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Problem statement

Consider a flow liquid/bubbles (vapor, air, etc).

An aircraft flying at transonic speeds
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Problem statement

Consider a flow liquid/bubbles (vapor, air, etc).

Multiphase flows occur in nature and industrial applications

• in high power ultrasonics

• to homogenize, or mix and break down particles

• to cavitate water purification devices

• for destruction of kidney stones via shock waves
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Problem Statement

• Shock propagation in multiphase mixtures.

• Many applications : condensed phase mixtures, shock propagation in solid alloys,
solid and liquid propellants as well as condensed solid explosives.

• Our problem is related to detonation problem with high explosives.

• Experimental works
• in USA ; Marsh : LASL Shock Hugoniot Data.

• in Russia ; Bushman : Shock wave data base.

• This research area is closely related to the building of equations of state for condensed
materials.

• Modeling efforts have been done in order to treat shock propagation in such
mixtures.
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First model
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Problems

• How to choose uI , pI ? modelisation problem

• non conservative products uI
∂α

∂x
: how to handle them ?
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Another model : Baer and Nunziato, Int. J. of Multiphase Flows, vol 12,
1986
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with : interface quantities given by fluid
Extension by : R. Saurel–RA, JCP 1999 : Euler for each phase, interface terms :
hyperbolic system, but not strictly hyperbolic, whatever the closure uI , pI .
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The five-equation flow model for compressible two-phase problems

Equations for two-phase flows

∂α1

∂ t
+ u

∂α1

∂x
= K(p,ρ1,ρ2,α1)

∂u

∂x

∂(αρ)1

∂ t
+

∂(αρ)1u

∂x
= 0

∂(αρ)2

∂ t
+

∂(αρ)2u

∂x
= 0

∂ρu

∂ t
+

∂(ρu2 + p)

∂x
= 0

∂ρE

∂ t
+

∂u(ρE + p)

∂x
= 0

where α,ρ,u,p,E(= e + 1
2 u2) and e are the volume
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Mixture Stiffened Gas Equation of State

The pure phase’s SG EOS :

pk = (γk −1)ρk ek − γk p∞k

The mixture internal energy :

ρe = (αρ)1e1 + (αρ)2e2

ρe = α1
p1 + γ1p∞1

(γ1−1)
+ α2

p2 + γ2p∞2

(γ2−1)

Kapila A, Meniko R, Bdzil J, Son S and Stewart D 2001 Phys. Fluids 13 3002
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What about jump relations ?

Recall : A system of conservation laws, Hugoniot jump conditions
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∂ t
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What about jump relations ?

Two phases, one realisation

• Phase 1 Shock : Left ρL,1,τL,1,uL,1,pL,1,eL,1 ; Right ρR,1,τR,1,uR,1,pR,1,eR,1

∆e1 + p̄1∆τ1 = 0; ∆p1∆τ1 + ∆u2
1 = 0

• Phase 2 Shock : Left ρL,2,τL,2,uL,2,pL,2,eL,2 ; Right ρR,2,τR,2,uR,2,pR,2,eR,2

∆e2 + p̄2∆τ2 = 0; ∆p2∆τ2 + ∆u2
2 = 0

• impose :pL,1 = pL,2 = pL and pR,1 = pL,2 = pR
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RightΣ1RightΣ1
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1

• The shock propagates through materials, speed depends on materials.
• Very similar to linear accoustics in random media
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α2
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2

T.Kaman - Numerical simulations in multiphase flows 11/37



Case Study : Two-phase flow problem

• Phase 1 corresponds to epoxy, which is the most compressible phase with the
lowest speed of sound and supports a shock wave.

• Phase 2 corresponds to periclase, which is the less compressible.

Epoxy-periclase mixture initial data

Mixture ρ0
m(g/cm3) α0

1 ρ0
1 /ρ0

2 Z0
1 /Z0

2
(g/cm3)

Epoxy-periclase 2.219 0.56 0.33 0.14

Pure material EOS parameters

p∞ γ ρ0 c0 s Z0 = ρ0c0
bar (g/cm3) (cm/ms) g/(cm2ms)

Epoxy 53000 2.43 1.185 280 1.44 331.8
Periclase 457000 3.49 3.584 660 1.37 2365.4
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Experimental Data
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Front Tracking (FronTier simulation package)

• to achieve resolution of steep and sharp density gradients

• treat discontinuities as moving internal boundaries, and the jump conditions are
imposed

A mature, production-quality multiphysics simulation package, supports a range of
physics, each with its own validation and verification studies.

Performance of FronTier

• FronTier scales to the entire system on Argonne’s IBM Blue Gene/P supercomputer - 62%
efficiency on 163,840 cores

• Innovative and Novel Computational Impact on Theory and Experiment Awards

• “Stochastic (w*) Convergence for Turbulent Combustion”, 2012
• “Uncertainty Quantification for Turbulent Mixing”, 2011
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Front Tracking method

• an adaptive computational method that provides sharp resolution of a wave front
by tracking the interfaces between distinct materials.

• implemented in code FronTier.

FronTier

solves the equations with the following main steps :

1 interface propagation.

2 interpolation reconstruction.

3 interior states update.
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Interface propagation step

Interface states are reconstructed from the interpolation of real and ghost states.

• A Riemann problem with left, right interface states as its data is solved to
determine the wave speed.

• A new position for the point is determined from the equation

xnew = xold + V ∆tn

V : the wave speed
n : the normal direction to the interface at the point

∆t : the time step size
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In the interior state update step

Fifth Order Weighted Essentially non-oscillatory (WENO) scheme :

• achieves high order accuracy and non-oscillatory property near discontinuities

• has been widely used to solve compressible flow equations

Here we have three stencils and each stencil has three points. The approximations are :
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Comparison with numerical simulation

Theoretical speed of shock

σtheory =
(ρLu2

L + pL)− (ρR u2
R + pR )

ρLuL + ρR uR
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Comparison with numerical simulation

Theoretical speed of shock

σtheory =
(ρLu2

L + pL)− (ρR u2
R + pR )

ρLuL + ρR uR
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• Cloud interaction parameter :

β = α0

(
A0

R0

)2

• Initial bubble fraction of the cloud :

α0 =
1

Vc

N

∑
i=1

4

3
πR3

i

• Initial radius of the cloud :

A0 = 3

√√√√ N

∑
i=1

R3
i

• Initial average radius of the bubbles within the cloud :

R0 =
1

N

N

∑
i=1

Ri
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Cloud interaction parameter

Cloud interaction parameter β for 1331 = 113

Figure: Initialization of regular/random distribution of 1331 bubbles.
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Validation

Comparison of experiment to FronTier simulations
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Distance between bubbles
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Pressure at time 0.4 µs for β = 125,15,5,1
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Uncertainty Quantification (UQ) Tools

• Scientific Discovery through Advanced Computing (SciDAC)

• QUEST - is a SciDAC Institute that is focused on UQ in large-scale scientific
computations. (http ://www.quest-scidac.org/)

• UQ software tools that are included in the QUEST
1 UQTk (SNL) (http ://www.sandia.gov/UQToolkit) provides routines for evaluating

algebraic expressions and transcendental functions of random variables represented with
Polynomial Chaos expansions.

2 DAKOTA (SNL) (http ://dakota.sandia.gov) provides a variety of non-intrusive
algorithms for design optimization, model calibration, uncertainty quantification, global
sensitivity analysis, solution verification, and parameter studies.

3 QUESO (UT) provides statistical algorithms for Bayesian inference, model calibration,
model validation, and decision making under uncertainty.

4 GPMSA (LANL) allows for global sensitivity analysis, forward propagation of
uncertainty, model calibration/parameter estimation, and predictions with uncertainty.
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UQ Toolkit (UQTk)

• is a lightweight C++ library, offers tools for (non)intrusive uncertainty
propagation.

• The technique for forward UQ is the spectral Polynomial Chaos expansions
(PCEs) : allows for

• efficient uncertainty propagation
• very fast global sensitivity analysis
• cheap surrogate model construction
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Generic Workflow

1 Generate parameter samples to run the forward model at, for PC construction

2 Run the black-box model (FronTier )

3 Obtain PCE for the model

4 Postprocessing : global sensitivity analysis

Global sensitivity analysis

• maximum pressure, velocity depend on the distance between bubbles
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Convergence of pressure : PDFs & CDFs

• From a single deterministic simulation, extract a Probability Distribution Function
(PDF) by binning results from a space time neighborhood of the convergence
point.

• The binned state values constitute a discrete set of solution values which define
an approximate PDF.

• The convergence of the associated cumulative distribution functions (CDFs) are
assessed by standard function space metrics.

• Convergence is to a probability distribution indexed by space and time, also
known as a Young measure.

• We study integrated convergence through an L1 norm (relative to integration
both in solution state variables and over space-time) for the CDFs.
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Explore the consequence of varying the definitions used for convergence.

• the mesh,

• PDF vs. CDF,

• the size of the supercell used to define the statistical PDF.
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Pressure at the midplane x ,z midplane

For each supercell, we bin the shock velocity values into 5 bins, and count the number
of values lying in each bin, to obtain a probability.

Coarse :∆x = 0.03125

Medium :∆x = 0.015625

Fine :∆x = 0.0078125
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Supercell resolution

• The coarsest grid has for each supercell a resolution

a) 2×4 supercell grid ; 16×16 b) 1×4 supercell grid ; 32×16

• The supercell partition is unchanged for the medium and fine grids, the number
of cells in each direction increases by factors of 2 and 4.
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Norm comparison of convergence

Norm comparison of convergence for pressure PDFs and CDFs at fixed values of y ,t.
In each supercell, an L1 norm is applied to the difference of the PDFs or CDFs.

coarse grid supercell size a) 16×16 b) 32×16
mesh comparison L1 L1

CDFs : coarse to fine 0.0464 0.0139
CDFs : medium to fine 0.0218 0.0053
PDFs : coarse to fine 0.028 0.0217
PDFs : medium to fine 0.0176 0.0039

Observed

a coarsening of the supercell resolution (increase of the supercell size) to 32×16
coarse grid cells per supercell is needed to obtain single digit convergence errors.
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• presented a method for the approximation of a compressible, hyperbolic
multiphase problem given by Kapila five equation model

• Derivation/justification of jump relations

Ongoing Work

• Take into account more complex (spherical, cylindrical) cloud

• Generate and initialize numerical simulations via Gaussian random field

• Find the mesh that gives acceptable accuracy for certain bubbles ⇒ statistical
convergence...
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CSCS-Piz Daint - 8th place in TOP500 Lists (SC November 2016)

• Cray supercomputer installed at the Swiss
National Supercomputing Centre (CSCS)

• The second most energy-efficient
supercomputer in the TOP500, with a rating
of 7.45 gigaflops/watt

• The only system on the list equipped with the
new P100 GPUs. It is a 3.3-petaflop cluster of
DGX-1 servers that delivers 9.46
gigaflops/watt.
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