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Abstract

In this article, we prove that the measures QT associated to the one-dimensional

Edwards’ model on the interval [0, T ] converge to a limit measure Q when T goes

to infinity, in the following sense: for all s ≥ 0 and for all events Λs depending on

the canonical process only up to time s, QT (Λs)→ Q(Λs).

Moreover, we prove that, if P is Wiener measure, there exists a martingale (Ds)s∈R+

such that Q(Λs) = EP(1ΛsDs), and we give an explicit expression for this martin-

gale.

Keywords: Edwards’ model, polymer measure, Brownian motion, penalisation, local

time.
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1 Introduction and statement of the main theorems

Edwards’ model is a model for polymers chains, which is defined by considering Brownian

motion "penalised" by the "quantity" of its self-intersections (see also [4]). More precisely,

for d ∈ N∗, and T > 0, let P(d)
T be Wiener measure on the space C([0, T ],Rd), and

(X
(d)
t )t∈[0,T ] the corresponding canonical process. The d-dimensional Edwards’ model

on [0, T ] is defined by the probability measure Q(d),β
T on C([0, T ],Rd) such that, very

informally:

Q(d),β
T =

exp
(
−β
∫ T

0

∫ T
0
δ(X

(d)
s −X(d)

u ) ds du
)

P(d)
T

[
exp

(
−β
∫ T

0

∫ T
0
δ(X

(d)
s −X(d)

u ) ds du
)] .P(d)

T (1)

where β is a strictly positive parameter, and δ is Dirac measure at zero.

(In this article, we always denote by Q[V ] the expectation of a random variable V under

the probability Q).

Of course, (1) is not really the definition of a probability measure, since the integral

with respect to Dirac measure is not well-defined. However, it has been proven that one

can define rigorously the measure Q(d),β
T for d = 1, 2, 3, by giving a meaning to (1) (for

d ≥ 4, the Brownian path has no self-intersection, so the measure Q(d),β
T has to be equal

to P(d)
T ).

In particular, for d = 1, one has formally the equality:∫ T

0

∫ T

0

δ(X(1)
s −X(1)

u ) ds du =

∫ ∞
−∞

(LyT )2 dy (2)

where (LyT )y∈R is the continuous family of local times of (X
(1)
s )s≤T (which is P(1)

T -almost

surely well-defined).
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Therefore, one can take the following (rigorous) definition:

Q(1),β
T =

exp
(
−β
∫∞
−∞(LyT )2 dy

)
P(1)
T

[
exp

(
−β
∫∞
−∞(LyT )2 dy

)] .P(1)
T .

Under Q(1),β
T , the canonical process has a ballistic behaviour; more precisely, West-

water (see [22]) has proven that for T → ∞, the law of X
(1)
T

T
under Q(1),β

T tends to

1
2
(δb∗β1/3 + δ−b∗β1/3), where δx is Dirac measure at x and b∗ is a universal constant (ap-

proximately equal to 1.1).

This result was improved in [18] (see also [17]), where van der Hofstad, den Hollander

and König show that |X
(1)
T |−b

∗β1/3T√
T

tends in law to a centered gaussian variable, which

has a variance equal to a universal constant (approximately equal to 0.4; in particular,

smaller than one).

Moreover, in [19], the authors prove large deviation results for the variable XT under

Q(1),β
T .

In dimension 2, the problem of the definition of Edwards’ model was solved by Varad-

han (see [16], [8], [10]). In this case, it is possible to give a rigorous definition of

I :=
∫ T

0

∫ T
0
δ(X

(2)
s −X(2)

u ) ds du, but this quantity appears to be equal to infinity. How-

ever, if one formally subtracts its expectation (i.e. consider the quantity: I−P(2)
T [I]), one

can define a finite random variable which has negative exponential moments of any order;

therefore, if we replace
∫ T

0

∫ T
0
δ(X

(2)
s − X(2)

u ) ds du by this random variable in equation

(1), we obtain a rigorous definition of Q(2),β
T . Moreover, this probability is absolutely

continuous with respect to Wiener measure.

In dimension 3 (the most difficult case), subtracting the expectation (this technique

is also called "Varadhan renormalization") is not sufficient to define Edwards’ model.
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However, by a long and difficult construction, Weswater (see [20], [21]) has proven that

it is possible to define the probability Q(3),β
T ; this construction has been simplified by

Bolthausen in [1] (at least if β is small enough). Moreover, the measures (Q(3),β
T )β∈R∗+ are

mutually singular, and singular with respect to Wiener measure.

The behaviour of the canonical process under Q(d),β
T , as T → ∞, is essentially unknown

for d = 2 and d = 3. One conjectures that the following convergence holds:

Q(3),β
T [||XT ||]→ DT ν

where D > 0 depends only on d and β, and where ν is equal to 3/4 for d = 2 and

approximately equal to 0.588 for d = 3 (see [17], Chap. 1).

At this point, we note that all the measures considered above are defined on finite interval

trajectories (exactly, on C([0, T ],R)).

An interesting question is the following: is it possible to define Edwards’ model on tra-

jectories indexed by R+ ?

More precisely, if P(d) is Wiener measure on C(R+,Rd) and (X
(d)
s )s∈R+ the corresponding

canonical process, is it possible to define a measure Q(d),β (for all β > 0) such that,

informally:

Q(d),β =
exp

(
−β
∫∞

0

∫∞
0

δ(X
(d)
s −X(d)

u ) ds du
)

P(d)
[
exp

(
−β
∫∞

0

∫∞
0

δ(X
(d)
s −X(d)

u ) ds du
)] .P(d) ?

In this article, we give a positive answer to this question in dimension one. The construc-

tion of the corresponding measure is analogous to the construction given by Roynette,

Vallois and Yor in their articles about penalisation (see [14], [11], [13], [12]).
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More precisely, let us replace the notation P(1) by P for the standard Wiener measure and

the notation (X
(1)
s )s∈R+ by (Xs)s∈R+ for the canonical process. If (Fs)s∈R+ is the natural

filtration of X, and if for all T ∈ R+, the measure Qβ
T is defined by:

Qβ
T =

exp
(
−β
∫∞
−∞(LyT )2 dy

)
P
[
exp

(
−β
∫∞
−∞(LyT )2 dy

)] .P
where (LyT )T∈R+,y∈R is the jointly continuous version of the local times of X (P-almost

surely well-defined), the following theorem holds:

Theorem 1.1 For all β > 0, there exists a unique probability measure Qβ such that for

all s ≥ 0, and for all events Λs ∈ Fs:

Qβ
T (Λs) −→

T→∞
Qβ(Λs). (3)

Theorem 1.1 is the main result of our article.

Let us remark that if Λs ∈ Fs (s ≥ 0) and P(Λs) = 0, then Qβ
T (Λs) = 0, since Qβ

T

is, by definition, absolutely continuous with respect to P. Hence, if Theorem 1.1 is as-

sumed, Qβ(Λs) is equal to zero.

Therefore, the restriction of Qβ to Fs is absolutely continuous with respect to the restric-

tion of P to Fs, and there exists a P-martingale (Dβ
s )s≥0 such that for all s:

Qβ
|Fs = Dβ

s .P |Fs .

In our proof of Theorem 1.1, we obtain an explicit formula for the martingale (Dβ
s )s≥0.

However, we need to define other notations before giving this formula.

Let ν be the measure on R∗+, defined by ν(dx) = x dx, and let L2(ν) be the set of
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functions g from R∗+ to R such that:

∫ ∞
0

[g(x)]2ν(dx) <∞,

equipped with the scalar product:

〈 g|h 〉 =

∫ ∞
0

g(x)h(x) ν(dx).

The operator K defined from L2(ν) ∩ C2(R∗+) to C(R∗+) by:

[K(g)](x) = 2g′′(x) +
2 g′(x)

x
− xg(x) (4)

is the infinitesimal generator of the process 2R killed at rate x at level x, where R is

a Bessel process of dimension two; it is a Sturm-Liouville operator, and there exists an

orthonormal basis (en)n∈N of L2(ν), consisting of eigenfunctions of K, with the corre-

sponding negative eigenvalues: −ρ0 > −ρ1 ≥ −ρ2 ≥ −ρ3 ≥ ..., where ρ := ρ0 is in the

interval [2.18, 2.19].

Moreover, the functions (en)n∈N are analytic and bounded (they tend to zero at infinity,

faster than exponentially), and e0 is strictly positive (these properties are quite classical,

and they are essentially proven in [17], Chap. 2 and 3; see also [6]).

Now, for l ∈ R+, let us denote by (Y y
l )y∈R a process from R to R+ such that:

• (Y −yl )y≥0 is a squared Bessel process of dimension zero, starting at l.

• (Y y
l )y≥0 is an independent squared Bessel process of dimension two.

Moreover, let f be a continuous function with compact support from R to R+, and let

M be a strictly positive real such that f(x) = 0 for all x /∈ [−M,M ]. We define the
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following quantities:

Aβ,M+ (f) =

∫ ∞
0

dlE
[
e
∫M
−∞[−β(Y yl +f(y))2+ρβ2/3 Y yl ] dye0(β1/3 Y M

l )
]
,

Aβ,M− (f) = Aβ,M+ (f̃),

where f̃ is defined by f̃(x) = f(−x), and

Aβ,M(f) = Aβ,M+ (f) + Aβ,M− (f).

With these notations, we can state the following theorem, which gives an explicit formula

for the martingale (Dβ
s )s≥0:

Theorem 1.2 For all β > 0 and for all continuous and positive functions f with compact

support, the quantity Aβ,M(f) is finite, different from zero, and does not depend on the

choice of M > 0 such that f = 0 outside the interval [−M,M ]; therefore, we can write:

Aβ(f) := Aβ,M(f). Moreover, for all s ≥ 0, the density Dβ
s of the restriction of Qβ to

Fs, with respect to the restriction of P to Fs, is given by the equality:

Dβ
s = eρβ

2/3 s.
Aβ(L•+Xss )

Aβ(0)
, (5)

where L•+Xss denotes the function F (which depends on the trajectory (Xu)u≤s) such that

F (y) = Ly+Xs
s for all y ∈ R.

Remark: The independence of Aβ,M(f) with respect to M (provided the support of f

is included in [−M,M ]) can be checked directly by using the fact that

(
exp

(∫ x

0

[
−β(Y y

l )2 + ρβ2/3Y y
l

]
dy

)
e0(β1/3 Y x

l )

)
x≥0

(6)

is a martingale, property which can be easily proven by using the differential equation

satisfied by e0.
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For l > 0, µ ∈ R and v > 0 let us now define the following quantity:

K
(µ)
l (v) = αl(v)eµv E

[
e−2

∫ v
0 V

(l/2,v)
u du

]
. (7)

where αl(v) = l√
8πv3

e−l
2/8v denotes the density of the first hitting time of zero of a

Brownian motion starting at l/2 (or equivalently, the density of the last hitting time of

l/2 of a standard Bessel process of dimension 3), and (V
(l/2,v)
u )u≤v is the bridge of a Bessel

process of dimension 3 on [0, v], starting at l/2 and ending at 0.

To simplify the notation, we set:

Kl(v) = K
(0)
l (v)

Moreover, let us consider, for v > 0, the function χv defined by:

χv(l) =
Kl(v)

l
=

1√
8π v3

e−l
2/8v E

[
e−2

∫ v
0 V

(l/2,v)
u du

]
. (8)

for l > 0.

With these notations, Theorem 1.2 is a essentially a consequence of the two propositions

stated below.

Proposition 1.3 When T goes to infinity:

eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT∈[0,M ]

]
−→ 0. (9)

Proposition 1.4 When T goes to infinity:

eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
−→ K A1,M

+ (f) <∞, (10)

where K ∈ R∗+ is a universal constant (in particular, K does not depend on f and M).

Moreover, for all v > 0, χv ∈ L2(ν) and the constant K is given by the formula:

K =

∫ ∞
0

eρ v 〈χv|e0〉 dv <∞.
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In the proof of these two propositions, we use essentially the same tools as in the papers

by van der Hofstad, den Hollander and König. In particular, for f = 0, Propositions 1.3

and 1.4 are consequences of Proposition 1 of [18].

However, for a general function f , it is not obvious that one can deduce directly our

results from the material of [18] and [19], since for XT > 0, one has to deal with the

family of local times of the canonical process on the intervals R−, [0, XT ] and [XT ,∞) as

for f = 0, but also on the support of f . Moreover, some typos in [18] make the argument

as written incorrect. For this reason, we present a proof of this result in a different way

than was done in [18].

The next sections of this article are organized as follows: in Section 2, we prove that

Propositions 1.3 and 1.4 imply Theorems 1.1 and 1.2; in Section 3, we prove Proposition

1.3. The proof of Proposition 1.4 is splitted into two parts: the first one is given in

Section 4; the second one, for which one needs some estimates of different quantities, is

given in Section 6, after the proof of these estimates in Section 5. In Section 7, we make

a conjecture on the behaviour of the canonical process under the limit measure Qβ.

2 Proof of Theorems 1.1 and 1.2, assuming Proposi-

tions 1.3 and 1.4

Let us begin to prove the following result, which is essentially a consequence of Brownian

scaling:

Proposition 2.1 Let us assume Propositions 1.3 and 1.4. For any positive continuous

function f with compact support included in [−M,M ], and for all
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β > 0:

eρβ
2/3 TP

[
e−β

∫∞
−∞[LyT+f(y)]2 dy

]
−→ Kβ1/3Aβ,M(f) <∞, (11)

when T goes to infinity.

Proof: Propositions 1.3 and 1.4 imply:

eρT P
[
e−

∫∞
−∞[LyT+f(y)]2 dy1XT≥0

]
−→
T→∞

K A1,M
+ (f) <∞.

Now, ((L−yT )y∈R,−XT ) and ((LyT )y∈R, XT ) have the same law; hence:

eρT P
[
e−

∫∞
−∞[LyT+f(y)]2 dy1XT≤0

]
= eρT P

[
e−

∫∞
−∞[L−yT +f(y)]2 dy1−XT≤0

]
= eρT P

[
e−

∫∞
−∞[LyT+f(−y)]2 dy1XT≥0

]
−→
T→∞

K A1,M
+ (f̃) = K A1,M

− (f),

which is finite.

Therefore:

eρT P
[
e−

∫∞
−∞[LyT+f(y)]2 dy

]
−→
T→∞

K A1,M(f) <∞.

Now, let us set: α = β1/3. By Brownian scaling, (LyαTα2)y∈R and (αLyT )y∈R have the same

law. Consequently:

eρα
2T P

[
e−β

∫∞
−∞[LyT+f(y)]2 dy

]
= eρα

2T P
[
e−α

∫∞
−∞[Lyα

Tα2
+αf(y)]2 dy

]
= eρα

2T P
[
e−

∫∞
−∞[Lz

Tα2
+αf(zα−1)]2 dz

]
−→
T→∞

K A1,Mα(fα) <∞,

where fα, defined by fα(z) = αf(zα−1), has a support included in [−Mα,Mα].

Therefore, Proposition 2.1 is proven if we show that A1,Mα(fα) = αAβ,M(f).

Now, by change of variable and scaling property of squared Bessel processes:

A1,Mα
+ (fα) =

∫ ∞
0

dlE
[
e
∫Mα
−∞ [−(Y yl +αf(yα−1))2+ρY yl ]dye0(Y Mα

l )
]
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=

∫ ∞
0

dlE
[
eα
∫M
−∞[−(Y zαl +αf(z))2+ρY zαl ]dze0(Y Mα

l )
]

=

∫ ∞
0

dlE
[
eβ
∫M
−∞[−(Y z

lα−1+f(z))2+ρα−1Y z
lα−1 ]dze0(αY M

lα−1)
]

= α

∫ ∞
0

dlE
[
eβ
∫M
−∞[−(Y zl +f(z))2+ρα−1Y zl ]dze0(αY M

l )
]

= αAβ,M+ (f). (12)

By replacing f by f̃ , one obtains:

A1,Mα
− (fα) = αAβ,M− (f), (13)

and by adding (12) and (13):

A1,Mα(fα) = αAβ,M(f),

which proves Proposition 2.1. �

At this point, we remark that Aβ(f) := Aβ,M(f) does not depend on M (as written

in Theorem 1.2), since M does not appear in the left hand side of (11).

Now, let T > s be in R+. One has, for all y ∈ R:

LyT = Lys + L̃y−XsT−s ,

where L̃ is the continuous family of local times of the process (Xs+u −Xs)u≥0.

Therefore, for all β > 0:

P
[
e−β

∫∞
−∞(LyT )2 dy|Fs

]
= P

[
e−β

∫∞
−∞(Lys+L̃y−XsT−s )2 dy|Fs

]
= P

[
e−β

∫∞
−∞(Ly+Xss +L̃yT−s)

2 dy|Fs
]
.

Under P and conditionally on Fs, (Ly+Xs
s )y∈R is fixed and by Markov property, (Xs+u −

Xs)u≥0 is a standard Brownian motion.
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Hence, if we assume Propositions 1.3 and 1.4, we obtain, by using Proposition 2.1:

eρ(T−s)α2 P
[
e−β

∫∞
−∞(LyT )2 dy|Fs

]
−→
T→∞

KαAβ(L•+Xss )

Moreover:

eρ(T−s)α2 P
[
e−β

∫∞
−∞(LyT )2 dy|Fs

]
≤ eρ(T−s)α2P

[
e−β

∫∞
−∞(L̃yT−s)

2 dy|Fs
]

= eρ(T−s)α2P
[
e−β

∫∞
−∞(LyT−s)

2 dy
]

≤ 2KαAβ(0) <∞

if T − s is large enough. On the other hand:

eρTα
2 P
[
e−β

∫∞
−∞(LyT )2 dy

]
−→
T→∞

KαAβ(0),

and for T large enough:

eρTα
2 P
[
e−β

∫∞
−∞(LyT )2 dy

]
≥ K

2
αAβ(0).

Now, for all β and f , Aβ(f) is different from zero (as written in Theorem 1.2), since it is

the integral of a strictly positive quantity. Therefore:

P
[
e−β

∫∞
−∞(LyT )2 dy|Fs

]
P
[
e−β

∫∞
−∞(LyT )2 dy

] −→
T→∞

eρα
2 s A

β(L•+Xss )

Aβ(0)
,

and for s fixed and T large enough:

P
[
e−β

∫∞
−∞(LyT )2 dy|Fs

]
P
[
e−β

∫∞
−∞(LyT )2 dy

] ≤ 4 eρα
2s <∞.

Consequently, for all s ≥ 0 and Λs ∈ Fs, by dominated convergence:

P

1Λs

P
[
e−β

∫∞
−∞(LyT )2 dy|Fs

]
P
[
e−β

∫∞
−∞(LyT )2 dy

]
 −→

T→∞
P
[
1Λs e

ρα2s A
β(L•+Xss )

Aβ(0)

]
.

Hence:

Qβ
T (Λs) −→

T→∞
P(1Λs D

β
s ),
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where Dβ
s is defined by the equation (5):

Dβ
s = eρβ

2/3s.
Aβ(L•+Xss )

Aβ(0)
.

This convergence implies Theorems 1.1 and 1.2. �

3 Proof of Proposition 1.3

If f is a continuous function from R to R+ with compact support included in [−M,M ],

one has:

P
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT∈[0,M ]

]
≤ P

[
e−

∫∞
−∞(LyT )2 dy 1XT∈[0,M ]

]
= P

[
e−T

3/2
∫∞
−∞(Ly1)2 dy 1X1∈[0,M/

√
T ]

]
(14)

by scaling properties of Brownian motion.

Hence, the right hand side of (14) is decreasing with T , which implies (for T > 1):

eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT∈[0,M ]

]
≤ eρT

∫ T

T−1

duP
[
e−

∫∞
−∞(Lyu)2 dy 1Xu∈[0,M ]

]
≤ eρ

∫ T

T−1

duP
[
e
∫∞
−∞[−(Lyu)2+ρLyu] dy 1Xu∈[0,M ]

]
by using the equality ∫

R
ρLyu dy = ρu.

By dominated convergence, Proposition 1.3 is proven if we show that:∫ ∞
0

duP
[
e
∫∞
−∞[−(Lyu)2+ρLyu] dy 1Xu∈[0,M ]

]
<∞. (15)

In order to estimate the left hand side of (15), we need the following lemma:

Lemma 3.1 For every positive and measurable function G on R× C(R,R+):∫ ∞
0

P [G(Xu, L
•
u)] du =

∫
R
da

∫ ∞
0

dlE
[
G(a, Y •l,a)

]
13



where the law of the process (Y y
l,a)y∈R is defined in the following way:

• for a ≥ 0, (Y −yl,a )y≥0 is a squared Bessel process of dimension zero, starting at l.

• for a ≥ 0, (Y y
l,a)y≥0 is an independent inhomogeneous Markov process, which has

the same infinitesimal generator as a two-dimensional squared Bessel process for

y ∈ [0, a] and the same infinitesimal generator as a zero-dimensional squared Bessel

process for y ≥ a.

• for a ≤ 0, (Y y
l,a)y∈R has the same law as (Y −yl,−a)y∈R.

Proof: For a ≥ 0, let B be a standard Brownian motion, B(a) an independent Brownian

motion starting at a, and let us denote by (τl)l≥0 the inverse local time of B at level 0,

and T (a)
0 the first time when B(a) reaches zero.

By [7] and [3], for every process (Fu)u≥0 on the space C(R+,R), which is progressively

measurable with respect to the filtration (Fu)u≥0:

∫ ∞
0

duE[Fu(B)] =

∫ ∞
0

dl

∫ ∞
−∞

daE[F
τl+T

(a)
0

(Z(l,a))], (16)

where Z(l,a) is a process such that Z(l,a)
r = Br for r ≤ τl and Z

(l,a)

τl+T
(a)
0 −s

= B
(a)
s for s ≤ T

(a)
0 .

By applying (16) to the process defined by Fu(X) = G(Xu, L
•
u), and by using Ray-Knight

theorems, one obtains Lemma 3.1. �

An immediate application of this lemma is the following equality:

∫ ∞
0

duP
[
e
∫∞
−∞[−(Lyu)2+ρLyu] dy 1Xu∈[0,M ]

]
=

∫ ∞
0

dl

∫ M

0

daE
[
e
∫∞
−∞[−(Y yl,a)2+ρY yl,a] dy

]
. (17)
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In order to majorize this expression, let us prove another result, which is also used in the

proof of Proposition 1.4:

Lemma 3.2 For all l > 0, µ ∈ R and for all measurable functions g from R+ to R+, the

following equality holds:

E
[
e
∫∞
0 [−(Y yl,0)2+µY yl,0] dy g

(∫ ∞
0

Y y
l,0 dy

)]
=

∫ ∞
0

K
(µ)
l (v) g(v) dv. (18)

where K(µ)
l (v) is defined by equation (7).

In particular:

E
[
e
∫∞
0 [−(Y yl,0)2+ρY yl,0] dy

]
= K̄

(ρ)
l

where

K̄
(ρ)
l =

∫ ∞
0

K
(ρ)
l (v) dv.

Moreover K̄(ρ)
l is bounded by a universal constant and:

∫ ∞
0

K̄
(ρ)
l dl <∞.

Proof: The process Yl,0 is a local martingale with bracket given, for y ≥ 0, by:

〈Yl,0, Yl,0〉y = 4

∫ y

0

Y x
l,0 dx.

Therefore:

Y y
l,0 = 2B

(l/2)∫ y
0 Y

x
l,0 dx

where B(l/2) is a Brownian motion starting at l/2. Moreover, since Yl,0 stays at zero

when it hits 0, the hitting time of zero for B(l/2) is S =
∫∞

0
Y x
l,0 dx. Hence, the change of

variable s =
∫ y

0
Y x
l,0 dx gives:

∫ ∞
0

(µ− Y y
l,0)Y y

l,0 dy =

∫ S

0

(µ− 2B(l/2)
s ) ds.
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Therefore, one has the equalities:

E
[
e
∫∞
0 [−(Y yl,0)2+µY yl,0] dy g

(∫ ∞
0

Y y
l,0 dy

)]
= E

[
e
∫ S
0 (µ−2B

(l/2)
s ) dsg(S)

]
=

∫ ∞
0

eµv g(v)E
[
e−

∫ v
0 2B

(l/2)
s ds|S = v

]
P[S ∈ dv].

Now, this formula implies (18), since the density at v of the law of S is equal to αl(v)

and the law of (B
(l/2)
s )s≤v, conditionally on S = v, is equal to the law of V (l/2,v) (see, for

example, [5]).

It only remains to prove the integrability of K̄(ρ)
l . One easily checks that:

K̄
(ρ)
l = E

[
e
∫ S
0 (ρ−2B

(l/2)
s ) ds

]
.

Hence, if one sets:

f(x) = Ai(2−1/3(2x− ρ)),

for the Airy function Ai (which is, up to a multiplicative constant, the unique bounded

solution of the differential equation Ai′′(x) = xAi(x)), the process N defined by:

Nt = f(B
(l/2)
t ) exp

(∫ t

0

(ρ− 2B(l/2)
s ) ds

)

is a local martingale.

Moreover, since ρ is smaller than −21/3 times the largest zero of Airy function, the

function f is strictly positive on R+ and N is positive. By stopping N at time S, one

gets a true martingale since 0 ≤ Nt∧S ≤ ||f ||∞ eρ t, and by Doob’s stopping theorem and

Fatou’s lemma, one has:

K̄
(ρ)
l ≤

f(l/2)

f(0)
.

Since Airy function decays faster than exponentially at infinity, the boundedness and the

integrability of K̄(ρ)
l are proven. �
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It is now easy to prove that Lemma 3.2 implies Proposition 1.3: by using this lemma,

the definition of Yl,a and Markov property at level a, one can see that the left hand side

of (17) is equal to: ∫ ∞
0

dl

∫ M

0

da K̄
(ρ)
l E

[
e
∫ a
0 [−(Y yl )2+ρY yl ]K̄

(ρ)
Y al

]
(19)

Now, K̄ρ
Y al

is uniformly bounded and −x2 + ρx ≤ ρ2

4
for all x ∈ R; hence, the quantity

(19) is bounded by a constant times:

eMρ2/4

∫ M

0

da

∫ ∞
0

dl K̄
(ρ)
l ,

which is finite.

Hence, one has (15), and finally Proposition 1.3. �

Remark: Proposition 1.3 remains true if one replaces ρ by any real ρ′ which is strictly

smaller than −21/3 times the largest zero of Airy function (for example, one can take

ρ′ = 2.9).

4 Proof of Proposition 1.4 (first part)

The purpose of this first part is to prove the following proposition, which, in particular,

gives another expression for the left hand side of (10):

Proposition 4.1 For u, v, t, l > 0, let us define the quantities:

Jl(u, v) = E
[
e−2

∫ u
0 R

(l/2)
w dw χv(2R

(l/2)
u )

]
, (20)

17



where χv is given by (8) and (R
(l/2)
w )w≥0 is a Bessel process of dimension 2, starting at

l/2;

Jl(t) :=

∫ t

0

Jl(t− v, v) dv (21)

and for all t ∈ R,

J
(ρ)
l (t) = eρt1t>0 Jl(t).

Then, there exists a subset E of R+, such that the complement of E is Lebesgue-negligible,

and for all T ∈ E:

eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
=

∫ ∞
0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy
J

(ρ)

YMl

(
T −

∫ M

−∞
Y y
l dy

)]
. (22)

Moreover, for all measurable functions h from (R+)2 to R+, and for all l > 0:

∫ ∞
0

dbE
[
e−

∫∞
0 (Y yl,b)

2 dy h

(∫ b

0

Y y
l,b dy,

∫ ∞
b

Y y
l,b dy

)]

=

∫
(R+)2

h(u, v) Jl(u, v) du dv. (23)

and for all measurable functions g from R+ to R+:

∫ ∞
0

dbE
[
e−

∫∞
0 (Y yl,b)

2 dy g

(∫ ∞
0

Y y
l,b dy

)]
=

∫ ∞
0

g(t) Jl(t) dt. (24)

Remark: In Proposition 4.1, it is natural to expect that E is empty, even if we don’t

need it to prove our main result.

Proof of Proposition 4.1: Equation (22) is a consequence of (23) and (24); therefore,

we begin our proof by these two equalities. By monotone class theorem, it is sufficient

to prove (23) for functions h of the form: h(x, y) = h1(x)h2(y), where h1 and h2 are

18



measurable functions from R+ to R+.

By Lemma 3.2, for all l > 0:

E
[
e−

∫∞
0 (Y yl,0)2 dy h2

(∫ ∞
0

Y y
l,0 dy

)]
=

∫ ∞
0

Kl(v)h2(v) dv.

Hence, by applying Markov property to the process Yl,b at level b:∫ ∞
0

dbE
[
e−

∫∞
0 (Y yl,b)

2 dy h1

(∫ b

0

Y y
l,b dy

)
h2

(∫ ∞
b

Y y
l,b dy

)]

=

∫ ∞
0

dbE
[
e−

∫ b
0 (Y yl )2 dy h1

(∫ b

0

Y y
l dy

)∫ ∞
0

KY bl
(v)h2(v) dv

]
=

∫ ∞
0

dv h2(v)E
[∫ ∞

0

db e−
∫ b
0 (Y yl )2 dy h1

(∫ b

0

Y y
l dy

)
KY bl

(v)

]
. (25)

Now, the function ỹ from R+ to R+, given by:

ỹ(s) = inf{y ∈ R+,

∫ y

0

Y y′

l dy′ = s}

is well-defined, continuous, strictly increasing and tending to infinity at infinity.

Hence, one can consider the process (Q̃
(l)
s )s≥0 such that:

Q̃(l)
s = Y

ỹ(s)
l .

One has:

dỹ(s) =
ds

Y
ỹ(s)
l

=
ds

Q̃
(l)
s

,

and the s.d.e.:

dQ̃(l)
s = 2

√
Y
ỹ(s)
l dB̂ỹ(s) + 2 dỹ(s) = 2 dBs +

2 ds

Q̃
(l)
s

,

where B̂ and B are Brownian motions: the processes Q̃(m) and 2R(m/2) have the same

law.

By a change of variable in (25) (b = ỹ(s), y = ỹ(u)):∫ ∞
0

dbE
[
e−

∫∞
0 (Y yl,b)

2 dy h1

(∫ b

0

Y y
l,b dy

)
h2

(∫ ∞
b

Y y
l,b dy

)]
19



=

∫ ∞
0

dv h2(v)E
[∫ ∞

0

dỹ(s) e−
∫ s
0 (Y

ỹ(u)
l )2 dỹ(u) h1(s)K

Y
ỹ(s)
l

(v)

]
=

∫ ∞
0

dv h2(v)E

[∫ ∞
0

ds h1(s) e−2
∫ s
0 R

(l/2)
u du

K
2R

(l/2)
s

(v)

2R
(l/2)
s

]
,

which implies (23).

The equality (24) is easily obtained by applying (23) to the function h : (u, v)→ g(u+v).

Now, it remains to deduce (22) from (23) and (24).

For all measurable and positive functions g, one has, by Lemma 3.1:∫ ∞
0

dT g(T )P
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
=

∫ ∞
0

dl

∫ ∞
M

daE
[
e−

∫∞
−∞[Y yl,a+f(y)]

2
dy g

(∫ ∞
−∞

Y y
l,a dy

)]
.

On the other hand, by applying Markov property (for the process Yl,a, at level M), and

by using the fact that f(y) = 0 for y ≥ M , one obtains, for all positive and measurable

functions h1 and h2:∫ ∞
0

dl

∫ ∞
M

daE
[
e−

∫∞
−∞[Y yl,a+f(y)]

2
dy h1

(∫ M

−∞
Y y
l,a dy

)
h2

(∫ ∞
M

Y y
l,a dy

)]

=

∫ ∞
0

dl

∫ ∞
0

dbE
[
e−

∫M
−∞[Y yl +f(y)]

2
dy h1

(∫ M

−∞
Y y
l dy

)
...

...E

[
e
−
∫∞
0

(
Ŷ y
YM
l
,b

)2

dy
h2

(∫ ∞
0

Ŷ y

YMl ,b
dy

)
|Y M
l

]]
, (26)

where ŶYMl ,b is a process which has, conditionally on Y M
l = l′, the same law as Yl′,b.

Now, by putting the integral with respect to db just before the second expectation in the

right hand side of (26), and by applying (24) to g = h2, one obtains that the left hand

side of (26) is equal to:

=

∫ ∞
0

dlE
[
e−

∫M
−∞[Y yl +f(y)]

2
dy h1

(∫ M

−∞
Y y
l dy

) ∫ ∞
0

h2(t) JYMl (t) dt

]
.
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Hence, by monotone class theorem, for all measurable functions h from R2
+ to R+:∫ ∞

0

dl

∫ ∞
M

daE
[
e−

∫∞
−∞[Y yl,a+f(y)]

2
dy h

(∫ M

−∞
Y y
l,a dy,

∫ ∞
M

Y y
l,a dy

)]

=

∫ ∞
0

dlE
[
e−

∫M
−∞[Y yl +f(y)]

2
dy

∫ ∞
0

h

(∫ M

−∞
Y y
l dy, t

)
JYMl (t) dt

]
.

By applying this equality to the function h : (u, v)→ g(u+ v), we obtain:∫ ∞
0

dT g(T )P
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
=

∫ ∞
0

dT g(T )

∫ ∞
0

dlE
[
e−

∫M
−∞[Y yl +f(y)]

2
dy ...

... JYMl

(
T −

∫ M

−∞
Y y
l dy

)
1∫M
−∞ Y yl dy<T

]
.

Since this equality is true for all g, there exists a subset E of R+, such that the complement

of E is Lebesgue-negligible, and for all T ∈ E:

P
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
=

∫ ∞
0

dlE
[
e−

∫M
−∞[Y yl +f(y)]

2
dy JYMl

(
T −

∫ M

−∞
Y y
l dy

)
1∫M
−∞ Y yl dy<T

]
,

which implies (22). �

5 Some estimates

In this section, we prove the following propositions, which give estimates for the different

quantities introduced earlier in this paper. In the sequel of this paper, C denotes a

universal and strictly positive constant, which may change from line to line.

Proposition 5.1 For all l, v > 0, µ ∈ R, one has the majorization:

K
(µ)
l (v) ≤ C lv−3/2e(µ−2.9)v−l2/8v, (27)

where K(µ)
l (v) is defined by (7).

21



Proposition 5.2 For all M > 0, the random variable
∫M

0
Y y

0 dy admits a density DM

with respect to Lebesgue measure, such that for all u ≥ 0:

(DM ∗K(ρ)
l )(u) ≤ CMe

−νM l,

where CM , νM > 0 depend only on M .

Proposition 5.3 For all l, u, v > 0:

Jl(u, v) ≤ C e−2.9v

(u+ v)
√
v
e−l

2/8(u+v), (28)

and

Jl(u, v) ≤ C√
v
e−2.8v−ρu, (29)

if u ≥ 2 (recall that Jl(u, v) is defined by (20)).

Moreover, the function χv from R∗+ to R (recall that χv(l) = Kl(v)
l

), is in L2(ν), and for

fixed l, v > 0 and u going to infinity:

eρuJl(u, v) −→ 〈χv|e0〉e0(l). (30)

Proposition 5.4 For all t > 0:

eρtJl(t) ≤ C

(
1 +

1√
t

)
,

where Jl(t) is defined by (21).

Moreover, for l fixed and t going to infinity:

eρtJl(t) −→ K e0(l), (31)

where K is the universal constant defined in Proposition 1.4.
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Proof of Proposition 5.1: For all l ≥ 0, the process V (l/2,v) is, by coupling, stochas-

tically larger than V (l/2,v). Therefore, by scaling property:

E
[
e−2

∫ v
0 V

(l/2,v)
u du

]
≤ E

[
e−2

∫ v
0 V

(0,v)
u du

]
= E

[
e−2v3/2

∫ 1
0 V

(0,1)
u du

]
.

Now, the Laplace transform of
∫ 1

0
V

(0,1)
u du (the area under a normalized Brownian ex-

cursion) is known (see, for example, [9]); one has, for λ > 0:

E
[
e−λ

∫ 1
0 V

(0,1)
u du

]
=
√

2π λ
∞∑
n=1

e−un(λ2/2)1/3

where −u1 > −u2 > −u3 > ... are the (negative) zeros of the Airy function.

Therefore

E
[
e−2

∫ v
0 V

(l/2,v)
u du

]
≤
√

8πv3

∞∑
n=1

e−21/3unv

and:

E
[
e−2

∫ v
0 V

(l/2,v)
u du

]
≤ (C e−2.9v)

∞∑
n=1

e−(21/3un−2.91)v, (32)

since v3/2 is dominated by e0.01 v.

Now, 21/3u1 > 2.91; hence, for v > 1, the infinite sum in (32) is smaller than

∞∑
n=1

e−(21/3un−2.91)

which is finite, since un grows sufficiently fast with n (as n2/3). Consequently, for v ≥ 1:

E
[
e−2

∫ v
0 V

(l/2,v)
u du

]
≤ C e−2.9v.

This majorization, which remains obviously true for v ≤ 1 if we choose C > e2.9, implies

easily (27). �
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Proof of Proposition 5.2: In [2], the density of the law of
∫ 1

0
Y y

0 dy is explicitly

given:

D1(x) = π
∞∑
n=0

(−1)n
(
n+

1

2

)
e−(n+ 1

2)
2
π2x/2.

This formula proves that D1 is continuous on R∗+ and that for x ≥ 1:

D1(x) ≤ πe−π
2(x−1)/8

∞∑
n=0

(
n+

1

2

)
e−(n+ 1

2)
2
π2/2 ≤ Ce−x. (33)

Moreover, D1 satisfies the functional equation:

D1(x) =

(
2

πx

)3/2

D1

(
4

π2x

)
,

which proves that, for x ≤ 4
π2 :

D1(x) ≤ C x−3/2e−4/π2x ≤ C.

This inequality and the continuity of D1 imply that (33) applies for all x ∈ R∗+.

By scaling property of squared Bessel processes, the density DM exists and one has:

DM(x) =
1

M2
D1

( x

M2

)
,

which implies

DM(x) ≤ C

M2
e−

x
M2 .

Therefore, for all u ≥ 0:

(DM ∗K(ρ)
l )(u) =

∫ u

0

DM(u− v)K
(ρ)
l (v) dv

≤ C

M2

∫ u

0

e−
u−v
M2 lv−3/2e(ρ−2.9)v−l2/8v dv

≤ C

M2
e−(0.7∧ 1

M2 )u
∫ u

0

lv−3/2e−l
2/8v dv.

The last inequality comes from the fact that ρ− 2.9 ≤ 0.7, which implies, for 0 ≤ u ≤ v:

−u− v
M2

+ (ρ− 2.9)v ≤ −
(
u− v
M2

+ 0.7v

)
≤ −

(
0.7 ∧ 1

M2

)
u.
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Now, the integral
∫ u

0
lv−3/2e−l

2/8v dv is proportional to the probability that a Brownian

motion starting at l/2 reaches zero before time u.

Hence: ∫ u

0

lv−3/2e−l
2/8v dv ≤ Ce−l

2/8u,

and finally:

(DM ∗K(ρ)
l )(u) ≤ C

M2
e−0.7u/(1+M2)−l2/8u

≤ C

M2
e
−2
√

( 0.7u
1+M2 )(l2/8u)

≤ C

M2
e−

l
2(1+M) ,

which proves Proposition 5.2. �

Proof of Proposition 5.3: By definition of Jl(u, v), one has:

Jl(u, v) ≤ E
[
χv
(
2R(l/2)

u

)]
.

Now, the majorization (27) implies:

χv
(
2R(l/2)

u

)
≤ C v−3/2e−2.9 ve

−
(
R

(l/2)
u

)2
/2v
.

By using the explicit expression of the Laplace transform of the squared bidimensional

Bessel process (see, for example, [15]), one obtains:

Jl(u, v) ≤ C v−3/2e−2.9 v v

u+ v
e−l

2/8(u+v)

which implies (28).

In order to prove (29), let us consider, on the set of measurable functions from R∗+
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to R+, the semi-group of operators (Φs)s≥0 associated to the process 2R (twice a Bessel

process of dimension 2), and the semi-group (Φ̃s)s≥0 associated to the same process, killed

at rate x at level x.

For all positive and measurable functions ψ, and for all l > 0, one has:

[Φs(ψ)](l) = E
[
ψ(2R(l/2)

s )
]
. (34)

[Φ̃s(ψ)](l) = E
[
e−2

∫ s
0 R

(l/2)
u du ψ(2R(l/2)

s )
]
. (35)

Now, let us observe that the measure ν on R∗+ is reversible, and hence invariant by the

semigroup of 2R. Since, for every measurable and positive function ψ,

(
Φ̃s(ψ)

)2

≤ (Φs(ψ))2 ≤ Φs(ψ2),

one gets

||Φ̃s(ψ)||2L2(ν) ≤
∫
R∗+
ψ2 dν = ||ψ||2L2(ν). (36)

The inequality (36) proves that the semigroup (Φ̃s)s≥0 can be considered as a semigroup

of continuous linear operators on L2(ν).

Moreover, the infinitesimal generator of 2R, killed at rate x at level x, is the opera-

tor K defined at the beginning of our paper. Hence, if (en)n∈N is an orthonormal ba-

sis of L2(ν) such that en is an eigenvector of K, corresponding to the eigenvalue −ρn

(−ρ = −ρ0 > −ρ1 ≥ −ρ2 ≥ −ρ3 ≥ ...), one has, for all n:

Φ̃s(en) = e−ρns en.

Now, for all ψ ∈ L2(ν), one has the representation:

ψ =
∑
n≥0

〈ψ|en 〉en,
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and, by linearity and continuity of Φ̃s:

Φ̃s(ψ) =
∑
n≥0

e−ρns〈ψ|en 〉en. (37)

In particular:

||Φ̃s(ψ)||2L2(ν) =
∑
n≥0

e−2ρns(〈ψ|en 〉)2 ≤ e−2ρs
∑
n≥0

(〈ψ|en 〉)2,

which implies:

||Φ̃s(ψ)||L2(ν) ≤ e−ρs ||ψ||L2(ν). (38)

Moreover, one has the equality:

eρsΦ̃s(ψ)− 〈ψ|e0 〉 e0 =
∞∑
n=1

e(ρ−ρn)s〈ψ|en 〉 en,

which implies that

eρsΦ̃s(ψ) −→
s→∞

〈ψ|e0 〉 e0

in L2(ν).

Now, by definition:

Jl(u, v) =
(

Φ̃u(χv)
)

(l) (39)

where χv ∈ L2(ν), by the majorization (27).

Hence, in L2(ν),

eρuJ•(u, v) −→
s→∞

〈χv|e0 〉 e0

where J•(u, v) is the function defined by:

(J•(u, v)) (l) = Jl(u, v).

27



In order to prove the corresponding pointwise convergence (which is (30)), let us observe

that for all ψ ∈ L2(ν), l > 0:

|[Φ̃1(ψ)](l)| ≤ E[|ψ(2R
(l/2)
1 )|] ≤

(
E[(ψ(2R

(l/2)
1 ))2]

)1/2

≤
[∫ ∞

0

p
(2)
1

(
l

2
, x

)
(ψ(2x))2 dx

]1/2

≤
[∫ ∞

0

x (ψ(2x))2 dx

]1/2

≤ ||ψ||L2(ν). (40)

Here, we use the majorization p(2)
1 (x, y) ≤ y, which comes from the fact that the transition

densities of a bidimensional Brownian motion are uniformly bounded by 1/2π at time 1.

By (40), one has for s > 1, l > 0, ψ ∈ L2(ν):

|eρs
(

Φ̃s(ψ)
)

(l)− 〈ψ|e0 〉 e0(l)| = |
(
eρsΦ̃s(ψ)− 〈ψ|e0 〉 e0

)
(l)|

= eρ|
(

Φ̃1
(
eρ(s−1)Φ̃s−1(ψ)− 〈ψ|e0 〉 e0

))
(l)|

≤ eρ ||eρ(s−1)Φ̃s−1(ψ)− 〈ψ|e0 〉 e0||L2(ν)

−→
s→∞

0.

By applying this convergence to χv, one obtains the pointwise (and in fact uniform)

convergence (30).

Now, it remains to prove (29).

For s ≥ 1, l > 0, by (38) and (40),

|[Φ̃s(ψ)](l)| = |[Φ̃1(Φ̃s−1(ψ))](l)| ≤ ||Φs−1(ψ)||L2(ν) ≤ e−ρ(s−1)||ψ||L2(ν). (41)

By (39), and by semigroup property of Φ̃, one has for u > 1, l, v > 0:

Jl(u, v) = [Φ̃u−1(J•(1, v))](l). (42)
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Moreover, by (28):

Jl(1, v) ≤ Ce−2.9vv−1/2e−l
2/8(1+v),

which implies:

||J•(1, v)||2L2(ν) ≤ Ce−5.8v

∫ ∞
0

l

v
e−l

2/4(1+v) dl

≤ Ce−5.8v 1 + v

v

≤ C

v
e−5.6v,

and

||J•(1, v)||L2(ν) ≤
C√
v
e−2.8v.

For u ≥ 2, we can combine (41) and (42), and we obtain:

Jl(u, v) ≤ Ce−ρ(u−2)||J•(1, v)||L2(ν) ≤
C√
v
e−ρu−2.8v,

which is (29).

The proof of Proposition 5.3 is now complete. �

Proof of Proposition 5.4: Let us split the integral corresponding to Jl(t) into two

parts:

A(t) :=

∫ (t−2)+

0

Jl(t− v, v) dv,

B(t) :=

∫ t

(t−2)+

Jl(t− v, v) dv.

One has:

eρtA(t) =

∫ ∞
0

1t−v≥2Jl(t− v, v) eρt dv;

where, by (30):

1t−v≥2Jl(t− v, v) eρt −→ eρv 〈χv|e0 〉 e0(l),
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for l, v fixed and t tending to infinity. Moreover, by (29) and the fact that ρ−2.8 < −0.6:

1t−v≥2Jl(t− v, v) eρt ≤ C√
v
e−2.8v−ρ(t−v)+ρt ≤ C√

v
e−0.6v,

which is integrable on R+.

Hence:

eρtA(t) ≤ C, (43)

and by dominated convergence:

eρtA(t) −→
t→∞

K e0(l), (44)

where l is fixed and

K =

∫ ∞
0

eρv 〈χv|e0 〉 dv

is the constant defined in Proposition 1.4. The majorization (43) implies that K is

necessarily finite.

The integral B(t) can be estimated in the following way: by (28),

eρtB(t) ≤ eρt
∫ t

(t−2)+

C e−2.9v

t
√
v

e−l
2/8t dv

≤ C e−0.7t

t
e−l

2/8t

∫ t

0

dv√
v

≤ C e−0.7t

√
t

e−l
2/8t

≤ C√
t
. (45)

Proposition 5.4 is a consequence of (43), (44) and (45). �

The estimates given in this section are used in the second part of the proof of Proposition

1.4.
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6 Proof of Proposition 1.4 (second part)

In this section, we estimate the right hand side of (22), which is, by Proposition 4.1,

equal to the left hand side of (10) in Proposition 1.4.

We need the following lemma:

Lemma 6.1 For all M > 0, and all functions f, g from R+ to R+:

∫ ∞
0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy
g

(∫ M

−∞
Y y
l dy

)]
≤ C ′M

∫ ∞
0

g,

where C ′M > 0 is finite and depends only on M .

Proof: One has the following majorization:

∫ ∞
0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy
g

(∫ M

−∞
Y y
l dy

)]

≤ eMρ2/4

∫ ∞
0

dlE
[
e
∫ 0
−∞

[
−(Y yl )

2
+ρY yl

]
dy
g

(∫ M

−∞
Y y
l dy

)]
(46)

since f is nonnegative and −x2 + ρ x ≤ ρ2/4 for all x ∈ R.

Now, for all positive and measurable functions h1 and h2:

∫ ∞
0

dlE
[
e
∫ 0
−∞

[
−(Y yl )

2
+ρY yl

]
dy
h1

(∫ 0

−∞
Y y
l dy

)
h2

(∫ M

0

Y y
l dy

)]

=

∫ ∞
0

dlE
[
e
∫∞
0

[
−(Y yl,0)

2
+ρY yl,0

]
dy
h1

(∫ ∞
0

Y y
l,0 dy

)]
E
[
h2

(∫ M

0

Y y
l dy

)]
=

∫ ∞
0

dl

∫ ∞
0

K
(ρ)
l (v)h1(v) dv E

[
h2

(∫ M

0

Y y
l dy

)]
,

by Lemma 3.2.

By additivity properties of squared Bessel processes, the law of
∫M

0
Y y
l dy is the convolu-

tion of the law σ1 of
∫M

0
Y y
l,0dy and the law σ2 of

∫M
0
Y y

0 dy.
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Since by Proposition 5.2, σ2 has the density DM with respect to Lebesgue measure, we

have the equality:

E
[
h2

(∫ M

0

Y y
l dy

)]
=

∫ ∞
0

dt h2(t)

∫ t

0

σ1(du)DM(t− u),

which implies:

∫ ∞
0

dlE
[
e
∫ 0
−∞

[
−(Y yl )

2
+ρY yl

]
dy
h1

(∫ 0

−∞
Y y
l dy

)
h2

(∫ M

0

Y y
l dy

)]

=

∫ ∞
0

dl

∫ ∞
0

K
(ρ)
l (v)h1(v) dv

∫ ∞
0

dt h2(t)

∫ t

0

σ1(du)DM(t− u).

By monotone class theorem and easy computations, for all positive and measurable func-

tions g: ∫ ∞
0

dlE
[
e
∫ 0
−∞

[
−(Y yl )

2
+ρY yl

]
dy
g

(∫ M

−∞
Y y
l dy

)]
=

∫ ∞
0

dt g(t)

∫ ∞
0

dl

∫ t

0

σ1(du) (K
(ρ)
l ∗DM)(t− u).

Now, by Proposition 5.2:

(K
(ρ)
l ∗DM)(t− u) ≤ CMe

−νM l,

and ∫ t

0

σ1(du) ≤ 1,

since σ1 is a probability measure.

Hence: ∫ ∞
0

dlE
[
e
∫ 0
−∞

[
−(Y yl )

2
+ρY yl

]
dy
g

(∫ M

−∞
Y y
l dy

)]
≤ CM
νM

∫ ∞
0

g, (47)

The majorizations (46) and (47) imply Lemma 6.1. �
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After proving this lemma, let us take T ∈ E and ε > 0; by splitting the right hand

side of (22) into two parts, we obtain:

eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
= I1,ε + I2,ε,

where:

I1,ε =

∫ ∞
0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy
...

... J
(ρ)

YMl

(
T −

∫ M

−∞
Y y
l dy

)
1∫M
−∞ Y yl dy/∈[T−ε,T ]

]
,

and

I2,ε =

∫ ∞
0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy
...

... J
(ρ)

YMl

(
T −

∫ M

−∞
Y y
l dy

)
1∫M
−∞ Y yl dy∈[T−ε,T ]

]
.

By Proposition 5.4:

J
(ρ)

YMl

(
T −

∫ M

−∞
Y y
l dy

)
1∫M
−∞ Y yl dy/∈[T−ε,T ] −→T→∞ K e0(Y M

l ),

and

J
(ρ)

YMl

(
T −

∫ M

−∞
Y y
l dy

)
1∫M
−∞ Y yl dy/∈[T−ε,T ] ≤ C

(
1 +

1√
ε

)
Since: ∫ ∞

0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy

]
≤ eMρ2/4

∫ ∞
0

dlE
[
e
∫∞
0

[
−(Y yl,0)

2
+ρY yl,0

]
dy

]
= eMρ2/4

∫ ∞
0

K̄
(ρ)
l dl <∞,

one obtains:

I1,ε −→
T→∞

K

∫ ∞
0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy
e0(Y M

l )

]
= K A1,M

+ (f) <∞, (48)
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by dominated convergence.

On the other hand, by Proposition 5.4:

I2,ε ≤ C

∫ ∞
0

dlE
[
e
∫M
−∞

(
−[Y yl +f(y)]

2
+ρY yl

)
dy
...

...

(
1 +

(
T −

∫ M

−∞
Y y
l dy

)−1/2
)
1∫M
−∞ Y yl dy∈[T−ε,T ]

]
,

and by applying Lemma 6.1 to the function g : t→ (1 + (T − t)−1/2)1t∈[T−ε,T ]:

I2,ε ≤ C C ′M(ε+
√
ε). (49)

Therefore, by combining (48) and (49):

lim sup
T∈E,T→∞

|eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
−K A1,M

+ (f)| ≤ C C ′M(ε+
√
ε),

and by taking ε→ 0:

eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
−→

T∈E,T→∞
K A1,M

+ (f). (50)

Now, let us prove the continuity, with respect to T , of the left hand side of (50).

If T0 ∈ R+ and T ≤ T0 + 1 tends to T0, then P-almost surely, LyT tends to LyT0 and

LyT ≤ LyT0+1 for all y ∈ R.

Since y → LyT0+1 + f(y) is square-integrable, by dominated convergence:∫ ∞
−∞

[LyT + f(y)]2 dy −→
T→T0

∫ ∞
−∞

[LyT0 + f(y)]2 dy.

Another application of dominated convergence gives:

|P
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT0≥M

]
− P

[
e−

∫∞
−∞[LyT0

+f(y)]2 dy
1XT0≥M

]
| −→
T→T0

0. (51)

Moreover:

P
[
|1XT0≥M − 1XT≥M |

]
≤ P [∃t ∈ [T0, T ], Xt = M ] −→

T→T0
P [XT0 = M ] = 0,

34



which implies:

|P
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
− P

[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT0≥M

]
| −→
T→T0

0. (52)

The convergences (51) and (52) imply the continuity of:

T −→ eρTP
[
e−

∫∞
−∞[LyT+f(y)]2 dy 1XT≥M

]
.

Since E is dense in R+, we can remove the condition T ∈ E in (50), which completes the

proof of Proposition 1.4. �

7 A conjecture about the behaviour of Qβ

In this paper, we have proven that one can construct a probability measure corresponding

to the one-dimensional Edwards’ model, for polymers of infinite length.

Moreover, there is an explicit expression for this probability Qβ.

Now, the most natural question one can ask is the following: what is the behaviour of

the canonical process X under Qβ ?

At this moment, we are not able to answer this question, which seems to be very difficult,

because of the complicated form of the density Dβ
s of Qβ

|Fs , with respect to P|Fs .

However, it seems to be reasonable to expect that XT has a ballistic behaviour, as in the

case of Edwards’ model on [0, T ]; one can also expect a central-limit theorem.

Therefore, we can state the following conjecture:

Conjecture: Under Qβ, the process X is transient, and:

Qβ
(
Xt −→

t→∞
+∞

)
= Qβ

(
Xt −→

t→∞
−∞

)
= 1/2.
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Moreover, there exist universal positive constants a and σ such that:

|Xt|
t
−→
t→∞

aβ1/3

a.s., and such that the random variable

|Xt| − aβ1/3t√
t

converges in law to a centered gaussian variable of variance σ2 (the factor β1/3 comes

from Brownian scaling).

It is possible that the constants in these convergences are the same as in [18], despite the

fact that we don’t have any argument to support this. It can also be interesting to study

some large deviation results for the canonical process under Qβ, and to compare them

with the results given in [19]. On the other hand, if the proof of the conjecture above is

too hard to obtain, it is perhaps less difficult to prove, by using Ray-Knight theorems,

some properties of the total local times (Ly∞)y∈R of X, which are expected to be finite

because of the transience of X.
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