〉 . If the obstruction class
of the coupling 〈F∗, ∂∗, AΩ, ρ∗〉 vanishes then it has an operator extension, i.e. there exists a
(transitive) Lie algebroid Â over M and a morphism of Lie algebroids µ∗ : Â → AΩ which
is a surjective submersion such that the diagram in figure 4 commutes:

F∗-
ι′

→ Â
π

� TM

im ∂∗

∂∗

↓↓
-

ι
→ AΩ

µ∗

↓↓

\
� TM.

wwwwwwwwww

Figure 4:

Let H denote the fiber of the Lie group bundle F → M and h its Lie algebra. Then the
vertex groups of the Lie groupoid Ω −→−→M are isomorphic to ∂(H) . Take a simple open cover
{Ui}i∈I of M . Choose a section atlas {sij : Uij → ∂(H)}i,j∈I for the Lie groupoid Ω −→−→M
over this cover. Consider the family of Maurer-Cartan forms χij : TUij → Uij×∂∗(h) defined
as χij = ∆(sij) and the cocycle αij = Adsij with values in Aut(H) . Here ∆ denotes the
Darboux derivative, otherwise known as the right-derivative of functions with values in a Lie
group. These define a system of transition data (χ, α) in the sense of [11, III§5]. This means
that this pair is compatible in the sense

∆(αij) = ad ◦χij (3)

and it satisfies the cocycle condition

χik = χij + αij(χjk) (4)

for all i, j, k ∈ I . In fact, it is proven in [11, III§5] that systems of transition data classify
transitive Lie algebroids. This and the commutativity of the diagram in figure 4 show that
there exists a system of transition data (χ̂, α̂) with values in h for the Lie algebroid Â such
that ∂∗ ◦ χ̂ij = χij and ∂∗ ◦ α̂ij = αij . The χ̂ij ’s are Maurer-Cartan forms, so they integrate
uniquely to smooth functions ŝij : Uij → H such that χ̂ij = ∆(ŝij) . Following the same steps
as in [11, V§1] it is proven that the compatibility condition 3 for the system of transition data
(χ̂, α̂) gives

α̂ij = Adbsij
.
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The system (χ̂, α̂) satisfies the cocycle condition 4. This gives

∆(ŝik) = ∆(ŝij) + Adbsij
(∆(ŝjk)) ⇒ ∆(ŝik) = ∆(ŝij · ŝjk).

A uniqueness argument now shows that there is a constant cijk ∈ H such that eijk = ŝjk · ŝ−1
ik ·

ŝij = cijk . In fact, cijk lies in the center of the Lie group H because eijk takes values exactly
there. So, the obstruction class of the pair crossed module of Lie groupoids 〈F, ∂,Ω, ρ〉 takes
values in Čech cohomology with constant coefficients.

Regarding the integration of crossed modules of Lie algebroids to crossed modules of Lie
groupoids, the following is true: A crossed module of Lie algebroids 〈K, ∂,A, ρ〉 integrates to
a crossed module of Lie groupoids if the Lie algebroid A is integrable. A detailed account of
this is given in Section 5.

Even when a crossed module integrates though, it does not follow that its operator extensions
(if they exist) also integrate. It may well be the case that an integrable crossed module of Lie
algebroids has an operator extension while the crossed module of Lie groupoids it integrates
to does not. Examples of such a situation are the non-integrable transitive Lie algebroids.
Every such algebroid A over a manifold M is a Lie algebroid extension L >−−−> A−−−� TM .
The crossed module induced by the choice of an ideal I ⊆ ZL may be integrable, but the
crossed module of Lie groupoids it would integrate to can not have an operator extension.
If an operator extension on the groupoid level existed, then it would have to differentiate to
L >−−−> A −−−� TM and in this case the Lie algebroid A would be integrable, which is a
contradiction. We will study a specific example of this type in the next Section.

4 The integrability of (transitive) Lie algebroids via crossed
modules

In this section we recall the integrability obstruction for a transitive Lie algebroid, originally
given in [11]. We present it here in a quite different way, using crossed modules, which clarifies
the nature of the obstruction. The approach presented here was sketched very briefly in [12].

Consider a transitive Lie algebroid L
ι

>−−−> A
qA

−−−� TM . The method we described in
Section 1 shows that the choice of an ideal I of L such that I ⊆ ZL gives rise to a pair
crossed module of Lie algebroids. In particular, if we choose I = ZL then we obtain the
coupling crossed module 〈L, \, A/ZL, ρ∗〉 , where A/ZL is a Lie algebroid over M with Lie
bracket

[X + ZL, Y + ZL]A/ZL = [X,Y ]A + ZL

for all X,Y ∈ ΓA . Its anchor map is qA/ZL(X + ZL) = qA(X) , therefore it can be written
as an extension of Lie algebroids in the form

L/ZL >−−−> A/ZL
qA/ZL

−−−� TM.

The map \ : L → A/ZL is of course the quotient projection and its image is the adjoint
bundleL/ZL . Notice that the Lie algebroid A/ZL can be identified canonically with the
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ZL ======= ZL ρ∗ : ad(A) → CDO[L]

L
↓

?

-
ι

→ A
↓

?

π
� TM

ad(L)

ad
↓↓

-
ι\
→ ad(A)

ad
↓↓

π\
� TM

wwwwwwwwww
Figure 5:

Lie subalgebroid ad(A) of CDO[L] . This is the image of the adjoint representation ad :
A → CDO[L] . Namely, every X + ZL ∈ ΓA/ZL defines the operator adX : ΓL → ΓL by
adX(V ) = [X, ι(V )]A for every V ∈ ΓL . This element is well defined because if Y ∈ ΓA is
another representative of the class X +ZL then there exists an element W ∈ ΓZL such that
Y = X + ι(W ) . Then

adY (V ) = [Y, ι(V )]A = [X, ι(V )]A + [ι(W ), ι(V )]A = [X, ι(V )]A = adX(V ),

since W ∈ ΓZL . On the other hand, every element adX ∈ ad(A) can be canonically identified
with X + ZL ∈ A/ZL . A similar argument shows that L/ZL can be identified canonically
with ad(L) , the bundle of inner automorphisms of the fibers of L .

Now that we have established this identification, it is easier to regard the representation
ρ∗ : A/ZL → CDO[L] as the natural inclusion of algebroids ad(A) >−−−> CDO[L] and the
quotient map \ as ad : L→ ad(L) . All this is described in figure 5:

The coupling induced by A can now be written as 〈L, ad, ad(A), ρ∗〉 . The Lie algebroid
CDO[L] integrates to the frame groupoid Φ[L] −→−→M (see [11, III§4]). Therefore, ad(A) also
integrates as a Lie subalgebroid of CDO[L] . The Lie groupoid it integrates to is denoted by
Int(A) −→−→M . It is a Lie subgroupoid of the frame groupoid Φ(L) and it is called the groupoid
of inner automorphisms of L . Let F → M be the Lie group bundle L integrates to. Then
the Lie algebroid coupling crossed module 〈L, ad, ad(A), ρ∗〉 integrates to a coupling crossed
module of Lie groupoids, namely 〈F, I, Int(A), ρ〉 . Here I : F → Int(A) maps an element f
which belongs to the fiber Fx to the inner automorphism If of the fiber Fx . The image of
this map is the Lie group bundle Inn(F ) of inner automorphisms of the fibers of F and it is
immediate that it differentiates to ad(L) . Finally, the representation ρ : Int(A) ∗ F → F is
ρ(ϕ, f) = ϕ(f) for all (ϕ, f) ∈ Int(A) ∗ F .

Proposition 4.1 The obstruction to the integrability of the Lie algebroid A is
Obs〈F, I, Int(A), ρ〉 .

Proof. If Obs〈F, I, Int(A), ρ〉 = 0 , then the coupling crossed module of Lie groupoids has
operator extensions which differentiate to operator extensions of the coupling crossed module
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of Lie algebroids 〈L, ad, ad(A), ρ∗〉 . Therefore there exists a Lie groupoid which integrates
the Lie algebroid A .

The following result is an immediate consequence of the previous proposition and 3.7.

Corollary 4.2 The integrability obstruction of a transitive Lie algebroid takes values in Čech
cohomology with constant coefficients.

This result clarifies the nature of the integrability obstruction for transitive Lie algebroids.

5 PBG–structures

In order to extend these results to general extensions, we need the concept of a PBG–algebroid.

Definition 5.1 Let P (M,G) be a principal bundle. A transitive Lie algebroid A over P is
called a PBG-algebroid if the Lie group G acts on the manifold A so that for every g ∈ G ,
the diagram

A
Rg - A

P
? Rg - P

?

is an automorphism of Lie algebroids.

A PBG-algebroid A over the principal bundle P (M,G) is denoted by A ⇒ P (M,G) . If A
and A′ are PBG-algebroids over the same principal bundle P (M,G) , a morphism of PBG-
algebroids is a map ψ : A→ A′ which is a morphism of Lie algebroids and satisfies ψ(Xg) =
ψ(X)g for all X ∈ A and g ∈ G . A Lie algebra bundle K → P (M,G) is a PBG-Lie algebra
bundle if, as a totally intransitive Lie algebroid, it is a PBG-algebroid. Given a PBG-Lie
algebra bundle K → P (M,G) , it is straightforward that CDO[K] is itself a PBG-algebroid.
A representation of PBG-algebroids is a morphism of PBG-algebroids ρ : A→ CDO[K] .

In [10] it is shown that PBG-algebroids correspond to extensions of integrable Lie algebroids
by Lie algebra bundles. To give an outline of this correspondence, let us start by considering
a PBG-algebroid A over the principal bundle P (M,G) . This can be written as an extension
of Lie algebroids as K >−−−> A −−−� TP , where K is a PBG-Lie algebra bundle over
P (M,G) . It is shown in [2] that the quotient space A

G is always a manifold, therefore the
above extension gives rise to an extension of Lie algebroids K

G >−−−> A
G −−−�

TP
G over M .

On the other hand, consider a transitive Lie groupoid Ω −→−→M , a Lie algebra bundle K
over M , and an extension of Lie algebroids K >−−−> A −−−� AΩ . Choose a basepoint in
M and let P (M,G) denote the principal bundle corresponding to the groupoid Ω . Then the
pull-back of A over the bundle projection P →M is a PBG-algebroid over P (M,G) .
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Note that the right-splittings of the extension K >−−−> A −−−� AΩ correspond to those
splittings of the pullback PBG-algebroid which are equivariant with respect to the group
action.

Definition 5.2 Let A ⇒ P (M,G) be a PBG-algebroid. An isometablic connection of A is
a vector bundle morphism γ : TP → A such that

(i). q ◦ γ = idTP , where q is the anchor of A ;

(ii). γ(Xg) = γ(X)g for all X ∈ TP and g ∈ G .

The respective notion for PBG-Lie algebra bundles is the following:

Definition 5.3 Let K → P (M,G) be a PBG-Lie algebra bundle. An isometablic Koszul
connection of K is a vector bundle morphism ∇ : TP → CDO(K) such that

∇Xg(V g) = [∇X(V )]g

for all X ∈ TP , V ∈ K and g ∈ G .

The purpose of this paper is to extend the crossed module approach described in the previous
section, to the integrability problem of more general extensions of integrable (transitive) Lie
algebroids by Lie algebra bundles. Since such extensions are equivalent with PBG-algebroids,
we need to postulate a notion of crossed module which is compatible with the PBG structure.

Definition 5.4 A crossed module of PBG-algebroids over the principal bundle P (M,G) is
a crossed module of Lie algebroids 〈K, ∂,A, ρ〉, where K → P (M,G) is a PBG-Lie algebra
bundle, A⇒ P (M,G) is a PBG-algebroid, ∂ : K → A is a morphism of PBG-algebroids and
ρ : A→ CDO[K] is a representation of PBG-algebroids.

We will now give a brief outline of the correspondence of pair crossed modules of PBG-
algebroids with general crossed modules of integrable Lie algebroids. To start with this,
consider a pair crossed module of PBG-algebroids 〈K, ∂,A, ρ〉 over the principal bundle
P (M,G, p) . Let L → P (M,G, p) be the kernel of the anchor of A , itself a PBG-Lie al-
gebra bundle. It was shown in [2] that, because both K , L and A are PBG as Lie algebroids,
the quotient manifolds K

G , L
G and A

G exist. Also, since the map ∂ : K → L is equivariant,
it quotients to a morphism of vector bundles ∂/G : K

G → L
G . This is a surjective morphism

of Lie algebra bundles because ∂ itself is surjective morphism of Lie algebra bundles. The
representation ρ : A→ CDO[K] induces a representation ρ/G : AG → CDO[KG ] , defined by

ρ/G(〈X〉)(〈µ〉) = 〈ρ(X)(µ)〉

for all X ∈ A and µ ∈ K . The fact that ∂/G and ρ/G satisfy the properties of definition 2.1
follows from the fact that ∂ and ρ satisfy the respective properties for a pair crossed module
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of PBG-algebroids. Therefore we get the following crossed module of Lie algebroids:

ker ∂/G

ρ/G :
A

G
→ CDO[

K

G
]

K

G

↓

?

im(∂/G)

∂/G

↓↓
- → A

G

\
�

TP

G

Conversely, suppose Ω −→−→M is a transitive Lie groupoid and 〈K, ∂,A, ρ〉 is a crossed module
of AΩ . Choose a basepoint in M and denote P (M,G, p) the principal bundle corresponding
to Ω . We will show that this crossed module induces a pair crossed module of PBG-algebroids
over P (M,G) . First, take the extension of Lie algebroids Im(∂) >−−−> A

π
−−−� AΩ . It was

proven in [10] that this extension induces a PBG-algebroid A <7 p⇒ P (M,G) , where A <7 p
is the pullback vector bundle of A over p : P →M . That is A <7 p = {(u,X) ∈ P ×A : X ∈
Ap(u)} . This Lie algebroid can be realised as an extension in the following way:

(Im(∂)) <7 p >−−−> A <7 p
q!

−−−� TP.

Recall that Γ(A <7 p) ≡ C∞(P ) ⊗ ΓA , where f ⊗X corresponds to f · (X ◦ p) . The PBG-
algebroid structure can be given both immediately and on the module of sections. Thus the
anchor is q!(u,X) = TRu(π ◦ X) and on the sections, q!(f ⊗ X)u = f(u) · TRu(π(Xp(u))) .
The Lie bracket is

[f ⊗X,h⊗ Y ] = (f · h)⊗ [X,Y ] + (f · ~π(X)(h))⊗ Y − (h · ~π(Y )(f))⊗X,

where ~π(X)u = TRu(π(X)1β(u)
) is the right-invariant vector field on P corresponding to

π(X) ∈ ΓAΩ . We denote the action of G on A <7 p by R!
g for every g ∈ G . This is defined

as R!
g(u,X) = (u · g,X) or, on the sections by R!

g(f ⊗X) = (f ◦Rg−1)⊗X .

The PBG-Lie algebra bundle K <7 p is the pullback vector bundle of K over p : P → M .
Namely, K <7 p = {(u, V ) ∈ P ×K : V ∈ Kp(u)} . Again, from the standard result for vector
bundles we have Γ(K <7 p) = C∞(P )⊗C∞(M) ΓK where f ⊗ V corresponds to f · (V ◦ p) .

The PBG-Lie algebra bundle structure of K <7 p can also be given both immediately and
on the sections. To show that K <7 p is indeed a Lie algebra bundle, we have the following
theorem:

Theorem 5.5 Suppose K →M is a vector bundle with a Lie bracket [, ]K : M → Alt2(K;K) ,
P a manifold and p : P → K a smooth map. Also, suppose ∇K : TM → CDO[K] is a con-
nection of K such that

∇K
X [V,W ] = [∇K

X(V ),W ]K + [V,∇K
X(W )]K .

January 6, 2005



20

If [, ]!P → Alt2(K <7 p,K <7 p) is the Lie bracket on K <7 p defined as

[(u, V ), (u,W )]! = (u, [V,W ]Kp(u)),

then the map ∇! : TP → CDO[K <7 p] defined by ∇!
Y (u, V ) = (u,∇K

Tp(Y )(V )) is a connection
in K <7 p and it satisfies

∇!
Y ([(u, V ), (u,W )]!) = [∇!

Y (u, V ), (u,W )]! + [(u, V ),∇!
Y (u,W )]!

Proof. It suffices to prove that ∇! satisfies the last equality. This follows immediately from
the respective equality for ∇K .

Remark. The connection ∇! of the previous theorem on the section-level is given by the
formula:

∇!
Y (f ⊗ V ) = f ⊗∇K

Tp(Y )(V ) + Tp(Y )(f)⊗ V.

On the level of sections, the expression for the Lie bracket of K <7 p defined above is given
by [f ⊗ V, h⊗W ]! = f · h⊗ [V,W ] .

We now give an isometablic version of [11, III§7, Thm 7.12]. It gives a criterion for the
existence of a PBG-Lie algebra bundle structure on a vector bundle.

Theorem 5.6 Let K be a vector bundle over P (M,G) on which G acts by isomorphisms
and [ , ] a section of the vector bundle Alt2(K;K) . Then the following three conditions are
equivalent:

(i). The fibers of K are pairwise isomorphic as Lie algebras.

(ii). K admits an isometablic connection ∇ such that

∇X [V,W ] = [∇X(V ),W ] + [V,∇X(W )]

for all X ∈ ΓTP and V,W ∈ ΓK .

(iii). K is a PBG-Lie algebra bundle.

Corollary 5.7 If K → M is a Lie algebra bundle and P (M,G, p) a principal bundle then
K <7 p is a PBG-Lie algebra bundle.

Proof. Define the action of G on K <7 p to be R!
g(u, V ) = (u · g, V ) . On the section-level,

it will be R!
g(f ⊗ V ) = (f ◦Rg−1)⊗ V . We showed in 5.6 that a vector bundle is a PBG-Lie

algebra bundle if and only if it has an isometablic Lie connection. If K → M has a Lie
connection ∇K then the connection ∇! constructed in the previous theorem is also a Lie
connection. It is moreover isometablic because:

∇!
TRg(Y )(u · g, V ) = (u · g,∇K

Tp◦TRg(Y )(V )) = (u · g,∇K
T (p◦Rg)(V )) = (u · g,∇K

Tp(Y )(V )).

January 6, 2005



21

The next step is to define the morphism of PBG-algebroids ∂! : K <7 p → A <7 p . This is
defined by ∂!(u, V ) = (u, ∂(V )) , or, on the section-level by ∂!(f ⊗ V ) = f ⊗ ∂(V ) . It is a
straightforward calculation to show that it is a morphism of PBG-algebroids.

Finally we need to define a representation ρ! : A<7 p→ CDO[K <7 p] and show that it satisfies
the properties of definition 4.1.1. This is defined as ρ!(u,X)(u, V ) = (u, ρ(X)(V )) , or, on the
section-level as

ρ!(f ⊗X)(h⊗ V ) = (f · h)⊗ ρ(X)(V ) + (f · ~π(X)(h))⊗ V.

Again, the proof that ∂! and ρ! satisfy the necessary properties which make 〈K <7 p, ∂!, A <7
p, ρ!〉 a pair crossed module of PBG-algebroids is a straightforward calculation. These con-
siderations can be formulated to the following result:

Theorem 5.8 Pair crossed modules of PBG-algebroids are equivalent to crossed modules of
integrable Lie algebroids.

Therefore, it suffices to work with pair crossed modules of PBG-algebroids. As far as their
operator extensions are concerned, these are pairs (A,µ) where A ⇒ P (M,G) is a PBG-
algebroid and µ is a morphism of PBG-algebroids. Following the same process as the one
described in section 1, and working with isometablic connections instead, the obstruction to
the existence of an operator extensions is an element of equivariant Lie algebroid cohomology
H3
G and if it vanishes the operator extensions are classified by H2

G .

6 Crossed modules of PBG-groupoids

Every extension K >−−−> A −−−� AΩ of transitive Lie algebroids over M (where AΩ
integrates to the Lie groupoid Ω −→−→M ) gives rise to a Lie algebroid crossed module of AΩ ,
and in the previous section we showed that such crossed modules correspond to pair crossed
modules of PBG-algebroids. Therefore, bearing in mind the ideas explained in section 3, the
obstruction to the integrability of a general extension K >−−−> A −−−� AΩ must coincide
with the obstruction associated with a certain crossed module on the groupoid level, which
involves a PBG structure as well.

In this section we give the definition of this particular crossed module and its operator ex-
tensions, and show that such crossed modules correspond to pair crossed modules of PBG-
algebroids via the processes of differentiation and integration. Let us start with a brief account
on the prerequisites of PBG structures on the groupoid level.

Definition 6.1 A PBG-groupoid is a Lie groupoid Υ −→−→ P whose base is the total space of
a principal bundle P (M,G) together with a right action of G on the manifold Υ such that
for all (ξ, η) ∈ Υ×Υ such that sξ = tη and g ∈ G we have:

(i). t(ξ · g) = t(ξ) · g and s(ξ · g) = s(ξ) · g

(ii). 1u·g = 1u · g
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(iii). (ξη) · g = (ξ · g)(η · g)

(iv). (ξ · g)−1 = ξ−1 · g

The properties of a PBG-groupoid imply that the right translation on Υ is a Lie groupoid
automorphism over the right translation of the principal bundle. A morphism ϕ of Lie
groupoids between two PBG-groupoids Υ and Υ′ over the same principal bundle is called a
morphism of PBG-groupoids if it preserves the group actions. Namely, if ϕ ◦ R̃g = R̃′g ◦ϕ for
all g ∈ G . In the same fashion, a PBG-Lie group bundle (PBG-LGB) is a Lie group bundle
F over the total space P of a principal bundle P (M,G) such that the group G acts on F
by Lie group bundle automorphisms. We denote a PBG-LGB by F → P (M,G) . It is easy
to see that the gauge group bundle IΥ of a PBG-groupoid Υ −→−→ P (M,G) is a PBG-LGB.
It is straightforward that PBG-groupoids differentiate to PBG-algebroids.

The class of transitive PBG-groupoids is of interest here, and that is because these groupoids
are equivalent to extensions of transitive Lie groupoids. Namely, given a transitive PBG-
groupoid Υ −→−→ P (M,G) , its corresponding extension IΥ >−−−> Υ −−−� P × P can be
quotiened by G (see [10]) to give rise to the extension of transitive Lie groupoids over M .

IΥ
G

>−−−> Υ
G
−−−� P × P

G
.

On the other hand, given an extension of transitive Lie groupoids F >−−−> Ω −−−� Φ
over M , choose a basepoint and consider the corresponding extension of principal bundles
N >−−−> Q(M,H) −−−� P (M,G) . This gives rise to the principal bundle Q(P,N) , and in
turn this forms the Lie groupoid Υ = Q×Q

N −→−→ P . Now the Lie group G acts on Υ by

〈q2, q1〉g = 〈q2h, q1h〉,

where h is any element of H which projects to g . A detailed account of these constructions
can be found in [10], as well as the proof that they are mutually inverse.

Definition 6.2 A crossed module of PBG-groupoids is a quadruple (F, ∂,Ω, ρ) , where
Ω −→−→ P (M,G) is a PBG-groupoid, π : F → P (M,G) is a PBG-Lie group bundle, ∂ : F → Ω
is a morphism of PBG-groupoids over P (M,G) and ρ is a representation of Ω on F , all
such that

(i). ρ(ξg, fg) = ρ(ξ, f)g for all (ξ, f) ∈ Ω ∗ F and g ∈ G ;

(ii). ∂(ρ(ξ, f)) = ξ∂(f)ξ−1 for all (ξ, f) ∈ Ω ∗ F ;

(iii). ρ(∂(f), f ′) = ff ′f−1 for all f, f ′ ∈ F with π(f) = π(f ′) ;

(iv). Im(∂) is a closed embedded submanifold of Ω .

In the same fashion, Im(∂) is a PBG-Lie group bundle which lies entirely in IΩ and is normal
in Ω , and the cokernel Ω

Im(∂) is a PBG-groupoid over P (M,G) . If the cokernel of a crossed
module of PBG-groupoids is the pair groupoid P ×P , then the crossed module is called pair.
If, moreover, ker ∂ = ZF , then it is called a coupling. In the remaining of this paper we will
be concerned only with pair crossed modules of PBG-groupoids.
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Definition 6.3 An operator extension of a pair crossed module of PBG-groupoids 〈F, ∂,Ω, ρ〉
over the principal bundle P (M,G) is a pair (Φ, µ) such that Φ is a PBG-groupoid over
P (M,G) , µ : Φ → Ω is a morphism of PBG-groupoids, and the pair is an operator extension
in the sense of 3.5.

Differentiation

Now consider a pair crossed module of PBG-groupoids pxm = (F, ∂,Ω, ρ) over the principal
bundle P (M,G) . From definition 6.2 we then have:

(i). ρ(ξg, fg) = ρ(ξ, f)g for all (ξ, f) ∈ Ω ∗ F and g ∈ G;

(ii). ∂(ρ(ξ, f)) = ξ · ∂(f) · ξ−1 for all (ξ, f) ∈ Ω ∗ F ;

(iii). ρ(∂(f), f ′) = ff ′f−1 for all f, f ′ ∈ F with π(f) = π(f ′) .

In order to differentiate pxm to a pair crossed module of PBG-algebroids, consider the PBG-
Lie algebra bundle F∗ → P (M,G) , the PBG-algebroid AΩ ⇒ P (M,G) and the morphism of
PBG-Lie algebra bundles ∂∗ : F∗ → LΩ .

First of all we construct a representation ρ∗ : AΩ → CDO[F∗] which preserves the G−actions.
Since ρ is an equivariant representation we have that ρ(ξ) : Fα(ξ) → Fβ(ξ) is a Lie group
isomorphism for all ξ ∈ Ω such that for every g ∈ G the isomorphism ρ(ξg) : Fα(ξg) → Fβ(ξg)

is equal to ρ(ξ)g . Applying the Lie functor we have that (ρ(ξg))∗ = (ρ(ξ))∗g for all g ∈ G .
Thus, we get a well defined morphism of PBG-groupoids

ρ̃ : Ω → Π[F∗], ξ 7→ (ρ(ξ))∗.

Denote ρ∗ : AΩ → CDO[F∗] the morphism of PBG-algebroids ρ̃ differentiates to. This is the
representation we are looking for.

Proposition 6.4 Let pxm = (F, ∂,Ω, ρ) be a pair crossed module of PBG-groupoids over
P (M,G) . Then,

(i). ρ∗(∂∗(V ))(W ) = [V,W ] for all V,W ∈ F∗ and

(ii). ∂∗(ρ∗(X)(V )) = [X, ∂∗(V )] for all X ∈ AΩ and V ∈ F∗ .

Proof. Using the definitions of ρ∗ and ∂∗ we have:

ρ∗(∂∗(V )) = ρ∗(Teu∂(V )) = (T1u ρ̃ ◦ Teu∂)(V ) = Teu(ρ̃ ◦ ∂)(V )

for any V ∈ (F∗)u and u ∈ P . However,

(ρ̃ ◦ ∂)(f) = Teπ(f)
(ρ(∂(f))) = Teπ(f)

(If ) = Adf

for all f ∈ F . So,
ρ∗(∂∗(V )) = Teu(ρ̃ ◦ ∂)(V ) = TeuAd(V ) = adV .
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For the second equality, we know that ∂ ◦ ρ(ξ) = Iξ ◦ ∂ for all ξ ∈ Ω . Therefore,

Teα(ξ)
(∂ ◦ ρ(ξ)) = Teα(ξ)

(Iξ ◦ ∂) = Adξ ◦ Teα(ξ)
∂ ⇒ Teβξ

∂ ◦ ρ̃(ξ) = Adξ ◦ Teα(ξ)
∂.

By differentiating the last equality and using the fact that Teu∂ is linear, therefore it is its
own derivative, we get the desired equation, i.e. ∂∗ ◦ ρ∗(X) = adX ◦ ∂∗ .

We have therefore proven the following theorem:

Theorem 6.5 If pxm = (F, ∂,Ω, ρ) is a pair crossed module of PBG-groupoids over the
principal bundle P (M,G) then pxm∗ = (F∗, ∂∗, AΩ, ρ∗) is a pair crossed module of PBG-
algebroids over the same principal bundle.

Next, suppose that pxm has an operator extension (F
ι

>−−−> Φ
(β,α)
−−−� P × P, µ) . That is to

say that µ : Φ → Ω is a morphism of PBG-groupoids such that the diagram

F-
ι

→ Φ
(β, α)

� P × P

IΩ

∂

↓↓
- → Ω

µ

↓↓
� P × P

wwwwwwwwww
commutes and (ι ◦ ρ ◦ µ)(ω) = Iω ◦ ι for all ω ∈ Φ . It is immediate that the diagram

F∗-
ι∗ → AΦ � TP

LΩ

∂∗

↓↓
- → AΩ

µ∗

↓↓
� TP

wwwwwwwwww
commutes, and, in the same fashion as with ∂∗(ρ∗(X)(V )) = [X, ∂∗(V )] , one can prove that

(ι∗ ◦ ρ∗ ◦ µ∗)(X ′)(V ) = [X ′, ι(V )]

for all X ′ ∈ AΦ and V ∈ F∗ .

Integration

Suppose given a pair crossed module of PBG-algebroids pxm∗ = (K, ∂∗, A, ρ∗) over the prin-
cipal bundle P (M,G) . The general theory ([11], [10]) induces that the PBG-Lie algebra
bundle K ⇒ P (M,G) integrates to a PBG-Lie group bundle F → P (M,G) with con-
nected and simply connected fibers. This section proves that if the PBG-algebroid A inte-
grates to a PBG-groupoid Ω −→−→ P (M,G) which is α-connected and α-simply connected,
then the pair crossed module pxm∗ integrates to a pair crossed module of PBG-groupoids
pxm = (F, ∂,Ω, ρ) over the principal bundle P (M,G) .
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Since the PBG-Lie algebra bundle F → P (M,G) has connected and simply connected fibers,
[13] shows that ∂∗ : F∗ → LΩ integrates uniquely to a morphism of PBG-groupoids ∂ : F →
IΩ which is onto. Thus, all we need to show in order to prove the integrability of pxm∗ is
that ρ∗ integrates uniquely to an equivariant representation ρ : Ω → Π(F ) such that:

(i). ρ(∂(f)) = If for all f ∈ F and

(ii). (∂ ◦ ρ)(ξ) = Iξ ◦ ∂ for all ξ ∈ Ω .

Let us start with the integration of a representation of PBG-algebroids. Consider a PBG-
groupoid Ω −→−→ P (M,G) which is α−connected and α−simply connected, a PBG-Lie group
bundle F → P (M,G) with simply connected fibers and an equivariant representation ρ∗ :
AΩ → CDO[F∗] of the PBG-algebroid AΩ on the PBG-Lie algebra bundle F∗ . Since Ω
is supposed to be α−connected and α−simply connected, [13] shows that this integrates
uniquely to a morphism of PBG-groupoids ρ : Ω → Π(F∗) such that ρ∗ = ρ∗ . For every
ξ ∈ Ω we then have an isomorphism of Lie algebras

ρ(ξ) : (F∗)α(ξ) → (F∗)β(ξ).

Moreover, for all g ∈ G and ξ ∈ Ω we have ρ(ξg) = ρ(ξ)g because ρ∗ is equivariant.
Therefore, from the general Lie theory for every ξ ∈ Ω there is a Lie group isomorphism
ρ(ξ) : Fα(ξ) → Fβ(ξ) such that (ρ(ξ))∗ = ρ(ξ) . So we get a map ρ : Ω → Π(F ) sich that
ρ(ξg) = ρ(ξ)g for all g ∈ G .

Proposition 6.6 The map ρ is C∞−differentiable.

Proof. We work locally to prove this. Let {Pi}i∈I be an open cover of P . Then ΩPi
Pi

∼=
Pi × ∂(H)Pi and Π(F )Pi

∼= Pi ×Aut(H)× Pi , where H is the fiber type of F . Then ρ over
Pi is the map

ρ(u, ∂(h), v) = (u, θ(u) ◦ f(∂(h)) ◦ θ(v)−1, v)

where θ : Pi → Aut(H) is a map (not C∞ ) and f : H → Aut(H) is a Lie group morphism.
Also, Π(F∗)Pi

∼= Pi ×Aut(h)× Pi anf ρ over Pi becomes

ρ(u, h, v) = (u, θ(u) ◦ f(h) ◦ θv−1, v)

where θ : Pi → Aut(h) is a C∞−map and f : H → Aut(h) is a Lie group morphism.
We know that (ρ(u, h, v))∗ = ρ(u, h, v) , therefore the map Pi ×H × Pi → Aut(h) defined by
(u, h, v) 7→ (θ(u))∗◦(f(h))∗◦(θ(v))−1

∗ is smooth. It follows that the map Pi×H×Pi → Aut(H)
defined by (u, h, v) 7→ θ(u) ◦ f(h) ◦ θ(v)−1 is smooth. That is because of a more general
result which says that a linear first order system of equations, whose right-hand sides depend
smoothly on auxiliary parameters, has solutions which depend smoothly on these parameters,
providing that the initial conditions vary smoothly. Therefore, ρ is smooth.

Proposition 6.7 The map ρ is a morphism of Lie groupoids.
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Proof. All we need to prove is ρ(ηξ) = ρ(η) ◦ ρ(ξ) for all (η, ξ) ∈ Ω ∗ Ω . To this end, take
η, ξ ∈ Ω such that α(ξ) = u , β(ξ) = v = α(η) and β(η) = w . Now consider the Lie group
automorphism

fηξ = ρ(ηξ) ◦ (ρ(ξ))−1 ◦ (ρ(η))−1 : Fw → Fw.

We will show that fηξ = idFw . Indeed, if ew is the identity element in Fw we have:

TewFηξ = Tew(ρ(ηξ) ◦ (ρ(ξ))−1 ◦ (ρ(η))−1) =

= T((ρ(ξ))−1◦(ρ(η))−1)(ew)ρ(ηξ) ◦ Tew((ρ(ξ))−1 ◦ (ρ(η))−1) =

= Tew(ρ(ηξ)) ◦ T(ρ(η))−1(ew)(ρ(ξ))
−1 ◦ Tew(ρ(η))−1 =

= Tew(ρ(ηξ)) ◦ [Teu(ρ(ξ))]−1 ◦ [Tev(ρ(η))]
−1 =

= ρ(ηξ) ◦ (ρ(ξ))−1 ◦ (ρ(η))−1 = id(F∗)w
.

Since F has connected and simply connected fibers we get fηξ = idFw , thus ρ is indeed a
morphism of Lie groupoids.

Now we can proceed to the integration of the pair crossed module. We need to prove that ρ
and θ satisfy the identities mentioned in the beginning. To this end, we need to establish the
PBG-Lie group bundle morphisms I and Ad and the PBG-Lie algebra bundle morphism ad .

Consider the PBG-Lie group bundle F → P (M,G) with fiber type H and let {ψi : Pi×H →
FPi}i∈I be a section atlas of it. It is easily verified that the Lie group bundle Aut(F ) →
P (M,G) is a PBG-Lie group bundle and the family of maps {ψAuti : Pi × Aut(H) →
Aut(F )Pi}i∈I defined by

ψAuti (u, ϕ ∈ Aut(H)) = ψi,u ◦ ϕ ◦ ψ−1
i,u

is a section atlas for this bundle.

Proposition 6.8 The map I : F → Aut(F ) defined by If (f ′) = ff ′f−1 for all f, f ′ ∈ F
such that π(f) = π(f ′) is a PBG-Lie group bundle morphism. Locally it is of the form
Ii : FPi → (Aut(F ))Pi where

Ii(u, h) = (u, IHh )

for all (u, h) ∈ Pi ×H
ψi∼= FPi . Here IH is the inner automorphism of H .

Proof. Immediate.

Next we consider the PBG-Lie group bundle Aut(F∗) → P (M,G) . The section atlas of this
bundle is {(ψAuti )∗ : Pi ×Aut(h) → Aut(F∗)Pi}i∈I defined by

(ψAuti )∗(u, ϕ∗ ∈ Aut(h)) = (ψi,u)∗ ◦ ϕ∗ ◦ (ψ−1
i,x )∗ = Te(ψAuti (u, ϕ))

for all i ∈ I, u ∈ Pi and ϕ ∈ Aut(H) .

Proposition 6.9 The map Ad : F → Aut(F∗) defined by Adf = TeuIf for all f ∈ Fu, u ∈ P
is a PBG-Lie group bundle morphism. Locally it is of the form Adi : FPi → Aut(F∗)Pi where

Adi(u, h) = (u,AdHh )
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for all (u, h) ∈ Pi ×H
ψi∼= FPi . Here AdH is the adjoint representation on H .

Proof. Immediate

The representation Ad differentiates to the PBG-Lie algebra bundle morphism ad : F∗ →
Der(F∗) defined by

adV (W ) = [V,W ] = (TeuAd(V ))(W )

for all V,W ∈ (F∗)u, u ∈ P .

Now we can proceed to the proof of the first identity. For all V,W ∈ F∗ we have ρ∗(∂∗(V ))(W ) =
[V,W ] , or (ρ ◦ ∂)∗ = Ad∗ . Since F has connected and simply connected fibers we have
ρ(∂(f)) = Adf for all f ∈ F . Therefore,

ρ ◦ ∂ = I.

For the second identity, take an X ∈ ΓAΩ . Then X induces a vector field ~X ∈ X(Ω) which
is defined as ~Xξ = T1β(ξ)

Rξ(Xβ(ξ)) for all ξ ∈ Ω . This is an α−vertical ( ~Xξ ∈ TξΩα(ξ) ) and
right-invariant ( ~X ◦Rξ = TRξ ◦ ~X ) vector field on Ω . Let ϕ : (−ε, ε)×U0 → V0 be the flow
of ~X , where U0,V0 ⊆ Ω . Then, it is immediate that every ϕt : U0 → V0 has the properties
α ◦ ϕt = α and ϕt ◦Rξ = Rξ ◦ ϕt for all ξ ∈ Ω and t ∈ (−ε, ε) .

Denote U = β(U0) and V = β(V0) and let Ψ : (−ε, ε)×U → V be the map ψt(u) = β(ϕt(η))
for all η ∈ Uu0 . This is well defined because if we consider an η′ ∈ Uu0 then there is a ξ ∈ U0

such that η′ = η · ξ . Consequently,

ψt(u) = β(ϕt(ηξ)) = β(ϕt(η) · ξ) = β(ϕt(η)).

Finally, for all t ∈ (−ε, ε) we have α ◦ ϕt = α , β ◦ ϕt = ψt ◦ β and ϕt(ξη) = ϕt(ξ) · η .
Therefore, proposition 5.8 in chapter 3 of [11] shows that ϕt is the restriction to U0 of a
unique local left-translation Lσt : ΩU → ΩV , where

σt(u) = ϕt(ξ) · ξ−1

for all ξ ∈ Uu0 . We define the exponential map Exp : (−ε, ε)× ΓAΩ → ΓUΩ by

ExptX = σt.

Now take an X ∈ ΓAΩ and a V ∈ ΓF∗ . From the properties of the exponential, for all u ∈ P
we have:

∂∗(ρ(X)(Vu)) = − d

dt
∂∗(ρ(ExptX(u))(Vu)) |0=

= − d

dt
∂∗(ρ(ϕt(ξ) · ξ−1)(Vu)) |0= − d

dt
∂∗(ρ(ϕt(ξ))[ρ(ξ−1)(Vu)]) |0=

= − d

dt
(∂ ◦ ρ(ϕt(ξ)))∗[ρ(ξ)−1(Vu)] |0
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and

adX(∂∗(Vu)) = − d

dt
Ad(ExptX(u))(∂∗(Vu)) |0=

= − d

dt
(Iσt(u))∗(∂∗(Vu)) |0= − d

dt
(Iϕt(ξ)ξ−1)∗(∂∗(Vu)) |0=

= − d

dt
(Iϕt(ξ))∗[(Iξ−1 ◦ ∂)∗(Vu)] |0 .

Consider the curves δu, γu : (−ε, ε) → F∗ defined by

γu(t) = (∂ ◦ ρ(ϕt(ξ)))∗[ρ(ξ)−1(Vu)]

and
δu(t) = (Iϕt(ξ))∗[(Iξ−1 ◦ ∂)∗(Vu)].

Obviously, γu(0) = δu(0) = ∂∗(Vu) . Since ∂∗(ρ(X)(V )) = [X, ∂∗(V )] we have

d

dt
γu(t) |0=

d

dt
δu(t) |0 .

Lemma 6.10 There is a δ < ε such that d
dtγu(t) |t0=

d
dtδu(t) |t0 for all |t0| < δ .

Proof. For all t ∈ (−ε, ε) we have:

γu(t) = (∂ ◦ ρ(ϕ(t−t0)+t0(ξ)))∗[ρ(ξ)
−1(Vu)] = (∂ ◦ ρ(ϕt−t0(ξ)))∗[ρ(ξ)

−1(Vu)].

Therefore,

γu(t)− γu(t0) = (∂ ◦ ρ(ϕt−t0(ξ)))∗[ρ(ξ)−1(Vu)]− (∂ ◦ ρ(ϕt0(ξ)))∗[ρ(ξ)−1(Vu)] =

= (∂ ◦ ρ(ϕt−t0(ξ)))∗[ρ(ξ)−1(Vu)] = γu(t− t0).

And of course, the same is true for δu . Define γ̃u(t) = γu(t − t0) and δ̃u(t) = δu(t − t0) .
Then,

d

dt
γu(t) |t0= limt→t0

γu(t)− γu(t0)
t− t0

= limt→0
γ̃u(t)
t

=

=
d

dt
γ̃u(t) |0=

d

dt
˜δu(t) |0= ... =

d

dt
δu(t) |t0 .

So, for all |t| < δ < ε we have (∂ ◦ ρ(ExptX))∗ = (IExptX ◦ ∂)∗ and since Ω is α−connected
and α−simply connected we finally get

∂ ◦ ρ(ExptX) = IExptX ◦ ∂

for all |t| < δ . Hence the desired equality. Combining this result with Proposition 4.4 of [10]
we get the following result.

Theorem 6.11 Suppose given a PBG-Lie group bundle F and a PBG-groupoid Ω , both
over the same principal bundle P (M,G) . Then any pair crossed module of PBG-algebroids
(F∗, ∂∗, AΩ, ρ∗) integrates to a pair crossed module of PBG-groupoids (F, ∂,Ω, ρ) .
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7 Classification of PBG-groupoids

In order to characterize cohomologically the obstruction associated with a pair crossed module
of PBG-groupoids, it is necessary to give a classification of such groupoids. Such a classi-
fication was given in [2], and it will be used in Section 8, for the enumeration of operator
extensions. In this section we give a different cohomological classification of PBG-groupoids,
which is consistent with the classification of transitive Lie algebroids given in [11, IV§4].

It was shown there that a transitive Lie algebroid L >−−−> A−−−� TM is locally described
by the following data: If h denotes the fibre type of L , then for a simple open cover {Ui}i∈I
of M , there exists a family of differential-2-forms χ = {χij : TUij × TUij → Uij × h}i,j∈I and
a cocycle α = {αij : Uij → Aut(h)}i,j∈I such that

(i). δχij + [χij , χij ] = 0 , whenever Uij 6= ∅ , namely the χij s satisfy the Maurer-Cartan
equation,

(ii). χik = χij + αij(χjk) , whenever Uijk 6= ∅ ,

(iii). ∆(αij) = ad ◦χij , whenever Uij 6= ∅ .

The αij s here are the transition functions of the Lie algebra bundle L . The notation ∆ stands
for the Darboux derivative. More than that, it is shown that this data classifies transitive Lie
algebroids.

Transitive Lie groupoids differentiate to transitive Lie algebroids, however the classification on
the groupoid level is by the transition functions of the respective principal bundle, and it is not
clear how these differentiate to the above data. An attempt to reformulate the classification
of PBG-groupoids in such a form which clearly differentiates to the above data was made in
[2]. In this section we briefly recall the account given there and proceed to show that indeed
this gives a classification of PBG-groupoids. In the following sections of this paper it will
be shown that this is the appropriate classification for the formulation of the integrability
obstruction of PBG-algebroids.

Let Ω −→−→ P (M,G) be a PBG-groupoid and {Pi ≡ Ui ×G}i∈I an atlas of its base principal
bundle. It was shown in [2] that for every i ∈ I there exists a flat isometablic connection
γi : TPi → AΩPi . More than that, it was shown that as a morphism of PBG-algebroids, every
γi integrates to a morphism of PBG-groupoids θi : Pi × Pi → ΩPi

Pi
. Now fix a u0 ∈ P and

denote H = Ωu0
u0

. For every i ∈ I choose a ui ∈ Pi and an arrow ξi ∈ Ωui
u0

. Now define the
maps

σi : Pi → Ωu0 , σi(u) = θi(u, ui) · ξi.

These are sections of Ω and they respect the G-action in the following sense:

σi(ug) = [σi(u)g] · (ξ−1
i g) · σi(uig).

These sections give rise to a family of representations {ϕi : G → Aut(H)}i∈I of G on H ,
namely

ϕi(g)(h) = σi(uig)−1 · (ξig) · (hg) · (ξig)−1 · σi(uig).
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It was shown in [2] that these representations are local expressions of the automorphism action
of G on the Lie group bundle IΩ .

If we begin with a different local family {γ′i}i∈I of flat isometablic connections, there exist
1-forms `∗i : TPi → Pi× hi such that γ′i = γi+ `∗i . Here hi is the Lie algebra of the Lie group
Ωui
ui

. Therefore the `∗i s integrate to maps `i : Pi × Pi → Ωui
ui

such that θ′i = θi + `i . Define

ri : Pi → H, ri(u) = ξ−1
i · `i(u, ui) · ξi.

Now the respective sections are related by σ′i = σi · ri , and with respect to the G-action the
ri s satisfy

ri(ug) = ϕi(g)(ri(u)) · ri(uig).

Last, the representations arising from σ′i and σi are related by

ϕ′i(g)(h) = ri(uig)−1 · ϕi(g)(h) · ri(uig).

Now, instead of classifying Ω by the transition functions sij : Pij → H associated with the
sections σi , let us consider the following maps:

χij : Pij × Pij → H, χij(u, v) = sij(u) · sji(v)

and
αij : Pij → Aut(H), αij(u)(h) = sij(u) · h · sji(u).

The αij s are the transition functions of the PBG-Lie group bundle IΩ . Together with the
χij s they satisfy:

(i). χik(u, v) = χij(u, v) · αij(v)(χjk(u, v)) .

(ii). For a choice of uij ∈ Pij , αij(u) = Iχij(u,uij) ◦ Isij(uij) .

(iii). χij(ug, vg) = ϕi(g)(χij(u, v)) .

(iv). αij(ug)(ϕj(g)(h)) = ϕi(g)(αij(u)(h)) .

Definition 7.1 A pair (χ, α) satisfying (i)–(iv) is called an ϕ-isometablic pair of transition
data.

The relation between two isometablic systems of transition data given in the following propo-
sition is proven in [2].

Proposition 7.2 Two ρ-isometablic and ρ′ -isometablic systems of transition data (χ, α) and
(χ′, α′) respectively are related by

χ′ij(u, v) = ri(u)−1[χij(u, v) · αij(v)(ri(u) · rj(v)−1)] · ri(v) (5)

and

α′ij(u) = Iri(u)−1 ◦ αij(u) ◦ Irj(u) (6)
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It is straightforward that the relation between isometablic systems of transition data is an
equivalence relation, therefore it is legitimate to give the following definition.

Definition 7.3 Two isometablic systems of transition data which satisfy (5) and (6) are
called equivalent.

Now we can proceed to show that isometablic systems of transition data classify PBG-
groupoids.

Theorem 7.4 Suppose P (M,G) be a principal bundle and {Ui}i∈I is a simple open cover
of M , whereas {Pi ≡ Ui ×G}i∈I is an atlas over this cover. Let ϕ = {ϕi : G→ Aut(H)}i∈I
be a family of representations of G on a Lie group H and (χ, α) a family of ϕ-isometablic
transition data. Then there exists a PBG-groupoid over P (M,G) and a local family of flat
isometablic connections which give rise to this data.

Proof. For each i ∈ I , let Υi = Pi ×H × Pi and on the disjoint sum of the Υi s define an
equivalence relation ∼= by

(i, u, h, v) ∼= (j, u′, h′, v′) ⇔ u = u′, v = v′, h′ = χji(u, v) · αji(v)(h).

Denote the quotient set by Υ and the equivalence classes by 〈i, (u, h, v)〉 . Define maps
α, β : Υ → P by 〈i, (u, h, v)〉 7→ v and 〈i, (u, h, v)〉 7→ u respectively. The object inclusion
map is Pi 3 u 7→ 〈i, (u, eH , u)〉 . it is easy to see that the map

Ψi : Pi ×H × Pi → (β, α)−1(Pi), (u, h, v) 7→ 〈i, (u, h, v)〉

is a bijection. Give Υ the smooth structure induced from the manifolds Pi ×H ×Pi via Ψi .

Now we define a multiplication in Υ . For ξ, η ∈ Υ such that α(ξ = β(η)) = u , choose a Pi
containing u and write ξ = 〈i, (v, h, u)〉 , η = 〈i, (u, h′, w)〉 . Define

ξ · η = 〈i, (v, hh′, w)〉.

Finally, G acts on Υ by

〈i, (u, h, v)〉g = 〈i, (ug, ϕi(g)(h), vg)〉.

It is left to the reader to verify that Υ is a well defined PBG-groupoid over P (M,G) . The
PBG-algebroid it differentiates to is the one given in [11, III, 5.15], and the connections
associated with the transition data we began with are the ones given there.

Remark. Note that for the previous construction the only property that we use is the cocycle
condition that (χ, α) satisfy, namely χij(u, v) = χik(u, v) · αik(v)(χkj(u, v)) , and that is to
show that the relation ∼= is indeed an equivalence relation. On the other hand, the compati-
bility condition is not used here.

The following proposition shows that the PBG-groupoid arising from isometablic transition
data is well defined up to equivalence. Its proof is a straightforward calculation.
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Proposition 7.5 Let P (M,G) be a principal bundle, {Pi}i∈I an open cover of P by principal
bundle charts, H a Lie group and ϕ′, ϕ be two families of representations of G on H by
which are equivalent under a family of maps r = {ri : Pi → H}i∈I such that ri(ug) =
ϕi(g)(ri(u)) ·ri(uig) for all u ∈ Pi, g ∈ G and i ∈ I . Let (χ′, α′) and (χ, α) be ρ′ -isometablic
and ρ-isometablic systems of transition data with values in H respectively which are equivalent
under the family of maps r . Let Ω′ and Ω be the associated PBG-groupoids respectively. Then
the map Ξ : Ω′ → Ω defined by

〈i, (u, h, v)〉 7→ 〈i, (u, ri(u)−1 · h · rj(v), v)〉

is an isomorphism of PBG-groupoids over P (M,G) .

8 The obstruction of a pair crossed module of PBG-groupoids

In this section we give the cohomological obstruction to the existence of an operator exten-
sion for a pair crossed module of PBG-groupoids. Let us start with such a crossed module
〈F, ∂,Ω, ρ〉 over the principal bundle P (M,G) . Then the PBG-groupoid Ω −→−→ P (M,G) is
the extension of PBG-groupoids

Im(∂) >−−−> Ω
(β,α)
−−−� P × P.

Choose a simple open cover {Ui}i∈I of M and an atlas {Pi ≡ Ui × G}i∈I of the principal
bundle, and consider a ϕ-isometablic system of transition data (χ, α) . Note that in this
context we denote H the fiber type of F , therefore every ϕi is a representation of G on
∂(H) , namely ϕi : G → Aut(∂(H)) . Now the following proposition shows that there are
canonical lifts of the representations ϕi . Its proof is a straightforward calculation.

Proposition 8.1 For every i ∈ Im the map ϕ̂i : G→ Aut(H) defined by

ϕ̂i(g)(h) = ρ(σi(uig)−1 · (ξig), hg)

for all g ∈ G and h ∈ H is a representation of G on H and ∂ ◦ ϕ̂i = ϕi .

The next two results show that there also exist canonical lifts of the transition functions αij
of Im(∂) , to transition functions of F .

Proposition 8.2 Let (F, ∂,Ω, ρ) be a pair crossed module of PBG-groupoids. With the pre-
vious notation, the maps ψi : Pi × H → FPi defined by ψi(u, h) = ρ(σi(u), h) are charts of
the Lie group bundle F and they are isometablic in the sense

ψi(ug, ϕ̂i(g−1)(h)) = ψi(u, h) · g

for all g ∈ G, u ∈ Pi and h ∈ H .

Proof. First of all, to prove that the ψi s are well defined, we need to ensure that the
restriction of ρ on ΩPi

u0
∗H takes values in π−1(Pi) . Indeed, if ξ ∈ ΩPi

u0
and f ∈ H is such
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that π(f) = u0 then π(ρ(ξ, f)) = β(ξ) ∈ Pi . The ψi s are injective because for all u, u′ ∈ Pi
and f, f ′ ∈ H we have:

ρ(σi(u), f) = ρ(σi(u′), f ′) ⇒ π(ρ(σi(u), f)) = π(ρ(σi(u′), f ′)) ⇒
⇒ β(σi(u)) = β(σi(u′)) ⇒ u = u′.

Since ρ(σi(u)) is an isomorphism on the fibers of F , we also have f = f ′ .

For the surjectivity of the ψi s, consider an f ∈ Fu ⊆ Fi for some u ∈ Pi . Then, because
ρ(σi(π(f))) is an isomorphism H → Fu , there is an f ′ ∈ H such that f = ρ(σi(π(f)), f ′) =
ψi(π(f), f ′) . Last, the following diagram commutes

Pi ×N
ψi - π−1(Pi)

@
@

@
@

@
pr1

R 	�
�

�
�

�

π

Pi

because π(ψi(u, f)) = π(ρ(σi(u), f)) = β(σi(u)) = u . For the isometablicity of the ψi ’s we
have:

ψi(ug, ρ̂i(g−1)(h)) = ρ(σi(ug), ρ̂i(g−1)(h)) =

= ρ(σi(ug), ρ(σi(uig)−1 · (ξig), hg)) = ρ([σi(u)g] · (ξ−1
i g) · σi(uig) · σi(uig)−1 · (ξig), hg) =

= ρ(σi(u)g, hg) = ρ(σi(u), h) · g = ψi(u, h) · g.

Now let us look at the transition functions of the Lie group bundle charts defined in the
previous theorem.

Proposition 8.3 The transition functions of the charts {ψi}i∈I are lifts of the transition
functions {α̂ij}i,j∈I , form a Čech-1-cocycle and are isometablic with respect to the represen-
tations {ϕ̂i}i∈I .

Proof. For all u ∈ Pij and h ∈ H , we have:

ψij(u)(h) = ψ−1
i,u (ψj,u(h)) = ψ−1

i,u (ρ(σj(u), h)) = ρ(σi(u)−1 · σj(u), h) = ρ(sij(u), h).

Therefore, ∂(ψij(u)(h)) = Isij(u)(h) = αij(u)(h) , so the ψij ’s are lifts of the αij ’s. They form
a Čech-1-cocycle because:

[ψjk(u) ◦ ψik(u)−1 ◦ ψij(u)](h) = ρ(sjk(u), ρ(sik(u)−1, ρ(sij(u), h))) =

= ρ(sjk(u) · sik(u)−1 · sij(u), h) = ρ(1u, h) = h
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Moreover, they are isometablic with respect to the lifts {ρ̂i}i∈I of the representations {ρi}i∈I
because:

ψij(ug)(ϕ̂j(g−1)(h)) = ρ(sij(ug), ρ(σj(ujg)−1 · (ξjg), hg)) =

= ρ(σi(uig)−1 · (ξig) · (sij(u)g) · (ξ−1
j g) · σj(ujg) · σj(ujg)−1 · (ξjg), hg) =

= ϕ̂i(g−1)(ψij(u)(h)).

Now let us show that there also exist canonical ϕ̂-isometablic lifts of the χij s. Consider
the quotient maps χ/Gij : Pij×Pij

G → ∂(H)
G and ∂/G : F

G → Im(∂)
G . The restriction of ∂/G to

H = Fu0 is a a map ∂/G |H : H
G → ∂(H)

G , where the action of G on ∂(H) implied is ϕi ,
and the action of G on H is ϕ̂i . This happens because the ϕi s are local expressions of the
G-action on Im(F ) as was shown in [2]. Bearing in mind that Pij ≡ Uij × G , the quotient
Pij×Pij

G is just Uij × Uij , therefore we have the following diagram:

H

G

Uij × Uij
χ
/G
ij

- ∂(H)
G

∂/G

?

Note that H
G (∂(H)

G , ker(∂), ∂/G) is a principal bundle in a trivial way. Since the Uij s are simply
connected, it follows from [8] that there exists a differentiable map χ̂

/G
ij : Uij ×Uij → H

G such
that the above diagram commutes.

Denote ] : Pij × Pij → Uij × Uij and ]H : H → H
G the natural projections. Since ]H is

a pullback over the projection ∂/G of the principal bundle H
G (∂(H)

G , ker(∂), ∂/G) , there is a
unique map χ̂ij : Pij × Pij → H such that

]H ◦ χ̂ij = χ̂
/G
ij ◦ ].

Due to the G-invariance of ] and ]H , the map ϕ̂i(g)−1 ◦ χ̂ij ◦ (Rg × Rg) also satisfies the
previous equation for every g ∈ G , therefore it follows from the uniqueness argument that
χ̂ij is ϕi -isometablic. these considerations consist the proof of the following result.

Theorem 8.4 Let 〈F, ∂,Ω, ρ〉 be a pair crossed module of PBG-groupoids over a principal
bundle P (M,G) and ϕ = {ϕi : G→ Aut(∂(H))}i∈I a family of representations of G on the
image by ∂ of the fiber type H of the PBG-Lie group bundle F . Then there exists a canonical
family of representations ϕ̂ = {ϕ̂i : G→ Aut(H)}i∈I such that

(i). ∂ ◦ ϕ̂i = ϕi for all i ∈ I ;
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(ii). For every ϕ-isometablic system of transition data (χ, α) of Ω , there exists a canonical
pair (χ̂, α̂) with values in H , such that α̂ is an isometablic cocycle of transition functions
for the PBG-Lie group bundle F , and χ̂ is a ϕ̂-isometablic family of differential maps
{χ̂ij : Pij × Pij → H}i,j∈I such that ∂(χ̂, α̂) = (χ, α) .

If this lift of the transition data of Ω is a ϕ̂-isometablic system of transition data itself,
then it gives rise to a PBG-groupoid, with adjoint bundle F , and this would play the role
of an operator extension for the given pair crossed module. We saw that this lift is indeed
ϕ̂-isometablic. As we remarked in 7.4, the only the only thing that is required is for the pair
(χ̂, α̂) to satisfy the cocycle condition. This can be reformulated to

ψi,v(χ̂ij(u, v)) = ψi,v(χ̂ik(u, v)) · ψk.v(χ̂kj(u, v)).

Thus the failure of the pair (χ̂, α̂) to satisfy the cocycle condition is the map eijk : Pijk ×
Pijk → ker ∂ ≤ ZF , defined by

eijk(u, v) = ψi,v(χ̂ij(u, v)) · [ψk.v(χ̂kj(u, v))]−1 · ψi,v(χ̂ik(u, v)).

The fact that it takes values in ker ∂ follows from the fact that the original system of transition
data (χ, α) does satisfy the cocycle condition. A routine calculation shows that eijk(ug, vg) =
eijk(u, v)g for all g ∈ G , and for Pijkl 6= ∅

ejkl − eikl − eijl − eijk = 0 ∈ ZF

and so e is a 2-cocycle in Ȟ2
G(P ×P,ZF ) , the G-isometablic Čech cohomology of P ×P with

respect to the atlas {Pi ∼= Ui ×G}i∈I of the principal bundle P (M,G) , and with coefficients
in the sheaf of germs of local isometablic maps from P × P to ZF .

It is trivial to see that if a second family of lifts Pij ×Pij → H of the χij s is chosen then the
resulting cocycle is cohomologous to e . More generally, if (χ′, α′) is a second ϕ′ -isometablic
system of transition data for Ω , over the same atlas {Pi ≡ Ui×G}i∈I of the principal bundle
P (M,G) , then it follows from the relations we gave in 7.2 and 8.2 that e′ijk = eijk .

Theorem 8.5 Continuing the above notation, there exists an operator extension (Υ, µ) for
the pair crossed module of PBG-groupoids 〈F, ∂,Ω, ρ〉 iff e = 0 ∈ Ȟ2

G(P × P,ZF ) .

Proof. Assume that e = 0 and consider the PBG-groupoid Υ −→−→ P (M,G) constructed
directly from the pair (χ̂, α̂) as in 7.4. Recall that the representation ρ induces an atlas of
PBG-Lie group bundle charts ρ(σi(u), h) for F → P (M,G) . Thus every element of F , say
λ ∈ Fu , can be represented as ρ(σi(u), h) for any i ∈ I with u ∈ Pi . Define ι : F → Υ by
mapping ρ(σi(u), h) ∈ Fu to 〈i, (u, h, u)〉 . It is trivial to check that ι is well defined, and an
isomorphism of PBG-Lie group bundles over P (M,G) onto IΥ . Thus we have the extension
of PBG-groupoids

F
ι

>−−−> Υ
(β,α)
−−−� P × P.

Define µ : Υ → Ω by 〈i, (u, h, v)〉 7→ σi(u)∂(h)σi(v)−1 . Again one checks that µ is well
defined, a surjective submersion and a morphism of PBG-groupoids over P (M,G) .
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To see that the diagram

F
ι

- Υ

Im∂

∂

↓↓
- Ω

µ

↓↓

commutes, recall that ∂(ρ(ξ, λ)) = ξ∂(λ)ξ−1 for ξ ∈ Ω, λ ∈ Fαξ . Taking ξ = σi(u) and
λ = h ∈ H = Fu0 , this gives

∂(ρ(σi(u), h)) = (µ ◦ ι)(ρ(σi(u), h)),

as required.

It remains to verify that the action of Ω on F induced by the diagram
ker ∂ ====== ker ∂

F
↓

?

-
ι

→ Υ
↓

?

(β, α)
� P × P

Im∂

∂

↓↓
- → Ω

µ

↓↓ (β, α)
� P × P

wwwwwwwwww
coincides with the given ρ . Take ω ∈ Υ , say ω = 〈j, (u, h, v)〉 , and λ ∈ Fαω , say λ =
ρ(σi′(u), h′) ; it is no loss of generality to assume that j = i′ . Now ωι(λ)ω−1 = 〈j, (u, hh′h−1, v)〉 ,
by the definition of ι and the multiplication in Υ . On the other hand, µ(ω) is equal to
σj(u)∂(h)σj(v)−1 and so

ρ(µ(ω), λ) = ρ(σj(u)∂(h), h′) = ρ(σj(u), hh′h−1).

So ωι(λ)ω−1 = ι(ρ(µ(ω), λ)) , as required. This completes the proof that (Υ, µ) is an operator
extension of the pair crossed module of PBG-groupoids 〈F, ∂,Ω, ρ〉 . The converse is a trivial
verification.

The element e ∈ Ȟ2
G(P ×P,ZF ) is the obstruction associated with the pair crossed module of

PBG-groupoids 〈F, ∂,Ω, ρ〉 . Following the notation of [12], we denote it by Obs〈F, ∂,Ω, ρ〉 .
The following theorem is an immediate consequence of the previous considerations.

Theorem 8.6 Let Ω −→−→M be a transitive Lie groupoid and

K >−−−> A−−−� AΩ (7)

be an extension of Lie algebroids over the manifold M . Choose a baspoint in M and let
P (M,G, p) be the principal bundle corresponding to Ω . If F → P (M,G) is the PBG-Lie
group bundle integrating the PBG-Lie algebra bundle K 7> p, then the integrability obstruction
of 7 is the obstruction e ∈ Ȟ2

G(P × P,ZF ) associated with the pair crossed module of PBG-
groupoids corresponding to the extension 7.
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9 Classification of operator extensions for coupling pair crossed
modules of PBG-groupoids

Suppose given a coupling pair crossed module of PBG-groupoids 〈F, ∂,Ω, ρ〉 over the principal
bundle P (M,G) . Recall that coupling means ker ∂ = ZF whereas pair means that the
cokernel Ω

ker ∂ = P × P . In this section we show that if its obstruction cocycle vanishes
then its operator extensions are classified by Ȟ1

G(P,ZH) , where H is the fiber type of the
Lie group bundle F . This cohomology, defined on P instead of P × P is the isometablic
cohomology given in [2], and we start with a brief recollection of it.

Consider a PBG-groupoid Ξ −→−→ P (M,G) . Choose an atlas {Pi ≡ Ui×G}i∈I for the principal
bundle P (M,G) , where {Ui}i∈I is a simple open cover of M , and a family of local flat
isometablic connections TPi → AΞPi . As we discussed in the beginning of section 6, this
data gives rise to sections σi : Pi → Ξu0 of the PBG-groupoid, which are isometablic in the
sense

σi(ug) = [σi(u)g] · (ξ−1
i g) · σi(uig).

An alternative classification of PBG-groupoids, given in [2], is by the transition functions
{sij : Pij → Ξu0

u0
}i,j∈I of these sections. The isometablicity of these functions is expressed by

sij(ug) = ϕij(g)(sij(u)).

Here, the ϕij s are the actions of G on Ξu0
u0

defined by

ϕij(g)(h) = σi(uig)−1 · (ξig) · (hg) · (ξjg)−1 · σj(ujg).

Note that the ϕij s are just actions, not representations of G on Ξu0
u0

. That is because for
every g ∈ G , the map ϕij(g) : Ξu0

u0
→ Ξu0

u0
does not preserve the multiplication on Ξu0

u0
.

Instead, it is a straightforward calculation that for Pijk 6= ∅ they satisfy

ϕij(g)(h1h2) = ϕik(g)(h1)ϕkj(g)(h2).

This property was called a cocycle morphism in [2], and it was shown that such data (that is
to say cocycle morphisms ϕ = {ϕij : G×H → H}i,j∈I , together with a ϕ-isometablic cocycle
{sij : Pij → H}i,j∈I , where H is a Lie group) classifies PBG-groupoids. Let us recall briefly
the construction of a PBG-groupoid from such data.

Take X to be the disjoint union of the manifolds Pi×H×Pj and define on X the equivalence
relation

(j, u, h, v, i) ∼= (j′.u′, h′, v′, i′) ⇔ u = u′, v = v′ and h′ = sj′j(u)hsii′(v).

Let Ξ be X/̃, and denote elements of Ξ by 〈j, u, h, v, i〉 . the groupoid structure on Ξ is

α(〈j, u, h, v, i〉) = v, β(〈j, u, h, v, i〉) = u,

1u = 〈i, u, 1, u, i〉 for any i with u ∈ Pi,

and multiplication

〈k,w, h2, u, j2〉〈j1, u, h1, v, i〉 = 〈k,w, h2sj2j1(u)h1, v, i〉.
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The group G acts on Ξ by

〈j, u, h, v, i〉g = 〈j, ug, ϕji(g)(h), vg, i〉.

Finally, place a manifold structure on Ξ using the charts Pi × H × Pj → ΞPj

Pi
, (u, h, v) 7→

〈j, u, h, v, i〉 . It is then straightforward to verify that Ξ is a PBG-groupoid over the principal
bundle P (M,G) . Note that the cocycle morphism property is necessary to show that the
G-action respects the groupoid multiplication.

Now the definition of isometablic Čech cohomology with respect to the family of actions ϕij
was given in [2, §VII], and it was shown that Ȟ1

G(P,H) classifies those PBG-groupoids over
the principal bundle P (M,G) such that the fiber of the adjoint bundle is the Lie group H .

Let us make a fresh start now, considering a coupling pair crossed modules of PBG-groupoids
〈F, ∂,Ω, ρ〉 over the principal bundle P (M,G) . Let H denote the fiber type of the PBG-
Lie group bundle F , and suppose that Obs〈F, ∂,Ω, ρ〉 = 0 . Let Opext〈F, ∂,Ω, ρ〉 denote
the set of equivalence classes of operator extensions. We define an action of Ȟ1

G(P,ZH) on
Opext〈F, ∂,Ω, ρ〉 in the following way:

Consider an operator PBG-groupoid (F
ι

>−−−> Υ
(β,α)
−−−� P × P, µ) for 〈F, ∂,Ω, ρ〉 , and an

element f ∈ H1
G(P × P,ZH) . Note that f : Pij × Pij → ZH is isometablic in the sense

fij(ug, vg) = ϕij(g)(fij(u, v))

for all g ∈ G . Therefore, if ŝij are the transition functions of the PBG-groupoid Υ , arising
from an isometablic section-atlas σ̂i : Pi → Υu0 , the maps ŝijfij : Pij → H satisfy the cocycle
equation and [sijfij ](ug) = ϕij(g)(sijfij(u)) . Moreover, ∂ ◦ (ŝijfij) = ∂ ◦ ŝij .

Proposition 9.1 The PBG-groupoid Υf −→−→ P (M,G) constructed from the ŝijfij s, is an

operator PBG-groupoid for (F
ι

>−−−> Υ
(β,α)
−−−� P × P, µ).

Proof. Same as [12, 3.4].

The proof that this action is well defined is exactly the same as in [12, §3], taking into account
the isometablicity considerations of section 6 in the present paper. Moreover, applying these
considerations to the proof of [12, 3.5], we get the following classification of operator extensions
for a coupling pair crossed module of PBG-groupoids:

Theorem 9.2 The above action of Ȟ1
G(P,ZH) on the set of operator extensions of a coupling

pair crossed module of PBG-groupoids 〈F, ∂,Ω, ρ〉 is free and transitive.
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