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Abstract. We study the arithmetic of certain del Pezzo surfaces of degree 2.
We produce examples of Brauer-Manin obstruction to the Hasse principle, coming
from 2- and 4-torsion elements in the Brauer group.
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1. Introduction

Del Pezzo surfaces are smooth projective surfaces, isomorphic over the algebraic
closure of the base field to P1 × P1 or the blow-up of P2 in up to 8 points in general
position. In the latter case the del Pezzo surface has degree equal to 9 minus the
number of points in the blow-up. The arithmetic of del Pezzo surfaces over number
fields is an active area of investigation. It is known that the Hasse principle holds for
del Pezzo surfaces of degree at least 5.

Counterexamples to the Hasse principle were discovered for del Pezzo surfaces of
degrees 3 and 4 (see [17] and [1], respectively). A growing body of evidence (for
instance, [5]) led to the question of whether the failure of the Hasse principle for del
Pezzo surfaces is always explained by the Brauer-Manin obstruction; this question is
specifically raised by Colliot-Thélène and Sansuc in [7]. Computer verifications for
diagonal cubics in [6] and theoretical advances, such as [4], [14], [20], lend support to
an affirmative answer to this question.
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A del Pezzo surface of degree 2 can be realised as a double cover of P2 ramified in
a smooth quartic curve. In this note we consider surfaces S over Q of the form

w2 = Ax4 + By4 + Cz4. (1)

We compute the Galois-theoretic invariant Br(S)/Br(Q) and produce examples of
obstruction to the Hasse principle (see [6], [13] for background). We obtain:

Theorem 1. Let S have the form (1), where A, B, and C denote nonzero integers.
Then Br(S)/Br(Q) is isomorphic to one of the following groups:

(1), Z/2, Z/4, (Z/2)⊕ (Z/2),

(Z/4)⊕ (Z/2), (Z/2)⊕ (Z/2)⊕ (Z/2).

The simplest of our examples, the case p = 3 of Example 5, is the assertion that

w2 = −6x4 − 3y4 + 2z4 (2)

has no rational solutions aside from the trivial solution. Here, a completely down-to-
earth formulation of the proof is that, rewriting (2) as

w2 + (2x2 − y2)2 = 2(x2 + y2 + z2)(−x2 − y2 + z2)

and supposing (w, x, y, z) to be an integer solution with no common prime factors,
we get a contradiction to the expression on the right being a sum of squares from the
factors x2 + y2 + z2 and −x2 − y2 + z2 each being congruent to 3 mod 4, yet having
no common prime factor congruent to 3 mod 4. Example 5 shows that (2) fits into
an infinite sequence of counterexamples to the Hasse principle. A more sophisticated
example, Example 8, is of particular interest, since the obstruction comes from a
4-torsion element in the Brauer group. By [18], only 2- and 3-torsion Brauer group
elements occur for del Pezzo surfaces of degree ≥ 3.

The tool we use is group cohomology. Let F be a Galois extension of Q, and let G
denote the Galois group Gal(F/Q). If Pic(SF ) is equal to the geometric Picard group
M := Pic(SQ) then we have

Br(S)/Br(Q) = H1(G, M). (3)

More generally, the Hochschild-Serre spectral sequence gives rise to the following exact
sequence:

0 −→ Pic(S) −→ Pic(SF )G −→ ker(Br(Q)→Br(F ))

−→ ker(Br(S)→Br(SF )) −→ H1(G, Pic(SF )) −→ H3(G, F ∗). (4)

In this paper, we compute the group (3) and represent lifts of elements to Br(S) by
Azumaya algebras. By (4) and cohomological dimension, such lifts exist after perhaps
enlarging F ; what happens in practice is that it is often possible to take [F : Q] quite
small and still have H1(G, Pic(SF )) isomorphic to Br(S)/Br(Q) and the final map
in (4) trivial. Lastly, we explain the computation of local invariants and obtain the
above-mentioned examples.

In an Appendix we show that in the case of the diagonal cubic surfaces considered
in [6] the present techniques give rise to cyclic Azumaya algebras. This simplifies the
construction of cocycle representatives and the local obstruction analysis, as compared
with the original consideration of bicyclic group cohomology.

We take a moment to highlight instances where the arithmetic of del Pezzo surfaces
of degree 2 has already been studied. Our examples are new, and this is the first
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systematic study of a class of degree 2 del Pezzo surfaces. However, some special
classes of degree 2 del Pezzo surfaces do fall within the scope of existing results.
These include:

(i) Blow-ups of higher degree del Pezzo surfaces. One can, for instance, start with
a degree 4 del Pezzo surface which violates the Hasse principle, such as can
be found in [1], and blow up a conjugate pair of points (which, as mentioned
in [3], always exist on such a surface) to obtain a del Pezzo surface of degree
2 which is a counterexample to the Hasse principle.

(ii) Double coverings of Châtelet surfaces. We are grateful to Colliot-Thélène for
providing the following example. We consider the equation

w2 + x2 = (y2 − 2)(3− y2). (5)

This defines a (generalised) Châtelet surface which fails to satisfy the Hasse
principle. We now replace x2 by x4 in the equation; there remain points in all
completions of Q, so we get a degree 2 del Pezzo surface which fails to satisfy
the Hasse principle. Note (cf. [5]) that (5) belongs to an infinite sequence of
counterexamples to the Hasse principle given by Iskovskih [11].

(iii) Birational models of conic bundles with six degenerate fibres. Many del Pezzo
surfaces of degree 2 fit this description; the referee is credited with suggesting
this source of examples. Notably, for surfaces of the form

r2 + s2 = f2(t)f4(t) (6)

with f2(t) and f4(t) irreducible polynomials of degrees 2 and 4, respectively,
Swinnerton-Dyer has shown that the Brauer-Manin obstruction is the only
obstruction to the Hasse principle [19]. In fact the same is true for weak
approximation; see [16]. This means that on any smooth projective model,
the rational points are dense in the set of adelic points not obstructed by
Brauer classes. As a concrete example, the Brauer-Manin obstruction is the
only obstruction to weak approximation for the del Pezzo surface given by

w2 = 5x2z2 − 4y4 + 26y2z2 − 30z4 − 4x3z − 16xy2z + 24xz3.

This is birational to the surface (6) with f2(t) = t2 +3 and f4(t) = t4 + t2 +2:

r = 2
y

z
+ t3, s =

x

z
− t

y

z
+ 2t2, t =

x2 + 4y2 − 6z2

w + xy
.

Our examples are not covered by cases (i)–(iii). We discuss this briefly at the end of
Section 7.

The authors would like to thank J.-L. Colliot-Thélène for helpful discussions and
correspondence.

2. Geometry

Consider the surface S given by the equation

w2 = Ax4 + By4 + Cz4

in the weighted projective space P(2, 1, 1, 1), where A, B, and C are nonzero integers.
It is a double cover of P2, branched over the twisted Fermat quartic curve

0 = Ax4 + By4 + Cz4.



4 ANDREW KRESCH AND YURI TSCHINKEL

Let a, b, c denote some chosen 4-th roots of A,B, C, respectively. The 56 exceptional
curves on S are the pre-images of the bitangents to the quartic. These are given by
the following equations

δax + by = 0, δby + cz = 0, δcz + ax = 0, where δ4 = −1, (7)

αax + βby + γcz = 0 (α4 = β4 = γ4 = 1). (8)

Multiplying the equation (8) by a scalar doesn’t change the line it defines, so it is
natural to index the line by an element (α, β, γ) ∈ µ3

4/µ4. Each bitangent lifts to
a pair of exceptional curves in S: for example, the pre-image of the line given by
δax + by = 0 is the pair of curves with equations

w = ±c2z2 .

These will be denoted by Lz,δ,±. There are 24 exceptional curves lying over the lines
in (7). The pre-images of the lines in (8) are given by

w = ±
√

2(αβabxy + βγbcyz + αγacxz) . (9)

The ambiguity ± is resolved by scaling the tuple (α, β, γ); we denote by Lα,β,γ the
pre-image (9) with the sign taken to be +, so now (α, β, γ) is considered to be in
µ3

4/µ2. We thus have the following description of the exceptional curves on S.

Proposition 1. The 56 exceptional curves on the del Pezzo surface (1) are as follows,
where a, b, and c denote chosen 4-th roots of A,B,C:

Lz,δ,± : δax + by = 0, w = ±c2z2, (δ4 = −1) ,
Lx,δ,± : δby + cz = 0, w = ±a2x2, (δ4 = −1) ,
Ly,δ,± : δcz + ax = 0, w = ±b2y2, (δ4 = −1) ,

Lα,β,γ : αax + βby + γcz = 0 w =
√

2(αβabxy + βγbcyz + αγacxz),
(α, β, γ) ∈ µ3

4/µ2 .

Geometrically, the Picard group of S has rank 8. We choose the basis indicated in
the following statement.

Proposition 2. Let S be the del Pezzo surface (1), and set ζ = eπi/4. Then the
geometric Picard group Pic(SQ) is the free abelian group on the generators

v1 = [Lx,ζ,+] v2 = [Lx,ζ3,−] v3 = [Ly,ζ,+] v4 = [Ly,ζ3,−]
v5 = [Lz,ζ,+] v6 = [Lz,ζ3,−] v7 = [Li,i,i] v8 = [Lz,ζ7,−] + [Lz,ζ3,−] + [Li,i,i] .

The class vi has self-intersection −1 for i ≤ 7 and self-intersection 1 for i = 8. The
intersection number of vi and vj is 0 for i 6= j. The anticanonical class is

−KS = −v1 − v2 − v3 − v4 − v5 − v6 − v7 + 3v8. (10)

The identities displayed in Table 1 hold in Pic(SQ); these, coupled with (10) determine
the class of any exceptional curve.

Proof. Each exceptional curve has self-intersection −1. Each pair of curves lying
above a bitangent to the Fermat quartic has intersection number 2. Other intersection
numbers are 0 or 1 and are readily determined. In particular, the intersection numbers
among the vi are as claimed, and the vi span Pic(SQ). The anticanonical class is
the class of any pair of curves lying above a bitangent to the Fermat quartic. The
anticanonical class and the classes listed in Table 1 are determined by computing
intersection numbers with the vi. �
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[Lx,ζ5,+] = −v1 − v7 + v8 [Lx,ζ7,−] = −v2 − v7 + v8

[Ly,ζ5,+] = −v3 − v7 + v8 [Ly,ζ7,−] = −v4 − v7 + v8

[Lz,ζ5,+] = −v5 − v7 + v8 [L1,1,i] = −v2 − v3 + v8

[L1,1,−1] = −v5 − v6 + v8 [L1,1,−i] = −v1 − v4 + v8

[L1,i,1] = −v1 − v6 + v8 [L1,i,−i] = −v3 − v5 + v8

[L1,−1,1] = −v3 − v4 + v8 [L1,−1,−1] = −v1 − v2 + v8

[L1,−i,1] = −v2 − v5 + v8 [L1,−i,i] = −v4 − v6 + v8

[Li,1,1] = −v4 − v5 + v8 [Li,1,−i] = −v2 − v6 + v8

[Li,−1,−1] = −v3 − v6 + v8 [Li,−1,−i] = −v1 − v5 + v8

[Li,−i,1] = −v1 − v3 + v8 [Li,−i,−1] = −v2 − v4 + v8

Table 1. Classes of the exceptional curves

3. Galois group - generic case

Let G be the Galois group of the extension

F := Q(ζ, a2, b/a, c/a) (11)

over Q (where ζ = eπi/4). The subextension Q(ζ)/Q corresponds to a normal sub-
group H of index 4. The quotient group is the Klein four-group. In the generic case,
we have |G| = 128. The Galois group can be described as follows.

Proposition 3. Let A, B, and C be nonzero integers, with chosen 4-th roots a, b,
and c, respectively. Let F be as in (11), and suppose the degree of F over Q is 128.
Then the Galois group G0 = Gal(F/Q) is generated by elements

σ, τ, ιa, ιb, ιc

which act by

σ τ ιa ιb ιc
a2 a2 a2 −a2 a2 a2

b/a b/a b/a −ib/a ib/a b/a
c/a c/a c/a −ic/a c/a ic/a
ζ ζ−1 ζ3 ζ ζ ζ

The action on the exceptional curves is as follows:

σ τ ιa ιb ιc
Lz,δ,s Lz,σ(δ),s Lz,τ(δ),s Lz,iδ,s Lz,−iδ,s Lz,δ,−s

Lx,δ,s Lx,σ(δ),s Lx,τ(δ),s Lx,δ,−s Lx,iδ,s Lx,−iδ,s

Ly,δ,s Ly,σ(δ),s Ly,τ(δ),s Ly,−iδ,s Ly,δ,−s Ly,iδ,s

Lα,β,γ Lα−1,β−1,γ−1 Liα−1,iβ−1,iγ−1 Liα,β,γ Lα,iβ,γ Lα,β,iγ

4. Group cohomology

We start with a review. If G is a group, a standard free resolution of Z is

CG
• := · · ·Z[G×G×G] → Z[G×G] → Z[G] , (12)

where the augmentation map Z[G] → Z is given by g 7→ 1 (for all g ∈ G) and where
each map in CG

• is of the form

(g0, . . . gn) 7→
n∑

i=0

(−1)i(g0, . . . , ĝi, . . . , gn) .
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The action of g ∈ G on any of the terms in (12) is the diagonal left multiplication
action. We may identify

Z[G×G] '
⊕

g′∈G Z[G] ,

(g, gg′) 7→ (0, . . . , g, . . . , 0) ,
(13)

where the unique nonzero entry g is in the g′-th position. We also identify

Z[G×G×G] '
⊕

(g′,g′′)∈G×G Z[G] ,

(g, gg′, gg′g′′) 7→ (0, . . . , g, . . . , 0) ,
(14)

where the unique nonzero entry g is in the (g′, g′′)-th position.
Let M be a G-module. Now the complex Hom(CG

• ,M) is identified with

C•G,M := M
d0

−→
⊕
g′∈G

M
d1

−→
⊕

(g′,g′′)∈G×G

M · · · . (15)

Here the g′-th coordinate of the map d0 is m 7→ g′ ·m−m and the (g′, g′′)-th coordinate
of d1 is (. . . , mg, . . .) 7→ g′ · mg′′ − mg′g′′ + mg′ . Of course, Hi(G, M) is identified
with the i-th cohomology of (15). For instance, the kernel of d0 is the module MG of
G-invariants of M .

Now let H be a subgroup of G. Since restriction is an exact functor, CG
• is a

resolution of Z as an H-module. We choose a set Q ⊂ G of coset representatives, so
G =

⋃
q∈Q Hq.

We have an isomorphism of H-modules

Z[G] '
⊕

q∈Q Z[H] ,

hq 7→ (0, . . . , h, . . . , 0) ,
(16)

where h appears in the q-th position (h ∈ H, q ∈ Q). Also

Z[G×G] '
⊕

(q,h′,q′)∈Q×H×Q Z[H] ,

(hq, hh′q′) 7→ (0, . . . , h, . . . , 0) ,
(17)

where h appears in the (q, h′, q′) position. We can project the resolution CG
• to the

standard resolution CH
• . Under the identification (16) the map on the degree zero

component is the sum of the |Q| projection maps, and under the identifications (13)
and (17) the map on the degree 1 component sends the element (0, . . . , h, . . . , 0) from
(17) to (0, . . . , h, . . . , 0) with h in the h′ position. Applying HomH(−,M) we get an
inclusion of complexes C•H,M into HomH(CG

• ,M), and via our identifications,

M //

χ0

��

⊕
H M //

χ1

��

. . .

⊕
Q M //

⊕
Q×H×Q M // . . . .

(18)

This allows us to take elements of Hi(H,M), represented as cocycles via the standard
resolution, and realise them as cocycles in the complex HomH(CG

• ,M).
Now we discuss cohomology of group extensions. Assume that there is an exact

sequence of groups
1 → H → G → Q → 1 . (19)

Then Q acts on the cohomology Hq(H,M) for all q, and there is an associated stan-
dard spectral sequence

Ep,q
2 = Hp(Q,Hq(H,M)) ⇒ Hp+q(G, M) . (20)
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This leads to a 5-term exact sequence

0 → H1(Q,MH) → H1(G, M) → H1(H,M)Q d0,1
2−→ H2(Q,MH) → H2(G, M) . (21)

The following is standard, but we will later use the formulas that are explicitly
given.

Proposition 4. Given the exact sequence of finite groups (19) and a G-module M ,
then

q̃ : (ϕ : Z[Gn] → M) 7→ (q̃·) ◦ ϕ ◦ (q̃−1·)
defines an action of Q on the complex HomH(CG

• ,M), with invariants HomG(CG
• ,M).

When G is a semi-direct product of H and Q, and we use (16) and (17) to identify
HomH(CG

• ,M) with the bottom row of (18), the action of q̃ ∈ Q is given explicitly by

q̃ · (. . . , mq, . . .) = (. . . , q̃ ·mq̃−1q, . . .) ,

q̃ · (. . . , mq,h′,q′ , . . .) = (. . . , q̃ ·mq̃−1q,q̃−1h′q̃,q̃−1q′ , . . .) .

For many groups G there are more efficient resolutions than the standard resolution.
These are well known for finite abelian groups (for instance, the case of bicyclic
groups enters the calculations of [6]). The following proposition captures the essential
data needed to compute H1 and express elements there as cocycles for the standard
resolution, in the case of abelian groups with up to three generators as well as dihedral
groups.

Notation 1. Let G be a finite abelian group and g ∈ G an element of order n.
Put Ng := 1 + g + · · · + gn−1 and ∆g := 1 − g in Z[G]. For g1, . . . , gν ∈ G and
i1, . . . , iν ∈ Z the element in CG

1 which, under the identification (13) is the vector
(0, . . . , 1, . . . , 0) with 1 in the (gi1

1 gi2
2 · · · giν

ν )-th position, is denoted αi1,...,iν
. Similarly,

given i′1, . . . , i
′
ν ∈ Z the element in CG

2 which, under the identification (14) is the
vector (0, . . . , 1, . . . , 0) with 1 in the (gi1

1 gi2
2 · · · giν

ν , g
i′1
1 g

i′2
2 · · · gi′ν

ν )-th position is denoted
αi1,...,iν ,i′1,...,i′ν

.

Proposition 5. For each of the following classes of groups G there exists a resolution
of Z by free Z[G]-modules as stated. In each case there is a morphism of complexes
as indicated to this resolution from the standard resolution.

(i) G = Z/n, generated by g ∈ G:

C[n]
• := · · ·Z[G]

Ng−→ Z[G]
∆g−→ Z[G] ,

with σ
[n]
• : CG

• → C[n]
• given by

σ
[n]
1 (αi) = −1− g − · · · − gi−1 ,

σ
[n]
2 (αi,i′) =

{
−1 if i + i′ ≥ n ,
0 otherwise .

(ii) G = Z/n⊕ Z/m, with factors generated by g and h:

C[n,m]
• := · · ·Z[G]3 A[g,h]

−−−−→ Z[G]2
(∆g ∆h)−−−−→ Z[G] ,

where

A[g,h] :=
(

Ng ∆h 0
0 −∆g Nh

)
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with σ
[n,m]
• : CG

• → C[n,m]
• given by

σ
[n,m]
1 (αi,j) = (−1− g − · · · − gi−1,−gi(1 + h + · · ·+ hj−1)) .

(iii) G = Z/n⊕ Z/m⊕ Z/`, with factors generated by g, h, and u:

C[n,m,`]
• := · · ·Z[G]6 A[g,h,u]

−−−−−→ Z[G]3
(∆g ∆h ∆u)−−−−−−→ Z[G] ,

where

A[g,h,u] :=

Ng ∆h 0 ∆u 0 0
0 −∆g Nh 0 ∆u 0
0 0 0 −∆g −∆h Nu


with σ

[n,m,`]
• : CG

• → C[n,m,`]
• given by

σ
[n,m,`]
1 (αi,j,k) = (−1− · · · − gi−1,−gi(1 + · · ·+ hj−1),−gihj(1 + · · ·+ uk)) .

(iv) G = Dn, the dihedral group generated by g and h, with gn = h2 = (gh)2 = e:

Cdih[n]
• := · · ·Z[G]4

D3
n−→ Z[G]3

D2
n−→ Z[G]2

D1
n−→ Z[G] ,

with

D3
n =

∆g 0 0 Nh

0 ∆h 0 −Ng

0 0 ∆gh −Ng

 , D2
n =

(
Ng 0 Ngh

0 Nh −Ngh

)
,

and D1
n = (∆g ∆h), and σ

dih[n]
• : CG

• → Cdih[n]
• given by

σ
dih[n]
1 (αi) = (−1− g − · · · − gi−1, 0) ,

σ
dih[n]
1 (βi) = (−1− g − · · · − gi−1,−gi) ,

where αi is as in Notation 1 for the cyclic subgroup generated by g, and where
βi is the element of CG

1 corresponding to gih ∈ G.

Proof. All that is involved is checking, in each case, that we have indeed specified
(the tail end of) a resolution of Z as a Z[G]-module, and that the morphism from CG

•
is a morphism of complexes. �

In each case (G abelian or dihedral), if we are given a G-module M , then applying
HomG(−,M) to the complex presented above gives a practical method for computing
group cohomology of G. For instance, if M is a G-module with G = Z/n, generated
by g, then Hi(G, M) is the ith cohomology of

0 −→ M
∆g−→ M

Ng−→ M −→ · · · . (22)

Notation 2. In the complex obtained by applying HomG(−,M), the maps will be
denoted as in Proposition 5, but with the super- and subscripts interchanged. For
example, A[g,h] : M2 → M3 will denote the map that sends the element (m, 0) to
(m + g ·m + · · ·+ gn−1 ·m,m− h ·m, 0).

By applying the efficient resolutions of Proposition 5 to the group Q acting on
HomH(CG

• ,M) in Proposition 4, we can write the spectral sequence (20) at the E0

level. This is necessary for computing d0,1
2 in (21), hence for computing H1(G, M).

For example, when Q is bicyclic we have:



DEL PEZZO SURFACES OF DEGREE TWO 9

Corollary 1. If we have an extension of finite groups (19) with Q bicyclic, then (20)
is the spectral sequence of the bicomplex

HomH(Z[G3],M) // HomH(Z[G3],M)2 // · · ·

HomH(Z[G2],M)

d0,1
0

OO

// HomH(Z[G2],M)2

d1,1
0

OO

// · · ·

OO

HomH(Z[G],M)

d0,0
0

OO

// HomH(Z[G],M)2

d1,0
0

OO

// HomH(Z[G],M)3

OO

5. Computation of Br(S)/Br(Q) in the generic case

In this section we explain the computation of H1(G, M), where M = Pic(SF ), in
the generic case G = G0. We start by constructing, for each generator of G, the 8× 8
matrix representing its action on M , referring to Propositions 2 and 3. In principle,
H1(G, M) can be computed using the standard resolution (15). In this case the
map d1 would be given by a 131072× 1024-matrix, which makes direct computations
impractical. However, G fits into a split exact sequence

1 → H → G → Q → 1 (23)

with H = (Z/4)2 ⊕ (Z/2) generated by ιa, ιb, and ιaιbιc, and Q = (Z/2)2, generated
by σ and τ . The technique of Section 4 simplifies the computation considerably.

Proposition 6. For the generic Galois group G = G0, the cohomology group H1(G, M)
is isomorphic to Z/2.

Proof. We use the 5-term exact sequence (21). First we compute MH = MG = Z,
spanned by the anticanonical class. In particular, H1(Q,MH) = 0. Thus H1(G, M)
is equal to the kernel of the map

d0,1
2 : H1(H,M)Q → H2(Q,MH) .

We consider the diagram in Figure 1, where the bicomplex Ep,q
0 of Corollary 1 is

written using the identifications (16) and (17). The group H1(H,M) is computed
by the complex on the left side of the diagram. In this diagram the horizontal ar-
rows labeled σi

[4,4,2] and χi give quasi-isomorphisms of complexes. The linear algebra
required to compute Ker(M3 → M6) is quite modest and the cohomology group is
identified as

H1(H,M) = Z/2 .

It remains to take a single cocycle representative of the nonzero element of H1(H,M)
(necessarily Q-invariant in this case, though as noted below, Q-invariance is tested a
bit further on in the diagram chase) and follow it through the diagram to determine
whether it lies in the kernel of d0,1

2 .
We start with a representative in M3 for the nontrivial element λ ∈ H1(H,M), for

instance,

u = ((0, 0, 0, 0,−1,−1,−1, 1), (0, 0, 0, 0,−1, 1, 0, 0), (0, 0, 0, 0,−2, 0,−1, 1)).

Let v denote the image in E1,1
0 of u by the composite of three horizontal maps in

Figure 1. Now v will in general lie in the image of d1,0
0 if and only if λ is Q-invariant.
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M6
σ2
[4,4,2]//

⊕
H×H M // E0,2

0
// E1,2

0

M3

A[4,4,2]

OO

σ1
[4,4,2] // ⊕

H M

OO

χ1
//
⊕

Q×H×Q M

d0,1
0

OO

// (
⊕

Q×H×Q M)2

d1,1
0

OO

// E2,1
0

M

OO

M

OO

χ0
//
⊕

Q M

d0,0
0

OO

// (
⊕

Q M)2

d1,0
0

OO

// (
⊕

Q M)3

d2,0
0

OO

MH
?�

i0

OO

// (MH)2
?�

i1

OO

A[2,2] // (MH)3
?�

i2

OO

Figure 1. E0 spectral sequence

In this case, a linear algebra solver produces

v0 = ((0, 0, 0, 0,−1, 1, 0, 0)∗4, (0, 0, 0, 0,−1,−1,−1, 1)∗4))

satisfying d1,0
0 (v0) = v, where each vector with superscript ∗4 denotes the element in⊕

Q M with the vector repeated 4 times. Applying the cobounday map E1,0
0 → E2,0

0

to v0 necessarily produces an element in the image of i2, representing d0,1
2 (λ) in

H2(Q, MH). This can be tested for being a coboundary; in the present case we get 0
exactly. So d0,1

2 is trivial, and H1(G, M) = Z/2. �

Corollary 2. If the del Pezzo surface S given by (1) is general, meaning that the
hypotheses of Proposition 3 are met, then we have

Br(S)/Br(Q) = Z/2.

In Example 6, below, we will see how to construct explicitly an Azumaya algebra
representing the nontrivial element of Br(S)/Br(Q) and use it to test the Brauer-
Manin obstruction.

6. The non-generic case

We start by presenting some examples when the Galois group is smaller than in
the generic case.

Example 1. Consider the case (A,B,C) = (−6,−3, 2). The Galois group of the
field F , defined in (11), has order 32; it is an extension of the Klein four-group by
(Z/4)⊕ (Z/2). It is possible to write G as a split extension

1 → H → G → Z/2 → 1

where H = (Z/4)2, generated by ιaιb and στιaιc, and Z/2 is generated by σ. In this
case, we compute H1(H,M) = 0. By (21), H1(G, M) is isomorphic to H1(Z/2,MH).
We find that MH has rank 2, spanned by

(−1,−1,−1,−1,−1,−1,−1, 3), (1, 1, 1, 1, 1, 1, 0,−2),

hence MH is isomorphic to Z⊕Z′, where Z′ is free of rank 1 with nontrivial Z/2-action.
So, we have

H1(G, M) = Z/2.
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As in the generic case, we have MG = Z, that is, Pic(S) has rank 1.

Example 2. The case (A,B, C) = (1, 1,−2) is interesting because Pic(S) has rank
2. The Galois group G fits into an exact sequence

1 → Z/4 → G → Z/2 → 1

with subgroup H = Z/4 generated by ιcστ and Z/2 generated by τ . As in Example 1
we have H1(H,M) = 0. Now MH has rank 3, with generators

(−1,−1,−1,−1,−1,−1,−1, 3) , (0, 0, 0, 0, 1,−1, 0, 0) , (0, 0, 0, 0, 1, 1, 1,−1) ,

and the action of τ fixes the first 2 vectors and negates the third. Hence

H1(G, M) = Z/2,

and Pic(S) has rank 2.

Example 3. The case (A,B,C) = (1, 1, 1) yields G = Gal(Q(ζ)/Q), the Klein four-
group, and we directly compute

H1(G, M) = (Z/2)3.

In this case Pic(S) has rank 1.

The comprehensive treatment proceeds via a case-by-case computer analysis of
subgroups of the generic Galois group. We obtain the following, as our main result.

Theorem 2. Let S have the form (1), where A, B, and C are nonzero integers.
Then Br(S)/Br(Q) is isomorphic to one of the following groups:

(1), Z/2, Z/4, (Z/2)⊕ (Z/2),

(Z/4)⊕ (Z/2), (Z/2)⊕ (Z/2)⊕ (Z/2).

Also, Br(S)/Br(Q) is nontrivial in every case where Pic(S) is isomorphic to Z.

Proof. Given such S, a choice of 4-th roots a, b, c of the coefficients leads to a
realisation of G = Gal(Q(ζ, a2, b/a, c/a)/Q) as a subgroup of the generic Galois group
G0. This will be a subgroup mapping surjectively to Q via the map in (23). Computer
analysis reveals that every subgroup of G0 which maps surjectively to Q can be
expressed as a semi-direct product of abelian groups.

We recognise that the same group cohomology must arise from any two subgroups
which differ by conjugation, or by the obvious outer action of S3 on G0 corresponding
to permutations of the x, y, and z coordinates. More generally, the full group of
automorphisms of Pic(SQ) preserving the intersection pairing and the anticanonical
class is the Weyl group W (E7); see [12]. This is a group of order 2903040, generated
by G0 and the group S7 of permutations of v1 through v7. Any two subgroups of G0

that are conjugate in W (E7) must have same cohomology. There are 194 classes of
subgroups of G0, up to conjugation in W (E7), which contain a group that surjects
onto Q. When the methods of section 4 are applied to a representative of each class
of subgroups, the H1 group that results is always one of the groups listed in the
statement of the theorem. Moreover, the trivial group arises as H1(G, M) only in
cases with the rank of MG greater than or equal to 2.

There are too many classes of subgroups to list them all, so we content ourselves
with displaying, in Table 2, all the maximal subgroups of G0 that surject onto Q, up
to the S3-action. These are grouped by conjugacy in W (E7). For each subgroup,
we display the cohomological invariants, the condition on A, B, and C that forces
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G Br(S)/Br(Q) Pic(S) Condition Example
〈ιaσ, ιaιb, ιaιc, τ〉 Z/2 Z −2ABC ∈ (Q∗)2 (−15, 10, 3)
〈ιaσ, ιb, ιc, τ〉 Z/2 Z −2A ∈ (Q∗)2 (−2, 3, 5)
〈ιaσ, ιaιb, ιc, τ〉 Z/2 Z −2AB ∈ (Q∗)2 (−6, 3, 5)
〈ιaτ, ιaιb, ιaιc, σ〉 Z/2 Z 2ABC ∈ (Q∗)2 (3, 10, 15)
〈ιaτ, ιb, ιc, σ〉 Z/2 Z 2A ∈ (Q∗)2 (2, 3, 5)
〈ιaτ, ιaιb, ιc, σ〉 Z/2 Z 2AB ∈ (Q∗)2 (−6,−3, 5)

〈ιaσ, ιaιb, ιaιc, στ〉 (1) Z⊕ Z −ABC ∈ (Q∗)2 (−15, 3, 5)
〈ιaσ, ιb, ιc, στ〉 Z/2 Z −A ∈ (Q∗)2 (−1, 3, 5)

〈ιaσ, ι2a, ιaιb, ιc, στ〉 Z/2 Z −AB ∈ (Q∗)2 (−63, 7, 15)
〈ιaιb, ιaιc, σ, τ〉 Z/2 Z ABC ∈ (Q∗)2 (3, 5, 15)
〈ιb, ιc, σ, τ〉 Z/2 Z A ∈ (Q∗)2 (1, 3, 5)

〈ι2a, ιaιb, ιc, σ, τ〉 Z/2⊕ Z/2 Z AB ∈ (Q∗)2 (−63,−7, 5)

Table 2. Possible Galois groups among maximal subgroups of G0

the Galois group to be contained in the subgroup, and a representative (A,B,C)
for this subgroup. The complete list of subgroups, together with accompanying
magma code, can be found under the computing link at the first author’s web page
http://www.maths.warwick.ac.uk/~kresch/. �

Remark 1. The significance of Pic(S) being isomorphic to Z, according to the Enriques-
Manin-Iskovskih classification of surfaces, is that these are the minimal surfaces which
are not conic bundles.

7. Examples of Brauer-Manin obstruction

Here we compute the Brauer-Manin obstruction to the Hasse principle in several
representative cases.

Example 4. The case (A,B,C) = (−25,−5, 45). The group G = Gal(F/Q) has
order 32 and fits into an exact sequence

1 → H → G → Z/2 → 1

with H = (Z/4) ⊕ (Z/2)2, generated by ι2aιbιc, ι2c , and στ , and Z/2 generated by
σιaιb. Computing, as in the previous section, we find

H1(Z/2,MH) ∼→ H1(G, M) (24)

in the sequence (21), with MH equal to the span of (−1,−1,−1,−1,−1,−1,−1, 3)
and (1, 1, 1, 1, 1, 1, 0,−2). Hence, as in Example 1, we have

H1(G, M) = Z/2.

Because of (24), there will exist a class in Br(S), not in Br(Q), which is annihilated
by the field extension Q → Q[i] = FH . This makes it convenient to carry out the
procedure described in [13, Chap. VI] for constructing a central simple algebra over
the function field of S which is the restriction of a sheaf of Azumaya algebras that is
nontrivial in Br(S)/Br(Q). This works as follows. Let α be any divisor on SQ[i] whose
class in M = Pic(SF ) is (1, 1, 1, 1, 1, 1, 0,−2). Since α and its complex conjugate α
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sum to 0 in M there will exist a rational function g whose divisor is α + α; then we
consider the quaternion algebra

(−1, g) ∈ Br(S).

We can take α to be the class of a conic minus an anticanonical divisor,

α = D − (z = 0),

where the conic D ⊂ SQ[i] is taken to lie above a conic meeting the Fermat quartic in
4 tangencies, e.g.,

−5x2 − 2y2 + 9z2 = 0, w = i(3y2 − 6z2).

It is easy to check that α has the correct class in M . With this choice, we can take

g = −5(x/z)2 − 2(y/z)2 + 9.

By the geometry underlying the choice of D, we have g > 0 for any [x : y : z] ∈
P2(Q) that has real points over it in S. It is now only necessary to complete p-adic
analyses at the primes p = 2 and p = 3 (since 5-adically, Q[i] is a split extension of
Q). For the 2-adic analysis, we assume x, y, and z to be 2-adic integers, not all even,
and find by analysis mod 16 that the condition −25x4−5y4 +45z4 should be a 2-adic
square implies x and z are odd and y is even. So, without loss of generality, we may
take z = 1. By mod 32 analysis, the only possible values of (x, y) mod 8 are

(1, 2), (1, 6), (3, 0), (3, 4), (5, 0), (5, 4), (7, 2), (7, 6).

In each case we find g = 12 (mod 16), hence (−1, g) is ramified at all 2-adic points of
S. By a similar analysis mod 27 we find that at any 3-adic point x and y are prime
to 3, hence so is g, and (−1, g) is unramified at all 3-adic points of S. Therefore S
provides an example of Brauer-Manin obstruction to the Hasse principle.

Example 5. Here we show that Example 1 fits into an infinite family of examples of
Brauer-Manin obstruction to the Hasse principle. Consider

(A,B,C) = (−2p,−p, 2),

where p is any prime such that

p = 3 (mod 16).

The computation of the group cohomology is exactly as in Example 1. So, H1(G, M) =
H1(Z/2,MH) = Z/2. We proceed as in Example 4.

By the condition on p we may write

p = u2 + 2v2

for positive integers u and v, necessarily both odd. Define s = (−1)(u−v)/2. Solving
for the plane conic tangent to the quartic at the points (±

√
su/p,±

√
2v/p), we find

that with the curve D given by

−sux2 − vy2 + z2 = 0, w = i(−2vx2 + suy2),

the cycle D − (z = 0) has class (1, 1, 1, 1, 1, 1, 0,−2) in M . Set

g = −su(x/z)2 − v(y/z)2 + 1.

Then (−1, g) is
(i) unramified at real points of S;
(ii) ramified at all 2-adic points of S;
(iii) unramified at all p-adic points of S;
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and there is a Brauer-Manin obstruction to the Hasse principle.
We leave the verification of (i)–(ii) to the reader. For (iii) we need the following

lemma.

Lemma 1. Let p be a prime with p = 3 (mod 16). Write p = u2 + 2v2 for positive
integers u and v. Now, if we let y be a solution to y4 = −2 (mod p) then we have
vy2 = (−1)(u−v)/2u (mod p).

Proof. The two square roots of −2 mod p are ±uv−1. So y2 = ±uv−1 (mod p) and
the lemma is asserting that the correct sign is (−1)(u−v)/2, or equivalently, that(uv

p

)
= (−1)(u−v)/2. (25)

By quadratic reciprocity,(u

p

)
= (−1)(u−1)/2

( p

u

)
and

(v

p

)
= (−1)(v−1)/2

(p

v

)
.

If p′ is a prime dividing v, then p is a quadratic residue mod p′. This and a similar
consideration when p′ divides u yield(p

v

)
= 1 and

(2p

u

)
= 1.

By mod 16 analysis, u = ±1 (mod 8), hence
(

2
u

)
= 1. So, (25) holds. �

To establish (iii) we claim that for any p-adic integer solution (w, x, y, z) to (1),
with not all of w, x, y, and z divisible by p, the p-adic integer z2g = −sux2−vy2 +z2

is not divisible by p. Indeed, since 2 is not a quadratic residue mod p we must have p
dividing z, hence x and y are nonzero mod p. Without loss of generality we suppose
x = 1. Now y must be a 4-th root of −2 mod p. The claim follows from Lemma 1.

Example 6. Here we give a recipe for testing the presence of Brauer-Manin obstruc-
tion to the Hasse principle in the generic case, i.e., when the Galois group has order
128. This occurs precisely when the set{

AαBβCγ(−1)δ2ε
∣∣ (α, β, γ, δ, ε) ∈ {0, 1}5 r {(0, 0, 0, 0, 0)}

}
contains no perfect squares (see Table 2).

Let S be such a surface, and assume S has rational points in all completions of Q.
By Corollary 2, we have Br(S)/Br(Q) = H1(G, M) = Z/2. We use the fact that G
has a subgroup of index two

H = 〈στ, ι2a, ιaιb, ιaιc, ιaσ〉
with the property that

MH = 〈 (−1,−1,−1,−1,−1,−1,−1, 3), (1, 1, 1, 1, 1, 1, 0,−2) 〉,
and hence H1(G/H,MH) ∼→ H1(G, M). Therefore, we can construct a quaternion
algebra as in Example 4. In this case,

FH = Q(
√
−ABC).

Let θ =
√
−ABC, and let (r0 : s0 : t0) be a Q(θ)-rational point on the conic

Ar2 + Bs2 + Ct2 = 0. (26)

By our assumption on S, such a point exists by the Hasse principle: local solutions
to (26) arise by rewriting (1) as ((θz2)2 + ABw2)/((By2)2 + ABx4) = A. Now

Ar0x
2 + Bs0y

2 + Ct0z
2 = 0
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defines a conic over Q(θ), meeting the quartic curve in tangencies. By the identity

C2t20(Ax4 + By4 + Cz4) + ABC(s0x
2 − r0y

2)2

+ C(Ar0x
2 + Bs0y

2 + Ct0z
2)(Ar0x

2 + Bs0y
2 − Ct0z

2) = 0,

there is a curve D on SQ(θ) defined by

Ar0x
2 + Bs0y

2 + Ct0z
2 = 0, w = θ(s0x

2 − r0y
2)/(Ct0)

such that the union of D and its conjugate is rationally equivalent to twice the anti-
canonical class. This rational equivalence is given explicitly by the rational function

g := (Ar1s1 + A2BCr2s2) + (Bs2
1 −A2BCr2

2)(y/x)2 + Cs1t0(z/x)2 + ACr2t0w/x2,

where we suppose t0 ∈ Q and write

r0 = r1 + r2θ and s0 = s1 + s2θ.

To test the Brauer-Manin obstruction to the Hasse principle for S, one has to analyse
the quaternion algebra

(−ABC, g)
at real- and Qp-valued points of S (for p dividing 2ABC).

We give an example of nontrivial Brauer-Manin obstruction in this case. Consider
(A,B,C) = (−126,−91, 78). Then we may take r0 = −13, s0 = −12, and t0 = 21,
and g is proportional to

3 + 2(y/x)2 + 3(z/x)2.
In this case the quaternion algebra (−ABC, 3 + 2(y/x)2 + 3(z/x)2) is ramified at all
Q2-points of S and unramified at all points in all other completions.

Example 7. The case (A,B,C) = (34, 34, 34). Here G = Gal(F/Q) is isomorphic to
(Z/2)3:

G = 〈ιaιbιcσ, τ, σ〉.
We have H1(G, M) = (Z/2)3. In fact, for the index-two subgroup

H = 〈ιaιbιcσ, τ〉
we have MH spanned by

(1,−1, 0, 0, 0, 0, 0, 0),
(0, 0, 1,−1, 0, 0, 0, 0),
(0, 0, 0, 0, 1,−1, 0, 0),

(−1,−1,−1,−1,−1,−1,−1, 3),

(27)

and
H1(G/H, MH) ∼→ H1(G, M).

Here, σ in G/H acts nontrivially on the first three vectors in (27) and trivially on the
last. We have

FH = Q(
√
−17).

Using (22) we can identify elements of Br(S)/Br(Q) with the image of the (−1)-
eigenspace of MH (under the σ-action). To produce quaternion algebras represent-
ing a given element of Br(S)/Br(Q) we need to find divisors defined over Q(

√
−17)

representing particular classes in MH . Notice that the class of any combination of
exceptional curves defined over Q(

√
−17) in MH is a coboundary of (22). Hence, we

need additional cycles defined over Q(
√
−17). We use descent to produce line bundles
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on SQ(
√
−17) and obtain the desired cycles as loci of vanishing of rational sections of

these line bundles.
Here we explicitly carry out the task of representing the class of the first entry of

(27) in Br(S). Set ρ = ιaιbιcσ. Over F = Q(
√
−17, ζ) we have

[Lx,ζ,+]− [Lx,ζ3,−] = (1,−1, 0, 0, 0, 0, 0, 0) (28)

in Pic(SF ). Consider the line bundle O([Lx,ζ,+] − [Lx,ζ3,−]) together with isomor-
phisms

O(Lx,ζ,+ − Lx,ζ3,−)
η−→ O(Lx,ζ7,− − Lx,ζ5,+)

and
O(Lx,ζ,+ − Lx,ζ3,−)

ξ−→ O(Lx,ζ3,+ − Lx,ζ,−).
These constitute descent data (for the covering SF → SQ(

√
−17)) provided that the

diagram

O(Lx,ζ,+ − Lx,ζ3,−)
η

//

ξ

��

1

++

1

��

O(Lx,ζ7,− − Lx,ζ5,+)
ρ(η)

//

ρ(ξ)

��

O(Lx,ζ,+ − Lx,ζ3,−)

O(Lx,ζ3,+ − Lx,ζ,−)
τ(η)

//

τ(ξ)

��

O(Lx,ζ5,− − Lx,ζ7,+)

O(Lx,ζ,+ − Lx,ζ3,−)

commutes. The isomorphisms given by

η = δ
x2 − iy2 + z2 − 1√

34
w

x2 − iy2 − z2 + 1√
34

w
and ξ = ε

ζy + z

ζ3y + z
,

satisfy this condition if and only if δ, η ∈ F satisfy

δ ρ(δ) = −1, (29)

ε τ(ε) = 1, (30)

δ ρ(ε) = τ(δ) ε. (31)

One solution to (29)–(31) is

δ =
√
−17ζ − 4ζ3 and ε = 4ζ +

√
−17ζ3.

This yields, by effective descent, a line bundle E on SQ(
√
−17).

Using (29)–(31) and descent, we see that

f := 1 + ρ(η) + τ(ξ) + ρ(η τ(ξ))

defines a rational section of E . We write f as a quotient of quartic polynomials and
observe that f has (with respect to local trivializations of E) a simple pole along
Lx,ζ,−∪Lx,ζ3,−∪Lx,ζ5,+∪Lx,ζ7,+ and a zero of order one along some curve Z. Then,
by (28), we deduce that

[Z] = (−3,−1,−2,−2,−2,−2,−2, 6)

in the Picard group. Therefore, if h ∈ Q(S) defines a rational equivalence between Z∪
σ(Z) and some hyperplane sections, then the quaternion algebra (−17, h) represents
an element of Br(S) of the desired class in Br(S)/Br(Q).
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Denoting by g the numerator of f , we have

g = (x2 + iy2 + z2 +
1√
34

w)[y2 + iz2 + (4ζ −
√
−17ζ3)(y2 +

√
2yz + z2)]

+ (x2 + iy2 − z2 − 1√
34

w)[y2 +
√

2yz + z2 + (4ζ −
√
−17ζ3)(−y2 + iz2)].

The simultaneous vanishing of g, ρ(g), τ(g), and ρτ(g) defines the curve Z. Equiva-
lently, writing

g = p0 + p1ζ + p2ζ
2 + p3ζ

3

with pi ∈ Q(
√
−17)[w, x, y, z] we have Z defined by the vanishing of pi for i = 0, . . .,

3. A unique (up to scale) Q(
√
−17) linear combination of these is defined over Q,

namely

h1 :=
1
2
p0 +

4−
√
−17

2
p1 +

1
2
p2 −

4 +
√
−17

2
p3

= wy2 + wz2 + x2y2 + 8x2yz + x2z2 + y4 − z4.

Then h = h1/x4 is as desired. Cyclically permuting the variables x, y, and z, we obtain
polynomials h2 and h3 such that the classes of (−17, hi/x4) generate Br(S)/Br(Q).

The ramification pattern of an Azumaya algebra is an invariant of its class in
Br(S). However, in practice, the ramification pattern of an algebra (−17, hi/x4) is
difficult to test on p-adic points where hi vanishes to high order. Hence it is helpful
to have multiple rational functions determining the same class in Br(S)/Br(Q). We
can obtain additional functions by repeating the previous construction for different
solutions to (29)–(31). For instance, (−δ, ε) is another solution. If we carry out the
above procedure with this solution we obtain

h4 = wy2 + wz2 + x2y2 + 8x2yz + x2z2 − y4 + z4,

with the property that (−17, h1/x4) and (−17, h4/x4) are equal in Br(S)/Br(Q). We
obtain h5 and h6 similarly: the effect of the full set of permutations of x, y, and z is
that we now have two representatives of each of the generators of Br(S)/Br(Q). We
let qi ∈ Br(S) denote (−17, hi/x4), for each i.

To gain full advantage of having these classes, we need to know how qi and qi+3

differ in Br(S). This is discovered by finding a relationship that makes explicit their
equality in Br(S)/Br(Q). Using linear algebra, we have identified a rational equiva-
lence on SQ(

√
−17) between Z and the analogous curve for the function h4; its norm

relates h1 and h4 modulo the defining equation of S:

h1h4 =
1
9

[(1
2
wy2 + 4wyz +

1
2
wz2 + 17x2y2 + 17x2z2 − 4y4 + y3z + yz3 − 4z4

)2

+ 17
( 1
34

wy2 +
4
17

wyz +
1
34

wz2 + x2y2 + x2z2 + 4y4 − y3z − yz3 + 4z4
)2

]
+ (−33y4 + 16y3z − 2y2z2 + 16yz3 − 33z4)

(
x4 + y4 + z4 − 1

34
w2

)
.

Similar identities hold under cyclic permutations of x, y, and z, and we thus have

qi = qi+3

in Br(S), for each i.
Here are the results of the local analysis, confirming the presence of a Brauer-Manin

obstruction:
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• qi is unramified on points of S(R) with w > 0 and ramified on points with
w < 0, for all i.

• S(Q2) is the disjoint union of two nonempty sets, U and R, such that each qi

is unramified on U , and each qi is ramified on R.
• At any point of S(Q17), exactly two of {q1, q2, q3} are ramified.

Remark 2. We produced the solution to (29)–(31) by inspection. A more systematic
way to proceed would be to solve just (29), obtaining by descent a line bundle defined
over Q(

√
−17,

√
2). Descending further to Q(

√
−17) then hinges upon solving a norm

equation for the quadratic extension Q(
√
−17) → Q(

√
−17,

√
2).

Example 8. The case (A,B,C) = (−9826,−2, 136) = (−2p3,−2, 8p) with p = 17
illustrates working with a non-cyclic Azumaya algebra. We have F = Q(ζ, 4

√
p). The

Galois group of F over Q has order 16:

G = 〈ιaιbιcστ, ι3aιc, ιbι
3
cσ〉.

In this case, H1(G, M) = Z/4. There is no Brauer-Manin obstruction coming from
2-torsion in Br(S). Indeed, the motivated reader can produce a subgroup H of index
2 in G with H1(G/H, MH) = Z/2 and show that (−2, 136 + (y/x)2 + 18(z/x)2)
generates the 2-torsion in Br(S)/Br(Q), yet is unramified at all points S in every
completion of Q. This means that the obstruction analysis requires a representative
of a generator of Br(S)/Br(Q).

The central element u := ιaιbιcστ of G satisfies

Fu = Q(i, 4
√

p)

and
H1(G/〈u〉,Mu) = Z/4.

We remark that the exceptional curves Lα,β,γ (α, β, γ ∈ µ4) are defined over Fu. The
quotient G′ := G/〈u〉 is isomorphic to the dihedral group D4; generators g := ι3aιc
and h := ιbι

3
cσ satisfy g4 = h2 = ghgh = e. We use the resolution of Proposition 5 to

identify classes in H1(G′,Mu) with pairs (v, v′) ∈ (Mu)2 satisfying

Ngv = Nhv′ = 0 and Nghv = Nghv′, (32)

modulo those of the form (∆gv,∆hv). Now a generator of H1(G′,Mu) is the class of
(v1, 0) where

v1 = (−1, 0, 1, 0, 0, 0, 0, 0) = [L1,i,1]− [Li,−1,−1]. (33)

Another representative for the same cohomology class is (v2, 0) where

v2 = (−1, 0,−1, 0,−1,−1,−2, 2) = [L1,−1,i]− [Li,i,i]. (34)

To produce an Azumaya algebra from one of these cocycles (vi, 0) we must find
rational equivalences that reflect the identities (32). In fact, for each of the cycle
representatives given in (33) and (34), the result of applying Ngh is equal to zero as
a cycle. So it remains only to find rational functions whose divisors are Ng applied
to these cycle representatives. For (33), a function that vanishes on L1,i,1 ∪Li,−i,−i ∪
L1,−i,1 ∪ Li,i,−i and has a simple pole along Li,−1,−1 ∪ L1,−1,−i ∪ Li,1,−1 ∪ L1,1,−i is

f1 :=
p(1 + i)xz + iy2 − (1/2)w

p(−1 + i)xz + iy2 + (1/2)w
.
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The corresponding rational equivalence for (34) is

f2 :=
p(1− i)xz + iy2 + (1/2)w
p(1 + i)xz − iy2 + (1/2)w

.

For i = 1 and 2 we have fi h(fi) = 1, and the cocycle

(fi, 1, 1) ∈ (Fu(S)∗)3

determines an Azumaya algebra Ai on S.
We claim A1 and A2 are equal in Br(S) and are:

• unramified at all points of S(Q2);
• ramified at all points of S(Q17);
• unramified at all points of S(R).

The last of these claims is clear, since (fi, 1, 1) ∈ S1 ×{1}× {1} at any point of S(R)
(where S1 ⊂ C∗ denotes the unit circle) and this is a connected subgroup of the group
of cocycles, hence trivial in cohomology.

For the claim regarding 2-adic points, we pause to discuss the cohomology group
H2(D4, Q2(i,

4
√

17)∗), where generators act by

g :

{
i 7→ i
4
√

17 7→ i 4
√

17
h :

{
i 7→ −i
4
√

17 7→ i 4
√

17

Consider the diagram of field extensions, where labels indicate fixed fields.

Q2(i,
4
√

17)

g

uuuuuuuuuuuuuu
h

gh
RRRRRR

Q2((1 + i) 4
√

17)

��
��

��
��

��
�

Q2(i
4
√

17)

mmmmmmmmmmmmmmmmmmmm

Q2(i)
CCC

C

Q2

Now by the resolution for D4 of Section 4, a 2-cocycle is (r, s, t) with

r ∈ Q2(i)∗, s ∈ Q2((1 + i) 4
√

17)∗, t ∈ Q2(i
4
√

17)∗

satisfying Nr = Ns Nt, where in each instance, N denotes the norm from the respec-
tive field to Q2. Coboundaries are triples

(Ngc,Nhd, Ngh(c/d))

for c, d ∈ Q2(i,
4
√

17)∗.
At every 2-adic point of S, at least one of f1 and f2 is defined and takes one of the

following values mod 32:

1+0i 1+8i 1+16i 1+24i 25+4i 25+12i 25+20i 25+28i
0+31i 8+31i 16+31i 24+31i 4+7i 12+7i 20+7i 28+7i
31+0i 31+24i 31+16i 31+8i 7+28i 7+20i 7+12i 7+4i
0+i 24+i 16+i 8+i 28+25i 20+25i 12+25i 4+25i

(35)

We claim that for any cocycle (f, 1, 1) with f (necessarily in Z2[i]) taking one of
the values mod 32 listed in (35), there exists c ∈ Q2(i,

4
√

17)∗ with Nghc = 1 and
Ngc = f , so in particular, (f, 1, 1) is a coboundary. Indeed, the image of Ng among
c ∈ Z2[i,

4
√

17] satisfying Nghc = 1 is the set of f ∈ Q(i)∗ with Nf = 1 and f mod 32
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equal to some value in the first row of (35). Also, there exists c ∈ Q2(i,
4
√

17)∗ with
Nghc = 1 and Ngc = i. Since norms are multiplicative, the claim follows.

The equality of A1 and A2 in Br(S) follows from having a function r ∈ Fu(S)∗,
whose norm by g is f2/f1 and whose norm by gh is 1. Recall that (v2, 0) equals (v1, 0)
in cohomology; explicitly this is by v2 − v1 = ∆g([L1,1,1] + [L1,i,−i]). Now r can be
taken to be a rational function vanishing on L1,−1,i ∪ Li,−1,−1 ∪ g(L1,1,1) ∪ g(L1,i,−i)
with a simple pole on Li,i,i ∪ L1,i,1 ∪ L1,1,1 ∪ L1,i,−i, scaled appropriately.

The 17-adic analysis is simpler because Q17 has
√
−1, and hence we are reduced

to analyzing norms for Q17 → Q17(
4
√

17). Norms for this extensions are just powers
of 17 times 4-th powers in Z∗17. Evaluating f1 at points of S(Q17) and substituting√
−1 for i yields the classes 8 and 15 mod 17, and these are not quartic residues.

Remark 3. The analysis we have carried out in the examples could, in principle, be
carried out algorithmically in any of the arithmetic classes of surfaces S. We have
verified that, except in two uninteresting cases (in which one of A, B, and C has
to be a square), the 2-torsion subgroup of Br(S)/Br(Q) is generated by the groups
H1(Z/2,MH) as H ranges over the index 2 subgroups of Galois group. In the cases
with 4-torsion in Br(S)/Br(Q), the analysis can proceed as in Example 8.

Remark 4. In Examples 4 through 8, the surface S always satisfies Pic(S) = Z.
So, in considering the cases of del Pezzo surfaces of degree 2 covered by previous
results, described in the introduction, we are consistently avoiding the non-minimal
surfaces of case (i). Every surface that we are considering is in some obvious ways, a
double cover of Châtelet surfaces (one can pass to invariants for any projective linear
transformation of x, y, and z which is an involution preserving Ax4+By4+Cz4). But
in every example, the resulting Châtelet surfaces satisfy the Hasse principle (this can
be seen by directly exhibiting rational points, combined with appeal to [8, Theorem
B]). In at least one case, Example 8, it is easy to exclude the surface from being
birational to a conic bundle, since Br(S)/Br(Q), a birational invariant, is 2-torsion
for conic bundles.

8. Appendix: Cyclic Azumaya algebras on diagonal cubics

In [6], there is an analysis of the Brauer-Manin obstruction on a diagonal cubic
surface S, given by

Ax3 + By3 + Cz3 + Dt3 = 0, (36)

with A, B, C, and D positive integers. Let θ = e2πi/3; first of all, S(Q) = ∅ if and only
if S(Q(θ)) = ∅, and hence it suffices to work over the field k := Q(θ). The analysis
proceeds by constructing Azumaya algebras that are split by a bicyclic extension of
k and computing local invariants.

Here we simplify the algorithm proposed in [6] by constructing cyclic Azumaya
algebras on Sk which generate Br(Sk)/Br(k). We use descent to exhibit the necessary
cycles, as in Example 7.

We start by making the following assumption:

3
√

A/B /∈ Q, 3
√

A/C /∈ Q, . . . , 3
√

C/D /∈ Q
3
√

AB/CD /∈ Q, 3
√

AC/BD /∈ Q, 3
√

AD/BC /∈ Q
(37)
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(in all other cases, the Hasse principle is known to hold). Then we define

α = 3
√

B/A β = 3
√

D/C γ = 3
√

AD/BC = α−1β

α′ = 3
√

C/A β′ = 3
√

D/B

We assume, further, that S(Qp) 6= ∅ for all primes p. Set K = k(γ, α); the assumption
(37) implies

[K : k] = 9. (38)
We need notation for the following divisors on Sk̄:

L(i):

{
x+θiαy = 0
z+θiβt = 0

L′(i):

{
x+θiαy = 0
z+θi+1βt = 0

L′′(i):

{
x+θiαy = 0
z+θi+2βt = 0

and

M(i):

{
x+θiα′z = 0
y+θi+1β′t = 0

Define

L = L(0) + L(1) + L(2) and M = M(0) + M(1) + M(2).

Now L + M is comprised of 6 pairwise disjoint lines; blowing these down we have
Sk̄ → P2

k̄
. Take ` to be the class of a general line in P2

k̄
, so

3` = −KS + L + M.

By results in [6], we have

Z/3 = H1(Z/3,Pic(Sk(γ)))
∼→ Br(Sk)/Br(k),

generated by the class in H1(Z/3,Pic(Sk(γ))) of `−L or `−M (where we use (22) to
identify elements with cohomology classes). In [6], the following procedure is proposed
to obtain a nontrivial Azumaya algebra on Sk:

(i) Find a divisor D defined over k(γ) in the class `− L or `−M ,
(ii) Find a function in k(S) whose divisor is the union of D and its Galois conju-

gates.
Unfortunately, the classes in Pic(Sk(γ)) of sums of lines defined over Sk(γ) fail to
represent any nonzero elements of H1(Z/3,Pic(Sk(γ))), and the further field extension
required to find suitable sums of lines accounts for much of the complication of the
analysis of [6].

We show that (i) can be carried out by solving a norm equation. Then (ii) reduces
to some linear algebra. For (i), we start with the further field extension k(γ) → K
and the divisor D := L′(2)− L′′(0) in class `−M (cf. [6]). Denote by σ the element
of Gal(K/k(γ)) which sends α to θα. For the line bundle OSK

(D) to descend to k(γ)
we must supply an isomorphism

OSK
(L′(2)− L′′(0))

ξ−→ OSK
(L′(0)− L′′(1))

satisfying
σ2(ξ) ◦ σ(ξ) ◦ ξ = 1. (39)

Looking at the defining equations, we see ξ must be of the form

ξ = ε
z + βt

x + αy
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for some ε ∈ k(γ). Now the condition (39) is equivalent to

NK/k(γ)(ε) = −C/A. (40)

Concretely, if
ε = λ + µα + να2

with λ, µ, ν ∈ k(γ), then (40) expands as

λ3 +
B

A
µ3 +

B2

A2
ν3 − 3

B

A
λµν = −C

A
. (41)

Equation (41) has a solution, by the Hasse principle. There is also an a priori bound
on the size of some solution [15]. An effective algorithm exists; see for example [10].
Algorithms from [2] and [9] have been implemented in magma.

Define k′ = k(γ). By descent we have a line bundle E on Sk′ . Also by descent, a
rational section of E is given by

f = 1 + σ2(ξ) + σ(ξ)σ2(ξ)

=
(x+θαy)(x+θ2αy) + σ2ε(x+θαy)(z+θ2βt) + σεσ2ε(z+θβt)(z+θ2βt)

(x+θαy)(x+θ2αy)
.

Then, with respect to local trivializations of E , the section f has a simple pole on
L′′(0) + L′′(1) + L′′(2) and vanishes to order one along some cubic curve C. Hence

C = −2L−M + 4`

in Pic(Sk′), and C + KS = −L + ` is a divisor as desired.
We compute C2 = 1 and C ·KS = −3, which implies that its genus is zero, so C

is geometrically a twisted cubic. Denoting by g the numerator of f , explicit defining
equations of C ⊂ S over K are g = σ(g) = σ2(g) = 0. It is possible to express

g = g0 + g1α + g2α
2

for g0, g1, g2 ∈ k′[x, y, z, t], and after a bit of algebra we find

g0 = x2 + λxz + (B/A)νxtγ + θ2(B/A)µytγ + θ2(B/A)νyz

+ [λ2 − (B/A)µν]z2 + (B/A)(λν − µ2)ztγ + (B/A)[(B/A)ν2 − λµ]t2γ2

g1 = −xy + θ2µxz + θ2λxtγ + θλyz + θ(B/A)νytγ + [(B/A)ν2 − λµ]z2

+ [(B/A)µν − λ2]ztγ + (B/A)(µ2 − λν)t2γ2

g2 = θνxz + θµxtγ + y2 + µyz + λytγ

+ (µ2 − λν)z2 + [λµ− (B/A)ν2]ztγ + [λ2 − (B/A)µν]t2γ2

Now C is defined over k′ as a subvariety of S by the equations

g0 = g1 = g2 = 0. (42)

In fact, we have

g0(Ax−Aλz −Bνγt) + g1(−Bνz −Bµγt) + g2(By −Bµz −Bλγt)

= Ax3 + By3 + Cz3 + Dt3

so (42) defines C over k′ as a subvariety of P3. We have completed task (i).
For task (ii), we claim there exist linear polynomials `0, `1, `2 ∈ k′[x, y, z, t] such

that the polynomial
h = g0`0 + g1`1 + g2`2 (43)
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is in k[x, y, z, t] and is not proportional to (Ax3 + By3 + Cz3 + Dt3). Knowing this,
a modern linear algebra solver can effectively produce such `0, `1, and `2. Then the
division algebra generated over k(S) by noncommuting variables r and s subject to
relations

r3 = AD/BC, s3 = h/x3, sr = θrs,

is the restriction of an Azumaya algebra over Sk generating Br(Sk)/Br(k).
To justify the claim, notice first that there exists a rational function on Sk whose

divisor is 3H − C − ρC − ρ2C, where H is a hyperplane section and ρ is a generator
of Gal(k′/k). Next, by a dimension computation, we have an isomorphism

H0(P3
k,O(3))/〈Ax3 + By3 + Cz3 + Dt3〉 → H0(S, 3H)

so this rational function must be of the form h/`3 (assuming that H is defined by the
vanishing of the linear form `). Finally, a syzygy computation shows that h can be
expressed in the form (43). Indeed, (42) defines C in P3, so we know `dh lies in the
ideal (g0, g1, g2) of k′[x, y, z, t], for some d. Suppose d ≥ 1 and

`dh =
2∑

i=0

giri,

with ri ∈ k′[x, y, z, t] for i = 0, 1, 2. Now it suffices to show that there exist s0, s1,
s2 ∈ k′[x, y, z, t] such that

∑
i gisi = 0, and ` divides ri − si for each i; then we have

`d−1h =
∑

i gi(ri−si)/` and we can proceed inductively. In other words, it suffices to
show that the map on Koszul complexes for (g0, g1, g2), induced by the quotient map
k′[x, y, z, t] → k′[x, y, z, t]/(`), gives rise to a surjection on the first homology modules.
It is enough to verify this over the algebraic closure, and we are reduced to the case
of (g0, g1, g2) defining the twisted cubic, for which it is a standard computation.
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