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Abstract. We characterize one-dimensional subspaces of three-dimensional space

over a finite field of odd prime order, containing a vector whose coordinates are

constrained to half of the nonzero residue classes.

1. Introduction

Let p be a prime number, n a positive integer, and S ⊂ (Z/pZ)n the solution set
to a system of polynomial equations. It is of interest to understand the number and
distribution of points in S; see, e.g., [6], [3], [8], [7], [4], [5]. To understand the number
of points in a subset B ⊂ (Z/pZ)n — often the reduction mod p of a product of integer
intervals — the formula (with notation · for standard dot product of vectors)∑

c∈(Z/pZ)n

∑
j∈B

e2πi
c·j
p

∑
k∈S

e−2πi
c·k
p = pn|B ∩ S|

leads to useful asymptotic estimates as p→∞ when S is, in some sense, sufficiently
nonlinear. Useful asymptotic estimates are obtained, for instance, in [8] for S defined
by a single equation without linear factor, by exhibiting a bound on the absolute value
of the innermost sum for c 6= 0 of the form Cpn−

3
2 , with constant C depending only

on n and the degree of the defining equation of S.
When S is a linear subspace, the innermost sum is pdim(S) when c ∈ S⊥, and

zero otherwise. Having no improvement to the exponent of p, the usefulness of the
asymptotic estimates is sensitive to the defining equations. This article treats the
case that S has dimension 1 and is not contained in any coordinate hyperplane, p is
odd, and

B =
{

1, . . . ,
p− 1

2

}
× · · · ×

{
1, . . . ,

p− 1

2

}
.

The particular choice of B is motivated by a problem in algebraic geometry concerning
algebraic stacks which is described in Section 5 and leads us to ask when B ∩ S can
be empty. We focus our attention on the case n = 3, which is the first interesting
case, since the case n = 1 is trivial and when n = 2 it is more or less immediate that
B ∩ S = ∅ if and only if S = span(1,−1). For any n it is clear that having a pair
of coordinates of points of S that sums to zero is a sufficient condition for B ∩ S to
be empty. When n = 3, our main theorem (Theorem 2) asserts that the condition is
necessary as well, with one exception: p = 7 with S = span(1, 2, 4), up to permutation
of coordinates.

Well known bounds on exponential sums (Section 2) lead to results that, while
theoretically optimal, are far from practical for obtaining a statement such as the
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main theorem. Elementary methods suffice to bridge the gap between impractical
and practical bounds (Section 3), leading to a proof of the main theorem (Section 4).

The proof of the main theorem is supported by computations, performed over the
course of several weeks. Scripts for the computer algebra system magma to carry out
the most computationally demanding tasks have been made available on the author’s
webpage http://www.math.uzh.ch/kresch. The first of these carries out the case-
by-case verification of the main theorem for specific values of p and is used for the
verification for all p < 12000, mentioned at the beginning of the proof of Theorem 2.
Toward the end of the proof a computational treatment of finitely many pairs (a, b) of
integers is mentioned, and the second magma script is used for this task. On an 80-core
computational server, the exhaustive verification for all p < 12000 required about one
week of computation, and the treatment of (a, b) pairs, about two weeks. Attention
was not given to optimization; rather, the tasks were coded quickly in magma and
computations undertaken, once it was recognized that a practical running time could
be achieved.

2. Basic estimates

We start by recalling some estimates due to Vinogradov [9, Chap. III, Prob. 11].
Here m is a positive integer, I is an interval in Z/mZ (i.e., a subset obtained by
reduction mod m of an integer interval), and a is a nonzero integer with |a| ≤ m/2.
Then: ∣∣∣∑

j∈I
e2πi

aj
m

∣∣∣ ≤ { m
3|a| if |a| ≤ m

6 ,
m
2|a| if m

6 < |a| ≤ m
2 ,

m−1∑
b=0

∣∣∣∑
j∈I

e2πi
bj
m

∣∣∣ ≤ {m logm+m if m < 60,

m logm if m ≥ 60.

As well, for 3 ≤ a ≤ m/6 we have

a∑
b=−a

∣∣∣∑
j∈I

e2πi
bj
m

∣∣∣ ≤ m(2

3
log a+

1

2
+
|I|
m

)
.

Theorem 1. Let n be a positive integer and 0 ≤ αi < βi ≤ 1 for i = 1, . . . , n. For
ε > 0 there exists a finite collection of nonzero integer vectors b(1), . . . , b(r) ∈ Zn,

such that for all primes p and vectors v ∈ (Z/pZ)n satisfying
∑n
i=1 b

(j)
i vi 6= 0 for

j = 1, . . . , r, if we identify elements of Z/pZ with integers in {0, 1, . . . , p − 1} and
define

Bp = Ip,1 × · · · × Ip,n, Ip,i = {k ∈ Z/pZ |αip < k < βip},

then we have ∣∣∣∣Bp ∩ (Z/pZ)v

p
−

n∏
i=1

(βi − αi)
∣∣∣∣ < ε.

The proof is based on the formula∑
c∈v⊥

∑
j∈Bp

e2πi
c·j
p = pn−1|Bp ∩ (Z/pZ)v|.
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The inner sum on the left corresponding to c = 0 has value asymptotically approach-
ing pn

∏n
i=1(βi − αi). Therefore it suffices to bound

p−n
∣∣∣∣ ∑
c∈v⊥\{0}

∑
j∈Bp

e2πi
c·j
p

∣∣∣∣ =
∑

c∈v⊥\{0}

(
p−1

∑
j∈Ip,1

e2πi
c1j
p

)
· · ·
(
p−1

∑
j∈Ip,n

e2πi
cnj
p

)
.

The collection of integer vectors in the statement can be taken to consist of all nonzero
integer vectors with coordinates bounded in absolute value by a suitable positive
integer M , together with (N, 0, . . . , 0), (0, N, . . . , 0), . . . , (0, . . . , 0, N) for suitable
positive N , the latter serving to ensure p � 1 and vi 6= 0 for all i. Suitable M and
N arise from the following estimate.

In Lemma 1 we write |k|, for k ∈ Z/pZ, to mean |k0| for a representative k0 ∈ Z
of k of absolute value at most p/2.

Lemma 1. Let p be a prime number, n a positive integer, v ∈ (Z/pZ)n a vector with
nonzero coordinates, uk ∈ R≥0 for all k ∈ Z/pZ, and A, B, C, D ∈ R>0 such that
uk ≤ C for all k ∈ Z/pZ with A < |k| ≤ B and

∑
|k|≤B uk ≤ D. Then∑

c∈v⊥
|c1|,...,|cn|≤B

max(|c1|,...,|cn|)>A

uc1
· · ·ucn

≤ nCDn−1.

Proof. We may bound the sum from above by

n∑
i=1

∑
c∈v⊥

|c1|,...,|cn|≤B
|ci|>A

uc1
· · ·ucn

. (1)

The orthogonality requirement expresses ci as a linear function in the other coordi-
nates of c. For each term, we have uci

≤ C. We apply the inequality involving D to
each of the other coordinates to obtain the desired inequality. �

For given M , we observe that c ∈ v⊥ \ {0} implies max(|c1|, . . . , |cn|) > M .
We suppose M ≥ 5 and define b = [log(p/12M)/ log 2], which for p > 12M is a
nonnegative integer, the largest with 2b+1M ≤ p/6. Now

p−n
∣∣∣∣ ∑
c∈v⊥\{0}

∑
j∈Bp

e2πi
c·j
p

∣∣∣∣ =

b∑
a=0

∑
c∈v⊥

|c1|,...,|cn|≤2a+1M
max(|c1|,...,|cn|)>2aM

(
p−1

∑
j∈Ip,1

e2πi
c1j
p

)
· · ·
(
p−1

∑
j∈Ip,n

e2πi
cnj
p

)

+
∑
c∈v⊥

max(|c1|,...,|cn|)>2b+1M

(
p−1

∑
j∈Ip,1

e2πi
c1j
p

)
· · ·
(
p−1

∑
j∈Ip,n

e2πi
cnj
p

)
.

For each value of a, we obtain a bound for the corresponding summand of the first
term on the right from the lemma with A = 2aM , B = 2A, C = 1/3A, and D =
(2/3) logB + 3/2. To bound the second term on the right, we apply the lemma with
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A = 2b+1M , B = (p − 1)/2, C = 4/p (valid since p/12 < A ≤ p/6), and D = log p.
Combining these yields a bound of

b∑
a=0

n

3 · 2aM

(2

3
log(2a+1M) +

3

2

)n−1
+

4n

p
(log p)n−1.

The first term is a partial sum of a convergent series, whose sum can be made ar-
bitrarily small by increasing M . The second term tends to zero as p increases. So
suitable M and N exist.

3. Bounds and improvement

Theorem 1 is optimal from a theoretical perspective. For the sake of discussion we
fix αi = 0 and βi = 1/2 for all i, although similar phenomena will be observed with
arbitrary values (other than the trivial case αi = 0 and βi = 1). A condition such as
vi +vj = 0 for some i and j presents a clear obstruction to a result as in Theorem 1.
There are other instances of failure, such as n = 4, v = (1, 2,−3, 4). So it is necessary
to include a genericity hypothesis, as we did.

Practically, what we have is not very encouraging. Let us focus on n = 3, as
in the main theorem. Then we need to take M well over 500 for the argument to
lead to Bp ∩ (Z/pZ)v 6= ∅ for p � 1. (This is so, even with the improvement to
D = (2/3) logB + 1, coming from intervals I = {1, . . . , (p− 1)/2} with |I|/p < 1/2.)

The proof of Lemma 1, where we count for every choice of n − 1 coordinates of
absolute value ≤ |B| a contribution with A < |ci| ≤ B, leads to a gross overestimation
which we can easily refine.

Proposition 1. We adopt the notation of Lemma 1 and suppose, furthermore, that
we have E ≥ 2B satisfying

avi + bvj 6= 0

for all i 6= j and a, b ∈ Z, not both zero, with |a|, |b| ≤ E. Then∑
c∈v⊥

|c1|,...,|cn|≤B
max(|c1|,...,|cn|)>A

uc1
· · ·ucn

≤ nCDn−2 max
|k|≤B

uk.

Proof. Suppose c, c′ ∈ v⊥ differ only in the ith and jth coordinates. Suppose,
furthermore, |ci| and |c′i| are both ≤ B, so |c′i − ci| ≤ 2B ≤ E. By the hypothesis,
|c′j − cj | > E. Then |cj | and |c′j | cannot both be ≤ B. �

Proposition 2. Suppose that we are in the situation of Proposition 1 with n = 3.
Then ∑

c∈v⊥
|c1|,|c2|,|c3|≤B

max(|c1|,|c2|,|c3|)>A

uc1
uc2

uc3
≤ 3C

∑
1≤|k|≤B

u2k.

Proof. Continuing with the notation of the proof of Proposition 1, if k is such that
{i, j, k} = {1, 2, 3}, the ith summand in (1) never has contribution from distinct c and
c′ with cj = c′j or ck = c′k, nor has contribution from any c with cj = 0 or ck = 0.
So each summand in (1) has an upper bound of the form C

∑
1≤|`|≤B u`uσ(`) for some

permutation σ of {±1, . . . ,±B}. We conclude by application of the Cauchy-Schwarz
inequality. �
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Returning to our case of interest (n = 3 with αi = 0 and βi = 1/2 for all i),
Proposition 2 yields an upper bound, under the assumption B < p/6, of

1

A

(
2

∞∑
n=1

1

(3n)2

)
=

1

A

(π2

27

)
.

We initially assume p > 96000. We fix E = 2000, i.e., we assume that (Z/pZ)v
has no element with two coordinates in {±1, . . . ,±2000}. We also assume:

v 6⊥ c for c ∈ {(±1,±1,±1), (±1,±1,±2), (±1,±2,±1), (±2,±1,±1),

(±1,±1,±3) and cyclic permutations, (±1,±1,±4) and cyclic permutations, (2)

(±1,±2,±2) and cyclic permutations}.

These assumptions imply v ⊥ c for at most one c with coordinates in {±1, . . . ,±30}
and its scalar multiples. For instance, v ⊥ c for c = (±1,±1,±5) leads to contribu-
tions from ±c, . . . , ±6c of at most 2(1 + 1/23 + · · · + 1/63)/(3 · 3 · 15). This is the
largest possible from such c; when combined with the quantity from Proposition 2
with A = 30 and B = 1000, this yields a bound of approximately 0.0298.

Lemma 1 with A = 1000 and B = 16000 leads to 0.0556.
Lemma 1 with B = 2A for A = 16000 and successive doublings, as long as B < p/6,

gives at most 0.0088.
Lemma 1 with p/12 < A < p/6 and B = (p− 1)/2, for which we can take C = 4/p

and D = log p, gives at most 0.0165.
The total 0.0298 + 0.0556 + 0.0088 + 0.0165 = 0.1107 is less than 1/8.
We treat primes 12000 < p < 96000 with first bound exactly as above and modified

second bound with A = 1000 and B = [p/6]. The third bound is omitted, and the
fourth is modified to A = [p/6], B = (p− 1)/2, C = 1/(2[p/6]), and

D =
1

2
+ 2

( [ p6 ]∑
j=1

1

3j
+

p−1
2∑

j=[ p6 ]+1

1

2j

)
.

On a case-by-case basis this is checked to yield a total of less than 1/8.

4. Main theorem

We come to the statement of the main theorem.

Theorem 2. Let p be an odd prime and v ∈ (Z/pZ)3 a vector with nonzero co-
ordinates, such that no pair of coordinates sums to zero. Then, except in the case
p = 7 and v = ±(1, 2, 4) up to permutation of coordinates, there always exists a
scalar multiple of v whose coordinates lie in {1, . . . , (p− 1)/2}.

For primes less than 12000 the main theorem is checked by an exhaustive search.
Assuming p > 12000, by the bounds in Section 3 we only need to check the cases

(i) v may be scaled to a vector with two coordinates in {±1, . . . ,±2000},
(ii) no scalar multiple of v has two coordinates in {±1, . . . ,±2000}, but v ⊥ c

for some c appearing in the list in (2).

Any v as in (i) may be further scaled so that two coordinates in {±1, . . . ,±2000} are,
viewed as integers in that set, relatively prime. The third coordinate is represented
by an integer of absolute value at most (p − 1)/2. After permuting and possibly
multiplying by −1, we may suppose the coordinates to be ordered, in absolute value,
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in weakly ascending order with final coordinate positive. Case (i) therefore may be
restated:

(i′) v is scalar multiple of a vector in (Z/pZ)3, reduction of (a, b, c) ∈ Z3 with
|a| ≤ |b| ≤ c ≤ (p− 1)/2, such that a, b, c have no common prime factor and{

|b| ≤ 2000, when gcd(a, b) = 1,

c ≤ 2000, when gcd(a, b) > 1.

The treatment of both cases will make use of the following elementary result.

Lemma 2. Let A and E be positive integers and γ a positive real number, such that
there exist positive integers B and M with

1

γ
≤M ≤ min

(A+ 1

B + 1
,
√
E
)

and
1− γ
2B

+
1

[E/M ]
≤ γ

2
− 1

2E
.

Let a, b, c ∈ Z with max(|a|, |b|) ≤ |c|. If there is no nontrivial Z-linear relation
among a, b, c with coefficients of absolute value at most A and no nontrivial Z-linear
relation among any two of a, b, c with coefficients of absolute value at most E, then
for every pair of closed intervals I, J ⊂ R of length γ, we have(

Z
(a
c
,
b

c

)
+ Z2

)
∩ I × J 6= ∅.

Proof. Without loss of generality we have gcd(a, b, c) = 1. So, the subgroup G of
(Q/Z)2 generated by (a/c, b/c) has order |c|. As well, a/c generates a subgroup of
Q/Z of order > E. Translating by a point with first coordinate close to the midpoint
of I, we are reduced to proving the assertion under the assumption that

[−δ, δ] ⊂ I,
where δ = γ/2 − 1/2E. The assertion is clear if J contains an integer point on the
vertical axis, so we suppose the contrary. After translating vertically by an integer
and possibly multiplying by −1, we obtain

J = [t, t+ γ] with 0 < t ≤ 1− γ
2

.

We cover the unit square by rectangles of height 1/M and width 1/N , where N
is the largest integer with MN < |c|. We have |c| > E, so N ≥ [E/M ]. By the
pigeonhole principle, there exists

0 6= (u, v) ∈ Z
(a
c
,
b

c

)
+ Z2

with

|u| < 1

N
, 0 ≤ v < 1

M
.

We assume that (u, v) is taken with |u| as small as possible.
If v ≥ B|u| then we let s = [t/v], and we have:

sv ≤ t, t ≤ (s+ 1)v ≤ t+ v ≤ t+ γ,

and

s|u| ≤ s v
B
≤ t

B
, (s+ 1)|u| ≤ t

B
+ |u| ≤ 1− γ

2B
+

1

[E/M ]
≤ δ.

Now suppose v < B|u|. This means that we have

u =
a′

c
, v =

b′

c
,
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with 1 ≤ |a′| ≤M and |b′| ≤ B|a′| − 1. Let g = gcd(a′, b′). Notice that g | c: if there
is prime p with, say, pi ‖ c, pj ‖ g, j > i, then using gcd(p, p−ic) = 1 we see that the
subgroup of G generated by (a′/c, b′/c) contains (p−1a′/c, p−1b′/c), contradicting the
minimality of |u|. Now the index of the subgroup of G generated by (a′/c, b′/c) is
g. In particular, (ga/c, gb/c) lies in this subgroup. There is thus a nontrivial linear
relation

b′a− a′b = mc

with |m| ≤ a′ + b′. Since M +BM − 1 ≤ A, we have a contradiction. �

We record some parameters satisfying the first hypothesis of Lemma 2:

γ = 1/3, A = 14, E = 42 and γ = 1/25, A = E = 2000.

Proof of the main theorem. By the remarks above, it suffices to verify the assertion
for p > 12000 and v as in case (i′) or as in case (ii).

Suppose v is given by some (a, b, c) as in (i′). When a and b are positive the
assertion is obvious, so we suppose at least one of a and b is negative. We let δ =
|b|/12000 and define

I =
[
δ, 12
]
, J =

[
δ, 12
]
, when a < 0 and b < 0,

I =
[
δ, 12
]
, J =

[
0, 12 − δ

]
, when a < 0 and b > 0,

I =
[
0, 12 − δ

]
, J =

[
δ, 12
]
, when a > 0 and b < 0.

Consider an interval [t0, t0 + ε] in

{t ∈ R | (t(a, b) + Z2) ∩ I × J 6= ∅}. (3)

If c ≥ 1/ε then the set (3) contains some rational number `/c with ` ∈ Z. It follows
that the set {

t ∈ R | (t(a, b, c) + Z3) ∩
[
0,

1

2

]3 6= ∅} (4)

contains the interval with left endpoint `/c of length

min
( 1

2c
,

1

12000

)
.

The length is always at least 1/p. So whenever c ≥ 1/ε for some ε as above the
assertion is valid.

For every a and b, not both positive, with a + b 6= 0 and |a| ≤ |b| ≤ 2000, we can
determine the largest value of ε that occurs and thereby determine c0 = 1/ε, taken to
be at most 2000 in case gcd(a, b) > 1, such that the verification of case (i′) for given
a and b is reduced to checking (by directly computing the set (4)) the finitely many
cases

|b| ≤ c < c0.

Some speedup is gained by appealing to Lemma 2 with γ = 1/3, A = 14, E = 42
for most a and b (all except (a, b) proportional to some (±a0,±b0) with a0, b0 ∈
{1, . . . , 42}); for the values of c for which the hypothesis of the lemma is satisfied,
the above argument (where, we observe, the intervals I and J have length ≥ 1/3)
establishes the assertion for all p > 12000.

Case (ii) is treated with Lemma 2, applied with γ = 1/25, A = E = 2000; the con-
dition in (ii) on pairs of coordinates guarantees applicability to any pair of coordinates
of v together with p. For each c in the list in (2), the condition v ⊥ c ensures that
some coordinate of v is a linear combination of the other two, with coefficients that
are integers, small in magnitude. For each pair of coefficients that arises we examine
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the graph of the corresponding linear function (R/Z)2 → R/Z and identify a com-
ponent of the intersection with [0, 1/2]3 whose projection to the first two coordinates
contains a square of side length at least 1/25. �

5. Motivating problem

The choice of main theorem was guided by a recent result of Bergh [2] on algebraic
orbifolds, spaces which are close to nonsingular algebraic varieties but where the
local structure is as a nonsingular affine variety with specified finite subgroup of the
automorphism group. So, for instance, we might have complex affine 2-space with
(x, y) 7→ (−x,−y). If we forget the orbifold structure and just examine the orbits of
complex points, then we are looking at the singular variety defined by the equation
uv − w2 = 0 in affine 3-space. Bergh proves that a general algebraic orbifold can be
transformed by well-defined simple operations to one which remains nonsingular after
forgetting the orbifold structure. The method of proof is to reduce the problem to
one in toric geometry, where the orbifold is not arbitrary but of a specific form given
by combinatorial data.

Let n be a positive integer, and let u1, . . . , un ∈ Zn be a collection of linearly
independent vectors; their Z-span is a sublattice N ′ of N = Zn of finite index. The
dual vectors u∨1 , . . . , u∨n span a lattice M ′ containing M = N∨ (again, of finite index).
Given a field k, the polynomial ring k[X1, . . . , Xn] = k[N · u∨1 + · · ·+ N · u∨n ] admits
a natural coaction by the Hopf algebra k[M ′/M ], with coinvariant ring

k[(Q≥0 · u∨1 + · · ·+ Q≥0 · u∨n) ∩M ]. (5)

The goal is to reach a situation where the ring (5) is again a polynomial ring; then
each ui is a multiple di of a vector in N such that, taken together, these form a
Z-basis of N . When k is algebraically closed of characteristic zero, we can translate
this situation into geometry: affine n-space over k is acted upon diagonally by a
product of finite cyclic groups (groups of roots of unity), and the space of orbits is
again affine n-space. The goal is achieved using two kind of combinatorial operations,
corresponding to two kinds of geometric operations used in Bergh’s destackification
algorithm: (i) star subdivision, which involves replacing ui by u1 + · · · + un (this is
done for each i, leading to n new instances of the basic combinatorial set-up), and
(ii) root operation, replacing each ui by a positive integer scalar multiple diui.

Let us suppose we wish to destackify an algebraic orbifold over a field k of pos-
itive characteristic. Bergh’s destackification is applicable in the tame setting: the
characteristic of k should not divide the order of the stabilizer group of any point. In-
terestingly, the result after transformation is no longer generally an algebraic orbifold
but rather an object known as a tame Artin stack [1]. In the combinatorial set-up,
tameness corresponds to the requirement that char(k) does not divide the order of
M ′/M . When operation (ii) is performed with char(k) dividing some di, we leave
the realm of algebraic orbifolds and must call upon the theory of tame Artin stacks.
Suppose, for instance, char(k) = 2 and we have n = 2, u1 = (1, 0), u2 = (−2, 3), so
M ′/M has order 3. Then the algorithm could start by applying operation (ii) with
d1 = 2 and d2 = 1. (The precise first step in the algorithm depends on further data
known as a “distinguished structure”, which we ignore for this discussion.)

A natural question is the extent to which destackification is possible if we work
only with algebraic orbifolds, or in combinatorial terms, if we restrict operation (ii)
by requiring char(k) not to divide any di. Suppose char(k) = 2, with arbitrary n and
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ui equal to the ith standard basis element for i = 1, . . . , n− 1 and

un = (−a1, . . . ,−an−1, p)
for some odd prime p, with ai ∈ {1, . . . , p− 1} for i = 1, . . . , n− 1. (This is in some
sense the general case, up to Z-linear change of coordinates, for order p stabilizer.)
Bergh’s algorithm, simplified as in the previous paragraph, would start by applying
operation (ii) with di ∈ {1, . . . , p− 1} for all i and

(d1, . . . , dn) a scalar multiple of (a1, . . . , an−1, 1)

in (Z/pZ)n. So we are led to ask whether some scalar multiple of (a1, . . . , an−1, 1)
has odd coordinates when represented with positive integer coordinates less than p.
Equivalently (multiplying by −1), we ask for even coordinates, or (relating by a factor
of 2), we ask for the coordinates to be in {1, . . . , (p− 1)/2}.
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