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Abstract. Is this paper, we study penalisations of diffusions satisfying some technical
conditions, generalizing a result obtained by Najnudel, Roynette and Yor in [12]. If one of
these diffusions has probability distribution P, then our result can be described as follows:
for a large class of families of probability measures (Qt)t≥0, each of them being absolutely
continuous with respect to P, there exists a probability Q∞ such that for all events Λ
depending only on the canonical trajectory up to a fixed time, Qt(Λ) tends to Q∞(Λ) when
t goes to infinity. In the cases we study here, the limit measure Q∞ is absolutely continuous
with respect to a sigma-finite measure Q, which does not depend on the choice of the family
of probabilities (Qt)t≥0, but only on P. The relation between P and Q is obtained in a very
general framework by the authors of this paper in [11].

1. Introduction

In a series of articles by Roynette, Vallois and Yor, summarized in [15], the authors study
many examples of probability measures on functional spaces, which are obtained as weak
limits of measures which are absolutely continuous with respect to a given probability. The
setting generally used is the following: one considers W, the Wiener measure on the space
of continuous functions from R+ to R, denoted C(R+, R) and endowed with its canonical
filtration (Fs)s≥0 (not completed). One defines the σ-algebra F by

F :=
∨

s≥0

Fs.

One then considers (Γt)t≥0, a family of nonnegative random variables on the same space such
that

0 < W[Γt] < ∞,

and for t ≥ 0, one defines the probability measure

Qt :=
Γt

W[Γt]
.W.

(In this paper, if P is a probability measure and Y a random variable, we denote by P[Y ]
the expectation of Y with respect to P). Under these assumptions, Roynette, Vallois and
Yor have proved that for many examples of families of functionals (Γt)t≥0, there exists a
probability measure Q∞ which can be considered as the weak limit of (Qt)t≥0 when t goes
to infinity, in the following sense: for all s ≥ 0 and for all events Λs ∈ Fs,

Qt[Λs] −→
t→∞

Q∞[Λs].

For example, the measure Q∞ exists for the following families of functionals (Γt)t≥0:
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• Γt = φ(Lt), where (Lt)t≥0 is the local time at zero of the canonical process X, and φ
is a nonnegative, integrable function from R+ to R+.

• Γt = φ(St), where St is the supremum of X on the interval [0, t], and φ is, again, a
nonnegative, integrable function from R+ to R+.

• Γt = e−
∫ t

0
q(Xs)ds, where q is a measurable function from R to R+, such that:

0 <

∫

R

(1 + |x|)q(x) dx < ∞.

• Γt = eλLt+µ|Xt|, where (Lt)t≥0 is, again, the local time at zero of X.

There are still other interesting particular cases which can be studied. For instance in [8]
Najnudel has proved that the limit measure exists for

Γt = exp

(
−

∫

R

(Ly
t )

2 dy

)

where (Ly
t )t≥0,y∈R is the regular family of local times of X. This example can be interpreted

as the construction of a one-dimensional self-avoiding Brownian motion, and hence, a one-
dimensional version of Edwards’ model, for polymers of infinite length (this model was
studied with several points of view: see for example [6], [19], [3], [18]). Another family of
penalisation of probability measures on general functional spaces has been introduced by the
authors of this paper in [10], where the functional (Γt) is of the form Γt = FtXt, for a large
class of functionals (Ft). Note that in all these examples, the proof of the existence of Q∞

given by the authors cited above contains two steps which need to be clarified here. The
first point is that the functional Γt is, in general, not defined everywhere but only almost
everywhere. For example, since (Fs)s≥0 is not completed, there does not exist a càdlàg and
adapted version of the local time which is defined everywhere (a more detailed discussion of
this problem is given, for example, in our article [9]). However, the almost sure existence
of Γt is sufficient to define the measure Qt, and to study its weak convergence towards Q∞.
The second point is that the existence of Q∞ depends on the possibility one has to extend
compatible families of probability measures. More precisely, the penalisation results cited
above are proved as follows: by studying the asymptotics (for fixed s ≥ 0 and for t going to
infinity) of a suitable version of the conditional expectation of Γt given Fs, one proves that
for all s ≥ 0, there exists an Fs-measurable, nonnegative random variable Ms such that for
all events Λs ∈ Fs:

Qt(Λs) −→
t→∞

W(Ms1Λs
). (1.1)

One immediately deduces that (Ms)s≥0 is a martingale, and that there exists a compatible

family (Q
(s)
∞ )s≥0 of probability measures, Q

(s)
∞ defined on Fs, such that for s ≥ 0, Λs ∈ Fs:

Qt(Λs) −→
t→∞

Q(s)
∞ (Λs).

Hence, if one can construct a probability measure on the space (C(R+, R),F), such that

its restriction to Fs is Q
(s)
∞ , the existence of Q∞ is proved. This possibility of extension

of measures is not obvious at all: for example, as explained in [9], Q∞ does not exist in
general if one replaces the filtered probability space (C(R+, R),F , (Fs)s≥0, W) by its usual
augmentation. However, in the setting described above, Q∞ exists, because the filtered
measurable space (C(R+, R),F , (Fs)s≥0) satisfies the property (P), described as follows:
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Definition 1.1. Let (Ω,F , (Fs)s≥0) be a filtered measurable space, such that F is the σ-
algebra generated by Fs, s ≥ 0: F =

∨
s≥0 Fs. We say that the property (P) holds if and

only if (Fs)s≥0 enjoys the following conditions:

• For all s ≥ 0, Fs is generated by a countable number of sets.
• For all s ≥ 0, there exists a Polish space Ωs, and a surjective map πs from Ω to Ωs,

such that Fs is the σ-algebra of the inverse images, by πs, of Borel sets in Ωs, and
such that for all B ∈ Fs, ω ∈ Ω, πs(ω) ∈ πs(B) implies ω ∈ B.

• If (ωn)n≥0 is a sequence of elements of Ω, such that for all N ≥ 0,

N⋂

n=0

An(ωn) 6= ∅,

where An(ωn) is the intersection of the sets in Fn containing ωn, then:
∞⋂

n=0

An(ωn) 6= ∅.

This definition is given in [9], but the corresponding conditions are not new: they are already
stated by Parthasarathy in [14], p. 141. A fundamental example of filtered measurable space
(Ω,F , (Fs)s≥0) satisfying the property (P) is the following: for some integer d ≥ 1, Ω is the
space of continuous functions from R+ to Rd, or the space of càdlàg functions from R+ to
Rd, for all s ≥ 0, Fs is the σ-algebra generated by the canonical process up to time s, and F
is the σ-algebra generated by (Fs)s≥0. This example proves that in the examples studied by
Najnudel, Roynette, Vallois and Yor, the measure Q∞ can be constructed. Indeed, one has
the following result, proved in [9], with methods coming from Stroock and Varadhan (see
[17]):

Proposition 1.2. Let (Ω,F , (Fs)s≥0) be a filtered measurable space satisfying the property
(P), and let, for s ≥ 0, Qs be a probability measure on (Ω,Fs), such that for all t ≥ s ≥ 0,
Qs is the restriction of Qt to Fs. Then, there exists a unique measure Q∞ on (Ω,F) such
that for all s ≥ 0, its restriction to Fs is equal to Qs.

All the examples of penalisation results described above involve the Wiener space. In this
paper, we need to deal with a more general setting, for which it is important to have,
at the same time, the classical results of stochastic calculus generally proved under usual
conditions, and the possibility of extending compatible families of probability measures.
Since this extension is in general impossible under usual conditions, we need to complete
more carefully the probability spaces. The good way to do this completion, intermediate
between the right-continuous version and the usual augmentation, involves the so-called
natural conditions or N-usual conditions. They were first introduced by Bichteler in [2], and
then rediscovered in [9] where it is shown that most of the properties which are generally
proved under usual conditions remain true under natural conditions (for example, existence
of càdlàg versions of martingales, Doob-Meyer decomposition, début theorem, etc.). Let us
recall here the definition:

Definition 1.3. A filtered probability space (Ω,F , (Fs)s≥0, P) satisfies the natural conditions
if and only if the two following assumptions hold:

• The filtration (Fs)s≥0 is right-continuous;
3



• For all s ≥ 0, and for every P-negligible set A ∈ Fs, all the subsets of A are contained
in F0.

This definition is slightly different from the definitions given in [2] and [9] but one can easily
check that it is equivalent. The natural enlargement of a filtered probability space can be
defined by using the following proposition:

Proposition 1.4 ([9]). Let (Ω,F , (Fs)s≥0, P) be a filtered probability space. There exists a

unique filtered probability space (Ω, F̃ , (F̃s)s≥0, P̃) (with the same set Ω), such that:

• For all s ≥ 0, F̃s contains Fs, F̃ contains F and P̃ is an extension of P;

• The space (Ω, F̃ , (F̃s)s≥0, P̃) satisfies the natural conditions;
• For any filtered probability space (Ω,F ′, (F ′

s)s≥0, P
′) satisfying the two items above,

F ′
s contains F̃s for all s ≥ 0, F ′ contains F̃ and P′ is an extension of P̃.

The space (Ω, F̃ , (F̃s)s≥0, P̃) is called the natural enlargement of (Ω,F , (Fs)s≥0, P).

Intuitively, the natural enlargement of a filtered probability space is its smallest extension
which satisfies the natural conditions. Now, if we combine the natural enlargement with the
property (P), we obtain the following definition:

Definition 1.5. Let (Ω,F , (Fs)s≥0, P) be a filtered probability space. We say that it satisfies
the property (NP) if and only if it is the natural enlargement of a filtered probability space
(Ω,F0, (F0

s )s≥0, P
0) such that the filtered measurable space (Ω,F0, (F0

s )s≥0) enjoys property
(P).

The following result about extension of probability measures is proved in [9] (in a slightly
more general form):

Proposition 1.6 ([9]). Let (Ω,F , (Fs)s≥0, P) be a filtered probability space, satisfying prop-
erty (NP). Then, the σ-algebra F is the σ-algebra generated by (Fs)s≥0, and for all coherent
families of probability measures (Qs)s≥0, such that Qs is defined on Fs, and is absolutely con-
tinuous with respect to the restriction of P to Fs, there exists a unique probability measure
Q on F which coincides with Qs on Fs for all s ≥ 0.

The possibility of extension of coherent families of probability measures, on spaces satisfying
the property (NP) implies that one can obtain penalisation results in this framework. For
the functionals we shall study in this article, the limit measure is absolutely continuous
with respect to a remarkable σ-finite measure constructed in a very general setting in [11].
This σ-finite measure was already encountered in different special cases (see [1], [5], [7] and
[12] for example), and it involves a remarkable class of submartingales, called (Σ). The
submartingales of class (Σ) were first introduced by Yor in [20], and some of their main
properties were studied in [13]. Let us recall the definition:

Definition 1.7. Let (Ω,F , (Fs)s≥0, P) be a filtered probability space. A nonnegative sub-
martingale (resp. local submartingale) (Xs)s≥0 is of class (Σ), if and only if it can be
decomposed as Xs = Ns + As where (Ns)s≥0 and (As)s≥0 are (Fs)s≥0-adapted processes
satisfying the following assumptions:

• (Ns)s≥0 is a càdlàg martingale (resp. local martingale);
• (As)s≥0 is a continuous increasing process, with A0 = 0;
• The measure (dAs) is carried by the set {s ≥ 0, Xs = 0}.
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In [11], it is proved that for any submartingale of class (Σ) defined on a space satisfying
property (NP), on can associate with it a σ-finite measure as follows:

Theorem 1.8. Let (Xs)s≥0 be a submartingale of the class (Σ) (in particular Xs is integrable
for all s ≥ 0), defined on a filtered probability space (Ω,F , (Fs)s≥0, P) which satisfies the
property (NP). In particular (Fs)s≥0 satisfies the natural conditions and F is the σ-algebra
generated by Fs, s ≥ 0. Then, there exists a unique σ-finite measure Q, defined on (Ω,F , P),
such that for g := sup{s ≥ 0, Xs = 0}:

• Q[g = ∞] = 0;
• For all s ≥ 0, and for all Fs-measurable, bounded random variables Fs,

Q [Fs 1g≤s] = P [FsXs] .

In this article, we prove that there is a link between penalisations and the measure Q
involved in Theorem 1.8. More precisely, we show that if (Ω,F , (Fs)s≥0, P) is the natural
augmentation of the space C(R+, R) endowed with its canonical filtration and the law of
a diffusion satisfying some technical conditions, if (Xs)s≥0 is the canonical process, and if
(Γt)t≥0 is a nonincreasing family of nonnegative random variables on the same space, tending
to Γ∞ when t goes to infinity, and such that

0 < P[Γt] < ∞

and
0 < Q[Γ∞] < ∞,

then under some precise assumptions stated below, the probability measure

Qt :=
Γt

P[Γt]
.P,

converges weakly (in the sense of penalisations) to the limit

Q∞ :=
Γ∞

Q[Γ∞]
.Q.

In the Brownian case, a similar penalisation result, involving the measure Q, is obtained in
[12].

The present paper is organized as follows: in Section 2, we detail the precise setting under
which our penalisation result is available and we state rigorously this result, in Section 3,
we give some estimates of hitting times of the canonical diffusion, and in Section 4, we use
these estimates in order to complete the proof of our main theorem.

2. The general setting

The general framework in which one can state our penalisation result was introduced by
Salminen, Vallois and Yor in [16], in a slightly different and more general form, and it was
also used by Najnudel, Roynette and Yor in [12], Chapter 3. Note that in both cases the
filtration is not completed. In this present paper, we use the natural augmentation, which
allows us to define the local time everywhere, and to apply Theorem 1.8.

The underlying filtered probability space is constructed as follows. Let Ω be the space of
continuous functions from R+ to R+, (F0

s )s≥0, the natural filtration of Ω (not completed),
and F0, the σ-algebra generated by (F0

s )s≥0. We assume that the following holds:
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• the probability P0, defined on (Ω,F0), is such that under P0, the canonical process
is a recurrent diffusion in natural scale, starting from a fixed point x0 ≥ 0, with zero
as an instantaneously reflecting barrier;

• the speed measure m(x) of this diffusion is absolutely continuous with respect to
Lebesgue measure on R+, with a continuous density m : R∗

+ → R∗
+;

• we assume that m(x) is equivalent to cxβ when x goes to infinity, for some c > 0 and
β > −1, and we suppose that there exists C > 0 such that for all x > 0, m(x) ≤ Cxβ

if β ≤ 0, and m(x) ≤ C(1 + xβ) if β > 0;
• the filtered probability space (Ω,F , (Fs)s≥0, P) is constructed as the natural augmen-

tation of the space (Ω,F0, (F0
s )s≥0, P

0): (Ω,F , (Fs)s≥0, P) satisfies the property (NP)
and under P, the law of the canonical process is a diffusion with the same parameters
as under P0.

This diffusion is in natural scale and, as in [12], one can deduce that the canonical process
(Xs)s≥0 is a submartingale of class (Σ). In particular, Xs is integrable for all s ≥ 0, moreover,
the local time (Ls)s≥0 of (Xs)s≥0 at level zero, is its increasing process. One deduces that
Theorem 1.8 applies, and one can construct the corresponding measure Q. Let us check
that we are in the situation where L∞ = ∞, P-almost surely. Indeed, let T (0) be the first
hitting time of zero by (Xs)s≥0, and for n ≥ 1, let T (n) be the first hitting time of zero after
T (n−1) +1. The variables (T (n))n≥0 are stopping times, P-almost surely finite since (Xs)s≥0 is
recurrent. By the strong Markov property the variables (LT (n) −LT (n−1))n≥1 are i.i.d., which
implies that L∞ = 0 almost surely, or L∞ = ∞ almost surely. Let us suppose that the first
case holds. One deduces that (Xs)s≥0 is a martingale, and by the optional sampling theorem,
for all s, u ≥ 0,

P[X(T (0)∧u)+s|FT (0)∧u] = XT (0)∧u,

which implies:

P[XT (0)+s1T (0)≤u] = P[XT (0)1T (0)≤u] = 0,

and then XT (0)+s = 0 a.s. on the event {T (0) ≤ u}. Since u can be arbitrarily chosen and
T (0) < ∞ a.s., XT (0)+s = 0 a.s., which contradicts the fact that zero is an instantaneously
reflecting barrier. The fact that L∞ = ∞ implies that g[a] < ∞, Q-almost everywhere, for

g[a] := sup{s ≥ 0, Xs ≤ a},

as proved in [10]. This property is an important element in the proof of our penalisation
result, which can now be rigorously stated. The relevant class of functionals (Γt)t≥0 is defined
as follows:

Definition 2.1. Let us suppose that the assumptions of Theorem 1.8 are satisfied. We
say that a process (Γt)t≥0 belongs to the class (C) if it is nonnegative, uniformly bounded,
nonincreasing, càdlàg and adapted with respect to (Ft)t≥0, if there exists a > 0 such that for
all t ≥ 0, Γt = Γg[a] on the set {t ≥ g[a]}, and if the decreasing limit of Γt at infinity, denoted
Γ∞, is Q-integrable.

This definition is stated in [10], and in a slightly different way in [12]. The main result of
this article is the following:

Theorem 2.2. We suppose that the filtered probability space (Ω,F , (Fs)s≥0, P) and the dif-
fusion process X are constructed as above. Let Q be the σ-finite measure associated with X
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from Theorem 1.8 and let (Γt)t≥0 be a process in the class (C), such that Q[Γ∞] > 0. For all
t ≥ 0:

0 < P[Γt] < ∞,

and one can define a probability measure Qt on (Ω,F) by

Qt :=
Γt

P[Γt]
.P.

Then the probability measure:

Q∞ :=
Γ∞

Q[Γ∞]
.Q

is the weak limit of Qt in the sense of penalisations, i.e. for all s ≥ 0, and for all events
Λs ∈ Fs,

Qt[Λs] −→
t→∞

Q∞[Λs].

The proof of Theorem 2.2 is given in Section 3 and Section 4.

Remark 2.3. This penalisation result applies in particular for the power 2r of a Bessel process
of dimension 2(1 − r), if 0 < r < 1. For r = 1/2, the corresponding diffusion is a reflected
Brownian motion, and our result is very similar to the result obtained for Brownian motion
in [12]. The proof of Theorem 2.2 is given in Sections 3 and 4.

3. Estimates of hitting times

In order to prove Theorem 2.2, we need to estimate the distribution of the hitting times
of the canonical process (Xs)s≥0 under P. These estimates involve Sturm-Liouville equation
in a crucial way, that is why we first prove the following lemma, giving some information
about the solutions of this equation:

Lemma 3.1. Let A be a continuous function from R∗
+ to R∗

+, integrable in the neighborhood
of zero, but not in the neighborhood of infinity. Then there exists a unique function ΦA from
R+ to R, continuous on R+, bounded, twice differentiable on R∗

+, such that ΦA(0) = 1 and
satisfying Sturm-Liouville equation:

Φ′′
A(t) = A(t)ΦA(t) (3.1)

for all t > 0. This function is strictly positive, decreasing to zero at infinity, and continuously
differentiable everywhere in R+. Moreover, if A1 and A2 are two functions satisfying the same
assumptions as A, and if A1(t) ≥ A2(t) for all t > 0, then |Φ′

A1
(0)| ≥ |Φ′

A2
(0)|.

Proof. By Cauchy-Lipschitz theorem, for all t0 > 0, a, b ∈ R, there exists a unique maximal
solution Θt0,a,b of (3.1) on an interval of the form [t0, v) for some v ∈ (t0,∞], which satisfies
Θt0,a,b(t0) = a and Θ′

t0,a,b(t0) = b. Since A is locally bounded on R∗
+, Θt0,a,b is in fact

well-defined on [t0,∞). By linearity, one has:

Θt0,a,b = aΘt0,1,0 + bΘt0,0,1.

For all t > t0, Θt0,1,0(t), Θ′
t0,1,0(t), Θt0,0,1(t) and Θ′

t0,0,1(t) are strictly positive, moreover,
Θt0,1,0 and Θt0,0,1 tend to infinity at infinity. On the other hand, let us suppose that Θt0,a,b is
not bounded from above (resp. from below). Then there exists t > t0 such that Θt0,a,b(t) > 0
and Θ′

t0,a,b(t) ≥ 0 (resp. Θt0,a,b(t) < 0 and Θ′
t0,a,b(t) ≤ 0): one deduces that Θt0,a,b tends to
7



infinity (resp. minus infinity) at infinity. Hence, for b1 > b2, at least one of the two following
holds:

• Θt0,a,b1 tends to infinity at infinity;
• Θt0,a,b2 tends to minus infinity at infinity.

Indeed, if none of these holds, then Θt0,a,b1 is bounded from above, and Θt0,a,b2 is bounded
from below, which implies that Θt0,0,1 is bounded from above: a contradiction. Now, for
b large enough, Θt0,a,b(t0 + 1) and Θ′

t0,a,b(t0 + 1) are strictly positive, which implies that
Θt0,a,b tends to infinity at infinity, similarly, for b small enough, Θt0,a,b tends to minus infinity
at infinity. One deduces that there exists b(t0, a) such that for b > b(t0, a), Θt0,a,b tends to
infinity and for b < b(t0, a), Θt0,a,b tends to minus infinity. Let us suppose that for some t ≥ t0,
Θt0,a,b(t0,a)(t) and Θ′

t0,a,b(t0,a)(t) have the same sign, and that at least one of them is different

from zero. Since one can increase t by a small quantity, one can suppose that Θt0,a,b(t0,a)(t)
and Θ′

t0,a,b(t0,a)(t) have strictly the same sign (recall that Θt0,a,b(t0,a)(t) > 0 implies that

Θ′′
t0,a,b(t0,a)(t) > 0). On deduces that for b sufficiently close to b(t0, a), Θt0,a,b(t) and Θ′

t0,a,b(t)

have the same sign, independent of b. Therefore, Θt0,a,b and Θ′
t0,a,b tend to a limit equal to

infinity or minus infinity, independently of b: this is a contradiction. At this step, we know
that for all t ≥ t0, Θt0,a,b(t0,a)(t) = Θ′

t0,a,b(t0,a)(t) = 0 or Θt0,a,b(t0,a)(t)Θ
′
t0,a,b(t0,a)(t) < 0. If the

first case holds for some t ≥ t0, by using Cauchy-Lipschitz theorem in both directions of the
time, we deduce that a = b(t0, a) = 0 and Θt0,a,b(t0,a) is identically zero. Otherwise, Θ2

t0,a,b(t0,a)

is strictly decreasing, which implies that it remains strictly positive, hence, Θt0,a,b(t0,a) is
strictly positive and strictly decreasing for a > 0, strictly negative and strictly incrasing for
a < 0. In particular, it converges almost surely to a limit l. If l > 0, then for all t ≥ t0,
Θt0,a,b(t0,a)(t) ≥ l and Θ′′

t0,a,b(t0,a)(t) ≥ lA(t), which implies that Θ′
t0,a,b(t0,a) tends to infinity

at infinity, since A is not integrable at infinity: this is impossible. Since l < 0 gives also
a contradiction, one has l = 0. To summarize, we have proved that for all t0 > 0 and all
a ∈ R, there exists a unique solution Θt0,a of (3.1) defined on [t0,∞), equal to a at t0, and
which does not tend to infinity or minus infinity at infinity. This solution is identically zero if
a = 0, it is strictly monotone and tends to zero at infinity, if a 6= 0. In fact, by linearity, one
has Θt0,a = aΘt0,1 for all a ∈ R. The uniqueness of Θt0,a implies that for t0 > t1 > 0, a ∈ R,
the restriction of Θt1,a to [t0,∞) is equal to Θt0,b where b = Θt1,a(t0). This compatibility
implies that if we define Θ from R∗

+ to R∗
+ by:

Θ(t) = Θ1,1(t)

for t ≥ 1, and

Θ(t) =
1

Θt,1(1)

for t < 1, then Θ is a solution of (3.1), strictly decreasing and tending to zero at infinity.
Now, since |Θ′| is decreasing, one has, for all t ∈ (0, 1),

Θ(t) ≤ Θ(1) +

∫ 1

t

|Θ′(s)| ds ≤ 1 + |Θ′(t)| ≤ L|Θ′(t)|

for L := 1 + 1/|Θ′(1)|. One deduces that

Θ′′(t) ≤ LA(t)|Θ′(t)|,
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and then ∣∣∣∣
d

dt
log |Θ′(t)|

∣∣∣∣ ≤ LA(t).

Since A is integrable in the neighborhood of zero, |Θ′(t)|, and then Θ(t), is bounded for
t ∈ (0, 1). Since Θ is decreasing, it can be defined at zero by continuity. Moreover, Θ′(t)
converges when t goes to zero, and one can check that its limit is equal to the derivative at
zero of the extension of Θ. One then deduces the existence and the properties of regularity
of ΦA by setting, for all t ≥ 0:

ΦA(t) =
Θ(t)

Θ(0)
.

To prove uniqueness, let us suppose that Φ1 and Φ2 satisfy the conditions given in Lemma
3.1. The functions Φ1 and Φ2 cannot vanish on R∗

+: otherwise, by the properties of the
solutions of (3.1) on the intervals of the form [t0,∞) for t0 > 0, they would be identically
zero. Then Φ1, Φ2 are strictly positive, and they are proportional to each other on every
interval of the form [t0,∞) for t0 > 0. In other words, Φ1/Φ2 is constant on [t0,∞) for all
t0 > 0, and then on R∗, finally, on R+ by continuity at zero. Since Φ1(0) = Φ2(0) = 1,
Φ1 = Φ2 everywhere. Let us now suppose that A1 ≥ A2 satisfy the assumptions of Lemma
3.1, and that |Φ′

A1
(0)| < |Φ′

A2
(0)|. One has Φ′

A1
(0) > Φ′

A2
(0). Let T > 0 be the infimum of

the times t such that Φ′
A1

(t) ≤ Φ′
A2

(t). On the interval (0, T ), one has Φ′
A1

> Φ′
A2

, and then
ΦA1 ≥ ΦA2 , since ΦA1(0) = ΦA2(0). Now, since A1 ≥ A2, one deduces that

Φ′′
A1

= A1ΦA1 ≥ A2ΦA2 = Φ′′
A2

,

which implies:
Φ′

A1
≥ Φ′

A2
+ Φ′

A1
(0) − Φ′

A2
(0). (3.2)

If T is supposed to be finite, one deduces a contradiction at time T . Hence T is infinite and
3.2 holds everywhere. One deduces that

ΦA1(t) − ΦA2(t) ≥ t
(
Φ′

A1
(0) − Φ′

A2
(0)
)

for all t ≥ 0, and then ΦA1 − ΦA2 tends to infinity at infinity, which is absurd. �

Once Lemma 3.1 is proved, one can state and show the results on hitting times which are
involved in the proof of Theorem 2.2. In the sequel of the paper, for any x ≥ 0, we denote by
Px the distribution of a diffusion which starts at x, with the same parameters as the canonical
process under P. In particular, Px0 = P. With this notiation, one has the following lemma:

Lemma 3.2. For all λ > 0, there exists a unique function Φλ such that Φλ(0) = 1 and for
all x ≥ y ≥ 0:

Px[e
−λTy ] =

Φλ(xλα)

Φλ(yλα)
,

where Ty is the first hitting time of y by the canonical process, and α := 1/(β +2) lies in the
interval (0, 1). Moreover, there exists λ0 > 0 such that the following properties hold:

• Φλ(t) converges to one when (λ, t) goes to zero.
• Φλ(t) converges to zero when t goes to infinity, uniformly in λ ∈ (0, λ0).
• For all λ > 0, Φλ is continuously differentiable everywhere in R+.
• The map: (λ, t) −→ Φ′

λ(t) is unformly bounded on (0, λ0) × R+.
• |Φ′

λ(t)| converges to a constant K > 0 when (λ, t) goes to zero.

9



Proof. Let us define, for all u ≥ 0:

Ψλ(u) := Pu[e
−λT0 ].

By the strong Markov property one has

Px[e
−λT0 ] = Px[e

−λTy ] Py[e
−λT0 ],

and then

Px[e
−λTy ] =

Φλ(xλα)

Φλ(yλα)
,

where for t ≥ 0,
Φλ(t) := Ψλ(tλ

−α).

One deduces the existence of Φλ, its uniqueness is clear. Now, by classical properties of
diffusions (see [4] for example), the functions Ψλ, and then Φλ, are continuous on R+, twice
differentiable on R∗

+ and Ψλ satisfies:

GΨλ = λ Ψλ

where G is the infinitesimal generator of the diffusion X. One deduces:

Φ′′
λ(t) = tβp(tλ−α) Φλ(t),

for
p(u) := u−βm(u).

By assumption, p(u) is strictly positive, continuous with respect to u > 0, it tends to c when
u goes to infinity, and for all u > 0,

p(u) ≤ C
(
1 + u−β

1β>0

)
.

One deduces that
Aλ : t −→ tβp(tλ−α)

satisfies the assumptions of Lemma 3.1, moreover, with the notation of this Lemma:

Φλ = ΦAλ
,

in particular, this function is continuously differentiable everywhere in R+ (third item of
Lemma 3.2). Now, let us define the functions:

A0 : t −→ c tβ,

and for ε > 0, λ ≥ 0:
Aλ,ε : t −→ Aλ(t + ε).

Since p tends to c at infinity, for all ε > 0, there exists λ(ε) ∈ (0, 1) such that for all
λ ∈ [0, λ(ε)]:

(1 − ε)A0,ε ≤ Aλ,ε ≤ (1 + ε)A0,ε.

All these functions satisfy the conditions of Lemma 3.1, and one deduces:∣∣∣Φ′
(1−ε)A0,ε

(0)
∣∣∣ ≤

∣∣∣Φ′
Aλ,ε

(0)
∣∣∣ ≤

∣∣∣Φ′
(1+ε)A0,ε

(0)
∣∣∣

Now, by checking Sturm-Liouville equation, one sees that for all t ≥ 0:

ΦAλ,ε
(t) =

ΦAλ
(t + ε)

ΦAλ
(ε)

,
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Φ(1−ε)A0,ε
(t) =

ΦA0 [(1 − ε)α(t + ε)]

ΦA0 [(1 − ε)α(ε)]

and

Φ(1+ε)A0,ε
(t) =

ΦA0 [(1 + ε)α(t + ε)]

ΦA0 [(1 + ε)α(ε)]
.

Therefore:

K1(ε) ≤

∣∣Φ′
Aλ

(ε)
∣∣

ΦAλ
(ε)

≤ K2(ε),

where

K1(ε) := (1 − ε)α

∣∣Φ′
A0

[(1 − ε)α(ε)]
∣∣

ΦA0 [(1 − ε)α(ε)]

and

K2(ε) := (1 + ε)α

∣∣Φ′
A0

[(1 + ε)α(ε)]
∣∣

ΦA0 [(1 + ε)α(ε)]

do not depend on λ ≤ λ(ε) and tend to K := |Φ′
A0

(0)| when ε goes to zero. One deduces
that

|Φ′
Aλ

(ε)| ≤ K2(ε)

and

|Φ′
Aλ

(0)| ≤ K2(ε) +

∫ ε

0

Aλ(u)ΦAλ
(u) du ≤ K2(ε) + C

∫ ε

0

uβ
[
1 + (uλ−α)−β

1β>0

]
du.

Since one supposes λ ≤ λ(ε) ≤ 1, one deduces that for all t ≥ 0:

|Φ′
Aλ

(t)| ≤ |Φ′
Aλ

(0)| ≤ K2(ε) + I(ε),

where

I(ε) := C

∫ ε

0

(1 + uβ) du < ∞

decreases to zero when ε goes to zero. In other words:

|Φ′
Aλ

(t)| ≤ K3(ε),

where K3(ε) < ∞ decreases to K when ε goes to zero. In particular, for λ ≤ λ(1):

|Φ′
Aλ

(t)| ≤ K3(1),

which proves the fourth item of Lemma 3.2. Moreover, for all ε > 0:

lim sup
(λ,t)→0

|Φ′
Aλ

(t)| ≤ sup
λ∈[0,λ(ε)),t∈R+

|Φ′
Aλ

(t)| ≤ K3(ε),

and then, by taking ε going to zero,

lim sup
(λ,t)→0

|Φ′
Aλ

(t)| ≤ K. (3.3)

On the other hand, again for λ ∈ [0, λ(ε)], one has

ΦAλ
(ε) ≥ 1 −

∫ ε

0

|Φ′
Aλ

(u)| du ≥ 1 − εK3(ε),

and then

|Φ′
Aλ

(ε)| ≥ [1 − εK3(ε)]+
|Φ′

Aλ
(ε)|

ΦAλ
(ε)

≥ [1 − εK3(ε)]+K1(ε) =: K4(ε),

11



where K4(ε) tends to K when ε tends to zero. We deduce that

|Φ′
Aλ

(t)| ≥ K4(ε)

for all t ≤ ε, and then

lim inf
(λ,t)→0

|Φ′
Aλ

(t)| ≥ inf
λ∈[0,λ(ε)),t∈[0,ε]

|Φ′
Aλ

(t)| ≥ K4(ε).

This implies, by letting ε go to zero, that

lim inf
(λ,t)→0

|Φ′
Aλ

(t)| ≥ K. (3.4)

The inequalities (3.3) and (3.4) imply the fifth item of Lemma 3.2. Moreover, for all λ ≥ 0
and t ≥ 0:

1 − t|Φ′
Aλ

(0)| ≤ ΦAλ
(t) ≤ 1.

Hence, for λ ≤ λ(1):

1 − tK3(1) ≤ ΦAλ
(t) ≤ 1.

Since tK3(1) tends to zero when (λ, t) ∈ [0, λ(1)] × R+ tends to zero, one deduces the first
item of Lemma 3.2. It now remains to prove the second item. Let us suppose that λ ≤ 1
and t ≥ 1. In this case:

Aλ,t ≥ δA0,t,

where

δ :=
1

c
inf

v∈[1,∞)
p(v) > 0.

One deduces that
|Φ′

Aλ
(t)|

ΦAλ
(t)

≥ δα |Φ′
A0

(δαt)|

ΦA0(δ
αt)

,

or
d

dt
[log (ΦAλ

(t))] ≤
d

dt
[log (ΦA0(δ

αt))] .

By integrating and taking the exponential, one obtains

ΦAλ
(t) ≤ ΦAλ

(1)
ΦA0(δ

αt)

ΦA0(δ
α)

,

which implies, for all λ ≤ 1 and t ≥ 1:

ΦAλ
(t) ≤ θ(t),

where

θ(t) =
ΦA0(δ

αt)

ΦA0(δ
α)

.

We can remark that this upper bound trivially holds for t < 1, since θ(t) is greater than or
equal to one in this case. Now, θ(t) tends to zero when t goes to infinity (since ΦA0 tends to
zero), independently of λ ≤ 1, which completes the proof of Lemma 3.2. �

The following lemma gives some information about the marginal distributions of the canon-
ical process under Px:
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Lemma 3.3. One can define a function χ from R∗
+ to R+, tending to zero at zero, and

satisfying the following property: for all u > 0, there exists t0(u) > 0 such that for all x ≥ 0,
t ≥ t0(u):

Px[Xt ≤ tαu] ≤ χ(u).

Proof. Let us fix u > 0. By coupling, one obtains immediately, for all x ≥ 0, t > 0,

Px[Xt ≤ tαu] ≤ P0[Xt ≤ tαu].

Now one has (see, for example, [12], p. 89):

P0[Xt ≤ tαu] =

∫ tαu

0

p(t, 0, y) m(y) dy =

∫ tαu

0

p(t, y, 0) m(y) dy,

where p is the density of the semi-group of (Xt)t≥0. Again by coupling, one sees that
p(t, y, 0) ≤ p(t, 0, 0), which implies that

Px[Xt ≤ tαu] ≤ p(t, 0, 0)

∫ tαu

0

C
(
yβ + 1β>0

)
dy ≤ C p(t, 0, 0)

[
(tαu)β+1 /(β + 1) + tαu1β>0

]
.

Now, if t ≥ u−1/α, one has necessarily tαu ≤ (tαu)β+1 for β > 0, which implies:

Px[Xt ≤ tαu] ≤
C(β + 2)

β + 1
p(t, 0, 0) (tαu)β+1 = χ0(u) t1−αp(t, 0, 0)

where

χ0(u) :=
C(β + 2)

β + 1
uβ+1.

Hence, we are done, provided that there exists L1 > 0 such that p(t, 0, 0) ≤ L1 tα−1 for t
large enough. If t > t′ > 0, one has

p(t, 0, 0) = P0[p(t′, Xt−t′ , 0)] ≤ p(t′, 0, 0),

which implies that p(t, 0, 0) is decreasing with respect to t. One deduces:

p(t, 0, 0) ≤
2e

t

∫ t

t/2

e−s/tp(s, 0, 0) ds ≤
2e

t
R(1/t),

where for λ > 0,

R(λ) :=

∫ ∞

0

e−sλp(s, 0, 0) ds.

Now from a result by Salminen, Vallois and Yor in [16] (p. 5, equation just after (3)), one
obtains ∫ ∞

0

m(y)Py[e
−λT0 ] dy =

1

λR(λ)
,

which implies, with the notation of Lemma 3.2, that

p(t, 0, 0) ≤ 2e

(∫ ∞

0

m(y) Φ1/t(yt−α) dy

)−1

.

Therefore we only need to prove that for some L2 > 0, and for t large enough

I :=

∫ ∞

0

m(y) Φ1/t(yt−α) dy ≥ L2t
1−α.
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Now, from Lemma 3.2 (first item), we know that there exist t0, v0 > 0 such that for all t ≥ t0
and all v ≤ v0, Φ1/t(v) ≥ 1/2. One deduces that for all t ≥ t0 ∨ v

−1/α
0 , v0t

α ≥ 1:

I ≥
1

2

∫ v0tα

1/2

m(y)dy ≥ δ
(v0t

α)β+1 − (1/2)β+1

2(β + 1)
≥

δvβ+1
0 (1 − (1/2)β+1)

2(β + 1)
t1−α.

where δ is the infimum of y−βm(y) on [1/2,∞), strictly positive since m(y) is strictly positive,
continuous and equivalent to cyβ at infinity. �

From Lemma 3.3, one deduces the following result, which majorizes the probability, for the
canonical process, to hit [0, a] during a small interval of time:

Lemma 3.4. One can define a function ρ from (0, 1) to R∗
+, tending to zero at zero, and

satifying the following property: for all a ≥ 0, γ ∈ (0, 1), there exists t0(a, γ) such that for
every x ≥ 0, t ≥ t0(a, γ):

Px [∃s ∈ [(1 − γ)t, t], Xs ≤ a] ≤ ρ(γ).

Proof. Let us fix a and γ. One has immediately:

Px [∃s ∈ [(1 − γ)t, t], Xs ≤ a] = Px[∆(X(1−γ)t)],

where, for y ≤ a:

∆(y) = 1

and for y > a:

∆(y) = Py[Ta ≤ γt].

In any case, one has:

∆(y) ≤ e Py∨a[e
−Ta/(γt)] ≤ e

Φ1/(γt)[y(γt)−α]

Φ1/(γt)[a(γt)−α]
.

Now, there exist λ1, v1 > 0 such that Φλ(v) ≥ e/3 for all λ ≤ λ1 and v ≤ v1 (first item of
Lemma 3.2). Hence, there exists t1 > 0 (depending on γ and a) such that for t ≥ t1:

Φ1/(γt)[a(γt)−α] ≥ e/3

and then for all y ≥ 0:

∆(y) ≤ 3 Φ1/(γt)[y(γt)−α]

By the second item of Lemma 3.2, there exists a function q, bounded by one, decreasing to
zero at infinity, such that for all λ ≤ λ0, v > 0:

Φλ(v) ≤ q(v).

Hence, if t ≥ t1 ∨ 1/(λ0γ), for all y ≥ 0,

∆(y) ≤ 3 q
[
y(γt)−α

]
,

which implies:

Px [∃s ∈ [(1 − γ)t, t], Xs ≤ a] ≤ 3 Px

[
q
(
X(1−γ)t(γt)−α

)]
,

and then, for any v ≥ 0:

Px [∃s ∈ [(1 − γ)t, t], Xs ≤ a] ≤ 3
(
q(v) + Px

[
X(1−γ)t ≤ (γt)αv

])
.
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We now fix

v :=

(
γ

1 − γ

)−α/2

.

One deduces, by Lemma 3.3, that there exists t2 ≥ 0 (depending on a and γ), such that for
t ≥ t2:

Px [∃s ∈ [(1 − γ)t, t], Xs ≤ a] ≤ 3

(
q

[(
γ

1 − γ

)−α/2
]

+ χ

[(
γ

1 − γ

)α/2
])

=: ρ(γ),

which tends to zero at zero. �

We have now all the estimates of hitting times needed in the proof of Theorem 2.2, which is
finished in Section 4.

4. Proof of the main theorem

In order to prove Theorem 2.2, we essentially need to estimate the behaviour of the
expectation of Γt under P, when t goes to infinity. This expectation will be implicitly
splitted as follows:

P[Γt] = P[Γt1g
[a]
t ≤s

] + P[Γt1s<g
[a]
t ≤(1−γ)t

] + P[Γt1g
[a]
t >(1−γ)t

],

where s ≥ 0, γ ∈ (0, 1/2) and

g
[a]
t := sup{u ∈ [0, t], Xu ≤ a}

(recall that g[a] denotes the supremum of u ∈ R+ such that Xu ≤ a). Moreover, we shall use
a Tauberian theorem: this is the reason why we assume that the speed measure m(x) of the
diffusion (Xs)s≥0 behaves like a power of x at infinity. The proof of Theorem 2.2 is divided
into several steps, each of them corresponding to a lemma or a proposition. The first step is
the following:

Lemma 4.1. For all a > 0, s > 0, u ≥ 0, and for all bounded, Fs-measurable, nonnegative
functionals Γs:

λ1−α

∫ ∞

u

e−λtP

[
Γs1g

[a]
t ≤s

]
dt −→

λ→0
K Q

[
Γs1g[a]≤s

]
< ∞,

where K is the constant introduced in the last item of Lemma 3.2.

Proof. One has by the Markov property that

λ1−α

∫ ∞

s

e−λtP

[
Γs1g

[a]
t ≤s

]
dt = λ1−α

∫ ∞

s

e−λtP [Γs 1Xs≥aPXs
[Ta > t − s]]

= λ1−αe−λsP

[
Γs 1Xs≥aPXs

[∫ ∞

0

e−λu
1Ta>udu

]]

= λ1−αe−λsP

[
Γs 1Xs≥aPXs

[
1 − e−λTa

λ

]]

= λ−αe−λsP

[
Γs1Xs≥a

Φλ(aλα) − Φλ(Xsλ
α)

Φλ(aλα)

]

=
e−λs

Φλ(aλα)
P

[
Γs(Xs − a)+

∫ 1

0

dv |Φ′
λ ((a + v(Xs − a)+) λα)|

]
.
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Now, by last item of Lemma 3.2, for v, a, Xs fixed:

|Φ′
λ ((a + v(Xs − a)+)λα)| −→

λ→0
K.

Moreover, by the fourth item, for λ ≤ λ0:

|Φ′
λ ((a + v(Xs − a)+)λα)| ≤ K ′,

where K ′ > 0 does not depend on λ, v, a or Xs. Since P[Γs(Xs − a)+] is dominated by
P[Xs] < ∞, one can apply dominated convergence, which yields

λ1−α

∫ ∞

s

e−λtP

[
Γs1g

[a]
t ≤s

]
−→
λ→0

K P[Γs(Xs − a)+],

and Lemma 4.1 for u = s. Now, if M > 0 majorizes uniformly Γs, we have

λ1−α

∣∣∣∣
∫ u

s

e−λtP

[
Γs1g

[a]
t ≤s

]∣∣∣∣ ≤ M |u − s| λ1−α,

which tends to zero with λ. �

The next step is the following:

Lemma 4.2. Let a > 0 be fixed. Then, there exist u0 > 0, L > 0 such that for all r > 0,
u ≥ u0 and for all Fr-measurable, bounded, nonnegative functionals Γr:

P[Γr1g
[a]
r+u≤r

] ≤ Lu−αQ[Γr1g[a]≤r].

Proof. One has:

P[Γr1g
[a]
r+u≤r

] = P [Γr1Xr≥aPXr
[Ta > u]]

≤
1

1 − (1/e)
P
[
Γr1Xr≥aPXr

[1 − e−Ta/u]
]

≤ 2 P

[
Γr1Xr≥a

Φ1/u(au−α) − Φ1/u(Xru
−α)

Φ1/u(au−α)

]

≤
2

Φ1/u(au−α)
u−α P

[
Γr(Xr − a)+

∫ 1

0

dv
∣∣Φ′

1/u

(
(a + v(Xr − a)+) u−α

)∣∣
]

.

From the fourth item of Lemma 3.2, one deduces that |Φ′
1/u| is uniformly bounded by a

constant L′ for u ≥ 1/λ0. Under these assumptions:

P[Γr1g
[a]
r+u≤r

] ≤
2L′

Φ1/u(au−α)
u−α P[Γr(Xr − a)+] ≤ 3L′u−αQ[Γr1g[a]≤r],

for u sufficiently large in order to make sure that Φ1/u(au−α) ≥ 2/3. �

Now, let us prove the following:

Lemma 4.3. Let a > 0 and let (Γt)t≥0 be a càdlàg, adapted, nonnegative, uniformly bounded
and nonincreasing process, such that for all t ≥ 0, Xt = Xg[a] on the set {t ≥ g[a]}. We

define Γ∞ as the limit of Γt for t going to infinity (in particular, Γ∞ = Γg[a] for g[a] < ∞),
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and we suppose that Γ∞ is integrable with respect to Q. Then, for all γ ∈ (0, 1/2), there
exists R > 0 such that for all s ≥ 0:

lim sup
λ→0

λ1−α

∫ ∞

0

e−λtP

[
Γt1s<g

[a]
t ≤(1−γ)t

]
dt ≤ RQ[Γ∞1g[a]>s].

Proof. For all t > 0:

P

[
Γt1s<g

[a]
t ≤(1−γ)t

]
≤ P

[
Γ(1−γ)t1g

[a]
(1−γ)t

>s
1

g
[a]
t ≤(1−γ)t

]
.

Remark that the quantities involved here are equal to zero for t ≤ s/(1 − γ). By Lemma
4.2, one deduces that for t ≥ u0/γ:

P

[
Γt1s<g

[a]
t ≤(1−γ)t

]
≤ L(γt)−αQ

[
Γ(1−γ)t1g

[a]
(1−γ)t

>s
1g[a]≤(1−γ)t

]
.

Now, if g[a] ≤ (1 − γ)t, Γ(1−γ)t = Γ∞, which implies:

P

[
Γt1s<g

[a]
t ≤(1−γ)t

]
≤ L(γt)−αQ[Γ∞1g[a]>s].

One now deduces:

λ1−α

∫ ∞

u0/γ

e−λtP

[
Γt1s<g

[a]
t ≤(1−γ)t

]
dt ≤ L Γ(1 − α) γ−αQ[Γ∞1g[a]>s].

Since

λ1−α

∫ u0/γ

0

e−λtP

[
Γt1s<g

[a]
t ≤(1−γ)t

]
−→
λ→0

0,

we are done. �

Lemma 4.4. Let a > 0 and let (Γt)t≥0 be a càdlàg, adapted, nonnegative, uniformly bounded
and nonincreasing process, such that for all t ≥ 0, Xt = Xg[a] on the set {t ≥ g[a]}. We
define Γ∞ as the limit of Γt for t going to infinity, and we suppose that Γ∞ is integrable with
respect to Q. Then, for all γ ∈ (0, 1/2), for all s ≥ 0 and for all events Λs ∈ Fs:

λ1−α

∫ ∞

0

e−λtP

[
Γt1Λs

1
g
[a]
t ≤(1−γ)t

]
dt −→

λ→0
K Q[Γ∞1Λs

].
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Proof. Let v > s. For t > v:

P[Γt1Λs
1

g
[a]
t ≤v

] = P

[
Γt1Λs

1
g
[a]
t ≤v

1Xt>a

Xt − a
(Xt − a)+

]

= Q

[
Γt1Λs

1
g
[a]
t ≤v

1Xt>a

Xt − a
1g[a]≤t

]

= Q

[
Γt1Λs

1Xt>a

Xt − a
1g[a]≤v

]

= Q

[
Γv1Λs

1Xt>a

Xt − a
1g[a]≤v

]

= Q

[
Γv1Λs

1
g
[a]
t ≤v

1Xt>a

Xt − a
1g[a]≤t

]

= P

[
Γv1Λs

1
g
[a]
t ≤v

1Xt>a

Xt − a
(Xt − a)+

]

= P[Γv1Λs
1

g
[a]
t ≤v

]

By Lemma 4.1, one has

λ1−α

∫ ∞

v

e−λtP

[
Γt1Λs

1
g
[a]
t ≤v

]
dt −→

λ→0
K Q[Γv1Λs

1g[a]≤v],

which implies

λ1−α

∫ ∞

w

e−λtP

[
Γt1Λs

1
g
[a]
t ≤v

]
dt −→

λ→0
K Q[Γ∞1Λs

1g[a]≤v]

for all w ≥ 0. Now, one also has:
∫ ∞

0

e−λtP

[
Γt1Λs

1
g
[a]
t ≤(1−γ)t

]
dt ≥

∫ ∞

v/(1−γ)

e−λtP

[
Γt1Λs

1
g
[a]
t ≤v

]
dt,

which implies:

lim inf
λ→0

λ1−α

∫ ∞

0

e−λtP

[
Γt1Λs

1
g
[a]
t ≤(1−γ)t

]
dt ≥ K Q[Γ∞1Λs

1g[a]≤v]. (4.1)

On the other hand:∫ ∞

0

e−λtP

[
Γt1Λs

1
g
[a]
t ≤(1−γ)t

]
dt ≤

∫ ∞

0

e−λtP

[
Γt1Λs

1
g
[a]
t ≤v

]
dt

+

∫ ∞

0

e−λtP

[
Γt1v<g

[a]
t ≤(1−γ)t

]
dt,

which implies by Lemma 4.3 that

lim sup
λ→0

λ1−α

∫ ∞

0

e−λtP

[
Γt1Λs

1
g
[a]
t ≤(1−γ)t

]
dt ≤ K Q[Γ∞1Λs

1g[a]≤v] + RQ[Γ∞1g[a]>v]. (4.2)

By comparing (4.1) and (4.2) and by taking v → ∞, we are done, since Γ∞ is Q-integrable
and g[a] < ∞, Q-almost everywhere. �
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The following result gives, for all s ≥ 0 and all events Λs ∈ Fs, an equivalent of the
expectation of Γt1Λs

under P, for t going to infinity, if (Γt)t≥0 belongs to the class (C).

Proposition 4.5. Let (Γt)t≥0 be a process in the class (C). Then, there exists D > 0 such
that for all s ≥ 0 and for all events Λs ∈ Fs:

tα P[Γt1Λs
] −→

t→∞
DQ[Γ∞1Λs

].

Proof. Lemma 4.4 implies immediately (by taking any γ) that

lim inf
λ→0

λ1−α

∫ ∞

0

e−λtP[Γt1Λs
] dt ≥ K Q[Γ∞1Λs

]. (4.3)

Now, for λ > 0, let us define:

I(λ) := λ1−α

∫ ∞

0

e−λtP[Γt] dt

and for λ > 0, γ < (0, 1/2),

I(λ, γ) := λ1−α

∫ ∞

0

e−λtP[Γt1g
[a]
t ≤(1−γ)t

] dt

and

J(λ, γ) := λ1−α

∫ ∞

0

e−λtP[Γt1g
[a]
t >(1−γ)t

] dt.

Here a > 0 is chosen in order to have Γt = Γ
g
[a]
t

on the event {t ≥ g
[a]
t }. For all t ≥ 0, by

Markov property,

P[Γt1g
[a]
t >(1−γ)t

] ≤ P[Γt/2] sup
x∈R+

Px [∃u ∈ [(1/2 − γ)t, t/2], Xu ≤ a] .

By Lemma 3.4, for t ≥ 2t0(a, 2γ):

P[Γt1g
[a]
t >(1−γ)t

] ≤ ρ(2γ) P[Γt/2].

If M > 0 majorizes uniformly Γt for all t ≥ 0, one deduces:
∫ ∞

0

e−λtP[Γt1g
[a]
t >(1−γ)t

] dt ≤ 2Mt0(a, 2γ) + ρ(2γ)

∫ ∞

0

e−λtP[Γt/2] dt,

which implies:

J(λ, γ) ≤ 2Mλ1−αt0(a, 2γ) + 2ρ(2γ)I(λ).

Therefore:

I(λ) ≤ I(λ, γ) + 2Mλ1−αt0(a, 2γ) + 2ρ(2γ)I(λ),

which implies

I(λ) ≤
I(λ, γ) + 2Mλ1−αt0(a, 2γ)

1 − 2ρ(2γ)
,

and finally

J(λ, γ) ≤ 2Mλ1−αt0(a, 2γ) + 2ρ(2γ)
I(λ, γ) + 2Mλ1−αt0(a, 2γ)

1 − 2ρ(2γ)
,
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for γ such that ρ(2γ) < 1/2 (this condition is always satisfied if γ is small enough). Since,
by Lemma 4.4,

I(λ, γ) −→
λ→0

K Q[Γ∞],

one deduces:

lim sup
λ→0

J(λ, γ) ≤
2Kρ(2γ)

1 − 2ρ(2γ)
Q[Γ∞],

and then,

lim sup
λ→0

λ1−α

∫ ∞

0

e−λtP[Γt1Λs
] dt ≤ lim sup

λ→0
λ1−α

∫ ∞

0

e−λtP[Γt1Λs
1

g
[a]
t ≤(1−γ)t

]

+ lim sup
λ→0

J(λ, γ)

≤ K Q[Γ∞1Λs
] +

2Kρ(2γ)

1 − 2ρ(2γ)
Q[Γ∞].

By making γ → 0, one deduces:

lim sup
λ→0

λ1−α

∫ ∞

0

e−λtP[Γt1Λs
] dt ≤ K Q[Γ∞1Λs

] (4.4)

By taking (4.3) and (4.4) together and by using Tauberian theorem (recall that Γt is de-
creasing with respect to t), we are done. �

Now, Theorem 2.2 can be deduced from Proposition 4.5 in a very simple way, as follows.
Let us suppose that for some t ≥ 0, Γt = 0 almost surely with respect to P. Since all the
P-negligible events in Ft are also Q-negligible, one has Q[Γt] = 0, which contradicts the fact
that Q[Γ∞] > 0, since Γt decreases with respect to t. Then, P[Γt] > 0 for all t ≥ 0, and
obviously P[Γt] < ∞, since Γt is uniformly bounded. Hence, Qt is well-defined. Moreover,
for all s ≥ 0 and Λs ∈ Fs:

Qt[Λs] =
P[Γt1Λs

]

P[Γt]
.

Now by Proposition 4.5,
P[Γt1Λs

] ∼
t→∞

D t−αQ[Γ∞1Λs
]

and
P[Γt] ∼

t→∞
Dt−αQ[Γ∞].

Therefore:

Qt[Λs] −→
t→∞

Q[Γ∞1Λs
]

Q[Γ∞]
= Q∞[Λs],

which completes the proof of Theorem 2.2.
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