QUANTUM GIAMBELLI FORMULAS FOR ISOTROPIC GRASSMANNIANS

ANDERS SKOVSTED BUCH, ANDREW KRESCH, AND HARRY TAMVAKIS

Abstract

Let X be a symplectic or odd orthogonal Grassmannian which parametrizes isotropic subspaces in a vector space equipped with a nondegenerate (skew) symmetric form. We prove quantum Giambelli formulas which express an arbitrary Schubert class in the small quantum cohomology ring of X as a polynomial in certain special Schubert classes, extending the authors' cohomological Giambelli formulas.

0 . Introduction

Let E be an even (respectively, odd) dimensional complex vector space equipped with a nondegenerate skew-symmetric (respectively, symmetric) bilinear form. Let X denote the Grassmannian which parametrizes the isotropic subspaces of E of some fixed dimension. The cohomology ring $\mathrm{H}^{*}(X, \mathbb{Z})$ is generated by certain special Schubert classes, which for us are (up to a factor of two) the Chern classes of the universal quotient vector bundle over X. These special classes also generate the small quantum cohomology ring $\mathrm{QH}(X)$, a q-deformation of $\mathrm{H}^{*}(X, \mathbb{Z})$ whose structure constants are the three point, genus zero Gromov-Witten invariants of X. In [BKT3], we proved a Giambelli formula in $\mathrm{H}^{*}(X, \mathbb{Z})$, that is, a formula expressing a general Schubert class as an explicit polynomial in the special classes. Our goal in the present work is to extend this result to a formula that holds in $\mathrm{QH}(X)$.

The quantum Giambelli formula for the usual type A Grassmannian was obtained by Bertram [Be], and is in fact identical to the classical Giambelli formula. In the case of maximal isotropic Grassmannians, the corresponding questions were answered in [KT1, KT2]. The main conclusions here are similar to those of loc. cit., provided that one uses the raising operator Giambelli formulas of [BKT3] as the classical starting point. For an odd orthogonal Grassmannian, we prove that the quantum Giambelli formula is the same as the classical one. The result is more interesting when X is the Grassmannian $\operatorname{IG}(n-k, 2 n)$ parametrizing $(n-k)$ dimensional isotropic subspaces of a symplectic vector space E of dimension $2 n$. Our theorem in this case states that the quantum Giambelli formula for IG $(n-k, 2 n)$ coincides with the classical Giambelli formula for $\operatorname{IG}(n+1-k, 2 n+2)$, provided that the special Schubert class σ_{n+k+1} is replaced with $q / 2$.

Although the two theorems in this article are analogous to those of [KT1, KT2], their proofs are quite different. We prove the quantum Giambelli formula by using the quantum Pieri rule of [BKT2], in a manner similar to $[\mathrm{Bu}]$ and [BKT1, Remark

[^0]3]. However, unlike the previously known examples, for non-maximal isotropic Grassmannians no explicit recursion formula for the cohomological Giambelli polynomials is available, other than that given by the Pieri rule itself. We circumvent this difficulty by showing that a suitable recursion exists (Proposition 3). We also make essential use of a ring homomorphism from the stable cohomology ring of X to $\mathrm{QH}(X)$ that is the identity on Schubert classes coming from $\mathrm{H}^{*}(X, \mathbb{Z})$. The existence of this map (Propositions 4 and 5) may be of independent interest.

In a sequel to this paper, we will discuss the classical and quantum Giambelli formulas for even orthogonal Grassmannians.

1. Preliminary Results

1.1. Classical Giambelli for IG. Choose $k \geq 0$ and consider the Grassmannian $\mathrm{IG}=\mathrm{IG}(n-k, 2 n)$ of isotropic $(n-k)$-dimensional subspaces of $\mathbb{C}^{2 n}$, equipped with a symplectic form. A partition $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{\ell}\right)$ is k-strict if all of its parts greater than k are distinct integers. Following [BKT2], the Schubert classes on IG are parametrized by the k-strict partitions whose diagrams fit in an $(n-k) \times(n+k)$ rectangle, i.e. $\lambda_{1} \leq n+k$ and $\ell(\lambda) \leq n-k$; we denote the set of all such partitions by $\mathcal{P}(k, n)$. Given any partition $\lambda \in \mathcal{P}(k, n)$ and a complete flag of subspaces

$$
F_{\bullet}: 0=F_{0} \subsetneq F_{1} \subsetneq \cdots \subsetneq F_{2 n}=\mathbb{C}^{2 n}
$$

such that $F_{n+i}=F_{n-i}^{\perp}$ for $0 \leq i \leq n$, we have a Schubert variety

$$
X_{\lambda}\left(F_{\bullet}\right):=\left\{\Sigma \in \mathrm{IG} \mid \operatorname{dim}\left(\Sigma \cap F_{p_{j}(\lambda)}\right) \geq j \quad \forall 1 \leq j \leq \ell(\lambda)\right\},
$$

where $\ell(\lambda)$ denotes the number of (non-zero) parts of λ and

$$
p_{j}(\lambda):=n+k+j-\lambda_{j}-\#\left\{i<j: \lambda_{i}+\lambda_{j}>2 k+j-i\right\} .
$$

This variety has codimension $|\lambda|=\sum \lambda_{i}$ and defines, via Poincaré duality, a Schubert class $\sigma_{\lambda}=\left[X_{\lambda}\left(F_{\bullet}\right)\right]$ in $\mathrm{H}^{2|\lambda|}(\mathrm{IG}, \mathbb{Z})$. The Schubert classes σ_{λ} for $\lambda \in \mathcal{P}(k, n)$ form a free \mathbb{Z}-basis for the cohomology ring of IG. The special Schubert classes are defined by $\sigma_{r}=\left[X_{r}\left(F_{\bullet}\right)\right]=c_{r}(\mathcal{Q})$ for $1 \leq r \leq n+k$, where \mathcal{Q} denotes the universal quotient bundle over IG.

The classical Giambelli formula for IG is expressed using Young's raising operators [$\mathrm{Y}, \mathrm{p} .199$]. We first agree that $\sigma_{0}=1$ and $\sigma_{r}=0$ for $r<0$. For any integer sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ with finite support and $i<j$, we set $R_{i j}(\alpha)=\left(\alpha_{1}, \ldots, \alpha_{i}+1, \ldots, \alpha_{j}-1, \ldots\right)$; a raising operator R is any monomial in these $R_{i j}$'s. Define $m_{\alpha}=\prod_{i} \sigma_{\alpha_{i}}$ and $R m_{\alpha}=m_{R \alpha}$ for any raising operator R. For any k-strict partition λ, we consider the operator

$$
R^{\lambda}=\prod\left(1-R_{i j}\right) \prod_{\lambda_{i}+\lambda_{j}>2 k+j-i}\left(1+R_{i j}\right)^{-1}
$$

where the first product is over all pairs $i<j$ and second product is over pairs $i<j$ such that $\lambda_{i}+\lambda_{j}>2 k+j-i$. The main result of [BKT3] states that the Giambelli formula

$$
\begin{equation*}
\sigma_{\lambda}=R^{\lambda} m_{\lambda} \tag{1}
\end{equation*}
$$

holds in the cohomology ring of $\operatorname{IG}(n-k, 2 n)$.
1.2. Classical Pieri for IG. As is customary, we will represent a partition by its Young diagram of boxes; this is used to define the containment relation for partitions. Given two diagrams μ and ν with $\mu \subset \nu$, the skew diagram ν / μ (i.e., the set-theoretic difference $\nu \backslash \mu$) is called a horizontal (resp. vertical) strip if it does not contain two boxes in the same column (resp. row).

We say that the box $[r, c]$ in row r and column c of a k-strict partition λ is k-related to the box $\left[r^{\prime}, c^{\prime}\right]$ if $|c-k-1|+r=\left|c^{\prime}-k-1\right|+r^{\prime}$. For instance, the grey boxes in the following partition are k-related.

For any two k-strict partitions λ and μ, we write $\lambda \rightarrow \mu$ if μ may be obtained by removing a vertical strip from the first k columns of λ and adding a horizontal strip to the result, so that
(1) if one of the first k columns of μ has the same number of boxes as the same column of λ, then the bottom box of this column is k-related to at most one box of $\mu \backslash \lambda$; and
(2) if a column of μ has fewer boxes than the same column of λ, then the removed boxes and the bottom box of μ in this column must each be k-related to exactly one box of $\mu \backslash \lambda$, and these boxes of $\mu \backslash \lambda$ must all lie in the same row.

Let \mathbb{A} denote the set of boxes of $\mu \backslash \lambda$ in columns $k+1$ through $k+n$ which are not mentioned in (1) or (2) above, and define $N(\lambda, \mu)$ to be the number of connected components of \mathbb{A} which do not have a box in column $k+1$. Here two boxes are connected if they share at least a vertex. In [BKT2, Thm. 1.1] we proved that the Pieri rule

$$
\begin{equation*}
\sigma_{p} \cdot \sigma_{\lambda}=\sum_{\substack{\lambda \rightarrow \mu \\|\mu|=|\lambda|+p}} 2^{N(\lambda, \mu)} \sigma_{\mu} \tag{2}
\end{equation*}
$$

holds in $\mathrm{H}^{*}(\mathrm{IG}, \mathbb{Z})$, for any $p \in[1, n+k]$.
1.3. A recursion formula for IG. In the following sections we will work in the stable cohomology ring $\mathbb{H}\left(\mathrm{IG}_{k}\right)$, which is the inverse limit in the category of graded rings of the system

$$
\cdots \leftarrow \mathrm{H}^{*}(\operatorname{IG}(n-k, 2 n), \mathbb{Z}) \leftarrow \mathrm{H}^{*}(\operatorname{IG}(n+1-k, 2 n+2), \mathbb{Z}) \leftarrow \cdots
$$

The ring $\mathbb{H}\left(\mathrm{IG}_{k}\right)$ has a free \mathbb{Z}-basis of Schubert classes σ_{λ}, one for each k-strict partition λ, and may be presented as a quotient of the polynomial ring $\mathbb{Z}\left[\sigma_{1}, \sigma_{2}, \ldots\right]$
modulo the relations

$$
\begin{equation*}
\sigma_{r}^{2}+2 \sum_{i=1}^{r}(-1)^{i} \sigma_{r+i} \sigma_{r-i}=0 \quad \text { for } r>k \tag{3}
\end{equation*}
$$

There is a natural surjective ring homomorphism $\mathbb{H}\left(\mathrm{IG}_{k}\right) \rightarrow \mathrm{H}(\operatorname{IG}(n-k, 2 n), \mathbb{Z})$ that maps σ_{λ} to σ_{λ}, when $\lambda \in \mathcal{P}(k, n)$, and to zero, otherwise. The Giambelli formula (1) and Pieri rule (2) are both valid in $\mathbb{H}\left(\mathrm{IG}_{k}\right)$. We begin with some elementary consequences of these theorems.

For any k-strict partition λ of length ℓ, we define the sets of pairs

$$
\begin{aligned}
\mathcal{A}(\lambda) & =\left\{(i, j) \mid \lambda_{i}+\lambda_{j} \leq 2 k+j-i \text { and } 1 \leq i<j \leq \ell\right\} \\
\mathcal{C}(\lambda) & =\left\{(i, j) \mid \lambda_{i}+\lambda_{j}>2 k+j-i \text { and } 1 \leq i<j \leq \ell\right\}
\end{aligned}
$$

and two integer vectors $a=\left(a_{1}, \ldots, a_{\ell}\right)$ and $c=\left(c_{1}, \ldots, c_{\ell}\right)$ by setting

$$
a_{i}=\#\{j \mid(i, j) \in \mathcal{A}(\lambda)\}, \quad c_{i}=\#\{j \mid(i, j) \in \mathcal{C}(\lambda)\}
$$

for each i.
Proposition 1. We have $\lambda_{i}-c_{i} \geq \lambda_{j}-c_{j}$ for each $i<j \leq \ell$.
Proof. Observe that the desired inequality is equivalent to

$$
\begin{equation*}
\lambda_{i}-\lambda_{j} \geq \#\{r \leq \ell \mid(i, r) \in \mathcal{C}(\lambda)\}-\#\{r \leq \ell \mid(j, r) \in \mathcal{C}(\lambda)\} \tag{4}
\end{equation*}
$$

Let $j=i+r$ and let s (respectively t) be maximal such that $(i, s) \in \mathcal{C}(\lambda)$ (respectively, $(j, t) \in \mathcal{C}(\lambda))$. Assume first that t exists, hence s exists and $s \geq t$. The inequality (4) then becomes $\lambda_{i}-\lambda_{i+r} \geq s-t+r$. If $t=s$, this is true because $(j, j+1) \in \mathcal{C}(\lambda)$ and λ is k-strict, hence $\lambda_{i}>\lambda_{i+1}>\cdots>\lambda_{i+r}$. Otherwise we have $t<s \leq \ell, \lambda_{i}+\lambda_{s} \geq 2 k+1+s-i$, and $\lambda_{i+r}+\lambda_{t+1} \leq 2 k+t+1-i-r$. It follows that $\lambda_{i}-\lambda_{i+r} \geq s-t+r+\left(\lambda_{t+1}-\lambda_{s}\right) \geq s-t+r$.

Next we assume that t does not exist, so that either $j=\ell$ or the pair $(j, j+1)$ lies in $\mathcal{A}(\lambda)$ and

$$
\begin{equation*}
\lambda_{j}+\lambda_{j+1} \leq 2 k+1 \tag{5}
\end{equation*}
$$

If s does not exist, the inequality is obvious. Otherwise, we must show that $\lambda_{i}-\lambda_{j} \geq$ $s-i$, knowing that $(i, s) \in \mathcal{C}(\lambda)$, that is,

$$
\begin{equation*}
\lambda_{i}+\lambda_{s} \geq 2 k+1+s-i \tag{6}
\end{equation*}
$$

Suppose first that $\lambda_{s} \geq \lambda_{j}$. If $\lambda_{s}>k$ then we have $\lambda_{i}>\lambda_{i+1}>\cdots>\lambda_{s}$ and hence $\lambda_{i}-\lambda_{j} \geq \lambda_{i}-\lambda_{s} \geq s-i$. Otherwise $\lambda_{s} \leq k$ and (6) gives

$$
\lambda_{i}-\lambda_{j} \geq \lambda_{i}-\lambda_{s} \geq \lambda_{i}-k \geq s-i+1+\left(k-\lambda_{s}\right) \geq s-i
$$

Finally, suppose that $\lambda_{s}<\lambda_{j}$, so in particular $j+1 \leq s$. Then (5) and (6) give

$$
\begin{gathered}
\lambda_{i}-\lambda_{j} \geq \lambda_{i}+\left(\lambda_{j+1}-2 k-1\right) \geq\left(2 k+1+s-i-\lambda_{s}\right)+\lambda_{j+1}-2 k-1 \\
=\left(\lambda_{j+1}-\lambda_{s}\right)+(s-i) \geq s-i .
\end{gathered}
$$

Proposition 1 implies that for any λ, the composition $\lambda-c$ is a partition, while $\lambda+a$ is a strict partition.

Proposition 2. For any k-strict partition λ, the Giambelli polynomial $R^{\lambda} m_{\lambda}$ for σ_{λ} involves only generators σ_{p} with $p \leq \lambda_{1}+a_{1}+\lambda_{2}+a_{2}$.

Proof. We have

$$
R^{\lambda} m_{\lambda}=\prod_{1 \leq i<j \leq \ell} \frac{1-R_{i j}}{1+R_{i j}} \prod_{(i, j) \in \mathcal{A}(\lambda)}\left(1+R_{i j}\right) m_{\lambda}=\sum_{\nu \in N} \prod_{1 \leq i<j \leq \ell} \frac{1-R_{i j}}{1+R_{i j}} m_{\nu}
$$

where N is the multiset of integer vectors defined by

$$
N=\left\{\prod_{(i, j) \in S} R_{i j} \lambda \mid S \subset \mathcal{A}(\lambda)\right\}
$$

If $m>0$ is the least integer such that $2 m \geq \ell$, then we have

$$
\begin{equation*}
\prod_{1 \leq i<j \leq 2 m} \frac{1-R_{i j}}{1+R_{i j}}=\text { Pfaffian }\left(\frac{1-R_{i j}}{1+R_{i j}}\right)_{1 \leq i<j \leq 2 m} \tag{7}
\end{equation*}
$$

Equation (7) follows from Schur's classical identity [S, Sect. IX]

$$
\prod_{1 \leq i<j \leq 2 m} \frac{x_{i}-x_{j}}{x_{i}+x_{j}}=\operatorname{Pfaffian}\left(\frac{x_{i}-x_{j}}{x_{i}+x_{j}}\right)_{1 \leq i, j \leq 2 m}
$$

Note that each single entry in the Pfaffian (7) expands according to the formula

$$
\frac{1-R_{12}}{1+R_{12}} m_{c, d}=\sigma_{c} \sigma_{d}-2 \sigma_{c+1} \sigma_{d-1}+2 \sigma_{c+2} \sigma_{d-2}-\cdots+(-1)^{d} 2 \sigma_{c+d}
$$

By Proposition 1, we know that $\lambda+a=\left(\lambda_{1}+a_{1}, \lambda_{2}+a_{2}, \ldots, \lambda_{\ell}+a_{\ell}\right)$ is a strict partition, hence $\lambda_{i}+a_{i}+\lambda_{j}+a_{j} \leq \lambda_{1}+a_{1}+\lambda_{2}+a_{2}$ for any distinct i and j. Since we furthermore have $\nu_{i} \leq \lambda_{i}+a_{i}$, for any $\nu \in N$, the result follows.

Corollary 1. For any $\lambda \in \mathcal{P}(k, n)$ the stable Giambelli polynomial for σ_{λ} involves only special classes σ_{p} with $p \leq 2 n+2 k-1$.

Given any partition λ, we set $\lambda^{*}=\left(\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\ell}\right)$.
Lemma 1. Let λ and ν be k-strict partitions such that $\nu_{1}>\max \left(\lambda_{1}, \ell(\lambda)+2 k\right)$ and let $p, m \geq 0$. Then the coefficient of σ_{ν} in the Pieri product $\sigma_{p} \cdot \sigma_{\lambda}$ is equal to the coefficient of $\sigma_{\left(\nu_{1}+m, \nu^{*}\right)}$ in the product $\sigma_{p+m} \cdot \sigma_{\lambda}$.
Proof. Since the box $[\ell(\lambda), 1]$ is k-related to $[1, \ell(\lambda)+2 k]$ and $\nu_{1}>\ell(\lambda)+2 k$, it follows that $\lambda \rightarrow \nu$ if and only if $\lambda \rightarrow\left(\nu_{1}+m, \nu^{*}\right)$. In this case all of the boxes [1, c] for $\max \left(\lambda_{1}, \ell(\lambda)+2 k\right)<c \leq \nu_{1}$ are contained in the rightmost component of the subset \mathbb{A} of $\nu \backslash \lambda$ defined in $\S 1.2$. Since replacing ν with $\left(\nu_{1}+m, \nu^{*}\right)$ simply adds m boxes to this component, we deduce that $N(\lambda, \nu)=N\left(\lambda,\left(\nu_{1}+m, \nu^{*}\right)\right)$.
Proposition 3. Let λ be a k-strict partition. Then there exist unique coefficients $a_{p, \mu} \in \mathbb{Z}$ for $p \geq \lambda_{1}$ and (p, μ) a k-strict partition, such that the recursive identity

$$
\begin{equation*}
\sigma_{\lambda}=\sum_{p \geq \lambda_{1}} \sum_{\mu:(p, \mu) k \text {-strict }} a_{p, \mu} \sigma_{p} \sigma_{\mu} \tag{8}
\end{equation*}
$$

holds in $\mathbb{H}\left(\mathrm{IG}_{k}\right)$. Furthermore, $a_{p, \mu}=0$ whenever $\mu \not \subset \lambda^{*}$, or when $\lambda \in \mathcal{P}(k, n)$ and $p \geq 2 n+2 k$.

Proof. The Pieri rule (2) implies that

$$
\sigma_{\lambda}=\sigma_{\lambda_{1}} \sigma_{\lambda^{*}}-\sum_{\substack{\lambda^{*} \rightarrow \nu \neq \lambda \\|\nu|=|\lambda|}} 2^{N\left(\lambda^{*}, \nu\right)} \sigma_{\nu}
$$

Since all partitions ν in the sum satisfy $\nu_{1}>\lambda_{1}$ and $\nu^{*} \subset \lambda^{*}$, the existence of the coefficients $a_{p, \mu}$ follows by descending induction on λ_{1}, and they satisfy $a_{(p, \mu)}=0$ for $\mu \not \subset \lambda^{*}$. The uniqueness is true because the set of all products $\sigma_{p} \cdot \sigma_{\mu}$ for which (p, μ) is a k-strict partition is linearly independent in $\mathbb{H}\left(\mathrm{IG}_{k}\right)$. In fact, if the Schubert classes of $\mathbb{H}\left(\mathrm{IG}_{k}\right)$ are ordered by the dominance order of partitions, then the lowest term of the product $\sigma_{p} \cdot \sigma_{\mu}$ is the class $\sigma_{(p, \mu)}$.

On the other hand, Proposition 2 implies that there are coefficients $b_{p, \mu}$, indexed by integers $p \in\left[\lambda_{1}, \lambda_{1}+a_{1}+\lambda_{2}+a_{2}\right]$ and k-strict partitions μ, such that

$$
\sigma_{\lambda}=\sum_{p=\lambda_{1}}^{\lambda_{1}+a_{1}+\lambda_{2}+a_{2}} \sum_{|\mu|=|\lambda|-p} b_{p, \mu} \sigma_{p} \sigma_{\mu}
$$

In fact, if m_{ν} is any monomial appearing in the stable Giambelli formula $\sigma_{\lambda}=$ $R^{\lambda} m_{\lambda}$, then $\lambda_{1} \leq \max _{i}\left(\nu_{i}\right) \leq \lambda_{1}+a_{1}+\lambda_{2}+a_{2}$. If $\lambda_{1}>\left|\lambda^{*}\right|$, then the uniqueness of the coefficients $a_{p, \mu}$ implies that $b_{p, \mu}=a_{p, \mu}$. In particular, we have $a_{p, \mu}=0$ for $p>\lambda_{1}+a_{1}+\lambda_{2}+a_{2}$ in this case.

Now let $\lambda \in \mathcal{P}(k, n)$. Choose $m>\left|\lambda^{*}\right|$ and set $\lambda^{\prime}=\left(\lambda_{1}+m, \lambda^{*}\right)$. By the above discussion, there are coefficients $c_{p, \mu} \in \mathbb{Z}$ such that

$$
\begin{equation*}
\sigma_{\lambda^{\prime}}=\sum_{p=\lambda_{1}+m}^{2 n+2 k-1+m} \sum_{\mu \subset \lambda^{*}} c_{p, \mu} \sigma_{p} \sigma_{\mu} . \tag{9}
\end{equation*}
$$

We claim that the difference

$$
\begin{equation*}
\sigma_{\lambda}-\sum_{p=\lambda_{1}}^{2 n+2 k-1} \sum_{\mu \subset \lambda^{*}} c_{p+m, \mu} \sigma_{p} \sigma_{\mu} \tag{10}
\end{equation*}
$$

is a linear combination of classes σ_{ν} for partitions $\nu \in \mathcal{P}(k, n)$ with $\nu_{1}>\lambda_{1}$. To see this, notice that we must have $c_{\lambda_{1}+m, \lambda^{*}}=1$, and hence the coefficient of σ_{λ} in the sum is equal to one. It follows that the difference (10) is equal to a linear combination of classes σ_{ν} for which $\nu_{1}>\lambda_{1}$. Furthermore, if $\nu_{1}>n+k$, then Lemma 1 implies that the coefficient of σ_{ν} in the sum in (10) is equal to the coefficient of $\sigma_{\left(\nu_{1}+m, \nu^{*}\right)}$ on the right hand side of (9), which is zero. This proves the claim. Finally, the proposition follows from the claim by descending induction on λ_{1}.

Remark. One can be more precise about the recursion formula (8) in the case when the k-strict partition λ satisfies $\lambda_{1}>\ell(\lambda)+2 k$. If the Pieri rule reads

$$
\sigma_{\lambda_{1}} \cdot \sigma_{\lambda^{*}}=\sum_{p \geq \lambda_{1}} \sum_{\mu \subset \lambda^{*}} 2^{n(p, \mu)} \sigma_{p, \mu}
$$

then we have

$$
\sigma_{\lambda}=\sum_{p \geq \lambda_{1}} \sum_{\mu \subset \lambda^{*}}(-1)^{p-\lambda_{1}} 2^{n(p, \mu)} \sigma_{p} \sigma_{\mu}
$$

This result is proved in [T].

2. Quantum Giambelli for $\operatorname{IG}(n-k, 2 n)$

The quantum cohomology ring $\mathrm{QH}(\mathrm{IG})$ is a $\mathbb{Z}[q]$-algebra which is isomorphic to $\mathrm{H}^{*}(\mathrm{IG}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q]$ as a module over $\mathbb{Z}[q]$. The degree of the formal variable q here
is $n+k+1$. We begin by recalling the quantum Pieri rule of [BKT2]. This states that for any k-strict partition $\lambda \in \mathcal{P}(k, n)$ and integer $p \in[1, n+k]$, we have

$$
\begin{equation*}
\sigma_{p} \cdot \sigma_{\lambda}=\sum_{\lambda \rightarrow \mu} 2^{N(\lambda, \mu)} \sigma_{\mu}+\sum_{\lambda \rightarrow \nu} 2^{N(\lambda, \nu)-1} \sigma_{\nu^{*}} q \tag{11}
\end{equation*}
$$

in the quantum cohomology ring of $\operatorname{IG}(n-k, 2 n)$. The first sum in (11) is over partitions $\mu \in \mathcal{P}(k, n)$ such that $|\mu|=|\lambda|+p$, and the second sum is over partitions $\nu \in \mathcal{P}(k, n+1)$ with $|\nu|=|\lambda|+p$ and $\nu_{1}=n+k+1$.
Proposition 4. There exists a unique ring homomorphism

$$
\pi: \mathbb{H}\left(\mathrm{IG}_{k}\right) \rightarrow \mathrm{QH}(\mathrm{IG}(n-k, 2 n)) \otimes \mathbb{Q}
$$

such that the following relations are satisfied:

$$
\pi\left(\sigma_{i}\right)= \begin{cases}\sigma_{i} & \text { if } 1 \leq i \leq n+k \\ q / 2 & \text { if } i=n+k+1 \\ 0 & \text { if } n+k+1<i \leq 2 n+2 k \\ 0 & \text { if } i \text { is odd and } i>2 n+2 k\end{cases}
$$

Furthermore, we have $\pi\left(\sigma_{\lambda}\right)=\sigma_{\lambda}$ for each $\lambda \in \mathcal{P}(k, n)$.
Proof. Recall that $\mathbb{H}\left(\mathrm{IG}_{k}\right)$ is the polynomial ring generated by all classes σ_{i} for $i \geq 1$, modulo the relations (3). These relations for $r>n+k$ uniquely specify the values $\pi\left(\sigma_{i}\right)$ for even integers $i>2 n+2 k$. The quantum Pieri rule implies that the remaining relations (3) for $k<r \leq n+k$ are preserved by π.

We next prove that $\pi\left(\sigma_{\lambda}\right)=\sigma_{\lambda}$ for each $\lambda \in \mathcal{P}(k, n)$. This is clear when λ has only one part. When λ has more than one part, we apply the ring homomorphism π to both sides of (8) and use induction on $\ell(\lambda)$ to show that

$$
\begin{equation*}
\pi\left(\sigma_{\lambda}\right)=\sum_{p=\lambda_{1}}^{n+k} \sum_{\mu \subset \lambda^{*}} a_{p, \mu} \sigma_{p} \sigma_{\mu}+\frac{q}{2} \sum_{\mu \subset \lambda^{*}} a_{n+k+1, \mu} \sigma_{\mu} \tag{12}
\end{equation*}
$$

holds in $\mathrm{QH}(\operatorname{IG}(n-k, 2 n)) \otimes \mathbb{Q}$. We also deduce from Proposition 3 that

$$
\begin{equation*}
\sigma_{\lambda}=\sum_{p=\lambda_{1}}^{n+k} \sum_{\mu \subset \lambda^{*}} a_{p, \mu} \sigma_{p} \sigma_{\mu}+\sum_{\mu \subset \lambda^{*}} a_{n+k+1, \mu} \sigma_{(n+k+1, \mu)} \tag{13}
\end{equation*}
$$

holds in the cohomology ring of $\operatorname{IG}(n+1-k, 2 n+2)$. The quantum Pieri rule and (13) imply that the right hand side of (12) evaluates to σ_{λ}, as desired.

Theorem 1 (Quantum Giambelli for IG). For every $\lambda \in \mathcal{P}(k, n)$, the quantum Giambelli formula for σ_{λ} in $\operatorname{QH}(\operatorname{IG}(n-k, 2 n))$ is obtained from the classical Giambelli formula $\sigma_{\lambda}=R^{\lambda} m_{\lambda}$ in $\mathrm{H}^{*}(\mathrm{IG}(n+1-k, 2 n+2), \mathbb{Z})$ by replacing the special Schubert class σ_{n+k+1} with $q / 2$.

Proof. This follows from Proposition 4 and Corollary 1.

3. Quantum Giambelli for $\operatorname{OG}(n-k, 2 n+1)$

3.1. Classical Giambelli for OG. For each $k \geq 0$, let $\mathrm{OG}=\mathrm{OG}(n-k, 2 n+1)$ denote the odd orthogonal Grassmannian which parametrizes the $(n-k)$-dimensional isotropic subspaces in $\mathbb{C}^{2 n+1}$, equipped with a non-degenerate symmetric bilinear
form. The Schubert varieties in OG are indexed by the same set of k-strict partitions $\mathcal{P}(k, n)$ as for $\operatorname{IG}(n-k, 2 n)$. Given any $\lambda \in \mathcal{P}(k, n)$ and a complete flag of subspaces

$$
F_{\bullet}: 0=F_{0} \subsetneq F_{1} \subsetneq \cdots \subsetneq F_{2 n+1}=\mathbb{C}^{2 n+1}
$$

such that $F_{n+i}=F_{n+1-i}^{\perp}$ for $1 \leq i \leq n+1$, we define the codimension $|\lambda|$ Schubert variety

$$
X_{\lambda}\left(F_{\bullet}\right)=\left\{\Sigma \in \mathrm{OG} \mid \operatorname{dim}\left(\Sigma \cap F_{\bar{p}_{j}}(\lambda)\right) \geq j \quad \forall 1 \leq j \leq \ell(\lambda)\right\}
$$

where

$$
\bar{p}_{j}(\lambda)=n+k+1+j-\lambda_{j}-\#\left\{i \leq j: \lambda_{i}+\lambda_{j}>2 k+j-i\right\} .
$$

Let $\tau_{\lambda} \in \mathrm{H}^{2|\lambda|}(\mathrm{OG}, \mathbb{Z})$ denote the cohomology class dual to the cycle given by $X_{\lambda}\left(F_{\bullet}\right)$.

Let $\ell_{k}(\lambda)$ be the number of parts λ_{i} which are strictly greater than k, and let $\mathcal{Q}_{\mathrm{IG}}$ and $\mathcal{Q}_{\mathrm{OG}}$ denote the universal quotient vector bundles over $\operatorname{IG}(n-k, 2 n)$ and $\mathrm{OG}(n-k, 2 n+1)$, respectively. It is known (see e.g. [BS, §3.1]) that the map which sends $\sigma_{p}=c_{p}\left(\mathcal{Q}_{\mathrm{IG}}\right)$ to $c_{p}\left(\mathcal{Q}_{\mathrm{OG}}\right)$ for all p extends to a ring isomorphism $\varphi: \mathrm{H}^{*}(\mathrm{IG}, \mathbb{Q}) \rightarrow \mathrm{H}^{*}(\mathrm{OG}, \mathbb{Q})$ such that $\varphi\left(\sigma_{\lambda}\right)=2^{\ell_{k}(\lambda)} \tau_{\lambda}$ for all $\lambda \in \mathcal{P}(k, n)$.

We let $c_{p}=c_{p}\left(\mathcal{Q}_{\mathrm{OG}}\right)$. The special Schubert classes on OG are related to the Chern classes c_{p} by the equations

$$
c_{p}= \begin{cases}\tau_{p} & \text { if } p \leq k \\ 2 \tau_{p} & \text { if } p>k\end{cases}
$$

For any integer sequence α, set $m_{\alpha}=\prod_{i} c_{\alpha_{i}}$. Then for every $\lambda \in \mathcal{P}(k, n)$, the classical Giambelli formula

$$
\tau_{\lambda}=2^{-\ell_{k}(\lambda)} R^{\lambda} m_{\lambda}
$$

holds in $\mathrm{H}^{*}(\mathrm{OG}, \mathbb{Z})$.
3.2. From classical to quantum Giambelli. Suppose $k \geq 1$. The quantum cohomology ring $\mathrm{QH}(\mathrm{OG}(n-k, 2 n+1))$ is defined similarly to that of IG, but the degree of q here is $n+k$. More notation is required to state the quantum Pieri rule for OG. For each λ and μ with $\lambda \rightarrow \mu$, we define $N^{\prime}(\lambda, \mu)$ to be equal to the number (respectively, one less than the number) of connected components of \mathbb{A}, if $p \leq k$ (respectively, if $p>k)$. Let $\mathcal{P}^{\prime}(k, n+1)$ be the set of $\nu \in \mathcal{P}(k, n+1)$ for which $\ell(\nu)=n+1-k, 2 k \leq \nu_{1} \leq n+k$, and the number of boxes in the second column of ν is at most $\nu_{1}-2 k+1$. For any $\nu \in \mathcal{P}^{\prime}(k, n+1)$, we let $\widetilde{\nu} \in \mathcal{P}(k, n)$ be the partition obtained by removing the first row of ν as well as $n+k-\nu_{1}$ boxes from the first column. That is,

$$
\widetilde{\nu}=\left(\nu_{2}, \nu_{3}, \ldots, \nu_{r}\right), \text { where } r=\nu_{1}-2 k+1 .
$$

According to [BKT2, Thm. 2.4], for any k-strict partition $\lambda \in \mathcal{P}(k, n)$ and integer $p \in[1, n+k]$, the following quantum Pieri rule holds in $\mathrm{QH}(\mathrm{OG}(n-k, 2 n+1))$.

$$
\begin{equation*}
\tau_{p} \cdot \tau_{\lambda}=\sum_{\lambda \rightarrow \mu} 2^{N^{\prime}(\lambda, \mu)} \tau_{\mu}+\sum_{\lambda \rightarrow \nu} 2^{N^{\prime}(\lambda, \nu)} \tau_{\widetilde{\nu}} q+\sum_{\lambda^{*} \rightarrow \rho} 2^{N^{\prime}\left(\lambda^{*}, \rho\right)} \tau_{\rho^{*}} q^{2} \tag{14}
\end{equation*}
$$

Here the first sum is classical, the second sum is over $\nu \in \mathcal{P}^{\prime}(k, n+1)$ with $\lambda \rightarrow \nu$ and $|\nu|=|\lambda|+p$, and the third sum is empty unless $\lambda_{1}=n+k$, and over $\rho \in \mathcal{P}(k, n)$ such that $\rho_{1}=n+k, \lambda^{*} \rightarrow \rho$, and $|\rho|=|\lambda|-n-k+p$.

Let $\delta_{p}=1$, if $p \leq k$, and $\delta_{p}=2$, otherwise. The stable cohomology ring $\mathbb{H}\left(\mathrm{OG}_{k}\right)$ has a free \mathbb{Z}-basis of Schubert classes τ_{λ} for k-strict partitions λ, and is presented as a quotient of the polynomial ring $\mathbb{Z}\left[\tau_{1}, \tau_{2}, \ldots\right]$ modulo the relations

$$
\begin{equation*}
\tau_{r}^{2}+2 \sum_{i=1}^{r}(-1)^{i} \delta_{r-i} \tau_{r+i} \tau_{r-i}=0 \quad \text { for } r>k \tag{15}
\end{equation*}
$$

Proposition 5. There exists a unique ring homomorphism

$$
\widetilde{\pi}: \mathbb{H}\left(\mathrm{OG}_{k}\right) \rightarrow \mathrm{QH}(\mathrm{OG}(n-k, 2 n+1))
$$

such that the following relations are satisfied:

$$
\widetilde{\pi}\left(\tau_{i}\right)= \begin{cases}\tau_{i} & \text { if } 1 \leq i \leq n+k \\ 0 & \text { if } n+k<i<2 n+2 k \\ 0 & \text { if } i \text { is odd and } i>2 n+2 k\end{cases}
$$

Furthermore, we have $\widetilde{\pi}\left(\tau_{\lambda}\right)=\tau_{\lambda}$ for each $\lambda \in \mathcal{P}(k, n)$.
Proof. The relations (15) for $r \geq n+k$ uniquely specify the values $\widetilde{\pi}\left(\tau_{i}\right)$ for even integers $i \geq 2 n+2 k$. We must show that the remaining relations for $k<r<n+k$ are mapped to zero by $\widetilde{\pi}$. Observe that when $k<n-1$ the individual terms in these relations carry no q correction. Indeed, we are applying the quantum Pieri rule (14) to partitions of length one, hence the q term vanishes (since $1<n-k$) and the q^{2} term vanishes (since $\operatorname{deg}\left(q^{2}\right)=2 n+2 k$). It remains only to consider the case $k=n-1$, which uses the quantum Pieri rule for the quadric $\operatorname{OG}(1,2 n+1)$. The computation is then done as in [BKT2, Thm. 2.5] (which treats the case $r=n$), and involves computing the coefficient c of $q \tau_{2(r-n)+1}$ in the corresponding expression. As in loc. cit., the result is $c=1-2+2-\cdots \pm 2 \mp 1$ when $r \leq(3 n-2) / 2$, and otherwise $c=2-4+4-\cdots \pm 4 \mp 2$; hence $c=0$ in both cases.

To prove that $\widetilde{\pi}\left(\tau_{\lambda}\right)=\tau_{\lambda}$ for every $\lambda \in \mathcal{P}(k, n)$, we use an orthogonal analogue of Proposition 3, which follows from the isomorphism $\mathbb{H}\left(\mathrm{OG}_{k}\right) \otimes \mathbb{Q} \cong \mathbb{H}\left(\mathrm{IG}_{k}\right) \otimes \mathbb{Q}$. Arguing by induction on $\ell(\lambda)$ as in Proposition 4, we obtain that

$$
\begin{equation*}
\widetilde{\pi}\left(\tau_{\lambda}\right)=\sum_{p=\lambda_{1}}^{n+k} \sum_{\mu \subset \lambda^{*}} a_{p, \mu}^{\prime} \tau_{p} \tau_{\mu} \tag{16}
\end{equation*}
$$

holds in $\mathrm{QH}(\mathrm{OG}(n-k, 2 n+1)) \otimes \mathbb{Q}$, where $a_{p, \mu}^{\prime} \in \mathbb{Q}$. The quantum Pieri rule (14) implies that any product $\tau_{p} \tau_{\mu}$ in (16) carries no q correction terms. It follows that the right hand side of (16) evaluates to τ_{λ}.

Theorem 2 (Quantum Giambelli for OG). For every $\lambda \in \mathcal{P}(k, n)$, we have

$$
\tau_{\lambda}=2^{-\ell_{k}(\lambda)} R^{\lambda} m_{\lambda}
$$

in the quantum cohomology ring $\mathrm{QH}(\mathrm{OG}(n-k, 2 n+1))$. In other words, the quantum Giambelli formula for OG is the same as the classical Giambelli formula.

Proof. This follows from Proposition 5 and the orthogonal version of Corollary 1.

References

[BS] N. Bergeron and F. Sottile : A Pieri-type formula for isotropic flag manifolds, Trans. Amer. Math. Soc. 354 (2002), 4815-4829.
[Be] A. Bertram : Quantum Schubert calculus, Adv. Math. 128 (1997), 289-305.
[Bu] A. S. Buch : Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), 227-235.
[BKT1] A. S. Buch, A. Kresch, and H. Tamvakis : Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc. 16 (2003), 901-915.
[BKT2] A. S. Buch, A. Kresch, and H. Tamvakis : Quantum Pieri rules for isotropic Grassmannians, Invent. Math. 178 (2009), 345-405.
[BKT3] A. S. Buch, A. Kresch, and H. Tamvakis : A Giambelli formula for isotropic Grassmannians, preprint (2010).
[KT1] A. Kresch and H. Tamvakis : Quantum cohomology of the Lagrangian Grassmannian, J. Algebraic Geom. 12 (2003), 777-810.
[KT2] A. Kresch and H. Tamvakis : Quantum cohomology of orthogonal Grassmannians, Compos. Math. 140 (2004), 482-500.
[S] I. Schur : Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
[T] H. Tamvakis : Giambelli, Pieri, and tableau formulas via raising operators, J. Reine Angew. Math. 652 (2011), 207-244.
[Y] A. Young : On quantitative substitutional analysis VI, Proc. Lond. Math. Soc. (2) 34 (1932), 196-230.

Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, PiscatAWAY, NJ 08854, USA

E-mail address: asbuch@math.rutgers.edu
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

E-mail address: andrew.kresch@math.uzh.ch
Department of Mathematics, University of Maryland, 1301 Mathematics Building, College Park, MD 20742, USA

E-mail address: harryt@math.umd.edu

[^0]: Date: August 11, 2011.
 2000 Mathematics Subject Classification. Primary 14N35; Secondary 05E15, 14M15, 14N15.
 The authors were supported in part by NSF Grants DMS-0603822 and DMS-0906148 (Buch), the Swiss National Science Foundation (Kresch), and NSF Grants DMS-0639033 and DMS0901341 (Tamvakis).

