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Abstract

We give a description of the use of Kapustin-Li formula in the evaluation of closed
foams. The material in this notes can be found in [10] and [14].
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1 Introduction
In the context of categorification foams first appeared in Khovanov’s construction of
a topological theory categorifying the sl(3)-link polynomial [5]. His construction uses
cobordisms with singularities, called foams, modulo a finite set of relations. In [8] Khovanov
and Rozansky (KR) categorified the sl(N)-link polynomial for arbitrary N, the 1-variable
specializations of the 2-variable HOMFLY-PT polynomial. Their construction uses the
theory of matrix factorizations, a mathematical tool introduced by Eisenbud in [2] (see
also [1, 9, 15]) in the study of maximal Cohen-Macaulay modules over isolated hypersurface
singularities and used by Kapustin and Li as boundary conditions for strings in Landau-
Ginzburg models [4].

The goal of [10] was to construct a combinatorial topological definition of KR link
homology, extending to all N > 3 the work of Khovanov [5] for N = 3 (see also [11]).
Khovanov had to modify considerably his original setting for the construction of sl(2)
link homology in order to produce his sl(3) link homology. It required the introduction of
singular cobordisms with a particular type of singularity, which he called foams. The jump
from sl(3) to sl(N), for N > 3, requires the introduction of a new type of singularity. The
latter is needed for proving invariance under the third Reidemeister move. The introduction
of the new singularities makes it much harder to evaluate closed foams and we do not
know how to do it combinatorially. Instead we use the Kapustin-Li formula [4], which
was introduced by A. Kapustin and Y. Li in [4] in the context of topological Landau-
Ginzburg models with boundaries and adapted to foams by Khovanov1 and Rozansky [6].
The downside is that our construction does not yet allow us to deduce a (fast) algorithm
for computing sl(N) link homology. A positive side-effect is that it allows us to show that
for any link the homology using foams is isomorphic to KR homology. Furthermore the
combinatorics involved in establishing certain identities among foams gets much harder for
arbitrary N. The theory of symmetric polynomials, in particular Schur polynomials, is used
to handle that problem.

1We thank M Khovanov for suggesting that we try to use the Kapustin-Li formula.
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2 Review of matrix factorizations
This section contains a brief review of matrix factorizations and the properties that will
be used throughout this notes. All the matrix factorizations in this notes are Z/2Z×Z-
graded. Let R be a polynomial ring over Q in a finite number of variables. We take the
Z-degree of each polynomial to be twice its total degree. This way R is Z-graded. Let W be
a homogeneous element of R of degree 2m. A matrix factorization of W over R is given by
a Z/2Z-graded free R-module M = M0⊕M1 with two R-homomorphisms of degree m

M0
d0−→M1

d1−→M0

such that d1d0 = W IdM0 and d0d1 = W IdM1 . We call W the potential. The Z-grading of R
induces a Z-grading on M. The shift functor {k} acts on M as

M{k}= M0{k}
d0−→M1{k}

d1−→M0{k},

where its action on the modules M0, M1 means an upward shift by k units on the Z-grading.
A homomorphism f : M→M′ of matrix factorizations of W is a pair of maps of the

same degree fi : Mi→M′i (i = 0,1) such that the diagram

M0
d0 //

f0
��

M1
d1 //

f1
��

M0

f0
��

M′0
d′0 // M′1

d′1 // M′0

commutes. It is an isomorphism of matrix factorizations if f0 and f1 are isomorphisms of
the underlying modules. Denote the set of homomorphisms of matrix factorizations from M
to M′ by

HomMF(M,M′).

It has an R-module structure with the action of R given by r( f0, f1) = (r f0,r f1) for r ∈ R.
Matrix factorizations over R with homogeneous potential W and homomorphisms of matrix
factorizations form a graded additive category, which we denote by MFR(W ). If W = 0 we
simply write MFR.

Another description of matrix factorizations is obtained by assembling the differentials
d0 and d1 into an endomorphism D of the Z/2Z-graded free R-module M = M0⊕M1 such
that

D =
(

0 d1
d0 0

)
degZ/2Z D = 1 D2 = W IdM .

In this case we call D the twisted differential.
The free R-module HomR(M,M′) of graded R-module homomorphisms from M to M′

is a 2-complex

Hom0
R(M,M′) d // Hom1

R(M,M′) d // Hom0
R(M,M′)
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where

Hom0
R(M,M′) = HomR(M0,M′0)⊕HomR(M1,M′1)

Hom1
R(M,M′) = HomR(M0,M′1)⊕HomR(M1,M′0)

and for f in Homi
R(M,M′) the differential acts as

d f = dM′ f − (−1)i f dM.

We define
Ext(M,M′) = Ext0(M,M′)⊕Ext1(M,M′) = Kerd/ Imd,

and write Ext(m)(M,M′) for the elements of Ext(M,M′) with Z-degree m. Note that for f ∈
HomMF(M,M′) we have d f = 0. We say that two homomorphisms f , g ∈ HomMF(M,M′)
are homotopic if there is an element h ∈ Hom1

R(M,M′) such that f −g = dh.
Denote by HomHMF(M,M′) the R-module of homotopy classes of homomorphisms of

matrix factorizations from M to M′ and by HMFR(W ) the homotopy category of MFR(W ).
We denote by M〈1〉 and M• the factorizations

M1
−d1−−→M0

−d0−−→M1

and
(M0)∗

−(d1)
∗

−−−−→ (M1)∗
(d0)

∗

−−−→ (M0)∗

respectively. Factorization M〈1〉 has potential W while factorization M• has potential −W .
We call M• the dual factorization of M.

We have

Ext0(M,M′)∼= HomHMF(M,M′)

Ext1(M,M′)∼= HomHMF(M,M′〈1〉)

The tensor product M⊗R M• has potential zero and is therefore a 2-complex. Denoting
by HMF the homology of matrix factorizations with potential zero we have

Ext(M,M′)∼= HMF(M′⊗R M•)

and, if M is a matrix factorization with W = 0,

Ext(R,M)∼= HMF(M).

Let R = Q[x1, . . . ,xk] and W ∈ R. The Jacobi algebra of W is defined as

(1) JW = R/(∂1W, . . . ,∂kW ),

where ∂i means the partial derivative with respect to xi. Writing the differential as a
matrix and differentiating both sides of the equation D2 = W with respect to xi we get
D(∂iD)+(∂iD)D = ∂iW . We thus see that multiplication by ∂iW is homotopic to the zero
endomorphism and that the homomorphism

R→ EndHMF(M), r 7→ m(r)
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factors through the Jacobi algebra of W .
Let f ,g ∈ End(M). We define the supercommutator of f and g as

[ f ,g]s = f g− (−1)degZ/2Z( f )degZ/2Z(g)g f .

The supertrace of f is defined as

STr( f ) = Tr
(
(−1)gr f

)
where the grading operator (−1)gr ∈ End(M0⊕M1) is given by

(m0,m1) 7→ (m0,−m1), m0 ∈M0, m1 ∈M1.

If f and g are homogeneous with respect to the Z/2Z-grading we have that

STr( f g) = (−1)degZ/2Z( f )degZ/2Z(g) STr(g f ),

and
STr
(
[ f ,g]s

)
= 0.

There is a canonical isomorphism of Z/2Z-graded R-modules

End(M)∼= M⊗R M•.

Choose a basis {| i〉} of M and define a dual basis {〈 j |} of M• by 〈 j|i〉= δi, j, where δ is the
Kronecker symbol. There is a natural pairing map M⊗M•→ R called the super-contraction
that is given on basis elements | i〉〈 j | by

| i〉〈 j | 7→ (−1)degZ/2Z(| i〉)degZ/2Z(〈 j |)〈 j|i〉= δi, j.

The super-contraction induces a map End(M)→ R which coincides with the supertrace.
When M and M• are factors in a tensor product (M ⊗R N)⊗R (M• ⊗R N•) the super-
contraction of M with M• induces a map STrM : End(M⊗R N)→ End(N) called the partial
super-trace (w.r.t. M).

2.1 Koszul Factorizations
For a, b homogeneous elements of R, an elementary Koszul factorization {a,b} over R with
potential ab is a factorization of the form

R a−→ R
{

1
2

(
degZ b−degZ a

)} b−→ R.

When we need to emphasize the ring R we write this factorization as {a,b}R. The tensor
product of matrix factorizations Mi with potentials Wi is a matrix factorization with poten-
tial ∑iWi. We restrict to the case where all the Wi are homogeneous of the same degree.
Throughout this notes we use tensor products of elementary Koszul factorizations {a j,b j}
to build bigger matrix factorizations, which we write in the form of a Koszul matrix as

a1 , b1
...

...
ak , bk


5



We denote by {a,b} the Koszul matrix which has columns (a1, . . . ,ak) and (b1, . . . ,bk).

If
k
∑

i=1
aibi = 0 then {a,b} is a 2-complex whose homology is an R/(a1, . . . ,ak,b1, . . . ,bk)-

module, since multiplication by ai and bi are null-homotopic endomorphisms of {a,b}.
Note that the action of the shift 〈1〉 on {a,b} is equivalent to switching terms in one

line of {a,b}:

{a,b}〈1〉 ∼=



...
...

ai−1 , bi−1
−bi , −ai

ai+1 , bi+1
...

...


{

1
2

(
degZ bi−degZ ai

)}
.

If we choose a different row to switch terms we get a factorization which is isomorphic to
this one. We also have that

{a,b}• ∼= {a,−b}〈k〉{sk},

where

sk =
k

∑
i=1

degZ ai−
k
2

degZW.

Let R = Q[x1, . . . ,xk] and R′= Q[x2, . . . ,xk]. Suppose that W = ∑i aibi ∈R′ and x1−bi ∈
R′, for a certain 1≤ i≤ k. Let c = x1−bi and {âi, b̂i} be the matrix factorization obtained
from {a,b} by deleting the i-th row and substituting x1 by c.

Lemma 2.1 (excluding variables). The matrix factorizations {a,b} and {âi, b̂i} are homo-
topy equivalent.

In [8] one can find the proof of this lemma and its generalization with several variables.
The following lemma contains three particular cases of Proposition 3 in [8]:

Lemma 2.2 (Row operations). We have the following isomorphisms of matrix factorizations{
ai , bi

a j , b j

}
[i, j]λ∼=

{
ai−λa j , bi

a j , b j +λbi

}
,

{
ai , bi

a j , b j

} [i, j]′
λ∼=
{

ai +λb j , bi

a j−λbi , b j

}
for λ ∈ R. If λ is invertible in R, we also have

{
ai , b j

} [i]λ∼=
{

λai , λ
−1bi

}
.

Proof. It is straightforward to check that the pairs of matrices

[i, j]
λ

=

((
1 0
0 1

)
,

(
1 −λ

0 1

))
, [i, j]′

λ
=

((
1 0
−λ 1

)
,

(
1 0
0 1

))
and [i]

λ
=(1, λ )

define isomorphisms of matrix factorizations.

Recall that a sequence (a1,a2, . . . ,ak) is called regular in R if a j is not a zero divisor in
R/(a1,a2, . . . ,a j−1), for j = 1, . . . ,k. The proof of the following lemma can be found in [7].

6



Lemma 2.3. Let b = (b1,b2, . . . ,bk), a = (a1,a2, . . . ,ak) and a′ = (a′1,a
′
2, . . . ,a

′
k) be se-

quences in R. If b is regular and ∑i aibi = ∑i a′ibi then the factorizations

{a ,b} and {a′ ,b}

are isomorphic.

A factorization M with potential W is said to be contractible if it is isomorphic to a
direct sum of factorizations of the form

R 1−→ R{ 1
2 degZW} W−→ R and R W−→ R{− 1

2 degZW} 1−→ R.
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3 Schur polynomials and the cohomology of partial
flag varieties
In this section we recall some basic facts about Schur polynomials and the cohomology of
partial flag varieties.

3.1 Schur polynomials
A nice basis for homogeneous symmetric polynomials is given by the Schur polynomials.
If λ = (λ1, . . . ,λk) is a partition such that λ1 ≥ . . . ≥ λk ≥ 0, then the Schur polynomial
πλ (x1, . . . ,xk) is given by the following expression:

(2) πλ (x1, . . . ,xk) =
det
(
xλ j+k− j

i

)
∆

,

where ∆ = ∏i< j(xi− x j), and by det(xλ j+k− j
i ), we have denoted the determinant of the

k× k matrix whose (i, j) entry is equal to xλ j+k− j
i . Note that the elementary symmetric

polynomials are given by π1,0,0,...,0,π1,1,0,...,0, . . . ,π1,1,1,...,1. There are multiplication rules
for the Schur polynomials which show that any πλ1,λ2,...,λk can be expressed in terms of the
elementary symmetric polynomials.

If we do not specify the variables of the Schur polynomial πλ , we will assume that these
are exactly x1, . . . ,xk, with k being the length of λ , i.e.

πλ1,...,λk := πλ1,...,λk(x1, . . . ,xk).

In this notes we only use Schur polynomials of two and three variables. In the case of
two variables, the Schur polynomials are indexed by pairs of nonnegative integers (i, j),
such that i≥ j, and (2) becomes

πi, j =
i

∑
`= j

x`
1xi+ j−`

2 .

Directly from Pieri’s formula we obtain the following multiplication rule for the Schur
polynomials in two variables:

(3) πi, jπa,b = ∑πx,y,

where the sum on the r.h.s. is over all indices x and y such that x + y = i + j + a + b and
a+ i≥ x≥max(a+ j,b+ i). Note that this implies min(a+ j,b+ i)≥ y≥ b+ j. Also, we
shall write πx,y ∈ πi, jπa,b if πx,y belongs to the sum on the r.h.s. of (3). Hence, we have
that πx,x ∈ πi, jπa,b iff a + j = b + i = x and πx+1,x ∈ πi, jπa,b iff a + j = x + 1, b + i = x or
a+ j = x, b+ i = x+1.

We shall need the following combinatorial result which expresses the Schur polynomial
in three variables as a combination of Schur polynomials of two variables. For i≥ j≥ k≥ 0,
and the triple (a,b,c) of nonnegative integers, we define

(a,b,c) @ (i, j,k),
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if a + b + c = i + j + k, i ≥ a ≥ j and j ≥ b ≥ k. We note that this implies that i ≥ c ≥ k,
and hence max{a,b,c} ≤ i.

Lemma 3.1.
πi, j,k(x1,x2,x3) = ∑

(a,b,c)@(i, j,k)
πa,b(x1,x2)xc

3.

Proof. From the definition of the Schur polynomial, we have

πi, j,k(x1,x2,x3) =
(x1x2x3)k

(x1− x2)(x1− x3)(x2− x3)
det

xi−k+2
1 x j−k+1

1 1
xi−k+2

2 x j−k+1
2 1

xi−k+2
3 x j−k+1

3 1

 .

After subtracting the last row from the first and the second one of the last determinant, we
obtain

πi, j,k =
(x1x2x3)k

(x1− x2)(x1− x3)(x2− x3)
det

(
xi−k+2

1 − xi−k+2
3 x j−k+1

1 − x j−k+1
3

xi−k+2
2 − xi−k+2

3 x j−k+1
2 − x j−k+1

3

)
,

and so

πi, j,k =
(x1x2x3)k

x1− x2
det

(
∑

i−k+1
m=0 xm

1 xi−k+1−m
3 ∑

j−k
n=0 xn

1x j−k−n
3

∑
i−k+1
m=0 xm

2 xi−k+1−m
3 ∑

j−k
n=0 xn

2x j−k+n
3

)
.

Finally, after expanding the last determinant we obtain

(4) πi, j,k =
(x1x2x3)k

x1− x2

i−k+1

∑
m=0

j−k

∑
n=0

(xm
1 xn

2− xn
1xm

2 )xi+ j−2k+1−m−n
3 .

We split the last double sum into two: the first one when m goes from 0 to j− k, denoted
by S1, and the other one when m goes from j− k +1 to i− k +1, denoted by S2. To show
that S1 = 0, we split the double sum further into three parts: when m < n, m = n and m > n.
Obviously, each summand with m = n is equal to 0, while the summands of the sum for
m < n are exactly the opposite of the summands of the sum for m > n. Thus, by replacing
only S2 instead of the double sum in (4) and after rescaling the indices a = m + k− 1,
b = n+ k, we get

πi, j,k =
(x1x2x3)k

x1− x2

i−k+1

∑
m= j−k+1

j−k

∑
n=0

(xm
1 xn

2− xn
1xm

2 )xi+ j−2k+1−m−n
3

=
i

∑
a= j

j

∑
b=k

πa,bxi+ j+k−a−b
3 = ∑

(a,b,c)@(i, j,k)
πa,bxc

3,

as wanted.

Of course there is a multiplication rule for three-variable Schur polynomials which is
compatible with (3) and the lemma above, but we do not want to discuss it here. For details
see [3].
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3.2 The cohomology of partial flag varieties
In this notes the rational cohomology rings of partial flag varieties play an essential role.
The partial flag variety Fld1,d2,...,dl , for 1≤ d1 < d2 < .. . < dl = N, is defined by

Fld1,d2,...,dl = {Vd1 ⊂Vd2 ⊂ . . .⊂Vdl = CN |dim(Vi) = i}.

A special case is Flk,N , the Grassmannian variety of all k-planes in CN , also denoted Gk,N .
The dimension of the partial flag variety is given by

dimFld1,d2,...,dl = N2−
l−1

∑
i=1

(di+1−di)2−d2
1 .

The rational cohomology rings of the partial flag varieties are well known and we only
recall those facts that we need in this notes.

Lemma 3.2. H(Gk,N) is isomorphic to the vector space generated by all πi1,i2,...,ik modulo
the relations

(5) πN−k+1,0,...,0 = 0, πN−k+2,0,...,0 = 0, . . . , πN,0,...,0 = 0,

where there are exactly k−1 zeros in the multi-indices of the Schur polynomials.

A consequence of the multiplication rules for Schur polynomials is that

Corollary 3.3. The Schur polynomials πi1,i2,...,ik , for N− k ≥ i1 ≥ i2 ≥ . . .≥ ik ≥ 0, form a
basis of H(Gk,N)

Thus, the dimension of H(Gk,N) is
(N

k

)
, and up to a degree shift, its graded dimension is

[N
k

]
.

Another consequence of the multiplication rules is that

Corollary 3.4. The Schur polynomials π1,0,0,...,0,π1,1,0,...,0, . . . ,π1,1,1,...,1 (the elementary
symmetric polynomials) generate H(Gk,N) as a ring.

Furthermore, we can introduce a non-degenerate trace form on H(Gk,N) by giving its
values on the basis elements

(6) ε(πλ ) =

{
(−1)b

k
2 c, λ = (N− k, . . . ,N− k)

0, else
.

This makes H(Gk,N) into a commutative Frobenius algebra. One can compute the basis dual
to {πλ} in H(Gk,N), with respect to ε . It is given by

(7) π̂λ1,...,λk = (−1)b
k
2 cπN−k−λk,...,N−k−λ1 .

We can also express the cohomology rings of the partial flag varieties Fl1,2,N and Fl2,3,N

in terms of Schur polynomials. Indeed, we have

H(Fl1,2,N) = Q[x1,x2]/(πN−1,0,πN,0),

H(Fl2,3,N) = Q[x1 + x2,x1x2,x3]/(πN−2,0,0,πN−1,0,0,πN,0,0).
(8)
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The natural projection map p1 : Fl1,2,N → G2,N induces

(9) p∗1 : H(G2,N)→ H(Fl1,2,N),

which is just the inclusion of the polynomial rings. Analogously, the natural projection map
p2 : Fl2,3,N → G3,N , induces

(10) p∗2 : H(G3,N)→ H(Fl2,3,N),

which is also given by the inclusion of the polynomial rings.

4 Foams
In this section we begin to define the foams we will work with (foams were called pre-
foams in [10] and in [14]. This distinction is irrelevant for the purposes of this notes). The
philosophy behind these foams will be explained in Section 5. The basic examples of foams
are given in Figure 1. These foams are composed of three types of facets: simple, double
and triple facets. The double facets are coloured and the triple facets are marked to show
the difference. Intersecting such a foam with a plane results in a web, as long as the plane

* *

Figure 1: Some elementary foams

avoids the singularities where six facets meet, such as on the right in Figure 1. Recall that a
web is a planar trivalent graph with three types of edges: simple, double and triple which
contain closed loops (simple, double, triple) and that only the simple edges are equipped
with an orientation.

We adapt the definition of a world-sheet foam given in [12] to our setting.

Definition 4.1. Let sγ be a finite closed oriented 4-valent graph, which may contain disjoint
circles. We assume that all edges of sγ are oriented. A cycle in sγ is defined to be a circle
or a closed sequence of edges which form a piece-wise linear circle. Let Σ be a compact
orientable possibly disconnected surface, whose connected components are white, coloured
or marked, also denoted by simple, double or triple. Each component can have a boundary
consisting of several disjoint circles and can have additional decorations which we discuss
below. A closed foam u is the identification space Σ/sγ obtained by glueing boundary
circles of Σ to cycles in sγ such that every edge and circle in sγ is glued to exactly three
boundary circles of Σ and such that for any point p ∈ sγ :

11



1. if p is an interior point of an edge, then p has a neighborhood homeomorphic to the
letter Y times an interval with exactly one of the facets being double, and at most one
of them being triple. For an example see Figure 1;

2. if p is a vertex of sγ , then it has a neighborhood as shown on the r.h.s. in Figure 1.

We call sγ the singular graph, its edges and vertices singular arcs and singular vertices,
and the connected components of u− sγ the facets.

Furthermore the facets can be decorated with dots. A simple facet can only have black
dots (]), a double facet can also have white dots (^), and a triple facet besides black and
white dots can have double dots (_). Dots can move freely on a facet but are not allowed to
cross singular arcs. See Figure 2 for examples of foams.

*

**

a) b)

Figure 2: a) A foam. b) An open foam

Note that the cycles to which the boundaries of the simple and the triple facets are
glued are always oriented, whereas the ones to which the boundaries of the double facets
are glued are not. Note also that there are two types of singular vertices. Given a singular
vertex v, there are precisely two singular edges which meet at v and bound a triple facet:
one oriented toward v, denoted e1, and one oriented away from v, denoted e2. If we use
the “left hand rule”, then the cyclic ordering of the facets incident to e1 and e2 is either
(3,2,1) and (3,1,2) respectively, or the other way around. We say that v is of type I in the
first case and of type II in the second case (see Figure 3). When we go around a triple facet

e1

e2

e3

e4

∗
e1 e3

e2

e4

∗

Figure 3: Singular vertices of type I and type II

we see that there have to be as many singular vertices of type I as there are of type II for the
cyclic orderings of the facets to match up. This shows that for a closed foam the number of
singular vertices of type I is equal to the number of singular vertices of type II.
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We can intersect a foam u generically by a plane W in order to get a web, as long as
the plane avoids the vertices of sγ . The orientation of sγ determines the orientation of the
simple edges of the web according to the convention in Figure 4.

W W

*

W
*

W W

*

W
*

Figure 4: Orientations near a singular arc

Suppose that for all but a finite number of values i ∈]0,1[, the plane W × i intersects
u generically. Suppose also that W ×0 and W ×1 intersect u generically and outside the
vertices of sγ . We call W × I ∩ u an open foam. Interpreted as morphisms we read open
foams from bottom to top, and their composition consists of placing one foam on top of
the other, as long as their boundaries are isotopic and the orientations of the simple edges
coincide.

We now define the q-degree of a foam. Let u be a foam, u1, u2 and u3 the disjoint union
of its simple and double and marked facets respectively and sγ(u) its singular graph. Define
the partial q-gradings of u as

qi(u) = χ(ui)−
1
2

χ(∂ui∩∂u), i = 1,2,3

qsγ
(u) = χ(sγ(u))− 1

2
χ(∂ sγ(u)).

where χ is the Euler characteristic and ∂ denotes the boundary.

Definition 4.2. Let u be a foam with d] dots of type ], d^ dots of type ^ and d_ dots of
type _. The q-grading of u is given by

q(u) =−
3

∑
i=1

i(N− i)qi(u)−2(N−2)qsγ
(u)+2d] +4d^ +6d_ .

The following result is a direct consequence of the definitions.

Lemma 4.3. q(u) is additive under the glueing of foams.

5 The KL formula and the evaluation of closed foams
Let us briefly recall the philosophy behind the foams. Losely speaking, to each closed
foam should correspond an element in the cohomology ring of a configuration space of
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planes in some big CM . The singular graph imposes certain conditions on those planes. The
evaluation of a foam should correspond to the evaluation of the corresponding element in
the cohomology ring. Of course one would need to find a consistent way of choosing the
volume forms on all of those configuration spaces for this to work. However, one encounters
a difficult technical problem when working out the details of this philosophy. Without
explaining all the details, we can say that the problem can only be solved by figuring out
what to associate to the singular vertices. Ideally we would like to find a combinatorial
solution to this problem, but so far it has eluded us. That is the reason why we are forced to
use the KL formula.

We denote a simple facet with i dots by

i .

Recall that πk,m can be expressed in terms of π1,0 and π1,1. In the philosophy explained
above, the latter should correspond to ] and ^ on a double facet respectively. We can then
define

(k,m)

as being the linear combination of dotted double facets corresponding to the expression of
πk,m in terms of π1,0 and π1,1. Analogously we expressed πp,q,r in terms of π1,0,0, π1,1,0 and
π1,1,1 (see Section 3). The latter correspond to ], ^ and _ on a triple facet respectively, so
we can make sense of

*
(p,q,r) .

In the sequel, we shall give a definition of the KL formula for the evaluation of foams
and state some of its basic properties. The KL formula was introduced by A. Kapustin and
Y. Li [4] to generalize Vafa’s work [13] in the context of the evaluation of 2-dimensional
TQFTs to the case of smooth surfaces with boundary. It was later extended to the case of
foams by M. Khovanov and L. Rozansky in [6], who interpreted singular arcs as boundary
conditions as in [4]. Khovanov and Rozansky adapted the KL formula to a general sort
of foam. In this notes we have to specify the input data which allows us to use it for the
evaluation of our foams. The normalization is ours and is used to obtain integral relations.

5.1 The general framework
Let u = Σ/sγ be a closed foam with singular graph sγ and without any dots on it. Let F
denote an arbitrary i-facet, i ∈ {1,2,3}, with a 1-facet being a simple facet, a 2-facet being
a double facet and a 3-facet being a triple facet.

Each i-facet can be decorated with dots, which correspond to generators of the rational
cohomology ring of the Grassmannian Gi,N , i.e. H(Gi,N ,Q). Alternatively, we can associate
to every i-facet F , i variables xF

1 . . . ,xF
i , with degxF

i = 2i, and the potential W (xF
1 , . . . ,xF

i ),
which is the polynomial defined such that

W (σ1, . . . ,σi) = yN+1
1 + . . .+ yN+1

i ,
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where σ j is the j-th elementary symmetric polynomial in the variables y1, . . . ,yi. The Jacobi
algebra JW

JW = Q[xF
1 , . . . ,xF

i ]/(∂iW ),

where ∂iW denote the ideal generated by the partial derivatives of W , is isomorphic to the
rational cohomology ring of the Grassmannian Gi,N . Note that up to a multiple the top
degree nonvanishing element in this Jacobi algebra is πN−i,...,N−i (multiindex of length i), i.e.
the polynomial in variables xF

1 , . . . ,xF
i which gives πN−i,...,N−i after replacing the variable

xF
j by π1,...,1,0,...,0 with exactly j 1’s, 1≤ j ≤ i (see also Subsection 3.1). We define the trace

(volume) form ε on H(Gi,N ,Q) by giving it on the basis of the Schur polynomials:

ε(π j1,..., ji) =

{
(−1)b

i
2 c if ( j1, . . . , ji) = (N− i, . . . ,N− i)

0 else
.

The KL formula associates to u an element in the product of the cohomology rings of
the Jacobi algebras J, over all the facets in the foam. Alternatively, we can see this element
as a polynomial, KLu ∈ J, in all the variables associated to the facets. Now, let us put some
dots on u. Recall that a dot corresponds to an elementary symmetric polynomial. So a linear
combination of dots on u is equivalent to a polynomial, f , in the variables of the dotted
facets. Let ε denote the product of the trace forms εJi over all facets of u. The value of this
dotted foam we define to be

(11) 〈u〉KL := ε

(
∏
F

det(∂i∂ jWF)g(F)

(N +1)g′(F) KLu f
)

.

The product is over all facets F and WF is the potential associated to F . For any i-facet
F , i = 1,2,3, the symbol g(F) denotes the genus of F and g′(F) = ig(F). If u is a closed
surface without singularities we define KLu = 1 and 〈 〉KL reduces to an extension to colored
closed surfaces of the formula introduced by Vafa in [13]. The Vafa factor

∏
F

det(∂i∂ jWF)g(F)

(N +1)g′(F)

computes the contribution of the handles in the facets of u.
Having explained the general idea, we are left with defining the element KLu for a

dotless foam. For that we have to explain Khovanov and Rozansky’s extension of the KL
formula to foams [6], which uses the theory of matrix factorizations.

5.2 Decoration of foams
As we said, to each facet we associate certain variables (depending on the type of facet),
a potential and the corresponding Jacobi algebra. If the variables associated to a facet F
are x1, . . . ,xi, then we define RF = Q[x1, . . . ,xi]. It is immediate that the KL formula gives
zero if the argument of ε in Equation 11 contains an element of ∂iWF : for any Q ∈

⊗
F

RF

we have that

(12) ε(Q∂iWF) = 0.
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Now we consider the edges. To each edge we associate a matrix factorization whose
potential is equal to the signed sum of the potentials of the facets that are glued along this
edge. We define it to be a certain tensor product of Koszul factorizations. In the cases we
are interested in there are always three facets glued along an edge, with two possibilities:
either two simple facets and one double facet, or one simple, one double and one triple
facet. In the first case, we denote the variables of the two simple facets by x and y and take

W(s,t)
xN+1

yN+1

W (s, t)

Figure 5: Singular edge of type (1,1,2)

the potentials to be xN+1 and yN+1 respectively, according to the convention in Figure 5. To
the double facet we associate the variables s and t and the potential W (s, t). To the edge we
associate the matrix factorization which is the tensor product of Koszul factorizations given
by

(13) MF1 =
{

A′, x+ y− s
B′, xy− t

}
,

where A′ and B′ are given by

A′ =
W (x+ y,xy)−W (s,xy)

x+ y− s
,

B′ =
W (s,xy)−W (s, t)

xy− t
.

Note that (x+ y− s)A′+(xy− t)B′ = xN+1 + yN+1−W (s, t).
In the second case, the variable of the simple facet is x and the potential is xN+1, the

variables of the double facet are s and t and the potential is W (s, t), and the variables of the
triple face are p, q and r and the potential is W (p,q,r).
Define the polynomials

A =
W (x+ s,xs+ t,xt)−W (p,xs+ t,xt)

x+ s− p
,(14)

B =
W (p,xs+ t,xt)−W (p,q,xt)

xs+ t−q
,(15)

C =
W (p,q,xt)−W (p,q,r)

xt− r
,(16)

so that

(x+ s− p)A+(xs+ t−q)B+(xt− r)C = xN+1 +W (s, t)−W (p,q,r).
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W(s,t)

xN+1

W (s, t)

W (p,q,r)∗

Figure 6: Singular edge of type (1,2,3)

To such an edge we associate the matrix factorization given by the following tensor product
of Koszul factorizations:

(17) MF2 =


A, x+ s− p
B, xs+ t−q
C, xt− r

 .

In both cases, if the edges have the opposite orientation we associate the matrix factor-
izations (MF1)• and (MF2)• respectively.

Next we explain what we associate to a singular vertex. First of all, for each vertex
v, we define its local graph γv to be the intersection of a small sphere centered at v with
the foam. Then the vertices of γv correspond to the edges of u that are incident to v, to
which we had associated matrix factorizations. In this notes all local graphs γv are in fact
tetrahedrons. However, recall that there are two types of vertices (see the remarks below
Definition 4.1). Label the six facets that are incident to a vertex v by the numbers 1,2,3,4,5
and 6. Furthermore, denote the edge along which are glued the facets i, j and k by (i jk).
Denote the matrix factorization associated to the edge (i jk) by Mi jk, if the edge points
toward v, and by (Mi jk)•, if the edge points away from v. Note that Mi jk and (Mi jk)• are
both defined over Ri⊗R j⊗Rk.

Now we can take the tensor product of these four matrix factorizations, over the
polynomial rings of the facets of the foam, that correspond to the vertices of γv. This way
we obtain the matrix factorization Mv, whose potential is equal to 0, and so it is a 2-complex
and we can take its homology.

To each vertex v we associate an element Ov ∈HMF(Mv). More precisely, if v is of type
I, then

HMF(Mv)∼= Ext(MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r) ,

MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r)) .
(18)

If v is of type II, then

HMF(Mv)∼= Ext(MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r) ,

MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r)) .
(19)

Both isomorphisms hold up to a global shift in q. Note that

MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r)'MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r),
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because both tensor products are homotopy equivalent to the factorization
∗, x+ y+ z− p
∗, xy+ xz+ yz−q
∗, xyz− r

 .

We have not specified the l.h.s. of the latter Koszul matrix, because of Lemma 2.3. If v is of
type I, we take Ov to be the cohomology class of a fixed degree 0 homotopy equivalence

wv : MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q,r)→MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q,r).

The choice of Ov is unique up to a scalar, because the graded dimension of the Ext-group in
(18) is equal to

q3N−6 qdim(H(Mv)) = q3N−6[N][N−1][N−2] = 1+q(. . .),

where (. . .) is a polynomial in q. Note that Mv is homotopy equivalent to the matrix
factorization which corresponds to the closure of ϒ in [8], which allows one to compute the
graded dimension above using the results in the latter paper. If v is of type II, we take Ov

to be the cohomology class of the homotopy inverse of wv. Note that a particular choice
of wv fixes Ov for both types of vertices and that the value of the KL formula for a closed
foam does not depend on that choice because there are as many singular vertices of type I
as there are of type II (see the remarks below Definition 4.1). We do not know an explicit
formula for Ov. Although such a formula would be very interesting to have, we do not need
it for the purposes of this notes.

5.3 The KL derivative and the evaluation of closed foams
From the definition, every boundary component of each facet F is either a circle or a cyclicly
ordered finite sequence of edges, such that the beginning of the next edge corresponds to the
end of the previous edge. For every boundary component choose an edge e and denote the
differential of the matrix factorization associated to this edge by De. Let RF = Q[x1, . . . ,xk].
The KL derivative of De in the variables x1, . . . ,xk associated to the facet F , is an element
from End(M)∼= M⊗M•, given by:

(20) OF,e = ∂Dê =
1
k! ∑

σ∈Sk

(sgnσ)∂σ(1)De∂σ(2)De . . .∂σ(k)De,

where Sk is the symmetric group on k letters, and ∂iD is the partial derivative of D with
respect to the variable xi. For all the other edges e′ in the boundary of F we take OF,e′ to be
the identity. Denote the set of facets whose boundary contains e by F(e). For every edge
define Oe ∈ End(M) as the composite

Oe = ∏
F∈F(e)

OF,e.

The order of the factors in Oe is irrelevant as we will prove it in Lemma 5.2.
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Let V and E be the sets of all vertices and all edges of the singular graph sγ of a foam
u. Denote the matrix factorization associated to an edge e by Me (Me = MF1 if e is of type
(1,1,2) and Me = MF2 if e is of type (1,2,3)). Recall that the factorization Mv associated
to a singular vertex is the tensor product of the matrix factorizations associated to the edges
that are incident to v. Consider the factorization Msγ

given by the tensor product

(21) Msγ
=
(⊗

v∈V
Mv

)
⊗
(⊗

e∈E
Me⊗ (Me)•

)
.

From the definition of Mv we see that we can group all the factorizations involved in pairs
of mutually dual factorizations: for every edge e we can pair Me coming from Me⊗ (Me)•
with (Me)• coming from Mv and (Me)• from Me⊗ (Me)• can be paired with Me coming
from Mv. Using super-contraction on each pair we get a map

φγ : Msγ
→Q[xu],

where xu is the set of variables associated to all the facets of u.

Definition 5.1. KLu = φγ

((⊗
v∈V

Ov
)
⊗
(⊗

e∈E
Oe
))

.

Note that the Oe and Ov can be seen as tensors with indices associated to the facets that
meet at e and v respectively. So we can super-contract all the tensor factors Oe and Ov, with
respect to a particular facet F , along a cycle that bounds F . From Definition 5.1 we see that
if we do this for all boundary components of all facets we also get KLu.

Lemma 5.2. KLu does not depend on the order of the factors in Oe.

Proof. Let e be an edge in the boundary of facets F and F ′. Since the potential We is a sum
of the individual potentials associated to the facets that are glued along e, each depending
on its own set of variables, we have ∂i∂

′
jWe = 0. Therefore, applying ∂i∂

′
j to both sides of

the relation D2
e = We gives

[∂iDe,∂
′
jDe]s =−[De,∂i∂

′
jDe]s,

and the term on the r.h.s. is annihilated after the super-contraction because it is a coboundary.
This means that the KL derivatives of D w.r.t. different facets super-commute.

Lemma 5.3. KLu does not depend on the choice of the preferred edges.

Proof. It suffices to prove the claim for only one facet F with one boundary component.
Label the edges that bound F by e1, . . . , ek and take e1 as the preferred edge of F . Suppose
first that F is a simple or a triple facet, so that its boundary consists of an oriented cycle of
sγ . Suppose also that ei is oriented from vi to vi+1. Since [OF,e,OF ′,e]s = 0 for every F ′ 6= F
we can assume that Oe1 = OF,e1 without loss of generality. The contribution to KLu of the
facet F is given by

STrWF

(
∂Dê1Ov1Ov2 . . .Ovk

)
,

where STrWF is the partial supertrace w.r.t. the indices associated to F .
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e1

e2e′2

e′1

v1 F

Figure 7: Singular vertex

The relevant part of a small neighborhood of the vertex v1 is depicted in Figure 7,
where only the facet F is shown. From Equation (18) it follows that Ov can be seen as a
homomorphism from Me(e1)⊗Me(e′1) to Me(e2)⊗Me(e′2), where (ei) denotes the variables
associated to the facets that are glued along e. Therefore we have that [D,Ov]s = 0, where
D = De1 + De′1

+ De2 + De′2
and we are using the convention that the composite of two

non-composable homomorphisms is zero. Note that ∂iD = ∂iDe1 + ∂iDe2 since e′1 and e′2
are not variables associated to F . Therefore [D,Ov]s = 0 implies

(22) [∂iD,Ov]s =−[D,∂iOv]s

by partial differentiation w.r.t. a variable of F . This implies

STrWF

(
∂Dê1Ov1Ov2 . . .Ovk

)
= STrWF

(
Ov1∂Dê2Ov2 . . .Ovk

)
,

since terms involving the r.h.s. of Equation (22) get killed by STr.
Now suppose that F is a double facet. The boundary of F is not an oriented cycle in sγ .

Suppose a small neighborhood of v has a part as depicted in Figure 8. In this case Ov can

e1

e2e′2

e′1

v1 F

Figure 8: Double facet near a singular vertex

be seen as a homomorphism from Me(e1)⊗Me(e′1)• to Me(e2)⊗Me(e′2)•, so that D and Ov

super-commute, where D = De1 +(De′1
)•+(De2)•+De′2

. Taking a partial derivative of both
sides of the relation [D,Ov]s relative to a variable associated to F we obtain that

STrWF

(
∂Dê1Ov1Ov2 . . .Ovk

)
= STrWF

(
Ov1∂ (Dê2)•Ov2 . . .Ovk

)
,

which proves the claim.

5.4 Some computations
In this subsection we compute the KL evaluation of some closed foams.
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5.4.1 Spheres

The values of dotted spheres are easy to compute. Note that for any sphere with dots f the
KL formula gives

ε( f ).

Therefore for a simple sphere we get 1 if f = xN−1, for a double sphere we get −1 if
f = πN−2,N−2 and for a triple sphere we get −1 if f = πN−3,N−3,N−3.

Note that the evaluation of spheres corresponds to the trace on the cohomology of the
Grassmannian H(Gi,N) for i = 1,2,3 in Equation (7).

5.4.2 Dot conversion and dot migration

Since KLu takes values in the tensor product of the Jacobi algebras of the potentials
associated to the facets of u, we see that for a simple facet we have xN = 0, for a double
facet πi, j = 0 if i≥ N−1, and for a triple facet πp,q,r = 0 if p≥ N−2. We call these the
dot conversion relations:

i = 0 if i≥ N

(k,m) = 0 if k ≥ N−1

*
(p,q,r) = 0 if p≥ N−2

The dot conversion relations are related to the relations defining the cohomology ring of the
Grassmannian Gk,N for k = 1,2,3 in Equation (5).

To each edge along which two simple facets with variables x and y and one double
facet with the variables s and t are glued, we associated the matrix factorization MF1 with
entries x+y− s and xy− t. Therefore Ext(MF1,MF1) is a module over R/(x+y− s,xy− t).
Hence, we obtain the dot migration relations along this edge. Analogously, to the other
type of singular edge along which are glued a simple facet with variable x, a double facet
with variable s and t, and a triple facet with variables p, q and r, we associated the matrix
factorization MF2. Note that Ext(MF2,MF2) is a module over R/(x+s− p,xs+t−q,xt−r),
which gives us the dot migration relations along this edge:

= +

=

* = * + *

* = * + *
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* = *

The dot migration relations are related to the relations in the cohomology ring of the partial
flag varieties Fl1,2,N and Fl2,3,N in Equation (8) under the projection maps in Equations (9)
and (10).

5.4.3 The (1,1,2)-theta foam

Recall that W (s, t) is the polynomial such that W (x+ y,xy) = xN+1 + yN+1. More precisely,
we have

W (s, t) = ∑
i+2 j=N+1

ai jsit j,

with aN+1,0 = 1, aN+1−2 j, j = (−1) j

j (N +1)
(N− j

j−1

)
, for 2≤ 2 j≤ N +1, and ai j = 0 otherwise.

In particular aN−1,1 =−(N +1). We have

W ′1(s, t) = ∑
i+2 j=N+1

iai jsi−1t j,

W ′2(s, t) = ∑
i+2 j=N+1

jai jsit j−1.

By W ′1(s, t) and W ′2(s, t), we denote the partial derivatives of W (s, t) with respect to the
first and the second variable, respectively.

Figure 9: A dotless (1,1,2)-theta foam

Consider the (1,1,2)-theta foam of Figure 9. According to the conventions of Sub-
section 5.2 we have variables x and y on the lower and upper simple facets respectively,
and the variables s and t on the double facet. To the singular circle we assign the matrix
factorization

MF1 =
{

A′, x+ y− s
B′, xy− t

}
.

Recall that

A′ =
W (x+ y,xy)−W (s,xy)

x+ y− s
,(23)

B′ =
W (s,xy)−W (s, t)

xy− t
.(24)

Hence, the differential of this matrix factorization is given by the following 4 by 4 matrix:

D =
(

0 D1
D0 0

)
,
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where

D0 =
(

A′, xy− t
B′, s− x− y

)
, D1 =

(
x+ y− s, xy− t

B′, −A′

)
.

Note that we are using a convention for tensor products of matrix factorizations that is
different from the one in [10]. The KL formula assigns the polynomial, KLΘ1(x,y,s, t),
which is given by the supertrace of the twisted differential of D

KLΘ1 = STr
(

∂xD∂yD
1
2
(∂sD∂tD−∂tD∂sD)

)
.

Straightforward computation gives

(25) KLΘ1 =−B′s(A
′
x−A′y)− (A′x +A′s)(B

′
y + xB′t)+(A′y +A′s)(B

′
x + yB′t),

where by A′i and B′i we have denoted the partial derivatives with respect to the variable i.
From the definitions (23) and (24) we have

A′x−A′y = (y− x)
W ′2(x+ y,xy)−W ′2(s,xy)

x+ y− s
,

A′x +A′s =
W ′1(x+ y,xy)−W ′1(s,xy)+ y(W ′2(x+ y,xy)−W ′2(s,xy))

x+ y− s
,

A′y +A′s =
W ′1(x+ y,xy)−W ′1(s,xy)+ x(W ′2(x+ y,xy)−W ′2(s,xy))

x+ y− s
,

B′s =
W ′1(s,xy)−W ′1(s, t)

xy− t
,

B′x + yB′t = y
W ′2(s,xy)−W ′2(s, t)

xy− t
,

B′y + xB′t = x
W ′2(s,xy)−W ′2(s, t)

xy− t
.

After substituting this back into (25), we obtain

(26) KLΘ1 = (x− y)det
(

α β

γ δ

)
,

where

α =
W ′1(x+ y,xy)−W ′1(s,xy)

x+ y− s
,

β =
W ′2(x+ y,xy)−W ′2(s,xy)

x+ y− s
,

γ =
W ′1(s,xy)−W ′1(s, t)

xy− t
,

δ =
W ′2(s,xy)−W ′2(s, t)

xy− t
.

From this formula we see that KLΘ1 is homogeneous of degree 4N− 6 (remember that
degx = degy = degs = 2 and deg t = 4).
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Since the evaluation is in the product of the Grassmannians corresponding to the
three disks, i.e. in the ring Q[x]/(xN)×Q[y]/(yN)×Q[s, t]/(W ′1(s, t),W

′
2(s, t)), we have

xN = yN = 0 = W ′1(s, t) = W ′2(s, t). Also, we can express the monomials in s and t as linear
combinations of the Schur polynomials πk,l (writing s = π1,0 and t = π1,1)), and we have
W ′1(s, t) = (N +1)πN,0 and W ′2(s, t) =−(N +1)πN−1,0. Hence, we can write KLΘ1 as

KLΘ1 = (x− y) ∑
N−2≥k≥l≥0

πk,l pkl(x,y),

with pkl being a polynomial in x and y. We want to determine which combinations of dots on
the simple facets give rise to non-zero evaluations, so our aim is to compute the coefficient
of πN−2,N−2 in the sum on the r.h.s. of the above equation (i.e. in the determinant in (26)).
For degree reasons, this coefficient is of degree zero, and so we shall only compute the parts
of α , β , γ and δ which do not contain x and y. We shall denote these parts by putting a bar
over the Greek letters. Thus we have

ᾱ = (N +1)sN−1,

β̄ =−(N +1)sN−2,

γ̄ = ∑
i+2 j=N+1, j≥1

iai jsi−1t j−1,

δ̄ = ∑
i+2 j=N+1, j≥2

jai jsit j−2.

Note that we have
t γ̄ +(N +1)sN = W ′1(s, t),

and
tδ̄ − (N +1)sN−1 = W ′2(s, t),

and so in the cohomology ring of the Grassmannian G2,N , we have t γ̄ =−(N +1)sN and
tδ̄ = (N + 1)sN−1. On the other hand, by using s = π1,0 and t = π1,1, we obtain that in
H(G2,N)∼= Q[s, t]/(πN−1,0,πN,0), the following holds:

sN−2 = πN−2,0 + tq(s, t),

for some polynomial q, and so

sN−1 = sN−2s = πN−1,0 +πN−2,1 + stq(s, t) = t(πN−3,0 + sq(s, t)).

Thus, we have

det
(

ᾱ β̄

γ̄ δ̄

)
= (N +1)(πN−3,0 + sq(s, t))tδ̄ +(N +1)πN−2,0γ̄ +(N +1)q(s, t)t γ̄

= (N +1)2(πN−3,0 + sq(s, t))sN−1 +(N +1)πN−2,0γ̄− (N +1)2q(s, t)sN

= (N +1)2
πN−3,0sN−1 +(N +1)πN−2,0γ̄.(27)
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Since
γ̄ = (N−1)aN−1,1sN−2 + tr(s, t)

holds in the cohomology ring of the Grassmannian G2,N for some polynomial r(s, t), we
have

πN−2,0γ̄ = πN−2,0(N−1)aN−1,1sN−2 =−πN−2,0(N−1)(N +1)sN−2.

Also, we have that for every k ≥ 2,

sk = πk,0 +(k−1)πk−1,1 + t2w(s, t),

for some polynomial w. Replacing this in (27) and bearing in mind that πi, j = 0, for
i≥ N−1, we get

det
(

ᾱ β̄

γ̄ δ̄

)
= (N +1)2sN−2(πN−2,0 +πN−3,1− (N−1)πN−2,0)

= (N +1)2(πN−2,0 +(N−3)πN−3,1 +π2,2w(s, t))(πN−3,1− (N−2)πN−2,0)

=−(N +1)2
πN−2,N−2.

Hence, we have

KLΘ1 = (N +1)2(y− x)πN−2,N−2 + ∑
N−2≥k≥l≥0

N−2>l

ci, j,k,lπk,lxiy j.

Recall that in the product of the Grassmannians corresponding to the three disks, i.e. in the
ring Q[x]/(xN)×Q[y]/(yN)×Q[s, t]/(πN−1,0,πN,0), we have

ε(xN−1yN−1
πN−2,N−2) =−1.

Therefore the only monomials f in x and y such that 〈KLΘ1 f 〉KL 6= 0 are f1 = xN−1yN−2

and f2 = xN−2yN−1, and 〈KLΘ1 f1〉KL =−(N +1)2 and 〈KLΘ1 f2〉KL = (N +1)2. Thus, we
have that the value of the theta foam with unlabelled 2-facet is nonzero only when the upper
1-facet has N−2 dots and the lower one has N−1 dots (and has the value (N +1)2) and
when the upper 1-facet has N−1 dots and the lower one has N−2 dots (and has the value
−(N +1)2). The evaluation of this theta foam with other labellings can be obtained from
the result above by dot migration.

Up to normalization the KL evaluation of the (1,1,2)-theta foam corresponds to the
trace on the cohomology ring of the partial flag variety Fl1,2,N in Equation (8) given by
ε(xN−2

1 xN−1
2 ) = 1, and where x1 and x2 correspond to the dots in the upper and lower facet

respectively.

5.4.4 The (1,2,3)-theta foam

For the theta foam in Figure 10 the method is the same as in the previous case, just the
computations are more complicated. In this case, we have one 1-facet, to which we associate
the variable x, one 2-facet, with variables s and t and the 3-facet with variables p, q and
r. Recall that the polynomial W (p,q,r) is such that W (a + b + c,ab + bc + ac,abc) =
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Figure 10: A dotless (1,2,3)-theta foam

aN+1 +bN+1 + cN+1. We denote by W ′i (p,q,r), i = 1,2,3, the partial derivative of W with
respect to i-th variable. Also, let A, B and C be the polynomials given by

A =
W (x+ s,xs+ t,xt)−W (p,xs+ t,xt)

x+ s− p
,(28)

B =
W (p,xs+ t,xt)−W (p,q,xt)

xs+ t−q
,(29)

C =
W (p,q,xt)−W (p,q,r)

xt− r
.(30)

To the singular circle of this theta foam, we associated the matrix factorization (see
Equations (14)-(17)):

MF2 =


A, x+ s− p
B, xs+ t−q
C, xt− r

 .

The differential of this matrix factorization is the 8 by 8 matrix

D =
(

0 D1
D0 0

)
,

where

D0 =
(

d0 (xt− r) Id2

C Id2 −d1

)
, D1 =

(
d1 (xt− r) Id2

C Id2 −d0

)
.

Here d0 and d1 are the differentials of the matrix factorization{
A, x+ s− p
B, xs+ t−q

}
,

i.e.

d0 =
(

A xs+ t−q
B p− x− s

)
, d1 =

(
x+ s− p xs+ t−q

B −A

)
.

The KL formula assigns to this theta foam the polynomial KLΘ2(x,s, t, p,q,r) given as the
supertrace of the twisted differential of D, i.e.

KLΘ2 = STr
(

∂xD
1
2
(∂sD∂tD−∂tD∂sD)∂3Dˆ

)
,

where

∂3Dˆ =
1
3!

(∂pD∂qD∂rD−∂pD∂rD∂qD+∂qD∂rD∂pD

−∂qD∂pD∂rD+∂rD∂pD∂qD−∂rD∂qD∂pD) .
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After straightforward computations and some grouping, we obtain

KLΘ2 = (Ap +As)
[
(Bt +Bq)(Cx + tCr)− (Bx + sBq)(Ct + xCr)− (Bx− sBt)Cq

]
+ (Ap +Ax)

[
(Bs + xBq)(Ct + xCr)+(Bs− xBt)Cq

]
+ (Ax−As)

[
Bp(Ct + xCr)− (Bt +Bq)Cp +BpCq

]
− At

[
((Bs + xBq)+Bp)(Cx + tCr)+((Bs + xBq)

− (Bx + sBq))Cp +((sBs− xBx)+(s− x)Bp)Cq
]
.

In order to simplify this expression, we introduce the following polynomials

a1i =
W ′i (x+ s,xs+ t,xt)−W ′i (p,xs+ t,xt)

x+ s− p
, i = 1,2,3,

a2i =
W ′i (p,xs+ t,xt)−W ′i (p,q,xt)

xs+ t−q
, i = 1,2,3,

a3i =
W ′i (p,q,xt)−W ′i (p,q,r)

xt− r
, i = 1,2,3.

Then from (28)-(30), we have

Ax +Ap = a11 + sa12 + ta13, Ap +As = a11 + xa12,

Ax−As = (s− x)a12 + ta13, At = a12 + xa13,

Bp = a21, Bs− xBt =−x2a23,

sBs− xBx = xta23, Bx− sBt = (t− sx)a23,

Bt +Bq = a22 + xa23, Bx + sBq = sa22 + ta23,Bs + xBq = xa22,

Cp = a31, Cq = a32,

Cx + tCr = ta33, Ct + xCr = xa33.

Using this KLΘ2 becomes

(31) KLΘ2 = (t− sx+ x2)det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Now the last part follows analogously as in the case of the (1,1,2)-theta foam. For
degree reasons the coefficient of πN−3,N−3,N−3 in the latter determinant is of degree zero,
and one can obtain that it is equal to (N + 1)3. Thus, the coefficient of πN−3,N−3,N−3 in
KLΘ2 is (N +1)3(t− sx+ x2) from which we obtain the value of the theta foam when the
3-facet is undotted. For example, we see that

ε
(
KLΘ2π1,1(s, t)N−3xN−1)= (N +1)3.

It is then easy to obtain the values when the 3-facet is labelled by πN−3,N−3,N−3(p,q,r)
using dot migration. The example above implies that

ε
(
KLΘ2πN−3,N−3,N−3(p,q,r)x2)= (N +1)3.
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Up to normalization the KL evaluation of the (1,2,3)-theta foam corresponds to the
trace on the cohomology ring of the partial flag variety Fl2,3,N in Equation (8) given by
ε(x2πN−3,N−3,N−3) = 1, where πN−3,N−3,N−3 correspond to a linear combination of dots in
the triple facet and x corresponds to a dot in the upper simple facet (see Section 3).

For N = 3, using the explicit formula for W (p,q,r) we see that the determinant (31) is
zero, which means that the (1,2,3)-theta foams would evaluate to zero, independently of
the dots they may have. That is why we restrict the construction in this notes to the case of
N ≥ 4.

5.5 Normalization
It will be convenient to normalize the KL evaluation. Let u be a closed foam with graph Γ.
Note that Γ has two types of edges: the ones incident to two simple facets and one double
facet and the ones incident to one simple, one double and one triple facet. Edges of the same
type form cycles in Γ. Let e112(u) be the total number of cycles in Γ with edges of the first
type and e123(u) the total number of cycles with edges of the second type. We normalize
the KL formula by dividing KLu by

(N +1)2e112+3e123 .

In the sequel we only use this normalized KL evaluation keeping the same notation 〈u〉KL.
Note that with this normalization the KL-evaluation in the examples above always gives
0,−1 or 1.

5.6 The glueing property
We now consider the glueing property of the KL formula, which is an important property of
TQFT’s.

Suppose that u is a foam with boundary Γ. We decorate the facets, singular arcs and
singular vertices of u as in Subsection 5.2. Recall that the orientations of the singular arcs
of u induce an orientation of Γ (see Figure 4). To each vertex ν of Γ we associate the matrix
factorization which is the matrix factorization associated to the singular arc of u that is
bounded by ν . To each circle in Γ we associate the Jacobi algebra of the corresponding
facet in Z/2Z-degree i (mod 2), where i = 1,2,3. Then define the matrix factorization MΓ

as the tensor product of all the matrix factorizations of its vertices as given above and Jacobi
algebras Ji in Z/2Z-degree i (mod 2) for all (if any) circles in Γ. The tensor product is
taken over suitable rings so that MΓ is a free module over R of finite rank, where R is the
polynomial ring with rational coefficients in the variables of the facets of u that are bounded
by Γ. The factorization MΓ has potential zero, since for every edge e of Γ the individual
potential We appears twice in WΓ (one for each vertex bounding e) with opposite signs. The
homology

(32) HMF(MΓ)∼= Ext(R,MΓ)

is finite-dimensional and coincides with the one in [8] after using Lemma 2.1 to exclude the
variables associated to all double and triple edges of Γ.
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Let u be an open foam whose boundary consists of two parts Γ1 and Γ2, and denote by
M1 and M2 the matrix factorizations associated to Γ1 and Γ2 respectively. We say that F is
an interior facet of u if ∂F ∩∂u = /0. Restricting KLu to the interior facets of u and doing
the same to ε in Equation (11) we see that the KL formula associates to u an element of
Ext(M1,M2).

If u′ is another foam whose boundary consists of Γ2 and Γ3, then it corresponds to an
element of Ext(M2,M3), while the element associated to the foam uu′, which is obtained by
glueing the foams u and u′ along Γ2, is equal to the composite of the elements associated to
u and u′.

On the other hand, we can also see u as a morphism from the empty web to its boundary
Γ = Γ2tΓ∗1, where Γ∗1 is equal to Γ1 but with the opposite orientation. In that case, the KL
formula associates to it an element from

Ext
(
R,MΓ2⊗

(
MΓ1

)
•
)∼= HMF(Γ).

Both ways of applying the KL formula are equivalent up to a global q-shift by corollary 6
in [8].

In the case of a foam u with corners, i.e. a foam with two horizontal boundary com-
ponents Γ1 and Γ2 which are connected by vertical edges, one has to “pinch” the vertical
edges. This way one can consider u to be a morphism from the empty set to Γ2 ∪ν Γ∗1,
where ∪ν means that the webs are glued at their vertices. The same observations as above
hold, except that MΓ2⊗

(
MΓ1

)
• is now the tensor product over the polynomial ring in the

variables associated to the horizontal edges with corners.
The KL formula also has a general property that will be useful later. The KL formula

defines a duality pairing between HomFoamN ( /0,Γ) and HomFoamN (Γ, /0) as

(33) (a,a′) = 〈a′a〉KL,

for a ∈ HomFoamN ( /0,Γ) and a′ ∈ HomFoamN (Γ, /0). From the duality pairing it follows that

HomFoamN ( /0,Γ∗) = HomFoamN (Γ, /0).

The duality pairing also defines a canonical element

ψΓ,Γ∗ ∈ HomFoamN ( /0,Γ∗)⊗HomFoamN ( /0,Γ)

by
(ψΓ,Γ∗ ,a⊗a′) = (a,a′)

Introducing a basis {ai} of HomFoamN ( /0,Γ) and its dual basis {a∗j} of HomFoamN (Γ, /0) we
have

ψΓ,Γ∗ = ∑
j

a j⊗a∗j .

Suppose that a closed foam u contains two points p1 and p2 such that intersecting u
with disjoint spheres centered in p1 and p2 result in two webs Γ1 and Γ2 and that Γ2 = Γ∗1.
If we remove the parts inside those spheres from u and glue the boundary components Γ1
and Γ2 onto each other we obtain a new closed foam u′ and the KL evaluations of u and u′

are related by (see [6])

(34) 〈u′〉KL = 〈ψΓ1,Γ
∗
1
u〉KL = ∑

j
〈a∗jua j〉KL.
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