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Abstract. Following Schmidt and Strunk, we give a proof of Gabber’s presentation lemma over a

noetherian domain with infinite residue fields.

1. Introduction

Gabber’s presentation lemma, initially proved by O. Gabber for the base, spectrum of an infinite
field in [Gab] (see also [CTHK], [HK]) plays a fundamental role in the study of A1- homotopy theory,
especially as developed by Morel in [Mor2]. This lemma may be thought of as an algebro-geometric
analogue of the tubular neighbourhood theorem in differential geometry. In [SS], this lemma was
generalized by J. Schmidt and F. Strunk to the case where the base is a spectrum of a Dedekind
domain with infinite residue fields. The goal of this paper is to show that the arguments given in [SS]
can, in fact, be modified to obtain a proof of Gabber’s presentation lemma over a general noetherian
domain with all its residue fields infinite. The following is the main result of this paper.

Theorem 1.1. Let S = Spec (R) be the spectrum of a noetherian domain with all its residue fields
infinite. Let X be a smooth, irreducible, equi-dimensional S-scheme of relative dimension d. Let
Z ⊂ X be a closed subscheme, z be a closed point in Z lying over s ∈ S, such that that dim(Zs) <
dim(Xs). Then after possibly replacing S by a Nisnevich neighbourhood of s and X by a Nisnevich

neighbourhood of z, there exists a map Φ = (Ψ, ν) : X → Ad−1
S × A1

S, an open subset V ⊂ Ad−1
S and

an open subset U ⊂ Ψ−1(V ) containing z such that

(1) Z ∩ U = Z ∩Ψ−1(V )

(2) Ψ|Z : Z → Ad−1
S is finite

(3) Φ|U : U → AdS is étale

(4) Φ|Z∩U : Z ∩ U → A1
V is a closed immersion

(5) Φ−1(Φ(Z ∩ U)) ∩ U = Z ∩ U .

In [SS] J. Schmidt and F. Strunk, use the presentation lemma to generalize the A1-connectivity
result of F. Morel ( [Mor1, Theorem 6.1.8]) over Dedekind schemes with infinite residue fields. As an
application of Theorem 1.1, we observe that the connectivity result holds over any noetherian domain
with all its residue fields infinite. To state this result we recall the following standard notation: For
a base scheme S, let SHsS1(S) be the model category of sheaves of S1-spectra over S. For an integer

i, let SHsS1≥i(S) be the full subcategory of i-connected spectra. Let SHsS1(S)
LA1

−−→ SHsS1(S) be the

A1-fibrant replacement functor. Then

Theorem 1.2. Let S = Spec (R) be the spectrum of a noetherian domain of dimension d with all its
residue fields infinite. Then S has the shifted stable A1-connectivity property, that is, if E ∈ SHsS1≥i(S)

then LA1

E ∈ SHsS1≥i−d(S).

The proof of Theorem 1.2 is exactly the same as the proof of its analogue in [SS] except for the
input from Gabber’s presentation lemma, the required generality of which is available once Theorem
1.1 is proved. We present a sketch of the proof of Theorem 1.2 in Section 4.
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An important ingredient of the proof of the Gabber’s presentation lemma of [SS] is [Kai, Theorem
4.1], which states that given an equi-dimensional scheme Y over a Dedekind scheme B with infinite
residue fields, Nisnevich locally on B there exists a projective closure Y of Y in which Y is fiber-wise
dense. Unfortunately, we are unable to prove such a result over a general base. However, we observe
that a slightly weaker result (see Theorem 2.1) can be proved which suffices for our purpose. As in
Gabber’s original proof of the presentation lemma, as well as in [SS], the condition of residue fields
being infinite in Theorem 1.1 is required in order to make suitable generic choices. We are currently
working on removing the condition of residue fields being infinite taking inputs from [HK].
Acknowledgments. The first-named author was supported by the INSPIRE fellowship of the De-
partment of Science and Technology, Govt. of India during the course of this work. The last-named
author was supported by NBHM fellowship of Department of Atomic Energy, Govt. of India during
the course of this work. We thank F. Strunk and J. Kollár for their comments on the draft of this
paper. We thank the anonymous referees for their helpful comments and suggestions.

2. Fiber-wise denseness

In this section, we prove a technical result which is crucial to the proof of our main theorem. It is
essentially [Kai, Theorem 4.1] with minor modifications (see also [Lev, Theorem 10.2.2] ). Throughout
this section, dimB(Y ) denotes the supremum of dimensions of all the fibers of Y → B.

Theorem 2.1. Let B be the spectrum of a noetherian domain. Let Y/B be either a smooth scheme
or a divisor in a smooth scheme X. Let y ∈ Y be a point lying over a point b ∈ B with dimB(Yb) = n.
Assume k(b) is an infinite field. Then there exist Nisnevich neighborhoods (Y ′, y) → (Y, y) and
(B′, b)→ (B, b), fitting into the following commutative diagram

Y ′ Y

B′ B

and a closed immersion Y ′ → ANB′ for some N ≥ 0 such that if Y ′ is its closure in PNB′ then Y ′y is

dense in the union of n-dimensional irreducible components of (Y ′)y.

Remark 2.2. The above theorem is a weaker statement than [Kai, Theorem 4.1] (see also [Lev,
Theorem 10.2.2]) but over a general base. In the proof of [Kai, Theorem 4.1] the author mentions
that the base is assumed to be Dedekind to ensure that the projective closure of an equi-dimensional
scheme remains equi-dimensional over B.

We begin with an intermediary lemma which will be used repeatedly (see also [Lev, Lemma 10.1.4]).

Lemma 2.3. Let X be an affine scheme. Choose a closed embedding X → ANB and a point x ∈ X.

Let X be the projective closure of X in PNB , and assume that it has fiber dimension n. Then, there
exists

(1) a projective scheme X̃,
(2) an open neighbourhood X0 of x (in X),

(3) an open immersion X0 ↪→ X̃ and

(4) a projective morphism ψ : X̃ → Pn−1
B

such that ψ has fiber dimension one.

Proof. We follow the arguments given in [Kai, Theorem 4.1] verbatim (see also [Lev, Theorem 10.1.4]).
After possibly shrinking B, we can find n hyperplanes Ψ = {ψ1, . . . , ψn} which are part of a basis of
Γ(PNB ,O(1)) as a B-module. The choice is such that V (Ψ), which denotes the common zeros of all

ψi, does not contain x and it meets X fiber-wise properly over B, so that X ∩ V (Ψ) is finite over B.

Let p : P̃N → PN be the blowup of PN along V (Ψ), and X̃ the strict transform of X in the blowup.

Let ψ : P̃NB → Pn−1
B denote the map induced by the rational map defined by a projection from V (Ψ).

Let X0 := X \ V (Ψ). We have the following commutative diagram:
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X̃ P̃NB Pn−1
B

X0

X PNB

cl. ψ

cl.

We claim that ψ : X̃ → Pn−1
B has fiber dimension one. To see this, choose any point y ∈ Pn−1

B , and

consider the composite a : Spec (Ω)
y→ Pn−1

B → B. Then, the fiber of ψ over y may be identified
with a linear subscheme V (y) of PNa , of dimension N − n + 1. Furthermore, V (y) contains the base
change V (Ψ)a, which has dimension N − n, by construction. Again by construction, the intersection
V (y)∩X ∩ V (Ψ)a is finite in PNa . This means that V (y)∩X has dimension 1 in the projective space
V (y).

Further note that for x ∈ V (Ψ), p−1(x) ' Pn−1. Also, the exceptional divisor of X̃ is an irreducible

subscheme. Therefore, for any point x ∈ V (Ψ) ∩X, the fiber X̃x is an irreducible subscheme of Pn−1

of dimension n− 1. Therefore, p−1(X) = X̃, so that p : ψ−1(y)∩ X̃ → V (y)∩X is a bijection. Thus,

ψ : X̃ → Pn−1
B has 1-dimensional fibers. �

Proof of 2.1. We first prove the result in the case when Y = X is a smooth scheme. The proof is by
induction on n. The case n = 0 follows from a version of Hensel’s lemma.
Step 1: As X is smooth, Zariski locally on B, we write X as a hypersurface in some ANB . Let X denote

its reduced closure in PNB . Note that X also has fiber-dimension n over B. By applying Lemma 2.3,

we get a projective morphism ψ : X̃ → Pn−1
B with 1-dimensional fibers.

Step 2: Set T = Pn−1
B and t = ψ(x). Choose any projective embedding X̃ ↪→ PN2

T . Let (X̃)t and (X0)t

denote the fibers over t of X̃ and X0 respectively. Then choose a hypersurface Ht ⊂ PN2
t satisfying

the next three conditions.

(1) x ∈ Ht (if x is a closed point in (X0)t)

(2) (X̃)t and Ht meet properly in PN2
t .

(3) Ht does not meet (X0)t \ (X0)t.

Now after restricting to a suitable Nisnevich neighbourhood of T , which we denote again by T (and
after base changing everything to T ), using the hyperplane Ht, we can choose a Cartier divisor D
which fits into the following diagram

X̃ T Pn−1
B

X0

D

projective

1−dim
Nis

Cartier.div

finite

For sufficiently large m we can find a section s0 of Γ(X̃,OX̃(mD)) which maps to a nowhere vanishing
section of Γ(D,OD). Let s1 : OX̃ → OX̃(mD) be the canonical inclusion. Since the zero-loci of s0

and s1 are disjoint, we get a map

f = (s0, s1) : X̃ → P1
T .

Since the quasi-finite locus of a morphism is open, shrink T around t such that D is contained in
the quasi finite locus of f after the base change. Let X ′0 be the quasi-finite locus of the base change.

f−1(∞T ) = D X ′0 X̃

∞T P1
T

quasi−finite
f
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Then the subset W = f(X̃ \X ′0) ⊂ P1
T is proper over T and is contained in P1

T \f(Ht) = A1
T . Hence, it

is finite over T . The map X̃ \f−1(W )→ P1
T \W , being proper and quasi-finite, is finite. By condition

(1), we see that X̃ \ f−1(W ) contains x.
Step 3: Now by induction there exist Nisnevich neighborhoods B1 → B and T1 → T such that the

projective compactification T1 → T1 is fiber-wise dense in the union of n-dimensional irreducible

components over B1. Take a factorization of f of the form X̃ ↪→ PN3

T1
×T1

P1
T1
→ P1

T1
. Let X1 denote

the reduced closure of X̃ in PN3

T1
×T1

P1
T1

. We get the following diagram where every square is Cartesian

X2 := X̃ \ f−1(W ) X̃ X1

PN3

T1
×T1

(P1
T1
\W ) PN3

T1
×T1

P1
T1

PN3

T1
×T1

P1
T1

P1
T1
\W P1

T1
P1
T1

By Stein factorization we decompose the map f1 : X1 → P1
T1

as

f1 : X1 → X2
finite−−−−→ P1

T1
,

where the first map has geometrically connected fibers. Since f1 is finite over the open set P1
T1
\W ,

X2 ×P1
T1

(P1
T1
\W ) is isomorphic to X2 := X̃ \ f−1(W ). Since X2 is open in X2, the fiber dimension

of X2 is at least n. Combining this with the fact that X2 is finite over P1
T1

, we conclude that the fiber

dimension of X2 over B1 is exactly n.
We observe that since T1 is fiberwise dense in the union of n-dimensional irreducible components of

T1, so is P1
T1

(in P1
T1

). Also as W is finite over T1, P1
T1
\W is fiberwise dense in P1

T1
. Hence it is dense

in the union of n-dimensional irreducible components of P1
T1

. Now we claim that X2 intersects the

fiber of X2 over any point b1 of B1. Let X ′2 be an n-dimensional irreducible component of the fiber
(X2)b1 . Then the induced map X ′2 → (P1

T1
)b1 is a finite morphism of schemes of the same dimension.

Hence it is a surjection to an irreducible component say, U of (P1
T1

)b1 . Further P1
T1
\W intersects

U by denseness. Taking inverse image of its intersection with irreducible component proves that X2

intersects Y .
As X2 is projective over B1, we choose any embedding of it in projective space PNB1

. Then for the

closed subscheme X2 \ X2 (with reduced structure) there exists a hypersurface H of PNB1
of degree,

say d, containing X2 \ X2, not containing the point x and such that Hb1 intersects (X2)b1 properly
in PNb1 . Hence by discussion in previous paragraph, Hb1 also intersects (X2)b1 properly. Replacing X2

by X2 \H and taking d fold Veronese embedding we may assume H to be PN−1
∞ . Now we have the

embedding X2 \H ↪→ ANB1
= PNB1

\ PN−1
∞ thereby proving the smooth case.

We shall now consider the case when Y is a divisor in a smooth scheme.
Step 4: Let Y be a divisor in a smooth scheme X. We will produce a map, ψ : Ỹ → Pd−1 whose fibers
are 1-dimensional.

Since X is smooth, by Steps 1-3, Nisnevich locally, we have a closed embedding Y → X → ANB such

that all fibers of Y → B are n-dimensional. Then by Lemma 2.3, we have a commutative diagram,
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Ỹ P̃NB Pn−1
B

Y0

Y PNB

cl. ψ

cl.

Then as in Step 2 above, we obtain a morphism Nisnevich locally on Y , φ : Y → P1
T , where T is a

Nisnevich neighbourhood of Pn−1. Since T is a smooth B-scheme, our theorem holds for T . Remaining
proof is the same as in Step 3. �

3. Relative version of Gabber’s Presentation Lemma

We now prove Theorem 1.1. We follow [SS] to prove Theorem 1.1, the only difference being, that in
their version of Theorem 2.1 (which is for Henselian DVR), they have the stronger condition of fiber-

wise denseness, which they use to construct a finite map Ψ|Z : Z → Ad−1
S . However, we observe that

their proof still goes through with our weaker condition of denseness in n-dimensional components,
which we illustrate in Propositions 3.6 and 3.9. The rest of the proof does not require any new inputs
and we just state those results from [SS] which are essentially an application of the proof from [CTHK].

First we reduce to the case that z is a closed point and Z is a principal divisor.

Lemma 3.1. (See [CTHK, Lemma 3.2.1]) With the notation as in Theorem 1.1, there exists a closed
point z′ ∈ X such that z′ is a specialization of z and there exists a non-zero f ∈ Γ(X,OX) such that
Z ⊂ V (f).

Remark 3.2. Since in Theorem 1.1, we assume that dim(Zs) < dim(Xs), in the Lemma 3.1 we
furthermore assume f is such that dim((V (f)s) < dim(Xs).

Remark 3.3. Since Theorem 1.1 is a Nisnevich local statement, henceforth we assume that the ring
R is Henselian local with closed point σ and infinite residue field k.

Let S = Spec(R) with AnS = R[x1, . . . , xn]. Let E be the R-span of {x1, . . . , xn} and consider
E := Spec (Sym•E∨) (note that E(R) = E). For any integer d > 0 and any R-algebra A, Ed(A)

parametrizes all linear morphisms v = (v1, . . . , vd) : AnT → AdT , where T = Spec(A). Considering
AnS ↪→ PnS = Proj S[X0, . . . , Xn], as a distinguished open subscheme D(X0), we extend such a linear
morphism to a rational map v : PnS 99K PdS whose locus of indeterminacy Lv is given by the vanishing
locus of v1, . . . , vd and X0, V+(X0, v1, . . . , vd) ⊆ PnS (We will use this notation throughout this section).

Given any closed subscheme Y in AnS , we denote by Y its projective closure in PnS . For the following
lemma we refer to [SS, Lemma 2.3]

Lemma 3.4. (see [SS, Lemma 2.3]) In the setting of the previous paragraph if Lv ∩ Y = ∅, then
v : Y → PdS and v : Y → AdS are finite maps.

Following lemma is standard.

Lemma 3.5. Let W be a closed subscheme of PNk . Then there exists a hyperplane H ⊂ PNk such that
dimk(H ∩W ) = dimk(W )− 1.

Proof. Let ζ1, . . . ζr be the generic points of W corresponding to the homogeneous prime ideals
℘1, . . . ℘r. Viewing the ℘i’s and Γ (O(1),PNk ) as vector spaces over the infinite field k, we can find a
hyperplane H not containing ζi’s: as no non trivial vector space over an infinite field can be written
as a finite union of proper subspaces. Hence by Krull’s principal ideal theorem dimk(H ∩ W ) =
dimk(W )− 1. �

Proposition 3.6. Let Y be as in Theorem 2.1 and Y be its projective closure, then there exist
v1, . . . , vn in the k-span of {X1, . . . , XN} such that (Y )σ ∩ Lv = ∅, where Lv = V+(X0, v1, . . . , vn).
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Proof. Without loss of generality, we assume Ank = D(X0). Let H∞ = V+(X0) denote the hyperplane

at infinity of PNk . Generic points of irreducible components of Yσ lie in Ank = D(X0). Therefore

dim(Yσ ∩H∞) = n − 1. By Theorem 2.1, we have dim((Y )σ ∩H∞) = n − 1. Now applying Lemma
3.5 repeatedly proves the claim. �

Theorem 3.7. Let X = Spec(A)/S be a smooth, equi-dimensional, affine, irreducible scheme of
relative dimension d. Let Z = Spec(A/f), z be a closed point in Z lying over s ∈ S, where f is such
that dim(Zs) < dim(Xs). Then there exists an open subset Ω ⊂ Ed with Ω(k) 6= ∅ such that for all
Φ = (Ψ, ν) ∈ Ω(k) the following hold

(1) Ψ|Z : Z → Ad−1
S is finite.

(2) Ψ is étale at all points of F := ψ−1(ψ(z)) ∩ Z.
(3) Φ|F : F → Φ(F ) is radicial.

Recall that Φ : F → Φ(F ) is said to be radicial [Sta, Tag 01S2] if Φ is injective and for all x ∈ F
the residue field extension k(x)/k(Φ(x)) is trivial.
To prove this theorem, we first get an open set of finite maps in Proposition 3.9. Then we get a
non-empty open set of étale and radicial maps in Lemma 3.10.

Remark 3.8. By [SS, Prop. 2.6 and Lemma 2.7] we have a closed embedding X ↪→ ANS such that Z
(Nisnevich locally around z) satisfies Theorem 2.1.

Proposition 3.9. Let X and Z be as in Theorem 3.7 with S a spectrum of a Henselian local ring R.
Then there is an open subset Ω ⊂ Ed with Ω(R) 6= ∅ such that for all Ψ ∈ Ω(R), Ψ|Z : Z → Ad−1

S is
finite.

Proof. We proceed as in [SS, Lemma 2.11]. By Remark 3.8 we have closed embedding X ↪→ ANS .
Viewing Ed−1 as a closed subscheme of Ed by taking the first d − 1 factors we consider the closed
subscheme

V = Ed−1 ×S H∞ ↪→ Ed ×S H∞
where H∞ is the hyperplane at infinity in PNS . Note that V → Ed has fiber Vv = L(v1,...,vd−1) for any

v = (v1, . . . , vd) ∈ Ed(R). Consider the open subscheme Ω of Ed defined as

Ed \ p1(V ∩ (Ed ×S (Z ∩H∞))),

where p1 is projection of Ed−1 ×S H∞ onto the first factor. By construction every point in Ω(R)
consists of a linear map v = (v1, . . . , vd) : ANS → AdS such that Lv′ ∩Z = ∅, where v′ = (v1, . . . , vd−1).
By Lemma 3.4, this will be our required finite map, thus proving Ω(R) 6= ∅ will finish the proposition.
As R is Henselian local, the induced map from Ω(R) to Ω(k) is surjective, hence it suffices to prove
Ω(k) = Ωσ(k) 6= ∅. By construction we have, Ωσ(k) = Edσ \ p1(Vσ ∩ (Edσ ×S ((Z)σ ∩ H∞))) and any
point in Ω(k) gives a linear map u = (u1, . . . , ud) : ANk → Adk such that Lu′ ∩ (Z)σ = ∅, where
u′ = (u1, . . . , ud−1). By Lemma 3.6 such a map exists. �

Proposition 3.10. Let φ = (ψ, ν) = (u1, . . . , ud) : X → Ad−1
S × A1

S and F := ψ−1(ψ(z)) ∩ Z. There
exists an open set Ω2 ⊂ Ed such that Ω2(R) 6= ∅ and for any φ ∈ Ω2(R)

(1) φ is étale at all points of F .
(2) φ|F : F → φ(F ) is radicial.

Proof. See [SS, Lemma 2.12].
�

Proof of Theorem 3.7. Let Ω1 and Ω2 be as in the Propositions 3.9 and 3.10. Then the set Ω =
(Ω1 × E) ∩ Ω2 satisfies all the required conditions. �

Now we obtain the sets U and V . The sets U and V are constructed to satisfy all the conditions
of Theorem 1.1.
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Lemma 3.11. Let Φ = (Ψ, ν) satisfy conditions (1)-(3) of Theorem 3.7. Then there exists an open

neighborhood V ⊂ Ad−1
S of Ψ(z) such that

(1) Φ is étale at all points of Z ∩Ψ−1(V ).
(2) Φ|Z∩Ψ−1(V ) : Z ∩Ψ−1(V )→ A1

V is a closed immersion.

Proof. See [SS, Lemma 2.13].
�

Lemma 3.12. There exists a closed subset U ⊂ Ψ−1(V ) such that

(1) U1 = Ψ−1(V ) \ U contains z
(2) U1 satisfies Z ∩Ψ−1(V ) = Z ∩ U1 and Φ−1(Φ(Z ∩ U1)) ∩ U1 = Z ∩ U1.

Proof. See [SS, Lemma 2.14] �

Proof of Theorem 1.1. Let U2 be the open locus where Φ is étale. From Lemma 3.11 z ∈ U2 and
Z ∩Ψ−1(V ) ⊂ U2. Now let U = U1 ∩U2, with U1 as in Lemma 3.12. Then U also satisfies conditions
(2) and (3) of Lemma 3.12. Furthermore ΨU is étale. Hence we get Φ,Ψ, U, V satisfying all the
conditions of Theorem 1.1. �

4. Stable Connectivity

In this section we give a sketch of the proof of Theorem 1.2. We do not claim any originality here
and all the proofs of the statements in this section can be found in [SS, §4]. Throughout this section
SmS will denote the category of smooth schemes over a given scheme S.

Lemma 4.1. Let Spec(R) = S be a noetherian scheme of finite Krull dimension with a codimension d

point s ∈ S. Let E ∈ SHsS1≥d+1(S). Then for any X ∈ SmS with Xs 6= ∅ and any f ∈ [Σ∞S1X+, L
A1

E]

in SHsS1(S), there exists an open subscheme U in X such that U intersects each irreducible component
of Xs non trivially and f |Σ∞

S1U+
= 0.

Proof. Let Zi’s be the irreducible components of Xs . From the proof of [SS, Lemma 4.9 ] we obtain
open subschemes Ui’s of X such that Ui∩Zi 6= ∅ and f |Σ∞

S1 (Ui)+ = 0. Define U to be union of all such

Ui’s. Since the left Quillen functor Σ∞S1 gives an adjunction at the level of homotopy category and

LA1

E (apart from being a fibrant object in SHsS1(S) ) is a spectrum of Nisnevich sheaves, we have
f |Σ∞

S1U+
= 0. �

Lemma 4.2. Let X be a smooth irreducible scheme over S and U be a non-empty open subscheme
of X. Denote by Z the reduced closed subscheme X \U . Suppose Nisnevich locally on X we have the
following Nisnevich distinguished square

U X

A1
V \ p(Z) A1

V

p

where the map p : X → A1
V in SmS is étale, with Z → V finite. Then πA1

0 (X/U) = 0.

Proof. See [SS, Lemma 4.6 and Cor. 4.7]. �

Lemmas 4.1 and 4.2 together give a bound on the drop in connectivity, which is sufficient to prove
the connectivity result Theorem 1.2, for details see [SS, Prop. 4.5].

Remark 4.3. Note that if X,Z and S in previous lemma satisfy the conditions stated in Theorem

1.1, we obtain the distinguished square of previous lemma and hence πA1

0 (X/U) = 0.

Remark 4.4. To prove stable connectivity we can assume S to be Henselian local by [SS, Lemma
4.10]
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Proof of Theorem 1.2. We proceed by induction on the dimension of S. The case, dim(S) = 0 follows
from [Mor1]. By Remark 4.4, we may assume S to be Henselian local with closed point σ. Further

we can assume Xσ 6= ∅, where X ∈ Sms. Consider f ∈ [Σ∞S1X+, L
A1

E], then by Lemma 4.1 we
obtain an open subscheme U such that U intersects each irreducible component of Xσ non-trivially
and f |Σ∞

S1U+
= 0. Take the reduced closed subscheme Z = X \ U . Then dim Zσ < dim Xσ. Hence

by Gabber presentation lemma we have Nisnevich distinguished square of Lemma 4.2 which proves

πA1

0 (X/U) = 0. Now connectivity follows from [SS, Prop. 4.5] �
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