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Abstract. We exhibit families of smooth projective threefolds
with both stably rational and non stably rational fibers.

1. Introduction

Rationality, and thus as well stable rationality, is a deformation in-
variant property of smooth complex projective curves and surfaces. We
now know that rationality and stable rationality specialize in families
of smooth complex projective varieties of arbitrary dimension [26], [20].
In dimension at least four, there exist families of smooth complex pro-
jective varieties with both rational and non stably rational fibers [18],
[17], [31], [30]. The case of relative dimension three is open.

In this note, we exhibit a family of smooth complex threefolds with
both stably rational and non stably rational fibers.

Theorem 1. There exists a smooth projective family ψ : V → B of
complex threefolds over a connected curve B, such that for some b0 ∈ B
the fiber Vb0 := ψ−1(b0) is stably rational and the very general fiber
Vb := ψ−1(b) is not stably rational. In particular, stable rationality is
not a deformation invariant of smooth complex projective threefolds.

Our examples originate from the first examples of nonrational but
stably rational varieties [7]. The key ingredient is a class of smooth
projective surfaces over nonclosed fields k that are stably rational but
not rational (see Section 2). For k = C(t), we obtain fibered threefolds
Y → P1 that are stably rational over C. Using the technique of inter-
mediate Jacobians, one can show that some of these fibered threefolds
are not rational.

We work in a similar vein, considering threefolds fibered in stably ra-
tional surfaces. Our proof that a general member is not stably rational
does not use intermediate Jacobians. We employ the groundbreaking
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work on specialization of stable rationality by Voisin [35], and its sub-
sequent developments in [11], [33], [16], [19].

Here is a more detailed summary of the contents of this paper: We
review the key class of stably rational nonrational surfaces in Section 2
and recast their Galois-theoretic properties, when defined over C(t), in
terms of finite covers of nodal curves in Section 3. Section 4 sketches the
construction of the families of threefolds. The analysis of Section 5 may
be of independent interest: How can we construct families of standard
conic bundles over a prescribed family of ramification data? Section 6
establishes the failure of stable rationality for general deformations of
the examples constructed previously. Finally, we explain why these
tools fail to yield stably rational cubic threefolds in Section 7.
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2. Recollections on stably rational nonrational surfaces

Let k be a field of characteristic zero with absolute Galois group Gk.
For us, a Châtelet surface is

(2.1) V = {(x, y, z) | y2 − az2 = f(x)} ⊂ A3,

where f ∈ k[x] is a cubic polynomial with Galois group the symmetric
group S3 and a = disc(f). In particular, a is not a square in k. These
exist whenever k admits extensions with Galois group S3.

Let F (x,w) ∈ k[x,w] be a homogeneous quartic form with F (x, 1) =
f(x); note that w | F (x,w). The compactification

V̂ = {(w : x : y : z) | y2 − az2 = F (x,w)} ⊂ P(1, 1, 2, 2)

has two ordinary singularities (0 : 0 : ±
√
a : 1). This admits a natural

embedding as a complete intersection of two quadrics in P4. Writing

u0 = x2, u1 = xw, u2 = w2,

we may express

P(1, 1, 2, 2) = {u21 = u0u2} ⊂ P4
u0,u1,u2,y,z

,
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so that V̂ ⊂ P(1, 1, 2, 2) is cut out by a quadratic form. Let Ṽ → V̂
denote the resolution obtained by blowing up the two singularities,
which admits a conic fibration with four degenerate fibers

Ṽ → P1
x,w.

Theorem 2. [7, Thm. 1], [32] The Châtelet surface V is stably rational
but not rational over k.

Remarkably, essentially all stably rational surfaces with these invari-
ants arise in this way:

Theorem 3.
i. [22, Thm. A and Cor. 3.12]. A Châtelet surface is birational
over k to a quartic del Pezzo surface W with Pic(W ) ' Z⊕ Z.

ii. [22, Thms. E and 4.19] Let W be a quartic del Pezzo surface
over k such that Pic(W ) ' Z⊕ Z and W is stably rational but
not rational. Then W has a conic bundle structure over k and
is birational over k to a Châtelet surface.

For the first assertion, blow up a rational point of Ṽ not lying on the
degenerate fibers or the exceptional curve and blow down the proper
transform of the fiber containing that point.

The argument for the second part involves classifying possible Galois
actions, which are constrained by the fact that any stably rational
surface W satisfies the following condition: the Néron-Severi group
NS(W̄ ) is a direct summand of a permutation Galois module. This
implies that for each closed subgroup H ⊂ Gk, the Galois cohomology

H1(H,NS(W̄ )) = 0.

Such actions have been classified for degree 4 del Pezzo surfaces in [22,
p. 15] and for degrees 3, 2, and 1 in [34]. See [22, p. 75] for the details
of the classification in this context; W admits a conic bundle structure
W → P1 over k.

Generally, a conic bundle with n degenerate fibers has Galois group
contained in the Weyl group W(Dn), realized as permutations of the
irreducible components of the degenerate fibers. We express this as
the subgroup of signed permutations having an even number of minus
signs, i.e., as a subgroup of

(Z/2Z)n oSn.

Here ci, for i = 1, . . . , n, denotes the identity permutation with minus
sign in the ith position, i.e., exchanging the components of the ith fiber.
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Our case of interest is n = 4. The Galois action associated with
W → P1 can be described as follows: The action on exceptional curves
in the fibers corresponds to a representation

ρ : Gk → W(D4)

with image
〈(23)c1c2c3c4, (34)c1c2c3c4〉 ,

which is isomorphic to S3. This reflects the fact that the discrimi-
nant quadratic extension of the cubic f splits the components of each
degenerate fiber. The fixed degenerate fiber consists of two conjugate
lines meeting at a rational point. Blowing up the rational point, and
blowing down the proper transforms of the lines, recovers the Châtelet
model.

We summarize the implications of the argument for Theorem 3:
Given a smooth minimal conic bundle over P1 with four degenerate
fibers, the anticanonical model is either a quartic del Pezzo surface
W or a complete intersection of two quadrics V̂ ⊂ P4, with precisely
two conjugate ordinary double points [22, p. 48]. Assume the Galois
representation takes the form

ρ : Gk → S3 ⊂ W(D4)

as above. Then surfaces of the first type admit birational models

W
∼
99K Ṽ

as Châtelet surfaces, i.e., surfaces of the second type. Our approach
exploits the flexibility of passing between these models. We can de-
duce stable rationality for any quartic del Pezzo surface with Galois
representation of type ρ.

3. Geometric analysis of Galois representation

We now assume k = C(t). In contrast to the approach of [7], we
work with the surfaces W → P1 with Galois action ρ as in Section 2,
rather than just the Châtelet model. Here we interpret the properties
of ρ in geometric terms.

We consider models for W , regarding C(t) as the function field of
P1. These are conic bundles over ruled surfaces

π : X → F ϕ→ P1

satisfying the following:
• X and F are smooth and projective;
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• F→ P1 is generically a P1-bundle and X → F is a conic bundle;
• the degeneracy locus of the conic bundle is a nodal curve D ⊂ F
with smooth irreducible components C and L, with L a section
and C a simply-branched trisection of ϕ;
• the associated double cover D̃ → D, parametrizing irreducible
components of the degenerate fibers of X → F, ramifies over
C ∩ L;
• the Galois action of D̃ → P1 coincides with ρ.

We recall, by [5, Thm. 1] and [29, Thm. 5.7], over a smooth projective
rational surface such as F, the data of a nodal discriminant curve and,
for each component, a nontrivial degree 2 cover ramified precisely over
the nodes, determine a standard conic bundle, uniquely up to birational
isomorphism.

We express the Galois conditions in geometric terms: Let g be the
genus of C, r1, . . . , r2g+4 ∈ C the ramification points of C → P1,
p1, . . . , p2g+4 ∈ C the residual points in each fiber, C̃ → C the dis-
criminant cover, and p′1, . . . , p

′
2g+4 ∈ C̃ its ramification points. Let

L̃ → L be the double cover, w1, . . . , w2g+4 its branch points, and
w′1, . . . , w

′
2g+4 ∈ L̃ the ramification points. The cover D̃ → D is the

admissible double cover

L̃ ∪w′i=p′i C̃ → L ∪wi=pi C.

In particular,

C ∩ L = {p1 = w1, . . . , p2g+4 = w2g+4} =: {q1, . . . , q2g+4}.

Conversely, conic fibrations X → F with degeneracy (i.e., ramifica-
tion) data as above necessarily have Galois representation ρ, as the
action on the Néron-Severi group can be read off from the induced per-
mutation of the irreducible components of the four degenerate conic
fibers.

Given such a π : X → F→ P1, the fiber W over the generic point of
P1 is as in Section 2, thus is stably rational over C(t) by the discussion
at the end that section. It follows that X is stably rational over C.

Remark 4. The key constraint is that the images of the branch loci
of C̃ → C and L̃→ L in P1 coincide

ϕ({p1, . . . , p2g+4}) = ϕ({w1, . . . , w2g+4}).

Once C → P1 is given, there is a canonical choice of L̃→ L, determined
by the discriminant quadratic extension.
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Remark 5. The double cover D̃ → D is admissible and its Prym
variety P is a principally polarized abelian variety of dimension 3g +
2. If g > 0 then P is not a product of Jacobians [7, Rem. 7]. The
intermediate Jacobian IJ(X) = P . Hence X is not rational [10].

4. Construction of examples

4.1. Embedding of the degeneracy curve. We use the machinery
of Section 3 to construct examples of stably rational threefolds. The
simplest possible case of interest is g = 1.

We start by fixing f : C → P1, a simply branched triple cover, with
ramification points r1, . . . , r6 and residual points p1, . . . , p6. In other
words, pi is the residual to ri in f−1(f(ri)). Set L = P1 and glue pi to
f(ri) to obtain D. We use qi, i = 1, . . . , 6, for the nodes of D arising
from gluing pi and f(ri). Let ϕ : D → P1 denote the resulting degree
4 cover.

Our goal is to embed D in the simplest possible rational surface. We
may interpret D as a stable curve of genus six.

Remark 6. We show in Section 7 that D cannot be embedded as a
quintic plane curve. Thus our approach does not yield stably rational
cubic threefolds. Recall that projecting from a line in a cubic threefold
gives a conic bundle over P2 with quintic degeneracy locus, and that
the generic quintic plane curve arises in this way [13, V.2].

A general curve D′ of genus six arises as a bi-anticanonical curve in
a quintic del Pezzo surface S. Realizing S as the blowup of P2 in four
points, D′ may be interpreted as a sextic plane curve with four nodes.
This motivates the following technical result:

Proposition 7. Let D = C ∪ L be a stable curve of genus 6 as above.
Then there exists a morphism j : D → P2 such that

• j|C is an embedding C ↪→ P2 as a cubic plane curve;
• j|L is a morphism ι : L → P2 birational onto a cubic curve
singular at s4;

and satisfying the following:
• projection from s4

P2 99K P1

restricts to ϕ on C;
• the intersection

C ∩ ι(L) ⊃ {j(q1), . . . , j(q6)}
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and the residual points of intersection s1, s2, s3 are collinear.

Proof. We construct j on C and L separately, compatible with the
gluing C t L→ D.

The embedding of C arises from the complete linear series associated
with f ∗OP1(1). Let s4 ∈ P2 be the point such that the triple cover
f : C → P1 is realized by projection from s4.

We recall some classical terminology [12]: The ramification divisor
of f is linearly equivalent to twice the hyperplane class

r1 + · · ·+ r6 ≡ [f ∗OP1(2)] = [OP2(2)|C],

thus is realized as the intersection of C ⊂ P2 with a plane conic, called
the polar conic of C with respect to the point of projection s4. The six
residual points have the same class

p1 + · · ·+ p6 ≡ [OP2(2)|C],

which is also given by the intersection of C with a plane conic, called
the satellite conic of C with respect to s4 [12, p. 143].

Choose a cubic plane curve Csing with double point at s4 and con-
taining the intersection of C with its satellite conic. We claim this is
irreducible. Otherwise, one of its irreducible components would have
to be the satellite conic, which is precluded by:

Lemma 8. Fix a smooth plane cubic C ⊂ P2 and a point p ∈ P2 \ C.
Then the satellite conic for C with respect to p does not contain p.

Proof. Let Pp(C) be the polar conic, Sp(C) the satellite conic, and
Pp(Pp(C)) the polar line of the polar conic, which joins the two rami-
fication points of the double cover

Pp(C)→ P1

induced by projection from p.
By [12, p. 157, Exer. 3.19], we have

Z := Sp(C) ∩ Pp(C)

consists of two points, each of multiplicity two, which coincide with

Pp(Pp(C)) ∩ Pp(C).

There is a unique plane conic containing Z and p — the union of the
two tangents to Sp(C) through p. The same conclusion can be obtained
through a direct computation of the equations for Sp(C) and Pp(C) in
[25, Example 2.2]. This proves the Lemma. �
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We return to the argument for Proposition 7. Fix ι : L→ Csing ⊂ P2

to be the normalization. The base locus of the pencil of cubics 〈C,Csing〉
has six points failing to impose independent conditions on quadrics.
The residual three points {s1, s2, s3} fail to impose independent condi-
tions on linear forms, hence are collinear. �

For our application, we want Csing to have a node, rather than a
cusp. An example shows that this is possible.

Example 9. We work over the finite field F13. Let C be the cubic
curve

x3 + 5x2y+ 12x2z+ 7xy2 + 7xyz+ 3xz2 + 10y3 + y2z+ 2yz2 + 6z3 = 0.

Put
s4 := (1 : 0 : 0) ∈ P2(F13)

and consider the satellite conic associated to C and s4. The intersection
points with C (residual points for the projection from s4) are:

(4.1)
{(4 : 10 : 1), (7 : 12 : 1), (6 : 1 : 1), (2 : 7 : 1), (2 : 4 : 1), (4 : 1 : 0)} .

The linear equations on the equation of a cubic curve, given by the
conditions to pass through s4 and the residual points in (4.1) with
singularity at s4, uniquely determine

xy2 + 2xyz + 11xz2 + 9y3 + y2z + 10yz2 = 0.

This has a node at s4. Upon lifting to characteristic zero, Csing is still
determined uniquely, and still has a node.

Let S0 denote the blowup of P2 at four points {s1, s2, s3, s4}, where
s1, s2, s3 are collinear and s4 is generic. Projection from s4 induces a
morphism

Φ : S0 → P1.

Proposition 7 gives an embedding D ↪→ S0 as a bi-anticanonical curve.

4.2. The family of surfaces. Let S → B be a smooth projective
family of surfaces, where S0 = Sb0 is the degenerate quintic del Pezzo
surface as in Section 4.1 and Sb, b 6= b0 is a smooth quintic del Pezzo
surface S. The deformation space of S0 is smooth, and the dimension
of the bi-anticanonical linear series remains constant in the family;
indeed, it is a projective bundle over the deformation space. So, there
exists a family of nodal curves D → B embedded in S over B, where
D0 is as constructed in Section 4.1, and Db is smooth and irreducible
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for generic b. Restricting to a Zariski-open neighborhood of b0, we may
assume that Db is smooth for all b 6= b0.

4.3. The conic bundles in the family. The analysis of Section 3
implies that a conic bundle X0 → S0 with ramification data given by
D̃ → D is stably rational. Indeed, Φ|D = ϕ, by construction, thus the
generic fiber of the composition

X0 → S0 → P1

is a stably rational degree 4 del Pezzo surface over C(P1). Such an X0

is necessarily stably rational over C.
Let X → S denote a standard conic bundle degenerate over a generic

bi-anticanonical divisor in S. The challenge is to fit the conic bundles
X and X0 into a family

$ : X → S → B.

Indeed, we make choices in constructing a standard conic bundle from
its ramification data — the resulting threefold is unique only up to
birational equivalence, although the birational maps between the vari-
ous models are well-understood [28, 29]. It remains to show that these
choices can be made coherently in one-parameter families; Theorem 17
shows this is possible.

5. Deformation of conic bundles

Let k be an algebraically closed field of characteristic different from
2 and (B, b0), a pointed curve. We consider a smooth projective family
of rational surfaces S → B, irreducible divisor D ⊂ S, smooth except
for ordinary double points at q1, . . . , qr in the fiber Sb0 , and a degree
2 covering D̃ → D, unramified away from q1, . . . , qr with D̃ smooth.
We assume that Db0 has nodes at q1, . . . , qr and is otherwise smooth.

The goal is to show (Theorem 17 in Section 5.4) that after replacing
(B, b0) by an étale neighborhood there is a smooth family of standard
conic bundles V → B such that the birational type of the fiber over
every point b ∈ B corresponds to the ramification data D̃b → Db.

5.1. An algebraic group and some of its representations. Work-
ing over Spec(Z), we consider the classifying stack BZ/2Z with étale
cover

π : Spec(Z)→ BZ/2Z,
sending a scheme T to the trivial torsor T × Z/2Z→ T .

The stack BGm classifies Gm-torsors, or equivalently, line bundles.
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A general construction is the restriction of scalars along a proper flat
morphism of finite presentation, applicable to algebraic stacks, locally
of finite presentation with affine diagonal [14]. We need π∗BGm, the
restriction of scalars of BGm under the morphism π:

π∗BGm
∼= BH,

H :=

{(
∗ 0
0 ∗

)}
∪
{(

0 ∗
∗ 0

)}
⊂ GL2, H = G2

m o Z/2Z.

Indeed, an H-torsor E → T determines a Z/2Z-torsor S → T (con-
nected components of fibers), such that S ×T E admits a canonical
reduction of structure group to Gm ×Gm, i.e., is determined by a pair
of line bundles (L,L′) on S; to E → T we associate S → T and L.
Conversely, given S → T and L and letting σ : S → S denote the cov-
ering involution, we associate to (L, σ∗L) a Gm × Gm-torsor over S,
which we recognize as having the structure of an H-torsor over T .

Let N denote the homomorphism H → Gm given by multiplication
of the nonzero matrix entries. We define G to be the kernel of N :

1→ G→ H
N→ Gm → 1, G = Gm o Z/2Z.

Correspondingly we have

π∗BGm
∼= BH → BGm,

sending Z/2Z-torsor S → T with line bundle L on S to the norm
NS/T (L). So, BG classifies Z/2Z-torsors with a line bundle and a
trivialization of the norm line bundle. To give a G-torsor over a scheme
T is the same as to give a Z/2Z-torsor S → T , a line bundle L on
S, and an isomorphism L ⊗ σ∗L ∼= OS, invariant under the covering
involution σ : S → S.

The 2-dimensional representation of H, given by H ⊂ GL2, asso-
ciates to the H-torsor determined by S → T (with covering involution
σ) and L, the rank 2 vector bundle over T , obtained by descent un-
der S → T from L ⊕ σ∗L over S with σ∗(L ⊕ σ∗L) ∼= L ⊕ σ∗L. The
corresponding 2-dimensional representation of G admits the same de-
scription and will be denoted by ρ2.

There is the exact sequence

(5.1) 1→ µ2 → G→ G→ 1,

where the homomorphism G→ G is given by squaring the matrix en-
tries. The representation ρ2 of the middle group G in (5.1) determines
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a projective representation

ω : G→ PGL2,

of the group G appearing on the right in (5.1); concretely,(
α 0
0 α−1

)
ω7→
[(
α 0
0 1

)]
,

(
0 β
β−1 0

)
ω7→
[(

0 β
1 0

)]
.

As well, det(ρ2) and ρ∨2 ⊗ρ2 determine linear representations χ, respec-
tively ρ4, of the groupG on the right. There is the trace homomorphism
ρ4 → 1 to a trivial one-dimensional representation.

Proposition 10. Over Spec(Z[1/2]) we have an isomorphism of rep-
resentations

ρ4 ∼= 1⊕ χ⊕ ρ2
of G such that projection to the first factor gives the trace homomor-
phism.

Proof. Direct computation. �

The kernel χ⊕ ρ2 of the trace homomorphism in Proposition 10 will
be denoted by ρ3.

Example 11. Let T be a scheme over Spec(Z[1/2]) with Z/2Z-torsor
S → T and covering involution σ : S → S, and let S ′ → T be a
second Z/2Z-torsor, to which there is an associated line bundle L0

with L⊗20
∼= OT . Let L denote the pullback of L0 to S, so we have

σ∗L ∼= L, canonically. The identification

L⊗ σ∗L ∼= L⊗2 ∼= OS
determines a G-torsor, which arises from the pair of Z/2Z-torsors un-
der the identification of the subgroup of G, generated by the 2 × 2-
permutation matrices and µ2, with the Klein four-group.

5.2. Root stacks and conic bundles. We recall and introduce no-
tation for three flavors of root stack:

(i) root stack
√
L of a line bundle L on a smooth algebraic variety S

over k, a smooth Deligne-Mumford stack that is Zariski locally
over S isomorphic to a product with the classifying stack Bµ2

[9, Defn. 2.2.6] [2, §B.1];
(ii) root stack

√
(S,D) of a divisor D ⊂ S, a Deligne-Mumford

stack, locally for D defined by f = 0 on an affine open Spec(A),
given by

[Spec(A[z]/(z2 − f))/µ2],



12 BRENDAN HASSETT, ANDREW KRESCH, AND YURI TSCHINKEL

where µ2 acts by scalar multiplication on z [9, Defn. 2.2.1] [2,
§B.2];

(iii) iterated root stack√
(S, {D,D′}) =

√
(S,D)×S

√
(S,D′)

of a pair of divisorsD, D′ ⊂ S [9, Defn. 2.2.4] (or more generally
of an arbitrary collection {D1, . . . , DN} of divisors on S).

The root stack in (ii) is smooth if D is smooth, and in (iii) is smooth
if D and D′ are smooth and intersect transversally (or more generally
if D1 ∪ · · · ∪ DN is a simple normal crossing divisor). It is useful to
be aware of a fourth flavor, defined by Matsuki and Olsson [24, Thm.
4.1], which for a normal crossing divisor D ⊂ S is a smooth Deligne-
Mumford stack with morphism to S that étale locally over S is of the
form described in (iii).

Let S be a smooth algebraic variety over k and D ⊂ S, D = D1 ∪
· · · ∪DN a simple normal crossing divisor with Di ∩Di′ ∩Di′′ = ∅ for
distinct i, i′, i′′. One way that a standard conic bundle over S may
arise is by modifying a smooth P1-fibration

(5.2) P →
√

(S, {D1, . . . , DN}).
We assume that the corresponding class in the Brauer group Br(S \D)
is nontrivial, obstructed for every i from extending to a neighborhood
of the generic point of Di by the class of a nontrivial degree 2 covering
D̃i → Di that is furthermore assumed to be ramified over the generic
point of every component of Di ∩Di′ for all i′ 6= i. Following [27] and
appealing to [21, Rmk. 2.3], associated with (5.2) there is a standard
conic bundle V → S. The construction over S \ Dsing is that of [21,
Prop. 3.1]: blow up the locus in P with µ2-stabilizer, contract, and
descend to S \Dsing. There is a unique extension to a standard conic
bundle over S.

Example 12. When S = A2 and D = D1 ∪ D2, union of coordinate
axes, we have √

(S, {D1, D2}) ∼= [A2/µ2 × µ2]

where, writing κ, λ for coordinates on A2, the action of the first factor
µ2 is by scalar multiplication on κ and of the second factor µ2, by scalar
multiplication on λ; here, S is identified with Spec(k[κ2, λ2]). Let

P := [A2 × P1/µ2 × µ2],

where the action of the first factor µ2 on P1 is by permutation of the
coordinates and of the second factor µ2, by scalar multiplication on one
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of the coordinates; we remark that P is the P1-fibration, induced via
the representation ω, of the G-torsor constructed in Example 11 from
the two tautological Z/2Z-torsors on [A2/µ2 × µ2]. The construction
described above leads to a conic bundle V , defined inside S × P2 with
projective coordinates x, y, z by

κ2x2 + λ2y2 − z2 = 0.

The smooth P1-fibration and conic bundle are identified over S \D by

(κ, λ, (α : β)) 7→ (κ2, λ2, (λ(−α2 + β2) : 2καβ : κλ(α2 + β2))).

5.3. A useful conic bundle. We work out in detail one instance of
the construction of Section 5.2. Let Z/2Z act on P1 × P1 by swapping
the factors and consider

W := [P1 × P1/(Z/2Z)].

Since P1 × P1 is, by

((u′ : v′), (u′′ : v′′)) 7→
(

1

2
(u′v′′ + v′u′′) : u′u′′ : v′v′′

)
,

a double cover of P2 branched over the conic in P2 defined by t2 = uv,
we may view W as the root stack of P2 along the conic. Let H be the
line v = 0 in P2 and

X := W ×P2

√
OP2(−H).

The root stack
√
OP2(−H) carries a tautological line bundle whose ten-

sor square is identified with the pullback of OP2(−H). The tautological
line bundle, pulled back to X, will be denoted by M ; its pullback to
the degree 2 étale cover

X ′ := (P1 × P1)×P2

√
OP2(−H)

will be denoted by M ′. The pre-image of H in P1 × P1 is a union
H ′ ∪H ′′, where H ′ is defined by v′ = 0 and H ′′, by v′′ = 0. Now we let

L := M ′ ⊗OP1×P1
OP1×P1(H ′).

So σ∗L ∼= M ′ ⊗OP1×P1
OP1×P1(H ′′), where σ denotes the covering invo-

lution, and

L⊗ σ∗L ∼= M ′⊗2 ⊗OP1×P1
OP1×P1(H ′ +H ′′) ∼= OX′ .

These data determine a G-torsor over X, hence via the representation
ω a smooth P1-fibration

F → X.
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By base change to the line bundle M we obtain

(5.3) P := F ×X M →M.

The next result describes the structure of P →M in (5.3).

Proposition 13. We write t0, u0, v0 for affine coordinates on A3 and
view the blow-up B`0A3 as a subvariety of A3 × P2, where P2 has pro-
jective coordinates t, u, v.

(i) Let D ⊂ A3 be the divisor u0v0 − t20 = 0. Then

M ∼=
√

(B`0A3, {D′, E}),

where D′ denotes the proper transform of D and E, the excep-
tional divisor.

(ii) Let us write θ for the canonical section of OB`0A3(−1), vanishing
on E. The conic bundle construction of Section 5.2 applied to
(5.3) yields the conic bundle

V ⊂ P
(
OB`0A3(1)⊕OB`0A3 ⊕OB`0A3

)
defined by the symmetric morphism of vector bundles

(
OB`0A3(1)⊕OB`0A3 ⊕OB`0A3

)
⊗OB`0A3(−1)


θ 0 0
0 −u −t
0 −t −v


−−−−−−−→

OB`0A3(−1)⊕OB`0A3 ⊕OB`0A3 .

Proof. Assertion (i) follows directly from the identification of B`0A3

with the total space of OP2(−H) and two general facts about root
stacks: the root stack constructions (i)–(iii) of Section 5.2 commute
with base change, and the total space of the tautological line bundle
on the root stack of a line bundle is isomorphic to the root stack of the
zero section as a divisor in the original line bundle.

It suffices to identify the outcome of the conic bundle construction
of Section 5.2 with the conic bundle defined by the matrix in (ii) over
the complement of a curve in B`0A3. We do this over the union of two
affine charts, one defined by the nonvanishing of v and the other, by
the nonvanishing of u.

Chart 1 : coordinates v0, t1, u1 with t0 = v0t1 and u0 = v0u1. The
corresponding open substack of M is isomorphic to

[A2/(Z/2Z)]× [A1/(Z/2Z)],
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where the action is by swapping the coordinates and multiplication by
−1 of the coordinate on respective factors. Denoting coordinates by
u′, u′′, respectively λ1, we have

v0 = λ21, t1 =
1

2
(u′ + u′′), u1 = u′u′′.

We are in the situation of Example 11, where the first Z/2Z-torsor is
A2× [A1/(Z/2Z)] and the second Z/2Z-torsor is [A2/(Z/2Z)]×A1. So
the corresponding open substack of P is isomorphic to

(5.4) [A2 × A1 × P1/(Z/2Z× Z/2Z)],

where the first Z/2Z factor acts by swapping the coordinates of A2 and
swapping the coordinates of P1, and the second Z/2Z factor acts by
multiplication by −1 of the coordinate of A1 and multiplication by −1
of one of the coordinates of P1.

Chart 2 : coordinates u0, t2, v2 with t0 = u0t2 and v0 = u0v2. The
corresponding open substacks of M and of P admit the same descrip-
tion as in Chart 1. With coordinates v′, v′′ and λ2 on respective factors
of M ∼= [A2/(Z/2Z)]× [A1/(Z/2Z)], we have

u0 = λ22, t2 =
1

2
(v′ + v′′), v2 = v′v′′.

Transition between charts : Given a k-scheme T , the data of a T -
valued point of Chart 1 consist of a Z/2Z-torsor S → T with equivari-
ant map S → A2 and a second Z/2Z-torsor S ′ → T with equivariant
map S ′ → A1. To land in the overlap with Chart 2 the morphism
S → A2 should have image contained in (A1 \ {0})2. The product of
coordinates is invariant and thus determines an invertible function f
on T . We denote by

√
f → T the associated degree 2 étale cover and

combine this with S ′ to obtain the Z/2Z-torsor

S̃ ′ := S ′ ×Z/2Z
√
f.

Then, with notation mul and inv for multiplication and multiplica-
tive inverse, respectively, the Chart 2 data consist of Z/2Z-torsors and
equivariant maps

S → T with S → (A1 \ {0})2 inv×inv−→ (A1 \ {0})2 ⊂ A2

and

S̃ ′ → T with S̃ ′ → A1 induced by S ′ ×
√
f → A1 ×Gm

mul→ A1.

Conic bundle: We introduce a new coordinate κ1 = (1/2)(−u′ + u′′)
on Chart 1 and κ2 = (1/2)(−v′ + v′′) on Chart 2. On Chart 1 we use
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t1, κ1 in place of u′, u′′, and on Chart 2 we use t2, κ2 in place of v′, v′′.
We have

u1 = t21 − κ21 and v2 = t22 − κ22.
Performing the change of coordinates leads to descriptions of the open
substacks of M as

A1 × [A2/(Z/2Z× Z/2Z)],

with coordinates ti, respectively κi, λi on Chart i for i ∈ {1, 2}. For the
open substack of P over each chart, there is simply an extra factor P1

as in (5.4). We have, over each chart, exactly the situation of Example
12 (up to an extra A1-factor), and the conic bundle is thereby defined
by an explicit equation in projective coordinates xi, yi, zi. With the
change of coordinates

z̃i = zi − tixi
we obtain the equation

−u1x21+v0y21−z̃21−2t1x1z̃1 = 0, resp. −v2x22+u0y22−z̃22−2t2x2z̃2 = 0,

with map

(ti, κi, λi, (αi : βi)) 7→ (λi(−α2
i+β

2
i ) : 2κiαiβi : (κi+ti)λiα

2
i+(κi−ti)λiβ2

i ).

Writing γ for a square root of u1 = u′u′′, we have

λ2 = γλ1 and (α2 : β2) = (u′−1γα1 : β1),

and it follows that the projective coordinates on the two charts are
related by

(5.5) (x2 : y2 : z̃2) = (z̃1 : u−11 y1 : x1).

The conic bundle defined by the matrix in (ii) yields, on the two charts,
precisely the equations obtained above with relation (5.5) between pro-
jective coordinates. �

Given a smooth variety, the elementary transformation of a projec-
tivized vector bundle along a section over a divisor is the outcome of
blowing up the section and contracting to the projectivization of a vec-
tor bundle, whose dual is in a natural way a subsheaf of the dual of the
original vector bundle [23].

Proposition 14. We adopt the notation of Proposition 13. The ele-
mentary transformation of

P(OB`0A3(1)⊕OB`0A3 ⊕OB`0A3)
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along the section P(OE(1) ⊕ 0 ⊕ 0) over E is B`0A3 × P2. Writing
x, y, z for projective coordinates on the P2 factor, the conic bundle
V → B`0A3 transforms to the conic bundle in B`0A3 × P2 defined by

x2 − u0y2 − 2t0yz − v0z2 = 0,

obtained by base-change from the conic bundle with this defining equa-
tion over A3.

Proof. If B is the locally free coherent sheafOB`0A3(1)⊕OB`0A3⊕OB`0A3 ,
the elementary transformation applied to P(B) with the indicated sec-
tion over E yields P(B′), where the dual B′∨ sits in an exact sequence

0→ B′∨ → B∨ → OE(−1)→ 0.

So, B′ ∼= O3
B`0A3 . A direct computation establishes the remaining as-

sertion. �

Returning to the G-torsor over X we are also interested in the vector
bundles associated with the representations given in Section 5.1. The
notation Rρ will be used for the vector bundle on X induced by the
G-torsor and a G-representation ρ. When the generic stabilizer Z/2Z
of X acts trivially on fibers, the vector bundle Rρ descends to a vector
bundle on W , that we will denote by Qρ.

Lemma 15. Let ∆ denote the diagonal in P1 × P1 and r ∈ ∆, and let
us use the same notation for the corresponding closed substacks of W ,
or of X.

(i) The line bundle Rχ is the pullback of the line bundle Qχ on W ,
with

Qχ
∼= OW (∆−H ′ −H ′′)

and characterized up to isomorphism as the unique nontrivial
2-torsion element in Pic(W ).

(ii) The vector bundle Rρ2 fits in an exact sequence

0→M → Rρ2 →M∨ ⊗Rχ →M∨ ⊗Rχ ⊗O{r} → 0

of coherent sheaves on X.

Proof. There is no loss of generality in supposing r to be the point of
intersection of H ′ and H ′′.

The line bundle Rχ is the pullback of the nontrivial line bundle on
BZ/2Z, corresponding to the Z/2Z-torsor

X ′ → X.
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So Qχ exists, corresponds analogously to the Z/2Z-torsor P1×P1 → W ,
and is 2-torsion in Pic(W ). As well, Qχ is nontrivial, since we have at
r a copy of BZ/2Z in W . By the general description of the Picard
group of a root stack [9, §3.1], Pic(W ) is generated by classes pulled
back from P2 and the class of OW (∆), a line bundle whose square is
isomorphic to the pullback of OP2(2). So there is a unique nontrivial
2-torsion class in Pic(W ), the one indicated in the statement of (i).

For (ii), we start with the description of Rρ2 as isomorphic after pull-
back to X ′ to L⊕σ∗L and characterized by descent by the isomorphism
σ∗(L ⊕ σ∗L) ∼= L ⊕ σ∗L, as indicated in the description of ρ2 in Sec-
tion 5.1. In the present case, L⊕ σ∗L contains a diagonal copy of M ′,
yielding upon descent an injective homomorphism

M → Rρ2

of coherent sheaves on X. The cokernel K is locally free of rank 1 away
from r. The reflexive hullK∨∨ is a line bundle, whose isomorphism type
is identified, by taking determinants, as M∨ ⊗Rχ. A local calculation
shows that K → K∨∨ is injective with cokernel K∨∨|{r}. Combining
this information, we obtain the 4-term exact sequence given in the
statement. �

Proposition 16. We have

H i(X,Rρ3 ⊗OX(−H ′ −H ′′)) = 0 and H i(X,Rρ3 ⊗M) = 0

for all i.

Proof. The direct image functor on quasi-coherent sheaves is exact, for
the morphisms X → W and W → P2. So, each of the cohomology
groups may be identified with a cohomology group of the direct image
sheaf on P2. Using Lemma 15, the direct image of Rρ3⊗OX(−H ′−H ′′)
onW isOW (∆−2H ′−2H ′′), and on P2 isOP2(−2), which has vanishing
cohomology groups. For Rρ3 ⊗M we use Lemma 15, in combination
with the nontriviality of the stabilizer action on the fiber at r of Qχ, to
see that the direct image sits in an exact sequence between two copies
of OP2(−1). The vanishing of cohomology groups follows. �

5.4. Deformation result. Working over an algebraically closed field
k of characteristic different from 2, we prove the existence of families
of conic bundles, where the special fiber is a standard conic bundle
over a rational surface with connected nodal discriminant curve, and
in all other fibers the discriminant curve is smooth. In the assumptions
below, the family of discriminant curves has ordinary double points at
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the nodes and the family of degree 2 covers has smooth total space;
these force the special fiber to be an admissible cover ramified over
the nodes. This necessarily restricts to a nontrivial cover of every
irreducible component.

Theorem 17. Let (B, b0) be a pointed curve, S → B a smooth pro-
jective family of rational surfaces, and D ⊂ S an irreducible divisor,
smooth except for ordinary double points at q1, . . . , qr in the fiber Sb0,
for some positive integer r. Let D̃ → D be a finite morphism of degree
2, étale over D\{q1, . . . , qr}, with D̃ smooth. We suppose, further, that
Db0 is connected and smooth except for nodes at q1, . . . , qr, and Db is
smooth for all b 6= b0. Then, after replacing (B, b0) by an étale neigh-
borhood, there exists a variety V fitting into a commutative diagram

V ϕ //

ψ ��3
33333 S

��������

B

such that ϕ is a conic bundle (flat, projective, generically smooth, all
fibers are conics), ψ is smooth, and for every b ∈ B the fiber Vb is
a standard conic bundle over Sb with corresponding ramification data
D̃b → Db.

Remark 18. The proof starts by replacing the fiber Sb0 by a root
stack of the sort defined by Matsuki and Olsson (cf. Section 5.2). In
the envisaged application, Db0 consists of two smooth curves meeting at
the nodes q1, . . . , qr. Then this root stack is just the iterated root stack
of Sb0 along the two curves, and the subtle construction of Matsuki and
Olsson, based on logarithmic structures, is not needed.

Proof. We follow the strategy of [16]. We construct, on the fiber over
b0, a suitable rank 2 vector bundle over a µ2-gerbe over a root stack
of Sb0 ; this determines Vb0 . We extend first the µ2-gerbe and then the
vector bundle to the whole family, allowing ourselves at each step to
replace (B, b0) by an étale neighborhood.

We denote the fiber Sb0 by S and the fiber of the divisor and cover
D̃b0 → Db0 by D̃ → D. Since D is a curve with nodes at q1, . . . , qr, the
construction of Matsuki and Olsson mentioned in Section 5.2 yields a
smooth Deligne-Mumford stack Y with flat morphism to S that is an
isomorphism over S\D. Over smooth points, respectively over nodes of
D the stack Y has stabilizer µ2, respectively µ2×µ2. The cover D̃ → D
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determines a 2-torsion element of Br(S \ D), which is the restriction
of a unique element of Br(Y ) (cf. [16, Prop. 2 and Prop. 5]). There is,
correspondingly, a µ2-gerbe (cf. [27, p. 523])

Z → Y,

which we may take over smooth points, respectively over nodes of D
to have stabilizer µ2 × µ2, respectively the dihedral group D4, with
locally free sheaf F of rank 2, such that the projectivization of F is
base-change to Z of a smooth P1-fibration over Y , birational to a conic
bundle over S with ramification data D̃ → D.

By [16, Prop. 17], after replacing F by a suitable locally free subsheaf
(obtained from F by elementary transformation over a smooth divisor
in Y , which may be taken in general position with respect to the locus
with nontrivial stabilizer), we may suppose that the kernel (F∨ ⊗F)0
of the trace homomorphism F∨ ⊗F → OZ has vanishing

H2(Y, (F∨ ⊗F)0) = ker
(
H2(Y,F∨ ⊗F)→ H2(Y,OY )

)
;

although F is a sheaf on the gerbe Z, the locally free sheaf F∨ ⊗ F
descends to Y , and this is meant by the above notation. The space
H2(Y, (F∨ ⊗ F)0) is the obstruction space for the deformation theory
of locally free coherent sheaves with given determinant.

The Deligne-Mumford stack Y does not sit in a smooth family with
root stacks

√
(Sb,Db). After a suitable modification, however, it sits

in a flat family, as we will now describe.
The singularities of D, each étale locally defined by an equation

uv − t2 = 0 with t a parameter of B, are resolved by blowing up:

S ′ := B`{q1,...,qr}S with smooth divisor D′ := B`{q1,...,qr}D.

Let E =
⋃r
i=1Ei denote the exceptional divisor in S ′. The divisors D′

and E meet transversely, so the iterated root stack

Y ′ :=
√

(S ′, {D′, E})

is smooth. As a family over B, this has nonreduced fiber Y ′b0 , but

(Y ′b0)red = Y ′ ∪
( r⋃
i=1

Xi

)
,

where Y ′ denotes the blow-up of Y at the points over q1, . . . , qr, and
each Xi is a copy of the stack X glued along the locus defined by the
vanishing of the coordinate t, in the notation of Section 5.3. Let Z ′
denote the corresponding blow-up of Z, so Z ′ ∼= Y ′ ×Y Z. The coarse
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moduli space of (Y ′b0)red is S ′b0 = S ′ ∪ (
⋃r
i=1Ei), where S

′ denotes the
blow-up of S at q1, . . . , qr.

Over X there is the G-torsor introduced in Section 5.3, where G is
the algebraic group, defined and exhibited as a µ2-extension of itself
in Section 5.1. This way, we get a µ2-gerbe U → X. The substack
in X defined by t = 0 is isomorphic to [P1/(Z/2Z)] × BZ/2Z, and
the restriction of the G-torsor admits the description of Example 11.
Consequently, the restriction of U is isomorphic to [P1/K], where K ∼=
D4 denotes the µ2-extension of the copy of the Klein four-group in G
generated by the 2 × 2-permutation matrices and µ2, acting through
the Klein four-group. Each exceptional divisor of Z ′ admits the same
description, as we see from the description of the µ2-gerbe Z → Y . So,
we may glue to obtain

Z ′ ∪
( r⋃
i=1

Ui

)
,

a µ2-gerbe over (Y ′b0)red, where each Ui is a copy of U . By applying
the proper base change theorem for tame Deligne-Mumford stacks [1,
App. A] to the corresponding class

γ ∈ H2(Y ′b0 , µ2) = H2((Y ′b0)red, µ2),

we obtain as in [16] a class

Γ ∈ H2(Y ′, µ2)

extending γ. Accordingly there is a µ2-gerbe

Z ′ → Y ′

with

(Z ′b0)red ∼= Z ′ ∪
( r⋃
i=1

Ui

)
.

Corresponding to the representation ρ2 of G is a rank 2 vector bundle
on U . The restriction to the copy of [P1/K] over t = 0 is determined
by the 2-dimensional representation of K ⊂ G. On the other hand, the
restriction of F over a point qi is associated with a linear representation
of D4, which after blowing up becomes [P1/D4] over the exceptional
divisor, in a manner that is compatible under D4

∼= K. By identifying
restrictions in this manner, we obtain a rank 2 vector bundle F ′0 on
(Z ′b0)red from the pullback F ′ of F under Z ′ → Z and the rank 2
vector bundle on Ui for every i. Its determinant descends to a line
bundle on (Y ′b0)red.
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We argue that the determinant line bundle on (Y ′b0)red extends to a
line bundle on Y ′, after replacing (B, b0) by a suitable étale neighbor-
hood. It suffices to verify this after tensoring by the restriction of a
line bundle on Y ′. In Y ′ there is a divisor, which when multiplied by 2
yields the pullback of D′; we tensor by the restriction of the associated
line bundle. This yields a line bundle on (Y ′b0)red with trivial stabilizer
actions. By [4, Thm. 10.3], this is isomorphic to the pullback of a line
bundle on the coarse moduli space S ′b0 , It thus suffices to show that
every line bundle on S ′b0 extends (after replacing (B, b0) by a suitable
étale neighborhood) to a line bundle on S ′. Tensoring by line bundles
associated with the Ei with appropriate multiplicities, we are reduced
to considering line bundles on S ′b0 pulled back from S, and thus to the
corresponding fact for line bundles on S and S, which is standard since
S is a smooth projective family of rational surfaces.

Now we show that the obstructions to extending F ′0 to a vector
bundle on Z ′ vanish. We define

(Z ′b0)red = T0 ⊂ T ′0 ⊂ T ′′0 ⊂ T1 ⊂ T ′1 ⊂ . . .

to be the substacks of Z ′ corresponding to the following effective divi-
sors:

divisor obstruction space
Ti (2i+ 1)(X1 + · · ·+Xr) + (i+ 1)Y ′ H2(X,Rρ3 ⊗M)r

T ′i (2i+ 2)(X1 + · · ·+Xr) + (i+ 1)Y ′ H2(Y ′, (F ′∨ ⊗F ′)0)
T ′′i (2i+ 2)(X1 + · · ·+Xr) + (i+ 2)Y ′ H2(X,Rρ3 ⊗OX(−H ′ −H ′′))r

In each case we have identified the obstruction space to extension of
locally free sheaf (on the gerbe) with fixed determinant. The vanishing
in each cases follows from Proposition 16 (cohomology on X) or the
vanishing of H2(Y, (F∨ ⊗F)0). So, starting with F ′0 on the gerbe over
T0, we may extend to successive infinitesimal neighborhoods and, by
appealing as in [16] to the Grothendieck existence theorem for tame
Deligne-Mumford stacks [3, Thm. A.1.1], to a locally free sheaf F̃ ′ on
Z ′ extending F ′0.

Associated with F̃ ′ is a smooth P1-fibration

P ′ → Y ′.
The conic bundle construction of Section 5.2 yields a standard conic
bundle

V ′ → S ′.
We claim that with an elementary transformation and contraction,

from V ′ → S ′ we obtain V → S, fulfilling the requirements of the
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theorem. We have already seen this in Proposition 14 for the conic
bundle V → B`0A3. So, to complete the proof, it is enough to show
for every i that qi ∈ S and 0 ∈ A3 have a common étale neighborhood,
over which V ′ → S ′ and V → B`0A3 are isomorphic.

Since D has an ordinary double point at qi, there is a diagram of
étale morphisms of pointed schemes

(R, p)

}}{{{{{{{{

!!DDDDDDDD

(S, qi) (A3, 0)

such that D ⊂ S and the divisor in A3 defined by u0v0−t20 = 0 have the
same pre-image in R. Without loss of generality, p is the only point of
Rmapping to qi in S, and is the only point ofRmapping to 0 in A3. As
well, we may suppose that the image of the left-hand morphism avoids
qj for all j 6= i. After blowing up, we obtain an analogous diagram
with étale morphisms

B`pR

���������

!!DDDDDDD

S ′ B`0A3

There is a further diagram, in which each scheme is replaced by the
iterated root stack along the proper transform of the given divisor and
the exceptional divisor.

The class Γ ∈ H2(Y ′, µ2) pulls back to a class in H2 of the iterated
root stack of B`pR. As well, the G-torsor over X, pulled back to M
(Section 5.3), pulls back to a class in the same H2 group. Since Γ
extends γ, whose construction also is based on the G-torsor over X
of Section 5.3, we may conclude by applying the proper base change
theorem to the morphism to R, that after possibly replacing (R, p) by
an étale neighborhood, these two H2-classes coincide. So, we obtain
another analogous diagram of µ2-gerbes over iterated root stacks.

Now we compare the vector bundles, obtained by pullback from F̃ ′
on Z ′ and the rank 2 vector bundle on the µ2-gerbe over M , again
coming from the G-torsor over M in Section 5.3. Their restrictions
to the copy of U over p are, again by construction, isomorphic. By
an argument, analogous to above obstruction analysis but this time
using the vanishing of H1, we see that an isomorphism over the copy
of U may be extended to all infinitesimal neighborhoods. So, by the
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standard combination of the Grothendieck existence theorem and Artin
approximation, after replacing (R, p) by an étale neighborhood there
is an isomorphism of the two vector bundles over the gerbe over the
iterated root stack of B`pR. Consequently, the associated smooth P1-
fibrations are isomorphic. But the conic bundle construction of Section
5.2 commutes with étale base change of the underlying algebraic variety.
So the conic bundles V ′ ×S′ B`pR and V ×B`0A3 B`pR are isomorphic
over B`pR, as required. �

6. Proof of Theorem 1

Let S → B be as in Section 4.2. If D → B is chosen in a general
manner, then D will have smooth total space. The deformation theory
of admissible covers, recorded in [8, Thm. 5.1.5], dictates that after
replacing B by a suitable simply branched cover, D will admit a degree
2 cover D̃ → D satisfying the hypotheses in Theorem 17. So, we may
apply Theorem 17 to obtain a family V → S → B. The composite
V → B is smooth, and Vb0 is stably rational; it remains to show that
the very general fiber is not stably rational.

We recall the main result of [16]:

Theorem 19. Let L be a basepoint-free linear system of effective di-
visors on a smooth projective rational surface S, with smooth and ir-
reducible general member. Let M be an irreducible component of the
moduli space of pairs (D, D̃ → D), where D ∈ L is nodal and reduced
and D̃ → D is an étale cover of degree 2. Assume that M contains a
cover that is nontrivial over every irreducible component of a reducible
curve with smooth irreducible components. Then a conic bundle over
S corresponding to a very general point ofM is not stably rational.

We seek to apply this to standard conic bundles V → S over a quin-
tic del Pezzo surface with degeneracy locus a generic bi-anticanonical
divisor (L = |−2KS|), as in Section 4.3. The relevant reducible curve is
a union of two generic anticanonical divisors, i.e., elliptic curves which
admit nontrivial étale double covers. The birational class of V depends
on the choice of a nontrivial étale double cover D̃ → D. We can invoke
Theorem 19 once we know that the monodromy action on such dou-
ble covers is transitive – the moduli space of pairs is irreducible – so
the failure of stable rationality witnessed by our reducible curve prop-
agates. We conclude that if D is a very general member of | − 2KS|,
then for any nontrivial étale double cover D̃ → D, the corresponding
conic bundle V → S is not stably rational.
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We apply the criterion of [6, Thm. 3]; see also [15, Sect. 3]. We need
to find members D, D′ ∈ | − 2KS| such that

• D has an E6 singularity;
• D′ is a union of a pair of smooth curves meeting transversally
in an odd number of points.

The second is obvious — again use a pair of anticanonical curves. An
E6 singularity is locally analytically equivalent to y3 = x4. The plane
sextic
1

2
y4z2 + y3z3 +

1

2
xy4z + xy3z2 − x2y3z − 3x2y2z2 − x3y3 − 2x3y2z +

1

2
x3yz2 + 3x4y2 − 1

2
x4yz + x4z2 = 0

has E6-singularity at (0 : 0 : 1) and nodes at four other general points,
hence defines such a curve D.

7. Limitations of this construction

The stable rationality of smooth cubic threefolds is quite mysterious.
No stably rational examples are known but the known arguments for
disproving stable rationality fail in this case. Voisin [36] has shown that
the existence of a decomposition of the diagonal for a cubic threefold X
reduces to finding curves of ‘odd degree’ in its intermediate Jacobian
IJ(X). Such curves arise in many examples, which are therefore natural
candidates for stable rationality.

We would have liked to use the approach of Section 3 to exhibit a
stably rational cubic threefold. Following the procedure of Section 4.1,
for a nonsingular plane cubic C ⊂ P2 and point p := s4 ∈ P2 \ C, we
would need to have p ∈ L. Yet L must be the satellite conic, which
contradicts Lemma 8.
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