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We prove a reducibility result for a class of quasi-periodically forced linear wave

equations on the d-dimensional torus T¢ of the form
0V — Av + eP(wt)[v] = 0,

where the perturbation P(wt) is a second order operator of the form P(wt) = —a(wt)A —
R(wt), the frequency w € R” is in some Borel set of large Lebesgue measure, the function
a : T — R (independent of the space variable) is sufficiently smooth and R(wt) is
a time-dependent finite rank operator. This is the first reducibility result for linear
wave equations with unbounded perturbations on the higher dimensional torus T¢. As
a corollary, we get that the linearized Kirchhoff equation at a smooth and sufficiently

small quasi-periodic function is reducible.

1 Introduction and Main Result

We consider a linear quasi-periodically forced wave equation of the form
eV — AV + eP(wt)[v] =0, x e T¢ (1.1)
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where T := R/(27Z), ¢ > 0 is a small parameter, ® € Q@ C R”, with Q a closed bounded

domain and the operator P(wt) is given by

P)lv]:i=—alp)Av —R@pIlv]l, ¢eT", ve Lg(Td,R) (1.2)

with R(¢) being an operator of the form

N

IVl = kP, X Crlp, y)v(y)ay + cxle, x ke, y)viy)dy, pel,

Rp)[v] bi( ) [ c( wi(y)d ( )db( wvy)d T
T T

k=1

v € L3(T% R). (1.3)

Here v,d > 1 are integer numbers, L(z,(’]I‘d,R) denotes the space of the real-valued L2
functions with zero average and the functions a : T" — R, by, ¢ : T" x T¢ — R, k =
1,...,N are assumed to be sufficiently smooth, namely a € C4(T", R), by, ¢ € CI(T" x T4, R)
for some g > 0 large enough. The operator R(¢) is symmetric with respect to the real
L%-inner product. Our aim is to prove a reducibility result for the equation (1.1) for
small enough and for w in a suitable Borel set of parameters 2, C 2 with asymptotically
full Lebesgue measure. The partial differential equation (PDE) (1.1) may be written as

the first order system

v =
w=v (1.4)
0y = (1 4+ ca(wt)) Av + eR(wt)[V]
which is a real Hamiltonian system of the form
0;v = V,H(wt, v,
t 14 ( ¥) (1.5)
Yy = —V,H(wt, v, ¥)
whose ¢-dependent Hamiltonian is given by
1 1
H(p,v,¥) = —/ (WZ + 1+ ea((p))|VV|2) dx — s—f R(p)[v]vdx. (1.6)
2 Jrd 2 Jrd

In (1.5), V,H and V,H denote the L?-gradients of the Hamiltonian H with respect to the
variables v and /. We assume that the functions by (¢, x), cx(¢,x), k =1,...,N have zero

average with respect to x € T¢, namely

/bk(gﬂ,X)dXZO, /Ck((p,x)dX=O YVoeT’, k=1,...,N. (1.7)
d d
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In order to precisely state the main result of this article, let us introduce some
more notations. Forany s > 0, we define the Sobolev spaces H*(T¢) = H*(T¢, C), H*(T%, R),

respectively, of complex- and real-valued functions

H(T% = {ux) = Z wie” :flullfs = ZU)ZSWJ-IZ < 400!,

jezd jezd
H (T R) :={u e H(TY : u =1} (1.8)
where
Gy :==max(1,|jI}, Ul:=yji+...+j% Vi= (..., Ja) €Z%
Moreover, we define

H(TY) := {ueHs(’]I‘d):/d u(x)dx:O}, H3 (T, R) := {ueHS(Td,R):/d u(x)dx:O}
T T

(1.9)
and introduce the real subspace H(T%) of HS(T?) x H5(T¢)
H}(T%) = {u:= (u, W) : u € Hy(TY)}, equippedwiththenorm |[ulgy := [[ulgx;.
Given a linear operator R : L3(T?%) — L2(T%) (where L(T%) := HJ(T<)), we define its

Fourier coefficients with respect to the exponential basis {eV* : j € Z% \ {0}} of LZ(T%) as

R = L

= — i - xyo—1jx Vi 7 d . ‘
J (2m)d /TdR[e le dx, 7.J € Z%\ {0} (1.10)

We introduce the linear operator R, defined by R[u] = R[u], for any u € L23(T%).
We say that the operator R is block diagonal if R? = 0foranyj,j € Z%\ {0} with [j| # |'|.
Because of the hypothesis (1.7), the Hamiltonian vector field

0 1\ 12 0 1
L(p) := = , peT (1.11)
(A —eP(p) O) ((1 +ea(@)A + eR(p) O)

leaves the space of functions with zero average invariant. More precisely for any 0 <

s<gq
L(p) : HS™(T, R) x HS™(T4, R) — HS™ (T4, R) x HS(T4, R), Ve T

and therefore we can choose H; (T4, R) x L(z)(']I‘d, R) as phase space for the Hamiltonian H

defined in (1.6). Now we are ready to state the main result of the present paper.
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Theorem 1.1. Letv,dbeinteger numbers greater or equal than 1. There exists a strictly
positive integer go = qo(v,d) > 1/2 such that for any g > q, there exists ¢, = ¢(q,v,d) > 0
and G, := &(q,v,d), with 1/2 < &, < g such that if a € CY(T",R), by, ¢x € CY(T" x T4, R),
with by, ¢, satisfying the hypothesis (1.7) for any k = 1,...,N, then for any ¢ € (0, ¢)

there exists a Borel set . C Q of asymptotically full Lebesgue measure, that is
2] — [€2] as ¢—0, (1.12)

such that the following holds: for all w € @, and ¢ € T", there exists a bounded linear
invertible operator W,,(¢) = W (¢; w) such that for any % <s< G,

1 _1
Wae (@) : HS(TY — Hy (T4, R) x Hy 2(T%, R)

ol
satisfying the following property: (v(t,-), ¥ (¢,-)) is a solution of (1.4) in HO+2(’JI‘d,R) X
1
H, 2(T¢,R) if and only if

u(t,-) = (u(t, ), U(t, ) = Wa(@t) ' [(v(E,), ¥ (t,)]

is a solution in H$(T9) of the PDE with constant coefficients

_pL
8tu - Doou, Doo = 1 OOO 5(1)

]

where for any s > 1, DY : H{(T%) — H{'(T9) is a linear, time-independent, L?-self-

adjoint, block-diagonal operator. O
The following corollary holds:

sil s 1
Corollary 1.1. Forany o € Q. and any initial data (v\?, ¢©@) e H0+2 (T4, R) xH, %(T<¢,R)
1 1
with 1/2 < s < &,, the solution ¢ € R > (v(¢,-), ¥ (t,-)) € Hy 2(T%,R) x Hy 2(T%,R) of the
Cauchy problem

3tV = w
¥ = (1 +ea(wt)) Av + eR(wt)[V] (1.13)
v(0,) = v©

¥ (0,) =y
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is stable, namely

sup (nv(t,-)n sy W@l ) scq<||v<°)|| oy I )
HX HX HX HX

teR

for some constant C; = C(q, v, d) > 0. O

Remark 1.1. The constants g;, S, in Theorem 1.1 and the constant C, in Corollary 1.1
depend also on the || - ||; Sobolev norms of the functions a, by, cx, k =1,...,N appearing

in the definition of the perturbation P given in (1.2) and (1.3). O

Theorem 1.1 implies a reducibility result for the linearized Kirchhoff equation
at a small and sufficiently smooth quasi-periodic function evy(wt,x). The Kirchhoff

equation
KW) 1= 3,V — (1 +/ |[Vv|? dX) Av =0 (1.14)
']I‘d

describes nonlinear vibrations of a d-dimensional body (in particular, a string ford =1
and a membrane for d = 2). The Cauchy problem for the Kirchhoff equation has been
extensively studied, starting from the pioneering paper of Bernstein [11]. Both local and
global existence results have been established for initial data in Sobolev and analytic
class, see [1, 2, 24, 25, 40, 42, 45] and the recent survey [43]. The existence of periodic
solutions for the Kirchhoff equation has been proved by Baldi [3]. This result is proved
via Nash-Moser method and thanks to the special structure of the nonlinearity (it is
diagonal in space), the linearized operator at any approximate solution can be inverted
by Neumann series. This approach does not imply the linear stability of the solutions,
since only the first order Melnikov conditions are required along the proof. In one space-
dimension (d = 1), the existence of quasi-periodic solutions and the reducibility of
the linearized equation have been established in [44]. In dimension greater or equal
than 2, there are no results concerning the existence of quasi-periodic solutions. It is
well known that a good strategy for proving the existence and the linear stability of
quasi-periodic solutions is to prove the reducibility of the linearized equations at small
quasi-periodic approximate solutions obtained along a suitable iterative scheme. Hence
our result (Theorem 1.2 below) could be used to prove the existence of quasi-periodic
solutions for the nonlinear Kirchhoff equation.

Linearizing the operator K in (1.14) at a quasi-periodic function evy(wt, x) and writing

the linearized equation K'(svy)[v] = 0 as a first order system, one gets a system of
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differential equations of the form (1.4) where

alg) = / IVnlp, 0 dx, RG] = ~2Av0(p, %) / Av@ v dy, eeT,
T T
v e L3(T%, R).

The operator R(p) defined above has the same form as the one defined in (1.3), by taking
N =1, b; = —Avy, ¢; = Av,. We point out that Av, has zero average in x € T¢, hence the
hypothesis (1.7) is satisfied. An immediate consequence of Theorem 1.1 and Corollary

1.1 is then the following

Theorem 1.2. Let qo, g, &, S, as in Theorem 1.1 and v, € CTH(T" x T¢,R). Then the
conclusions of Theorem 1.1 and Corollary 1.1 hold for the linearized Kirchhoff equation

K'(evp)[v] = 0 at the quasi-periodic function evy(wt, x). (I

Now we outline some related works concerning the reducibility of quasi-periodically
forced linear partial differential equations. Let us consider a linear differential equation

of the form
o;u =Du+ eP(wt)u, (1.15)

where D is a diagonal operator with discrete spectrum and P(wt) is a linear quasi-
periodically forced vector field with nonconstant coefficients. We say that such an
equation is reducible if there exists a quasi-periodically forced change of variable
u = ®(wt)[v] such that in the new coordinate v, the equation (1.15) is reduced to con-
stant coefficients. Typically, it is necessary to assume that ¢ (size of the perturbation)
is small enough and that the frequency w, together with the eigenvalues of the operator
D, satisfy the so-called second order Melnikov non-resonance conditions. These non-
resonance conditions involve the differences of the eigenvalues of the operator D. We
point out that the reducibility of linear equations is the main ingredient for proving
the existence of quasi-periodic solutions (KAM tori) for nonlinear PDEs. Indeed the first
reducibility results for linear PDEs have been obtained as a corollary of Kolmogorov-
Arnold-Moser (KAM) theorems. We mention the pioneering articles of Kuksin [37], and
Wayne [47] concerning the existence of invariant tori for Schrédinger and wave equa-
tions in one space dimension with Dirichlet boundary conditions and with bounded
perturbations. The first KAM results for PDEs with unbounded perturbations have been
obtained by Kuksin [38], Kappeler and Péschel [36] for analytic perturbations of the

KdV equation. Here the unperturbed vector field is 0, and the perturbation contains
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one space derivative d,. Concerning unbounded perturbations of the quantum Harmonic
oscillator on the real line, the first result is due to Bambusi and Graffi [10]. In all these
aforementioned results, the perturbation contains derivatives of order § < n — 1, where
n is the order of the highest derivative appearing in the linear constant coefficients term.
In the case of critical unbounded perturbations, that is § = n — 1, we mention [41, 48]
concerning the derivative Non linear Schrédinger equation (NLS) with Dirichlet bound-
ary conditions, in which the authors generalized appropriately the so-called Kuksin
Lemma, developed in [38]. We also mention the KAM results for the derivative Klein—
Gordon equation [12, 13] in which the generalization of the Kuksin Lemma developed in
[41, 48] does not apply because of the weaker dispersion relation.

It is well known that the ideas used to deal with the case § < n — 1 do not apply in the
quasi-linear and fully nonlinear case, that is § = n. The first KAM results in this case
have been obtained in [5-7, 32] for quasi-linear perturbations of the Airy, KdV and m-KdV
equations, in [30, 31] for quasi-linear Hamiltonian and reversible NLS equations, in [44]
for the Kirchhoff equation and in [18, 19] for the water waves equations. The key idea in
these series of articles is to split the reduction to constant coefficients of the linearized
equation into two parts: the first part is to reduce the equation to another one which is
constant coefficients plus a bounded remainder and this is inspired by the breakthrough
result of Iooss et al. [35]. In a second step, one applies a convergent KAM reducibility
scheme which reduces quadratically the size of the perturbation and completes the
diagonalization of the equation. This method has been extended also by Bambusi in
[8, 9] to deal with unbounded quasi-periodic perturbations of the Schrodinger operator
on the real line.

Another difficulty for the reduction procedures and the KAM schemes concerns the mul-
tiplicity of the eigenvalues of the unperturbed part of the equation. The first result in
this direction is due to Chierchia and You [23] in which the authors prove a KAM result
for analytic bounded perturbations of nonlinear wave equations with periodic bound-
ary conditions (double eigenvalues). We mention also the more recent articles [17, 30, 44]
concerning Schrédinger and Kirchhoff equations with periodic boundary conditions.
There are very few results for PDEs in higher space dimension since the second order
Melnikov non-resonance conditions are violated, typically due to the high multiplicity
of the eigenvalues. The first KAM and reducibility results in higher space dimension
have been obtained by Eliasson and Kuksin [28, 29] for the linear Schrédinger equation
on T¢ with a multiplicative analytic potential and for the nonlinear Schrédinger equa-
tion with a convolution potential. The second order Melnikov non-resonance conditions

are verified blockwise, by introducing the notion of Toplitz-Lipschitz Hamiltonians.
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A XAM result for the completely resonant Nonlinear Schrédinger equation on T¢ has been
proved by Procesi and Procesi [46], by using Quasi-To6plitz Hamiltonians. We also men-
tion the KAM theorem for the beam equation obtained by Eliasson et al. [26]. Recently,
Grebert and Paturel [33] proved a reducibility result for the quantum harmonic oscil-
lator on R? with an analytic multiplicative potential and in [34] they proved a KAM
result for the nonlinear Klein Gordon equation on the d-dimensional sphere. In [14-16],
the authors proved the existence of quasi-periodic solutions for Nonlinear wave and
Schrédinger equations on T¢ and on Lie groups, by using the multiscale method, intro-
duced by Bourgain [20-22] in the analytic setup. This approach does not imply the linear
stability of the quasi-periodic solutions since it requires to impose only the first order
Melnikov conditions.

The reducibility for the quasi-periodically forced Klein—-Gordon equation with a small
multiplicative potential d,u — Au + mu + eV(wt, x)u = 0 on T? is still open. Eliasson et
al. [27] proved that this equation is almost reducible in the sense that it can be reduced
to constant coefficients up to a small remainder. The aim of the present article is to
provide a class of linear wave equations with unbounded perturbations on T¢ which are
reducible. We point out that the main difference between Schrodinger and wave (Klein—
Gordon) equations is the following: for the Schrédinger equation, the eigenvalues of the
linear part of the equation grow like ~ |j|?,j € Z¢, whereas the wave equation, written
as a first order system in complex coordinates, has eigenvalues growing as ~ |j|,j € Z<.

It turns out that the second order Melnikov non-resonance conditions

Y
()

-+ p—pyl > ==, Yj,j)eZ xZ*x 7% (&1l li') # O, D (1.16)

in the case of the wave (Klein-Gordon) equation, that is, u; ~ |jl,j € 7% are violated.

In the following, we shall explain the main ideas of the proof of Theorem 1.1. The proof
consists in reducing the quasi-periodically forced linear vector field £(wt) defined in
(1.11) to a time-independent block-diagonal operator. This reduction procedure is split

into two parts.

Regularization of the vector field £(wt). Our first goal is to conjugate the vector field
L(wt) to another one which is diagonal up to a sufficiently regularizing perturbation.
This is achieved by using a change of variables induced by a reparameterization of time
(so that the highest order term has constant coefficients) and time dependent Fourier
multipliers (introduced in Section 2.4), see Section 3. We point out that this procedure

involve only a reduction in time, since our unbounded perturbation P(wt) is assumed to
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be diagonal in space up to the finite rank operator R(wt), which is already regularizing,
see (1.2) and (1.3).

KAM reducibility scheme. After the preliminary reduction of the order of derivatives,
we deal with a time dependent vector field which is a small and regularizing perturba-
tion of a diagonal time-independent vector field. We then perform a KAM reducibility
scheme, see Theorem 4.1. The key feature of the scheme is that since the perturbation
is regularizing, along the KAM iteration, we can impose non-resonance conditions with

a loss of derivatives in space, namely

|- €+ — py| = m V(,j,J) € 2’ x (Z\{0}) x (Z\ {0, (4,1l "D # (O, jl, i
(1.17)
for some constant exponents d and t large enough and y € (0,1). Neverthless, all the
canonical transformations defined along the iteration will be bounded linear operators
(on Sobolev spaces), since the regularizing property of the remainder balances the loss
of space derivatives in the Melnikov conditions (1.17). This strategy has been used also
in [4], to prove a KAM result for gravity water waves in finite depth without capillarity
and we implement it within this context.
The conditions (1.17) are much weaker that the ones given in (1.16) and we are able to
prove that they are fulfilled for a large set of parameters w. We use the block-decay norm
|-|s (see (2.76)) to estimate the size of the remainders along the iteration. This is convenient
since the class of operators having finite block-decay norm is closed under composition
(Lemma 2.7), solution of the homological equation (Lemma 4.1) and projections (Lemma
2.9). This norm is well adapted to finite rank operators of the form (1.3) and it gives
a strong decay of the blocks arising in the spectral decomposition with respect to the

eigenspaces of the operator «/—A, see Sections 2.2, 2.3.

The article is organized as follows. In Section 2, we introduce some notations and
abstract technical tools needed along the proof of Theorem 1.1. The proof of the Theorem
is developed in Sections 3-5. In Section 3, we perform the regularization procedure for
the linear Hamiltonian vector field £ and we conjugate it to the vector field £,, defined
in (3.70). In Section 4, we prove the block-diagonal reducibility of the vector field L4,
showing that it is conjugated to the block diagonal operator D, defined in (4.83). In
Section 5, we provide the measure estimate of the set of good parameters Q' defined
in (4.77). Finally, in Section 6, we conclude the proof of Theorem 1.1 and we prove the

Corollary 1.1.
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2 Function Spaces, Linear Operators, and Norms

For a function u € L(T9) = L3(T¢, C) we consider its Fourier series

.. 1 ..
ux) = Y welr, 3=W/Tdu(x)e’”‘xdx, Vj e Z4\ {0}. (2.1)

Jjezd\(0}

We denote by op(+/—A) the spectrum of the operator /—A restricted to the zero-average

functions, that is

oo(v—A) = {U’I =i+ 4 =G Ja) €20\ {0}} (2.2)

and for any eigenvalue ¢ € oo(+~/—A), we denote by E, the corresponding eigenspace,
that is

E, :=span{eV* :j e Z¢, |jl=«a}. (2.3)
Then, any function u € LS(']I‘d) can be written as

u) = Y ), wLE =) ue* ek, (2.4)
aeao(ﬂ) Jl=a

andifu e Hg('ﬂ‘d) for some s > 0, one has
2 *12 2 2. 2 2. 2
lulfs = > UPlwlP= D o™ lwl= D @l (2.5)
jezd\(0} acog(v/—A) Jl=a acog(v/—A)

We also deal with functions u € L3(T" x T¢) = L*(T",L3(T¢)) which can be

regarded as ¢-dependent family of functions u(gp, ) € L3(T¢) that we expand in Fourier

series as
up,x) = Y w@e* =Y w0, (2.6)
jezd\(0) tez”
JEZA\{0}
where
u;i(p) = L/ u(p, x)e Vx¥dx, U;¢) = ;/ u(p, x)e ¥ dy dx.
J @2m)d Jra S 2m)vtd Jora

According to (2.4), we can write

)= Y ulpx)= Y T(0)e'? 2.7)

vco0(V=4) aEGZE(Z” A)
o(W/—
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where

W0 = 3w, B0 =T = o / w(p,x)e 0 dp = Y W0,
'JI‘V

i=e @ li=a
(2.8)
We define for any s > 0 the Sobolev spaces HS(T"*%) = H§(T"*4,C) as
HS(T" ) := Ju e LA(T" x T : |u||? := Z €N*1j0))* <400t , (2.9)
tez’
Jjezd\(o}
where (¢,j) := max{1, |£],|j|}, and for any £ = (¢y,...,¢,) € Z", €| := /€* + ...+ £2. One

has

lulf= Y @)*myoF= > (€Y [Gor= ) (Lo @O]; 210
tez” tez” Jl=a tez”
jezd\(0) acog(v/—A) acog(v/—A)
where (¢, «) := max{1, |¢|,«}, for any £ € Z",a € og(+/—A).
In a similar way, we define the spaces of real valued functions LS(Td,R), Lg(’]l‘”d,]R),
Hg(Td, R), Hg(T“*d, R) and we also deal with Sobolev functions x-independent, belonging
to the Sobolev space H*(T") (or H*(T",R)). For u € H*(T") we denote by ||uls; its Sobolev

norm, given by

luls =Y @ @@P,  aw =

ez’

—i¢.
) ./Tv u(p)e * do.

Given a Banach space (E,| - ||g), we denote by L*(T",E) the space of the essentially

bounded functions T" — E equipped with the norm

ullzoo(rv gy := esssup,ep |u(@)llz-

For any p € N we denote by WP*°(T", E) the space of the p-times weakly differentiable

functions T" — E equipped with the norm
lwllwp.oe v gy := MaXq)<p |0y Ull oo (rv &) -

In the above formula, for any multi-index a = (a,,...,a,) € N, we use the notations
la| :=a;+...+a, and 9y =95l ...95". We also denote by C°(T", E) the space of continuous

functions T' — E equipped with the norm

lullcoqr &) == SUPyerv lu() e



12 R. Montalto

and we denote by CP(T",E) the space of the p-times differentiable functions with

continuous derivatives equipped with the norm
lwllcp v £y := maxq<p |95 Ullcoq k)
We recall the standard property

wrPHe (T, E) ¢ CP(T", E). (2.11)

For a function f : Q, - E, w — f(w), where (E, | - ||g) is a Banach space and €2, is a subset

of RY, we define the sup-norm and the lipschitz semi-norm as

||f(0)1) —f(wz)”E

sup lip .
If1Eq, :=sup If @Iz, IflEgq, == sup (2.12)
weQp 1 ,02€ |1 — wy|
w1 Fw2

and, for y > 0, we define the weighted Lipschitz-norm

IFIERT = 155, + v I, - (2.13)

To shorten the above notations we simply omit to write Q,, namely |fIIz* = [flze,

FIIE = Iy, IFIERY = If 155 If £ : 2 — C, we simply denote |[f[c*" by [f|P®
and if E = H5(T"*%) we simply denote ||f||§f(y) := ||f||L"™). Given two Banach spaces E, F,
we denote by B(E, F) the space of the bounded linear operators E — F.If E = F, we
simply write B(E).

Notation. From now on we fix

S 1= [v;d}—i—l (2.14)

where for any real number x € R, we denote by [x] its integer part. We write
as;b <<= a=<C(s)

for some constant C(s) depending on the data of the problem, namely the Sobolev norms
llalls, |bxlls, lcklls of the functions a, by, cx appearing in (1.2), the number v of frequencies,
the dimension d of the space variable x, the diophantine exponent r > 0 in the non-
resonance conditions, which will be required along the proof. For s = s, we only write

a < b. Also the small constants § in the sequel depend on the data of the problem.
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We recall the classical estimates for the operator (v - ,)~* defined as

. 1 .
(@-9,)7'[1]1=0, (w-3,) '[e“]= i 0) e, VL#O, (2.15)

for w € DC(y, 1), where for y,t > 0,

DC(y,7) = {wesz:|w-z| > % VZeZ“\{O}}. (2.16)
If h(;; w) € HST2*+1(T"), with w € DC(y, t), we have

@ 3) " hlls <y hllsee, - 3) " RIEPY <yt RIEST). (2.17)

We also recall some classical Lemmas on the composition operators and on the interpo-
lation. Since the variables (¢, x) have the same role, we present it for a generic Sobolev
space H*(T"). For any s > 0 integer, for any domain A € R" we denote by C*(A) the space

of the s-times continuously differentiable functions equipped by the usual || - ||cs norm.

Lemma 2.1. (Interpolation) Let u,v € H*(T") with s > s,,, s, := [n/2] + 1. Then, there

exists an increasing function s — C(s) such that
luvis < Clullslvils, + Clsa)llulls, Vs

Ifu(; w), v(;w), w € 2, € R”are w-dependent families of functions in H5(T"), with s > s,

then the same estimate holds replacing || - ||s by || - [|1P®). O

Iterating the above inequality one gets that, for some constant K(s), for any

n=>0,
Iu*lls < K& ullls luls (2.18)

and if u(;w) € H%, s > s, is a family of Sobolev functions, the same inequality holds
replacing || - ||s by | - [|1P®).

We consider the composition operator

u(y) = £ (y) :=f(y, uy)).

The following lemma is a classical result due to Moser.
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Lemma 2.2 (Composition operator). Let f € C**'(T" x R,R), with s > s, := [n/2] + 1.
If u € H'(T"), with Julls, =< 1, then [[E@)lls = C(s, [Iflles)(1 + llully). If u(, 0) € H(T),
w € Q, C R’ is a family of Sobolev functions satisfying ||u||§rilp<y> <1, then, ||£(w) [P <
C(s, Ifllgs+1)(1 + ||u||£ip(y)). -

Now we state the tame properties of the composition operator u(y) — u(y +p(y))
induced by a diffeomorphism of the torus T". The Lemma below, can be proved as Lemma
2.21 in [18].

Lemma 2.3 (Change of variables). Letp :=p(;w):R" > R", w € Q, C R” be a family of

2m-periodic functions satisfying
Ipllesnsr < 1/2,  |plgP" <1 (2.19)
where s, := [n/2]+ 1. Let g(y) := y + p(y), y € T". Then the composition operator
A:uy) = (uog)y) =uly +py))
satisfies for all s > s,,, the tame estimates
IAUlls, Ss 1ellsys lAulls = C(9)llulls + C(sn)Ipllsltellsy+1- (2.20)

Moreover, for any family of Sobolev functions u(-; )

Li Lip(y)
AU So Ul (2.21)
i Lip(y) i Lip(y)
[AulFPY <o lullsy” + IpIs™ ullss’ s Vs > sp. (2.22)
The map g is invertible with inverse g7'(z) = z + g(z) and there exists a constant

8 :=8(sy) € (0,1) such that, if |p[;27, < &, then
lglls Ss plls,— lglE™” <5 Iplsa”. (2.23)
Furthermore, the composition operator A~'u(z) := u(z + q(2)) satisfies the estimate
1A ulls So llulls + Pllsltllsys1, VS = S, (2.24)

and for any family of Sobolev functions u(:; ®)

-1, Li Lip(y) Lip(y) Lip(y)
IAT ullf7 <o lullg” + Ipleh 7 Tullgls’ s Vs > sa. (2.25)
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2.1 Linear operators

Let R € B(L:(T%)). The action of this operator on a function u € L%(T¢) is given by

Rlul= Y Rl upel™ (2.26)

Jji'ezd\{0}

where the Fourier coefficients Rj:/ of R are defined in (1.10). We shall identify the operator

R with the infinite-dimensional matrix of its Fourier coefficients

(R) . . (2.27)
JJ" €Z7\{0)
We define the conjugated operator R by

Ru :=Ru. (2.28)
One gets easily that the operator R has the matrix representation

. (2.29)
- )j,j’ezd\m}

An operator R is said to be real if it maps real-valued functions on real valued functions
and it is easy to see that R is real if and only if R = R.
We define also the transpose operator RT by the relation

(Rlul, v}z = (u, RT[v])z, Yu,v e L3(T%), VpeT" (2.30)
where

(W, vz i= / u(x)v(x),dx, Yu,v € L3(T%). (2.31)
X d

The operator R” has the matrix representation

(R™Y, =R, vj.j ez (2.32)

An operator R is said to be symmetric in R = R”.

We define also the adjoint operator R* as

(Rlul, V)L)% = (u, R*[V])L)z( , Yu,ve L(Z)(’]I‘d), (2.33)
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where (-, 12 is the scalar product on Lg(Td), namely

(u, V)L)% = (u, V)L§ = /

T

ux)v(x)dx, Vu,v e L3(T9). (2.34)
d

An operator R is said to be self-adjoint if R = R*. It is easy to see that R* = R and its

matrix representation is given by

R, =R, Vjj €Z\ (0},

We also define the commutator between two linear operators R,7 € B(L3(T%)) by
[R,T]1:=RT — TR.
In the following we also deal with real operators G € B(L3(T¢ R) x L3(T%,R)), of the

form
A B
G:= ( ) (2.35)
C D

where A,B,C,D € B(Lg(Td,R)). By (2.30), the transpose operator G¥ with respect to the

bilinear form

((Vi, Y1), (V2, ¥2)) 2 = (V1, V)2 + (Y1, Y2)p2, (2.36)

Y(u1, ¥1), (U2, ¥2) € LT, R) x L3(T4, R), is given by

AT CT
BT DT

Then it is easy to verify that G is symmetric, that is G = GT if and only if A = AT, B = C7,

D = DT. It is also convenient to regard the real operator G in the complex variables

v, ¥) =Cl(w, W], ) =C"[(v,¥)] (2.38)
where
1 (1 1 1 (1 i
C:=— cl=— . 2.39
ﬁ( —%) ﬁ(l —i) %39

The operators C,C™! satisfies

C:LY(T% — L2(T% R) x LX(T% R), C7':L3(T%R) x L3(T% R) — L2(T%)
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where L2(T9) is the real subspace of L3(T¢) x L3(T%) defined by
L3(T% == {(w,w) : u € LT} . (2.40)

If G € B(LA(T% R) x L3(T% R)) is a real operator of the form (2.35), one has that the

conjugated operator
R :=C'GC : LL(T%) — Li(T%)

has the form

(2.41)

R, R A+D—iB-C A—D+i(B+C
R=<1 _2), R oAt 21( ) R +21( +0)

R, R,
For the sequel, we also introduce for any s > 0, the real subspace of H§(T9) x H§(T%)
H(TY) := (Hy(T%) x Hy(T) NL3(T%) (2.42)
and we set
alles = wllag, Yu = (u,u) € H(TY). (2.43)
It is straightforward to verify that for any s > 0
C:Hy(TY — HS (T, R) x HY(T4,R), C':H{(T%R) x Hi(T4 R) — H(TY).  (2.44)
2.2 Block representation of linear operators

We may regard an operator R : L2(T¢) — L2(T9) as a block matrix

([R15),, peon (/=) (2.45)
where for all «, B € op(+/—A) (recall (2.2)), the block-matrix [R]? is defined by
R = (R . (2.46)
(R, ( J )U'\:a,m:ﬂ

The operator [R]? is a linear operator from Ez onto E, where for all « € oo(+/—A), the
finite dimensional space E, is defined in (2.3). We identify the space B(Eg, E, ) of the linear
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operators from E; onto E, with the space of the matrices of their Fourier coefficients,

namely

~ — il
B(Ey, E,) ~ {M = (M) ;0 } : (2.47)
Vl=e, '1=8

Indeed if M € B(Eg, E,), its action is given by

Mu(x) = Z Mj.'/uj/eij‘x, Yuel;, ux) = Z u el x, (2.48)
/= V'i=
U'l=p

If B = @, we use the notation B(E,) = B(E,, E,) and we denote by I, the identity operator

on the space E,, namely
L, E, » E,, ur u. (2.49)

According to (2.4), (2.45), and (2.48), we may write the action of an operator R on a

function u(x) as

Ru= Y [REusl (2.50)
a,Beon(V—A)

If [R]f = 0, for any o # B, we say that R is block-diagonal and we use the notation
R = diag,.,, /xRl (2.51)
The action of a block-diagonal operator R on a function u € L3(T?) is given by

Ru= > [RIul. (2.52)
acog(v/—A)

Let M € B(Eg, E,). The transpose operator M” € B(E,, Eg) has the matrix representation
W7 =M, = l=e (2.53)

The conjugate operator M € B(Eg, E,) is given by

@] =M7, lil=a |l=58 (2.54)

and the adjoint operator M* € B(E,, Ez) by

—T

M =M . (2.55)
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Let o, 8,A € op(+/—A). Given A € B(E4 E,), B € B(E;,Ep), the operator AB €

B(E,,E,) has the matrix representation

ABY, := Y ABL, Vljjl=a, ||=xr (2.56)
|k|=B

Given an operator A € B(E,), we define its trace as

Tr(A) == ) AL (2.57)
ll=a

It is easy to check that if A, B € B(E,), then
Tr(AB) = Tr(BA). (2.58)

For all o, B € 0p(~/—A), the space B(Eg, E,) defined in (2.47), is a Hilbert space equipped
by the inner product given for any X, Y € B(Es, E,) by

(X,Y) := Tr(XY"). (2.59)
This scalar product induces the Hilbert-Schmidt norm

IXllms = VTrxs = | Y x| (2.60)

Ul=a
V1=

For any operator X € B(Eg, E,), we define also the operator norm as

I1X (|5 £ = sUP {[Xull 2 : w € By, lufl2 < 1}. (2.61)
First we recall some preliminary properties of these norms.
Lemma 2.4. (i) Let o, € oo(v/—A), M € B(E4; E,) and u € E;. Then |Mul,z <
M ||zsllullz, implying that |M|seg k. < 1M |lns.

(i) Let o, B, A € oo(v—A), M € B(Eg, Eo), X € BE;, Ep). Then |MX|us < IMlaslXllus. U

Proof. The proof is a straightforward application of the Cauchy-Schwartz inequality.
[
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Given a linear operator L : B(Esz E,) — B(Eg, E,), we denote by ||L|lopw.p) its operator
norm, when the space B(E;, E,) is equipped with the Hilbert-Schmidt norm (2.60), namely

IZllop,p) = sup {|ILM)llus : M € B(Eg, Eo),  [IM|lms < 1} (2.62)
We denote by I, 4 the identity operator on B(Es, E,), namely
Lyp : B(Eg, Ey) — B(Eg, Ey), X X. (2.63)

For any operator A € B(E,) we denote by M. (4) : B(Eg, E,) — B(Eg, E,) thelinear operator
defined for any X € B(Eg, E,) as

M (A)X := AX. (2.64)

Similarly, given an operator B € B(E;), we denote by Mg(B) : B(Es, E,) — B(Es, E,) the
linear operator defined for any X € B(Eg, E,) as

Mg(B)X := XB. (2.65)
By Lemma 2.4-(ii), we have

1M (M) llop@,py < lAllas, MrB)llopw,ps) < IIBllzs- (2.66)

For any « € oo(+/—A), we denote by S(E,), the set of the self-adjoint operators form E,

onto itself, namely
SE, :={A € B(E,) : A =A%} (2.67)

and given A € B(E,) denote by spec(4) the spectrum of A. The next Lemma follows by

elementary arguments of linear algebra and hence its proof is omitted.

Lemma 2.5. Let A € S(E,), B € S(E;), then the following holds:

(i) The operators M;(A), Mz(B) defined in (2.64) and (2.65) are self-adjoint operators with
respect to the scalar product defined in (2.59).

(ii) The spectrum of the operator M;(A) + Mz(B) satisfies

spec (M (A) = Mg(B)) = {L £ u: A € spec(4), u € spec(B)}. (I
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We also deal with smooth ¢-dependent families of linear operators
R:T — BLTY), ¢+ R(p). (2.68)

According to (2.27), for any ¢ € T, the operator R(¢) has the matrix representation

(R§ (9)); jrezdy(0)- We can write the Fourier expansions

R@) =Y R0, Rlp)=> R0, veer, Vjjezi\(0)

LezZ’ LeZ’
where
R(L) = f R(p)e ¥ dgp € BLE(TY), VLeZ', (2.69)
2m)” Jp
~ 1 «, .
R (0) = f R (p)e ? do, Ve eZ', Vjj ez\{0}. (2.70)
J 2y Jp 7

For any ¢ € Z", the operator ﬁ(ﬂ) € B(L%(T9)) has the matrix representation

R = (Rt : 2.71

0=(®Rw®) .. (2.71)

Furthermore, by (2.45), for any ¢ € T", the operator R(¢) has the block representation

(IR peoy(v=a) and forany £ € Z", R (¢) has the block representation ([ﬁ(ﬂ)]ﬁ)a'ﬂgao(m).

For any «, B € 0o(~/—A), we have the Fourier expansion [R(¢)] =>",_,» [ﬁ(ﬁ)]gei‘“/’ with
1

) B ._ B a—il-p _ (D7 v
ROV = o /T R()e " dg = (Rj (£)>m:a,m:ﬂ Ve ez, (2.72)

recall (2.70).

Let R : T" — B(L3(T%) be differentiable and let € R". For any ¢ € T”, the operator
w-9,R(p) is represented by the matrix (- 3(,)73;:/ (#))} jrezd\ (o) and its block representation is
given by (w- 9, [R((p)]g)aﬁ@o(m). We also note that for any ¢ € Z', the operator w/-aﬁz(@
admits the block representation (iw - e[ﬁ(@]g)a,ﬂeao(m).

Given R : T" — B(L%(T%)), recalling the notation (2.51), we define the block-diagonal

operator Rgiqg as

Raiag = diag, oy y=n RO (2.73)
and for any N € N, we define the smoothing operator IIyR by

_ R(0)]F if 0, a, N
(RO = [RWO]I; 1 max{|{|,a, B} < (2.74)
0 otherwise.
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It is straightforward to verify that

(HNR)diag = HNRdiag- (2.75)

2.3 Block-decay norm for linear operators

Given a smooth ¢-dependent family R : T — B(LZ(T%)), ¢ — R(y) as in (2.68), we define

the block-decay norm
1/2
|R|S = Supzy,ﬁeo‘o(ﬂ) (Z(el o, IB)ZS”[R(E)Lé”?{S) ’ (Er o, ﬁ> = max{ll |gllal 18} (276)
Lezy
For families of operators of the form R(w) : ¢ — R(p;w), v € Q, C R", we define the
norm
IRIFPT) = RIS + yRI, (2.77)

. lip . [R(w1) — Riw2)ls
IRIS™ := sup [R(w)]s, [|RIP:= sup )
weQ w1,02€RQ0 |w1 — wa|
w1 Fw2

Moreover, if R : T" — B(L:(T%)), that is, R has the form

R(@) = (@ m) , 2.79)
Ra(p) Ri(e)

we define
Rls 1= [Rals +[Rals,  [RIPY = Ry S + R, 7P, (2.79)

In the following, we state some properties of this norm. We prove such properties for
families of operators R : T" — B(LZ(T9)). If R is an operator of the form (2.78) then the

same statements hold with the obvious modifications.
Lemma 2.6.

(i) The norm |- | is increasing, namely |R|s < |R|y, fors < s'.
(ii) The operator R,y defined by (2.73), satisfies [Ragiqgls < |Rls, implying that
I[RI:lles < a*R], for any « € oo(v/=A)
(iii) Items (i), (i1) hold, replacing | - |s by | - [FP®). O
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Proof. The proof is elementary. It follows directly by the definitions (2.76) and (2.77),

hence we omit it. [ |
Lemma 2.7. Let R, 7 be operators of the form (2.78). Then for any s > s, (recall (2.14))
IRBls Ss IRIsIBlasy + [ Rlzsq | Bls-

If R = R(w), T = T (w) are Lipschitz with respect to the parameter w € Q, C 2, then the

same estimate holds replacing | - | by | - |FP®). O

Proof. According tothe notations (2.45) and (2.46), for any ¢ € T", the operator R(¢)B(¢)

has the block representation
R@OT (9) = (IROT D)) apecov=m  [ROT @I = Z [R(p)]3! ['T(fp)]’.i1
tez”
aj€0g(v/—A)
and for all ¢ € Z*
RT0 = > [RE—-OTWE).
a1 €09(v/—A),l' ez’
Then, using Lemma 2.4-(it), we get that for any «, 8 € oo(v/—A)

2

Y, HEIRTOLIZs <Y | Y (o, BPIRE — O asT ()1 llus | - (2.80)
Lezv tezy ez

ajeog(v/—A)

Using that for any «, 8,1 € og(W/—=A), £, 0 € 2", (£, 0, B)° <s (£ — ¥, a,01)° + (€', a1, B)*, we
get

(2.80) <; (I) + (II) (2.81)
where
2
O=> Y = o) IRE— O usITEL s (2.82)
e o Ef;oe(%/vj)
2
=31 > (€, BlIRE— OV asITEE las | - (2.83)
tezy ez’

aj€0g(v/—A)
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Using that, by Lemma A.1-(i), ) z’e(%) (', ap)=2%, Zaleao<ﬂ> afzso < 400 (recall that
a] €0 -
So > (v + d)/2), applying the Cauchy Schwartz inequality, one gets

DS Y = a,a)*[[RE — O] | E ()0 T () I3
Lez? ez

oy €09 (v/—A)
Soo Y ()T ks Y (€ — €0, an)®(I[RE — €] |13

ez’ Lezvy

ajeog(v/—A)

1 / S| P / S o
Soo Y e a) O IT () s Y (€ — € o, ) IR — )12 |4
ez’ a4 tez”

aj€og(v/—A)

< Y alzs(’( sup Z<z/,a1>430||[?<4/)]£1||?,S>

oy €0 =R a1 €0g(v/—A) Ueny

X < sup Z<k,a,a1>zs||[73(k)]il ”%IS)

a,a1€00(v/—A) kezV

(2.76)

Ss 1Bl3g, IRI3. (2.84)

Similarly one proves that (II) <s |712|RI3,, and then, recalling (2.80), (2.81) one proves
IRT |5 Ss 1T |259|Rls + |7 |5s|R|2s,- The estimate for the norm | - [1P%) follows easily by the

previous one, by applying the triangular inequality. |
For all n > 1, iterating the estimate of Lemma 2.7 we get

IR™25p < [C(S)I"'IRI,  and R[5 < nC(s)"|RIg5, IR, ¥s = 2so, (2.85)

and the same bounds also hold for the norm | - [LP® if R is Lipschitz continuous with

respect to the parameter w.

Lemma 2.8. Let ® = exp(¥) with ¥ := ¥(w), depending in a Lipschitz way on the

parameter w € Q, C R, such that |\D|L1p(”) <1, |V EPY < o0, with s > 2s0. Then

|&*! —Id|y S (W, [0 —IdA[PY) < WP, (2.86)
O

Proof. The claimed estimates can be proved by using the Taylor expansion of ®*! —1d =

Llp(y)

exp(£V¥) — Id, using the condition |¥|, "’ < 1 and by applying the estimates (2.85). W
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Lemma 2.9. The operator 1R := R — INyR (recall (2.74)) satisfies
IMyRls < N°[Rlsn,  [MFRIEPY < NPIRIEE”, b>0, (2.87)

where in the second inequality R is Lipschitz with respect to the parameter
weQ,CQ. O

Proof. We have that forallb e N, «, 8 € ao(+/—A)

S tta, BEIMEROLIE 2 Y (0w, AZIRO LI

tez” {e:(t,a,p)>N}

~ (2.76)
SN®) (o, BPNRONIE = N 2IRE,,,

LezV

and the lemma follows. [
Lemma 2.10. Let us define the operator

R(@)[h] = q(¢, %) / 9@ nhy)dy, heLy(T) qgeH(T™), s=s.  (288)
Then

Rls Ss 1gllsoglls + 11915+ 1Glo-

Moreover, if the functions g and q are Lipschitz with respect to the parameterw € @, C €,

then the same estimate holds replacing | - |s by | - |[}P?) and || - ||s by || - ||LP®. O
Proof. A direct calculation shows that for all £ € Z’ and for all j,j' € Z¢ \ {0}

RI@ =G — g ().

ez

Using definition (2.60), the Cauchy-Schwartz inequality (using that ), _,. (¢) 70 < +00)

we get

2
IROLIZ = Y IR ©F < Y (Z (¢ —e’)||§_,-/<z’>|>

Jl=a =« o
I'1=p U'1=p

<D0 D G — PGy @)
V= lj'|= ¢

(2.422.8) Z ”aa(z _ e/)”iz (£/>250 ”aﬁ(g/)”IZ,Z (289)

[/
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Now for all @, 8 € og(v/—A),
~ (2.89) R R
S e, BEIROLIZ < 3 (€, B — )12 (€))% (2.90)

tezy 2,0 ezy
Using that (£, a, B)% <, (£ — €/, a)% + (', B)* we get
(2.90) S Y D (€ — €, @) [[qu (€ — )]22(€)0I[Gs (€))7
%
0D LB — )12 ()G 12
4 o
o D AOPOGE0N1Z, Y (0 — €, ) [qu (€ — )2,

4

l/
+ ) (L BPONGL)2, Y [a € — )12,
4 £

(2.10)
Ss IIQIIfOIIQI|§ + I|g||§+SOIIQI|§z (2.91)
and hence the lemma follows. [ |

For a ¢-independent linear operator R € B(Lg(Td)) having the block-matrix

representation (2.45), the block-decay norm (2.76) becomes

IRIs=sup (o, B)°I[Rllas, (x B):=max{a, B}. (2.92)
a,Beon(V=A)

The following Lemma holds:

Lemma 2.11. (i) Let R € B(IL3(TY) satisfy |Rlszs, < +00, for s > 0. Then R €
B(L3(T%), H3(T4)) and ||R||B<L5,H3> S IRlstas,- As a consequence R € B(HS), with | R|lsws) <

”R”B(L%,Hé) ,S |R|s+250-
(ii) Let k € Nand R : T — B(LA(T?)) with [Rlssxs25, < +00. Then R € Wr= (T7, B(LZ, H))

and for any a € N, |a| < k, one has
”8$R||L°°('JI‘V,B(H8)) 5 sup |8ZR(‘P)|s+2sO 5 |R|s+|a\+2s0- ]
@eTY

Proof. Proof of (i). Let u € L3(T%). By (2.52) and (2.5), one has that

2 2

IRz, = Y, o > [REmw]| < ). > @ IRE 2 | - (2.93)
acoy(vV=A) Beop(V=A) 12 acog(v=A) \Beop(v=4)
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Using Lemma 2.4-(i) and recalling (2.92), one gets

) as+s(),350 P
IR S > > g0 ITRI sl 12
acog(v—A) \Beog(v—A)

1 , s+2sg
s ¥ S D R sl e

OZZSO ﬂso
acag(v/—A) Beag(v/—A)
2
SRE Y o [ gl (2.94)
~ s+250 @250 ﬁSO BIL . .
acog(v=A) Beag(v/—A)
By the Cauchy-Schwartz inequality
1 (2.5)
CONSIRE Gy, D o 2o Mwsll S REglIule (2.95)
a,peog(v=A) Beon(vV=A)

by applying Lemma A.1-(i) (note that 2s; = 2([(v + d)/2] + 1) > v 4+ d) and then the claim

follows.

Proof of (ii).For any «, 8 € oo(v/—A) and for any multi-index a € N*, |a| < k one has that

the operator 9;R(¢) admits the block-matrix representation

0 R(@) = (BFRW@S), oo v -

Expanding in Fourier series 8g[R(go)]g, one has

3;1[73((/?)]5 = Z i'“'z“[’]’é(g)]geiz.¢,

LezV

and by the Cauchy-Schwartz inequality
R R 2
18SIR @) s < Y 1€/ NIROL s S (Z(K)Z('“'“O)II[R(E)]£II§IS> . (2.96)
Lezy Lezy

Thus by (2.96), for any «, 8 € oo(v/—A), for any ¢ € T", one has

s na 842 (2.96) Astlal+so) 11D 512 (2.76) )
(@ BZN0R@YIZs S > (L, B) ONMROLIEs S 1RIZ gs,

Lez’

and then the lemma follows by recalling (2.92) and by applying item (7). [
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2.4 A class of g-dependent Fourier multipliers
For any m € R, we define the class S™ of Fourier multipliers of order m as

S = {r too(W/—A) > C: sup |r(@)]|ae™ <400
aeag(v/—A)

where we recall that the set oq(v/—A) is defined in (2.2). To any symbol r € S™, we

associate the linear operator Op(r) defined by

Op(Nu(x) := Z r(ljihue’™, Yu € HM(T%). (2.97)

jezd\(o}

We denote by OPS™ the class of the operators associated to the symbols in S™.
In the following we deal with ¢-dependent families of Fourier multipliers r : T" x
oo(W/—A) — C, r(p,-) € S™. The action of the operator Op(r) = Op(r(y, |j|)) on Sobolev

functions u € H3(T"*?) is given by

Op(Mulp,x):= Y rlp, ihwp)e™ = Y Tt~ 0, i )e ™. (2.98)
jezd\(0) e
jezh\(0)

Using the representation (2.7), the action of the operator Op(r) on a function u(g, x) can

be written as

Op(ulp,x) = Y, r@eulpx)= Y TU-Cou e e (299
acog(v/—A) e ey
aeao(m)

The following elementary properties hold:
Op(r) = Op(® = Op(r)*, Op(r)” = Op(r) (2.100)
(recall (2.28), (2.30), and (2.33)). The above properties imply that

Op(r) = Op(r)* if and only if r(p,a) =r(p,a), Y(p,a) € T" x og(+/—A).
(2.101)
Let R = Op(r) € OPS™, B = Op(b) € OPS™ . Then the composition operator R o B is given
by

R o B = 0p(r) o Op(b) = Op(rb) € OPS™ ™, (2.102)
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Note that RoB=BoR.

For an operator R = Op(r) € OPS™, for any s > 0, m € R, we define the family of norms

[0p(M)lm,s := sup |r(,a)lsa™™ (2.103)
aeao(m)

and if r = r(p,o; w), ® € L, C Q is Lipschitz with respect to the parameter w € 2, then

we define

[Op(M)[EPY) = |Op()[EE + y[Op(r) P (2.104)

m,s m,s

where

i |Op(r) (@) — OP(T) (@2)m,
[Op(MIE® := sup |Op(r)(@)lms, 0P, := sup P 1 p 2lms.
weERo 1,099 |w1 _ w2|
] #wy

We also deal with operators

R = (Op(il) Op(i2)> , ri,r, € S™. (2.105)
Op(r2) Op(ry)

With a slight abuse of notations we still denote by OPS™ the class of operators of the
form (2.105). For such operators, we define the norms |R|,, s := |Op(1)|m,s +10P(72)|m,s and
IRILEY := |0p(r) 52" + |Op(r2)[EY. In the following, we state some properties of the
norm | -|,,s. We prove such properties for operators R(¢) = Op(r(g, -)). If R is an operator
of the form (2.105) then the same statements hold with the obvious modifications.

It is immediate to verify that

<|lms, VYs<s, VmeR, (2.106)

| : |m,s

| Ims <1 lws VYm>m/, Vs>0 (2.107)
and the same inequality holds for the corresponding Lipschitz norms.
Lemma 2.12. Let R = Op(r) with |R]os < +00, s > so. Then for any u € H§(T"*4)
IRulls Ss IRloslitllsy + IRlo,so I ells-

The same statements hold, replacing || - ||s by | - |F*® and | - o by | - |{;f§<”. If R is an

operator of the form (2.105), then a similar estimate holds. O
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Proof. The claimed estimate follows by the same arguments used to prove Lemma 2.13
in [18], hence the proof is omitted. Actually our case is even simpler since the symbol r

does not depend on the variable x € T<. [ |

Lemma 2.13. Let R = Op(r), with |Rlosy+1 < +00. Then R € C'(T", B(Hy)) for any s > 0
and ||R||c1(TV,B(Hg)) S [Rlo,sq+1- O

Proof. Let R = Op(r) € OPS°. Since [Rlosy+1 < +oo, by the definition (2.103), the
symbol r(-,«) is in H*!(T") for any a € oo(v/—A). Hence, by the Sobolev embedding
r(,@) € CH(T") with [r(,@)lcim) S I7C,@lsgi S [Rlossr for any o € op(v/=A). Since

IRller v, srg) < SUPueoy(v=a) ITCs @) llc1 () for any s > 0, the claimed statement follows. H

Lemma 2.14. Let m,m € R and R € OPS™, B € OPS™ be two operators of the form
(2.105) with [Rlmns, |Blmw s < 0o, with s > so. Then the operator RB € OPS™™ has still the

form (2.105) and it satisfies the estimate
|RBIm+m/,s gs IRIm,SlBlm’,so + IRIm,SOIBIm/,s-

The same estimate holds replacing the norm | - |, s by the norm | - Il;l;?s(”, if R and B are

Lipschitz with respect to the parameter w € €,. O

Proof. The claimed statement follows by using the property (2.102), the definition
(2.103) and the interpolation Lemma 2.1. |

The above lemma implies that if R € OPS™, then R¥ € OPS*™ for any k > 1 and
IR lemso < C$0)* ' Rlysy IR lkms < kC(S)* IRl g [Rlms, 5= So. (2.108)
The same estimate holds replacing | - |n,s by | - [Z2%.
Lemma 2.15. Let W(¢) € OPS™, 9 € T, m > 0, with
[W]-ms, = 1. (2.109)

Then the operator ©(¢) := exp(V(¢p)) satisfies ®(¢) — Id € OPS™™, Vo € T, with

|<D - Idlfm,s S,s I“Ijl—m,s- (2.110)
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Moreover, the operator

1] k
Doo(p) =) ;:,)) € OPS™™", Vg eT" (2.111)
k>2 ’

and it satisfies the estimate

|<1>32|72m,s ,Ss I\Ijlfm,sl"ylfm,sm (2-112)

If the operator ¥ depends in a Lipschitz way on the parameter w € 2, € Q and |\P|Ei£l(fs’g <

1, then the estimates (2.110) and (2.112) hold replacing the norm | - |_,,s by the norm

I . ILiP(V) 0
s -

Proof. The Lemma follows by using the Taylor expansion of the operator ® — Id, the

definition (2.111), the estimate (2.108) and the condition (2.109). [ |

In the next lemma we compare the block-decay norm | - |; defined in (2.76) with
the norm | - |, ¢ defined in (2.103).

Lemma 2.16. Lets > 0 and R(p) € OPS’S’%, ¢ € T'. Then

Rls S IRLS,%,S-
The same estimate holds replacing | - |; by | - [P and |- | a1 . by |- "), if the
s s=952s s d 1
. —s-ds1
operator R depends in a Lipschitz way on the parameter w € , C Q. O

Proof. Let R = Op (r). By the representation (2.99), for any ¢ € T", the operator R(¢) is
block-diagonal (recall the definition (2.51)) and it has the block representation

R(p) = diag, .= [R@)];, [R(@], =r(p, )., Va € oo(v—A)
and for any ¢ € Z¥
RO =7, a)l,, Va €oo(v/—A), VEeZ'

d—1
<o z (see

~

where we recall that I, : E, — E, is the identity. Hence, using that ||I,|/zs
(2.60)), recalling the definition (2.76), one gets

IRIZ= sup Y (L,e)*[[ROLIZs = sup Y (€, a)* [P, o)|Ll%
oceao(\/z) lezy aeao(\/z) lezy

S osup Y (La)*FEofe’ < sup Ir¢, o) SIRE 4 (2.113)
acon(v=A) ey aeaqg(v/—A) 2

which is the claimed estimate. [ |
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2.5 Hamiltonian formalism

We define the symplectic form W as

0 1

Wiz, 22] := (21,J22) 2, J = (
-1 0

) ., V2,2, € L3(T, R) x L3(T%,R). (2.114)

Definition 2.1. A ¢-dependent linear vector field X(p) : L3(T%,R) x L(T¢,R) —
L3(T4,R) x L3(T4,R), ¢ € T, is Hamiltonian, if X(¢) = JG(p), where J is given in (2.114)

and the operator G(¢) is symmetric for every ¢ € T". O

Definition 2.2. A ¢-dependent map ®(p) : L3(T%, R) x L3(T%,R) — L3(T¢,R) x L3(T¢,R),
@ € T" is symplectic if for any ¢ € T", for any z;,z, € L3(T¢,R) x L3(T4,R),

WIP(@)[z1], P(@)[22]] = Wlz1, z;],
or equivalently ®(¢)TJ®(¢) = J for any ¢ € T". O

Assume to have a differentiable map ¢ € T" > ®(¢) € B (L3(T¢ R) x L3(T¢, R))

and let us consider the quasi-periodically forced linear Hamiltonian PDE
8.z = X (wt)z, X(p) :=JG(p), ¢eT’, zeLi(T%R)x LT R). (2.115)

Under the change of coordinates z = ®(wt)h, the above PDE is transformed into the

equation
d:h = X, (wt)h, (2.116)

where X, (wt) is the transformed vector field under the action of the map ®(wt) (push-

forward), namely
X (9) = P X(9) := P(9) ' X(9)P(p) — D) 'w-8,P(p), Ve eT. (2.117)
It turns out that, since X(¢) is a Hamiltonian vector field and ®(¢) is symplectic, the

transformed vector field X, (¢) is still Hamiltonian, namely it has the form given in
Definition (2.1).
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2.,5.1 Hamiltonian formalism in complex coordinates

In this section we describe how the Hamiltonian structure described before,
reads in the complex coordinates introduced in (2.38) and (2.39). Let JG(¢), ¢ € T" be a
linear Hamiltonian vector field, with G(p) € B (L3(T%,R) x L3(T%,R)) being a symmetric
operator as in (2.35). The conjugated vector field R(p) := C~1JG(¢)C € BL3(T?)) has the

form

(2.118)

R(@:i(Rl(@ Rz(‘ﬂ))’

—Rz(¢) —Ri(e)

where
Ri(p) := —A(p) — D(p) +iB(p) —iB(p)", Ra(¢) := —A(p) + D(p) —iB(p) — iB(p)" (2.119)

(recall that the operator R is defined in (2.28)). The operators R, (¢), R, (¢) are linear opera-
tors acting on complex valued L? functions L3(T%). Furthermore, since G(p) is symmetric,
that is, A(p) = A(¢)T, B(p) = C(¢)T, D(¢) = D(p)7, it turns out that

Ri(p) =Ri(9)*,  Ra(p) =Ra(p)", VpeT. (2.120)

We refer to an operator R of the form (2.118), with R, and R, satisfying (2.120), as a

Hamiltonian vector field in complex coordinates. The operator R(p) in (2.118) satisfies
R(p)[u]l =iJVyH(p,u), u:=(u,u), Vy H=(V,H,ViH), (2.121)

where the real Hamiltonian H has the form

R R,(0)
Hig,u) = G@)ul, u), () :=< 2(#) 1(‘”)), (2.122)
Ri(¢) Rz(p)
that is
1 1 _
H(w,u,a)=/ R1<¢)[u]adx+—/ Rz(go)[u],udx+—f Raads  (2.123)
T 2 Td 2 Td
and
\Y H—i(v H—iV,H) fo—i(v H+1V,H)
u - ﬁ v W ’ u — ﬁ 1% v .

By (2.120), we deduce that

Gp) =G(p)", VeeT.
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The symplectic form W defined in (2.114) reads in the coordinates u = (u, ii) as.
F[ul,uz] 21/ (ulL_Lz—llluz)dX=i(u1,Ju2)L2, Yu;,u, € Lg(Td) (2124)
Td *
where

(Uy, up)y2 1= /d Ui Uy + U U, dx, Yu,,u, € LE(T%). (2.125)
T

Definition 2.3. A ¢-dependent family of linear operators ®(¢) : L3(T%) — L2(T%), ¢ € T"

is symplectic if
T () [w], @(p)[uz]] = Muy, uzl, Yuy,up € LE(TY), Vo e T 0

It is well known that if R(¢) is an operator of the form (2.118), (2.120),namely by
(2.121), it is a linear Hamiltonian vector field associated to the real quadratic Hamilton-
ian H in (2.123), the operator ®(p) = exp(R(¢)) is a symplectic. Assume that the map
¢ € T" > ®(p) € B(LLT?)) is a differentiable family of maps and let ¢ € T" > X (¢) €
B(L2(T%)) be a differentiable families of Hamiltonian vector fields, that is, X (¢) = iJG(¢),
G(p) = G(p)T for any ¢ € T'. Arguing as in (2.115) and (2.116), under the transformation
u = ®(wt)h, the PDE

o;u = X(wt)u, welR”, tekR, (2.126)
transforms into the PDE

dh =X (wt)h, X (p) = ,.X(p) = P(p) ' X (@P)P(p) — P(p) - 3,P(p), Ve T
(2.127)
If ®(¢) is symplectic then the vector field X, (¢) is Hamiltonian, that is it satisfies (2.118)
and (2.120). In the following, we will consider also reparameterizations of time of the

form
T =1+ a(wl),

where « : T — R is a sufficiently smooth function with |«| .1 small enough. Then the

function ¢t — t + a(wt) is invertible and its inverse is given by

t=r1+a(wr).
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by setting v(t) := A(wt)u := u(t + a(wt)), the PDE (2.126) is transformed into

1
3V =JG (wr)V,  G.(¥):= %Q(ﬂ +0a®), p®) =1+ da@® +wid(®)) (2.128)

which is still a Hamiltonian equation.

3 Regularization Procedure of the Vector Field L(¢)

As described in Section 1, in this section we carry out the first part of the reduction
procedure of the vector field £(¢), defined in (1.11), to a block-diagonal operator with
constant coefficients. Our purpose is to transform the vector field £L(¢) into the vector
field £4(¢) which is a regularizing perturbation of a time-independent diagonal operator,
see (3.70). The regularizing perturbation R, defined in (3.71) is the sum of a finite rank
operator and a ¢-dependent Fourier multiplier of order —M where the constant M is
fixed in (3.68). In the following subsections, we describe in details all the steps needed

to transform the vector field £(¢) into the vector field £,(p).

3.1 Symplectic symmetrization of the highest order

We start by symmetrizing the highest order of the vector field

0
L(p) = ( ) , peT
(1+4+ea(@)A+eR(p) O

where we recall the definitions given in (1.11) and (1.3). For any ¢ € T", let us consider
the transformation
1
s+l 1 u B(@)|DI"2u
S(p) : HY(T%, R) x H(T% R) — H, ?(T% R) x H, 2(T% R), > 1 Dty
—_— 2
B(p)

where 8 : T — R is a function close to 1 to be determined and for all m € R, the operator
|D|™ is defined by

(3.1)

ID™(eV%) = |j|™eV*  Vj # 0. (3.2)
For any ¢ € T", the inverse of the operator S(¢) is given by

1 1
-1, ggsmd s—1md s—% s—3 u ——|D|2u
S(p)™' : Hy(T%, R) x Hy '(T¢,R) — H, *(T¢ R) x H, *(T¢ R), - B
B(@)D|" 2y

(3.3)
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By (2.117), the push-forward of the vector field £(¢) by means of the transformation S(¢)
is given by
L1(9) 1= 8,.L(p) = S(9) ' L)S(p) — S(p) ' - 3,S(p)

=( —B7 @) @-3,8(9)) B @)ID| )
(1 4 £a(9)B2(@) D' A + ef2(@)ID| 2R(9)IDI"2  —B(@)(@ - 3,8~ (¢))

and we look for 8 : T — R such that

B2 (p) = (1 +ca(p)B(9), (3.5)
namely we choose
[1+ea(p)]s
Since
_ - 3,B(9)
B@)w - 3,87 (¢) = _% and — A =|D?
we get that
i) < —~ao() a1<¢>|D|), 3.7)
—a1(@)ID|+ RV (p)  aolp)
where
. 3 1 1
ao(g) = ‘“ﬁg;f)(@ @) = VTTeal), RV = @D I R@IDIE. 3.8)

Since B is a real-valued function, the operator S(¢) is real for any ¢ € T and a direct
verification shows that it is also symplectic. Hence the transformed vector field £;(¢) is
still real and Hamiltonian. By (3.6) and (3.8), the functions 8, a, and the operator R" do
not depend on the parameter w € 2, whereas the function aq(¢) = aq(¢; ) depends on
w € Q.

Now we give some estimates on the coefficients of the vector field £;(¢).

Lemma 3.1. Let g > so + 1. Then there exists §; € (0, 1) small enough such that for any
¢ € (0,48, for any s < s < q — 1, the following holds: the functions g, a,, a, defined in
(3.6), (3.8) satisfy the estimates

185 = 1lls, llar — s, llaolls™" Sq e (3.9)
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The remainder R (¢) in (3.8) has the form

N
ROV =) b (g, %) / @ yvy) dy + ¢ (g, x) f e yvndy, (310
k=1 T T

@ € T",v € L3(T4,R) (then it is symmetric RV (¢) = RV (¢)T, for all ¢ € T") with
15 M6, lleglls Sq 1, Vek=1,...,N. (3.11)
Furthermore, for any s > 1/2, the maps

1 _1
oS, T - B (Hg(Td,R) x H{(T%,R), H, 2(T% R) x H, Z(Td,R)> ,

s+%

_1
o> S, T - B (HO (T4, R) x Hy 2(T¢,R), HS(T?,R) x Hg(Td,R)>
are C! maps. O

Proof. The estimates (3.9) follows by the definitions (3.6) and (3.8) and by Lemmata 2.1
and 2.2. Let us prove the estimates (3.11). By (3.8), recalling the definition of R(¢) given
in (1.3), using that |D|’% is symmetric, one has that the operator R (¢) has the form
(3.10) with

b (g, x) == B(@)ID| 2bi(9,x), (g, x) = B(p)IDI 2c(p,x), k=1,...,N.

Then the claimed estimates follow by applying the estimate (3.9) and applying the
interpolation Lemma 2.1. A direct verification shows that RV (p) = RW ()T for any
@ eT. |

3.2 Complex variables

Now we write the vector field £, (¢) defined in (3.7) in the complex coordinates introduced
in (2.38) and (2.39). More precisely, we conjugate the vector field £, (¢) by means of the
transformation C defined in (2.39). Since C is ¢-independent, we get that by (2.117), the
push-forward £;(¢) := C,.L1(¢) = C 1L, (p)C is given by

RV (p)

3.12
NG (3.12)

—ia1(@)ID| +ieRP(p)  —ao(p) +ieR? (9)
Lo(p) =

. RP(p) =
~ao(p) —1eRP(p)  iai(¢)|D] —ieRP (p)
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Since a, and a, are real valued functions and RV (¢) (and then R®(p)) is symmetric and
real, the operator £,(¢) is a Hamiltonian vector field in complex coordinates, in the sense
of the Definition (2.118). We recall that the transformations C,C~! satisfy the property
(2.44).

3.3 Quasi-periodic reparameterization of time

The aim of this Section is to reduce to constant coefficients the term a,(¢)|D| in the
operator L,(¢) defined in (3.12). In order to do this, let us consider a function @ : T — R

(to be determined) and define a reparameterization of time of the form

R—>R, t—t+alwt), wel. (3.13)

It is easy to verify that if ||o|/.1 is small enough, the above function is invertible and its

inverse has the form

T T+ a(wr). (3.14)

The reparameterization of time (3.13) induces also a diffeomorphism of the torus T"

T - T, ¢ ¢+alp) (3.15)

whose inverse is given by

T > T, 9+ 0+d®). (3.16)

The corresponding composition operators A,A™! acting on the periodic functions h :

T x T¢ — C are given by

Ah(p,x) = h(p + wa(p),x), AT'h(®,x) :=h® + 0d(9),X). (3.17)

According to (2.128), under the reparameterization of time defined by

A(@t)v(t,x) :=v(t + a(wt),x), Alwt) 'v(r,x) = v(r + d(wT),X), (3.18)
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the vector field £,(¢) transforms into the vector field

1
L3() = mﬁz(l9 + wa(9))
1 —i(A7'a)(®)|D| +isRP (¥ + wa(¥)) —(A'ag) () +1eRP (¥ + wa (D))
() —(A7lag)(®) —ieRP W + wa (D)) +i(A'a) () |D] —ieRP W + wa ()
(3.19)
where
p(®) :=1+w-3,a(® +wi(®) =A"[1+w-3,al®). (3.20)

We want to choose the function a(¢) so that

-1
A7a)® _ oy e, (3.21)
p(@)

for some constant m € R to be determined. The above equation leads to

m (1 +w - 8(,]01((/))) =a;(p) VeeT (3.22)
Integrating on T* we fix the value of m as
m:= 1 /a()d (3.23)
= 27 Jo 1) de .
and then, assuming that w € DC(y, t), for some y, t > 0 (see the definition (2.16)), we get
—1 a

a(p) = @37 [ ~1] @) (3.24)

where the operator (w-d,)"! is defined by (2.15). Since the function a, is real valued, then
m is real and « is a real-valued function.
By (3.19)-(3.24), the vector field £;5(¢) has then the form

(3.25)

L3(®) := (—imIDI +ieR®W) a,(®) + ieR<3>(19)> |

a(®) —ieR®(®)  im|D| — ieR® )
where

ax (@) := p~ (DA a0l (), RO@) = p()'RP (@ + wd(9)). (3.26)
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The operator L3(9) is still a Hamiltonian vector field in complex coordinates, since
Ly(®) is Hamiltonian and the reparameterization of time .4 preserves the Hamilton-
ian structure (see Section 2.5.1). We point out that by (3.23) and (3.8), the constant m
is independent of the parameter w € 2, whereas by (3.24), (3.17), (3.20), and (3.26), the
functions «, @, p, a, and the operator R‘® depend in a Lipschitz way with respect to the

parameter w € DC(y, 7).

Lemma 3.2. Lett > 0,y € (0,1) and w € DC(y, ) (recall (2.16)). Then there exists
a constant ¢ = o(r) > 0 such that if g > sy + o, there exists §; € (0,1) such that if

eyl < 84, for all sp < s < g — o the following estimates hold:
Im — 1], l|az|¥PD), || p*! — 1IEP) < g, [la||XPD), (@ ||HP0) < ey (3.27)

The symmetric operator R®(8) defined in (3.26) has the form

N
REIul =) b @) / L@ v dy + ol @, ) / @ v dy, (328
k=1 T T

¢ € T", v € L3(T%), with

1B I, e 18P Sg 1, k=1,...,N. (3.29)
O

Proof. The estimates (3.27) follow by (3.23), (3.24), and (3.26) and by the estimates (3.9)
by applying Lemmata 2.1-2.3. The formula (3.28) follows by (3.10), (3.12), and (3.26), by

defining by” := 2‘%,0’%19561), ¢ = 2‘%,0’%0,((1), k=1,...,N and the estimates (3.29) follow

by (3.11) and (3.27) and Lemmata 2.1 and 2.3. |
3.4 Symplectic reduction up to order |D|™™
Introducing the notation
-Id 0 2 mnd 2 md : : :
T:= 0 NE Id : Li(T?) — Lg(T%) isthe identity (3.30)
I

and renaming the variable ¢ = ¢, we can write the vector field in (3.25) as

L3(@) =1imT|D| + Az(¢) + eRs(p), (3.31)
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where

0 axp) [ R¥p) R
A = , R = , T (3.32)
¢) <a2(§0) 0 ) s i=t <—R‘3> (®) —R® (w)) ’e

and the operator R® (¢), defined in (3.26), has the form (3.28). The aim of this section is
to conjugate L3(¢) to the vector field £4(¢) defined in (3.70) which is the sum of a diagonal
operator and a regularizing remainder. Since the operator R®(p) is finite rank operator
of the form (3.28), it is already regularizing. Hence in the following two Sections 3.4.1

and 3.4.2, we neglect the operator R3(¢) in (3.31) and we work with the vector field
LY (9) :=imT|D| 4 Ay(p), ¢ €T". (3.33)
We compute the complete conjugation of £3 in Section 3.31.

3.4.1 Block-decoupling up to order |D|™™

Given a positive integer M, our goal is to conjugate the operator L} in (3.33) to
the operator L{" in (3.51) whose off-diagonal part Qy; is an operator of order —M. This
is achieved by applying iteratively M-times a conjugation map which transforms the
off-diagonal block operator into a 1-smoother ones. For such a procedure we will use
the class of ¢-dependent Fourier multipliers introduced in Section 2.4.
We describe the inductive step of such a procedure. We assume that g > s + o + M,
where the constant ¢ = o(7) is given in Lemma 3.2 and M < N is the number of the
steps of this regularization procedure. In this section we use the following notation: If

nef{l,..., M}, s> 0, we write
al,sb << a=<C(n,s)b

for some constant C(n,s) > 0 (that may depend also on d, 7, v).

At the nth step, we have a Hamiltonian vector field
L{"(p) = imT|D| + Ru(p) + Qn(p), (3.34)

where R, (¢) = R,(¢; w), Q,(¢) = Q,(¢; w), ® € DC(y, 1) are Hamiltonian vector fields of

the form

Rn::i<0p(rn) 0 ) On:i( o Op(qn>> 3.35)
0 —Op(T'n) —OP(Qn) 0
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and r,(¢,) € S7}, q.(p, ) € S™. Moreover they satisfy the estimates
|Rn|EiE§y), I()nﬁiﬁfs”> Sng & Vs <s<g—-n-o (3.36)

where o = o(7) > 0 is given in Lemma 3.2. Recall that the definition of the norm | - |,,, s is

given in (2.103).

Initialization. The Hamiltonian vector field L;O) (¢) in (3.33) satisfies the assumptions
(3.34)—(3.36), with Ry(¢) = 0 and Qy(¢) = A3(¢) € OPS°, by Lemma 3.2.

Inductive step. We consider a symplectic transformation of the form
V, = exp(iVy,) (3.37)

where the operator V, has the form

0 Op(vy,
v, = ( 0o )) . v, eSTL (3.38)
—Op(vy) 0
We write
. ik
Vo =Id+1iVy 4+ Vasz,  Vipsz = ZEVH. (3.39)
k>2

In the above formula, with a slight abuse of notations we denote by Id : L3(T%¢) — LZ(T%)
the identity on the space L2(T%). By Lemma 2.15, one gets V, -, € OPS™2™*D_ We now
compute the push-forward (Vn)w*Lén) (¢). By (2.127) one has

Vol @) =Val@) ™ (L @Val9) = - 0,V() ). (3.40)
Since w - 3,V (¢) = @ - 3, Vn(p) — 1d), by Lemmata 2.14 and 2.15, one has
V(@) - 3,Va(@) = —Va(@) '@+ 3, V(@) —Id) € OPS™ L. (3.41)

Moreover

L (9)Vu(9) 2 1V, ()MT|D| 4 [imT|D|, iV, (9)] + Qn(@) + Ra(9)

+ [imT|D|, Vu,22(9)] + (Rn(@) + Qn(9)) Vn(p) — 1d). (3.42)
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Note that [imT|D|, V,,»2(¢)] € OPS™2"*1 C OPS™ !, (R (¢)+Qn(9)) Vu(p)—1d) € OPS™2 C
OPS~!, therefore the only off-diagonal term of order —n (which we want to eliminate)

is given by [imT|D|,iV,(¢)] + Q,(¢). We want to choose V,(¢) so that
[imT|D|,iV,(¢)] + Qn(p) = 0. (3.43)
By a direct calculation, one has

[imT|D|,iVy(¢)] 4 Qn(p)

_ ( 0 Op Zm|j|va (@, [j]) + ign(p, |f|))> (3.44)
Op 2m|j|va (e, ) +ign(e, D) 0
Then [imT|D|,iV,] + Q, = 0 if we choose the symbol v, so that
V(@) = —lqginﬂ, VoeT',  Vacoy(v—A). (3.45)
107

Since g, (¢, -) € S™", the symbol v, (¢,-) € ST ! for any ¢ € T".

Lemma 3.3. For any s; < s < g — n — o, the operators V,(¢), V,(p) —Id € S™ ! and
Vis2(p) € OPS~2+D gee (3.38) and (3.39) (which depend on the parameter w € DC(y, 1))

satisfy the estimates

Lip(y) +1
|Vn|71£7y1,sr IVn - Idl*nfl,S! IVn,zzlfz(nJrl),s Sn,q €. (346)
]

Proof. The estimate for the operator V, follows by the definitions (3.38) and (3.45) and
by the estimates (3.27) and (3.36). The estimates for V,(¢) — Id and V, -2(p) follow by
applying Lemma 2.15, using the estimate on V,(¢). |

By (3.40)-(3.43), one gets
LV (9) = imT|D| + Ru(¢) + Pa(9), (3.47)
where
Py = (V' = IR, + V' (AMTD|, Va2l + R + Q) (Vo —1d) — 0 3,V — 1d)) . (3.48)

Note that P, is the only operator which contains off-diagonal terms. In the next lemma,

we provide some estimates on the remainder P,.
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Lemma 3.4. Forany sy, <s < q—o —n— 1, the operator P,(¢p) = P,(¢; w) € OPS™},

w € DC(y, 1) satisfies the estimates

1 AN (3.49)
0

Proof. The Lemma follows by Lemma 3.3, the estimates (3.36), by applying the property
(2.107) and Lemma 2.14 to estimate all the terms in (3.48). |

By (3.47) and (3.49), the vector field Lg"“)((p) has the same form (3.34) and (3.35)
with R,.;(¢), Qni1(p) that satisfy the estimates (3.36) at the step n + 1. Since Lgn) is a

Hamiltonian vector field and V, is symplectic, the vector field Lé"“)

is still Hamiltonian.
We can repeat iteratively the procedure of Lemmata 3.3 and 3.4. Applying it M-times,

we derive the following proposition.

Proposition 3.1. Lety € (0,1),7 > 0,M € N, g > so+0+M. Then there exists a constant
84 € (0,1) (possibly smaller than the one appearing in Lemma 3.2) such that forey ' < §,,
for any s < s < q— o0 — M, for any w € DC(y, 7), the following holds: the symplectic
invertible map ]7M(<p) :=Vo(p)o...0Vy_1(p) € OPS® satisfies the estimate

IvillLlp(y) lleLIP(J/) <M 1, (3.50)

and the push forward L;M) (p) = (iM)w*Léo) (p) of the Hamiltonian vector field Lgo) (p) in
(3.33) is the Hamiltonian vector field

LI (¢) = imT|D| 4+ Ru(¢) + Qu(p) (3.51)

where Ry (¢) = Ry (¢; ), Qu(9) = Qu(p; ), € DC(y, t) have the form

Ry :=1i <Op(rM) 0_) . Tu(e,) €S, (3.52)
0 —Op(ra)
Qu =1 ( 0 Op(qM)) . qu(p,)es™ (3.53)
—Op(qm) 0

and satisfy the estimates

Rul"PY, 1Qul"5Y) Smse, Vso<s<q—o—M. (3.54)
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Proof. We need only to prove the estimates (3.50). Foranyn =1,...,M — 1 one has

(2.107) (3.46)
|Vn|0,s <1 + |Vn - IdIO,s <1 + Ivn - Idlfnfl,s Sn,s 1/

for any s < s < g—n — 0. Since n < M, one has that the above estimate holds for
any So < s < q— o — M. Applying Lemma 2.14 and using the above estimate one gets
the estimate (3.50) for V. The estimates for \7&1 follow by similar arguments and the

estimates for ]N)ATd follow since |1~)ITM|0,S < |1~2M|0,s and then the lemma is proved. |

The operator Ly (¢) in (3.51) is a space-diagonal operator up to the smoothing remainder
Qu(p) € OPS™ . The prize which has been paid is that there is a loss of regularity of M
derivatives with respect to the variable ¢. In any case, the number of regularizing steps
M will be fixed in (3.68).

3.4.2 Reduction to constant coefficients of the diagonal reminder Ry,
Our next aim is to eliminate the ¢ dependence from the diagonal remainder Ry (¢)
of the Hamiltonian vector field LéM) (¢) defined in (3.51). In order to achieve this purpose,

we look for a transformation of the form

. Op(e(p, j1) 0 .
E(p) == exp(E(p)),  E(p):= IR e(p,") € S7'. (3.55)
( 0 —Op(e(e, l]l)))

Forany ¢ € T",

Elort — <0p (exp (Eie(g, 1)) o ) 3,561
0 Op (exp(Zie(y, [j1)))
and
. Op (iw - d,e(p, ) 0 )
E@) o 0,E(p) = : . (3.57)
! ( 0 Op (iw - d,e(@, -))

Therefore by (2.117), (3.56), and (3.57) and recalling the properties stated in (2.100), the
vector field LELM) (p) = Sw*LgM) (p) is given by

LI = LMV E — (@) w-8,E

_ (Op (exp(—ie)) (im|D| +i0p(ru)) Op (exp(ie)) 0 )
0 Op (exp(—ie)) (im|D| + iOp(ru)) Op (exp(ie))
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B Op (iw - d,e) 0

1 _ ¢ v

+ & Qué < 0 op (io - awe)>

_ (im|D| + Op (iry — iw - ,€) 0 LelayE (3.58)
= 0 ~im|D| + Op (irw — 1w - d,€) " '

To shorten notations, in the above chain of equalities, we avoided to write the depen-
dence on ¢. In order to eliminate the ¢-dependence from the symbol ry (¢, |j|), we need

to solve the equation
—w-3.e(p, i) +rule, i) =c(jh) € R, Vj e Z4\ {0}, VpeT
or equivalently
—w-d,e(p,a) + rylp, a) = c(a), V(p,a) € T' x oo(v/—A), c(a) e R. (3.59)

Integrating with respect to ¢ the above equation, we determine the value of the constant

c(e), namely
c(a) = % /T ru(@,0)de,  Ya € oo(v/—A) (3.60)
and then we choose
e(p,a) == (0-9,) " (ru(p,a) — c(@)), Vg, @) € T' x ap(v/—A), (3.61)

(note that w € DC(y, t) and recall the definition (2.15)). By (3.53), (3.56), (3.58), and (3.59),

one gets
L (9) = €5 (9) = iDuT + Qua(p), (3.62)
where the diagonal operator Dy, is defined as
Dy := m|D| + Op(c(|j)) = diagjeza, o) (Ml + c (i) (3.63)
and

0 Op(qu.4)

Qualp) :=E@) ' Qu@E(p) =i
M 4@ ¢ M \@)cl@ (—OP(CIM,4) 0

) . Qua = quexp(—2ie). (3.64)

Lemma 3.5. Lety € (0,1), 7 >0, M € N, q > so+ 0 + 2t + M + 1. Then there exists

a constant §, € (0, 1) (possibly smaller than the one appearing in Proposition 3.1) such



Reducibility Result for a Class of Linear Wave Equations 47

that for ey~! < §,, forany s <s < ¢g— M — o — 2t — 1, the following holds: for any
a € og(+/—A), the constant c(x) = c(«; w), given in (3.60), is real and defined for all the

parameters w € DC(y, t). Furthermore it satisfies the Lipschitz estimate

sup c(@)["PPa <y 4 e (3.65)
acog(v/—A)

The symplectic invertible operator £(¢) = £(p; w) € OPS®, w € DC(y, ©), defined in (3.55)

satisfies the estimates
|5i1|3f§(1’)[ |5T|glif(l’) SM,q 1. (366)

The Hamiltonian vector field Qu4(¢) = Qu.a(@; @) € OPS™, w € DC(y, t) defined in (3.64)

satisfies the estimates

|OM,4|I:i1llj[(,Z) Smgq € (3.67)
O

Proof. Sincetheremainder Ry, in (3.52) is a Hamiltonian vector field, then Op(ry,) is self-
adjoint, hence by (2.101) the symbol ry (¢, @) is real, implying that, by (3.60), c(«) is real
for any o € 0o(+/—A). The estimate (3.65) follows by (3.60) and (3.54). The estimates (3.66)
follow by (3.56), (3.61), (3.54), and (3.65) (using also Lemma 2.2 to estimate |exp(ie)|s.)

The estimate (3.67) follows by Lemma 2.14 and by the estimates (3.54) and (3.66). |

3.4.3 Conjugation of the operator £3 in (3.31)
Now we compute the conjugation of the vector field £; = L(so) 4+ R3 in (3.31) (see

(3.32) and (3.33)). First, we link the number of regularization steps with the regularity g
of the functions a(¢), by (¢, x),cx(p,x), k =1,...,N (recall (1.2), (1.3)). We define

M=M(@Q) :=I[q/2], m=n(d:= % +o0+271+1 (3.68)
and we define the map
T :=Vuok. (3.69)
By (3.51) and (3.62) one gets that

L4(9) 1= (1) L3(p) = Dy T + Ralp) (3.70)
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where the diagonal operator Dy, is defined in (3.63), T is defined in (3.30) and the operator
R4 is defined by

Ra(p) == Qualp) + €T (9) 'Ra(@)T (¢), ¢ €T". (3.71)

Lemma 3.6. Lety € (0,1), t > 0, g > 2(sp + &), where i is defined in (3.68). Then
there exists §, € (0, 1) (possibly smaller than the one appearing in Lemma 3.5) such that
if ey™! < &, for all s, < s < [q/2] — &, the following holds: the symplectic invertible
operator 7 (¢) = 7 (p; w) € OPS®, w € DC(y, t) defined in (3.55) satisfies the estimates

+1,Lip(y) T Lip(y)
1T 08" 1T o5 Sq 1. (3.72)

As a consequence one has 7+! € C! (T", BHS(T?))).
The remainder R4(¢) = R4(p; ), € DC(y, 1) defined in (3.71) satisfies the estimates

IRals® Sq 6 (3.73)
where the block-decay norm | - [LP®) is defined in (2.76)-(2.79). O

Proof. By the choices of the constants in (3.68), one has that if sy < s < [q/2] — &, then

d
s+ <M and So<s<q—-M-o0—27t—1.

The estimates (3.72) follow by Lemma 2.14 and by the estimates (3.50) and (3.66). The
fact that 7*!' € C* (T, B(H$(T?))) follows by applying Lemma 2.13.
Now we prove the estimate (3.73). We estimate separately the two terms in (3.71).

Estimate of Qy 4. By Lemma 2.16 one gets

i Lip(y)
|Quals™ S 1Qumal ™7

—s—45= s

hence we can apply the estimate (3.67), obtaining that |OM,4|LiSp°’d)71 ) < 1Qua Tjilpw(f;) <mg
ST

~

e <, &, since the constant M = M(q) = [q/2].

Estimate of 7 'R3;7. Recalling the definition of R; given in (3.32) and using that the
operator R® has the form (3.28), defining

. :1.(3 :1.(3 . 3 3 . . (3 . (3 . 3 3
By = (b, i), Byx:i= Y, bY), Cixi= (ic?,—ic), Cop = (c,c),

k=1,...,N
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we have that for u = (u, w) € L3(T%),

N
Ralul = > B1(Cox, Wz + Cric(Baok, Uy2
k=1

where we recall that the bilinear form (-, iz is defined in (2.125). Thus

N
(T'ReD)[ul = ) Bi(Cokr Wz + Cri(Bak, u)yz,
k=1
El,k = T_lBllk, §2,k = TTlek, El,k = ’T_ICLk, Ez,k = TTCZVk, k = 1, e ,N.

The operator ¢7 'R, 7 satisfies the claimed inequality, by applying the estimates (3.29),
(3.72) and Lemmata 2.12, 2.10. [ |

4 Block-Diagonal Reducibility

In this section, we carry out the second part of the reduction of £(¢) to a block-diagonal
operator with constant coefficients. Our goal is to block-diagonalize the linear Hamilton-
ian vector field £4(¢) obtained in (3.70). We are going to perform an iterative Nash-Moser

reducibility scheme for the linear Hamiltonian vector field

Lo(p) := La(®) = Do + Ro(p), (4.1)
where
D . —D((,U 0 D . di ) )
o =1 0 D(()l) ' o =Dy = 1a8jczd\ (o) mljl + c(|jl)) (4.2)

(see (3.63)) and Ro(¢) := Ra(p), ¢ € T", is a Hamiltonian vector field of the form

R(l) R(Z)
Rolp) =1 ( %(ZEZZ) %GEZ)})) , Rél)(w) = Rg”«p)*, Rém(q,) = 7332) ()" (4.3)
— BEA]

satisfying, by (3.73), the estimate
IRolSPY S8,  Vso<s<I[q/2]-T (4.4)

where the constant i is defined in (3.68). According to the block representation (2.45),

the operator D" can be written as

Dy = diag,. s Hola/ wi=ma+cl@), Vaeoy(v/—A) (4.5)
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where I, : E, — [E, is the identity (recall (2.3), (2.51)) and the real constants m and c(«)
satisfy the estimates (3.27) and (3.65). We define

k
N_,:=1, Ny:=NJ Vk>0, yx:=3/2 (4.6)
(then Ny, = N,f, Vk > 0) and for t,d > 0, we define the constants

S0 =28y, a:=4t+8d+3, bi:=a+1l, S;:=[q/2]1-w—Db, with g> 2(so+71+Db).

(4.7)
In order to state the theorem below, we recall the definition of the space S(E,),« €
oo(~/—A) given in (2.67), the definition of the norm | - [lopwp), @ B € 0o(v/—A) given in
(2.62), the identity I, 4,0, B € oo(+/—A) in (2.63), the definition of M;(A) in (2.64) and the
definition of Mz(B) in (2.65).

Theorem 4.1 (KAM reducibility). Let y € (0,1), 7,d > 0 and let g satisfy (4.7). There
exist, No = Ny(g, 7,d,v,d) € N large enough, §, = §(q,7,d,v,d) € (0,1) (possibly smaller

than the one appearing in Lemma 3.6) such that, if
eyt < 8q (4.8)
then, for all kK > 0:

(S1);, There exists a Hamiltonian vector field

Li(p) := Dy + Ri(e), peT, (4.9)
D o0 :
Dy =i ( 0 W) . DY i=diag, 5D 1 D1 € SE.),
k
Ya € og(+/—A) (4.10)

defined for all w € Q, where Q} := DC(y, t) (see (2.16)) and for k > 1,

_ _ a?pie)”
Qz = {0) € szl . ||Ak71(€1al ﬂ) 1||0p(o¢,;‘3) =< T/

V(¢ o, B) € L" X og(v—A) X 0o(V—4),
(gl o, ﬁ) 7& (01 o, a)l (ZI o, ﬁ) = Nk—l and ||A;71(£ra/,3)71||0p(a,/3)

e
T yla+p)

Y, a,B) € 7' x ao(v/—A) x ao(v—A), (L, B) < N,H} . (4.11)
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The operators Afﬁl(z,a,ﬁ) : B(Eg, Ey) — B(Eg4, E,) are defined by

Ap (6o, B) == Lz + M (DY, 1%) — Mr(ID, 15), (4.12)
AL e, B) = 5 + M (D 12) + Ma(ID 1. (4.13)

For k > 0, for all « € op(+/—A), the self-adjoint operator [D,‘j)]g e S(Ey)
satisfies

DY — DR <, e~ Va € ap(v/—A). (4.14)
The remainder Ry is Hamiltonian and Vs € [so, Sql,
IReISPY < [Rolh" N2, [ Rals” < IR0l Niy. (4.15)
Moreover, for k > 1,
Li(p) = (Pr)wnLi-1(9),  Pr—1 := exp(Vg_1) (4.16)
where the map W, _; is a Hamiltonian vector field and satisfies
(W |52 < [Rolehy I NZT N, (4.17)

(82), For all @ € op(v/—A), there exists a Lipschitz extension to the set DC(y, 1),
that we denote by [D"]2() : DC(y,t) — S(E,) of [DLJ() : QF — S(E,)
satisfying, for k > 1,
D1 — (DL 158" S e 0 R 577 S Nty 0| Rolg22). (4.18)
O
Remark 4.1. The constants t,d > 01in (4.11) will be fixed in the formula (5.1), in Section

5, in order to prove the measure estimate of the set Q2 defined in (4.77) (see Theorem
5.1). a

4.1 Proof of Theorem 4.1

Proof of (Si)y, i = 1, 2. Properties (4.9)—(4.15) in (S1), hold by (4.1)-(4.4) with [D{"]2 given
in (4.5) (for (4.15) recall that N_; := 1, see (4.6)). Moreover, since the constants m and
c(a) = c(a; w) are real, [Dél)]g is self-adjoint, then there is nothing else to verify.

(S2), holds, since the constant m is independent of w and c(«) = c(o; w), @ €
oo(v/—A), is already defined for all w € DC(y, 7).
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4.2 The reducibility step

We now describe the inductive step, showing how to define a symplectic transformation
®; := exp(¥) so that the transformed vector field Lii;(¢) = (Pr)w«Lx (@) has the desired
properties. To simplify notations, in this section we drop the index k and we write +

instead of k + 1. At each step of the iteration we have a Hamiltonian vector field

L(p) =D+ R(yp), (4.19)
where
—_pb
D:=i o V) DY .= diag,., =& [PV, [PV € S(E,) Va € ap(v/—A)
(4.20)

and R(p) is a Hamiltonian vector field, namely it has the form

3 R(l) R(Z) (1) (1) * (2) (2) T v
R=i _ﬁ(Z) _ﬁ(l) ' R7(p) =RV (@), R9(p) =R (@), VYoeT'. (4.21)

Let us consider a transformation

@ (p) Wy, =i L@ Y@ T (4.22)
= ex , =il _ . , € .
@ p @ @ —\I/(Z)(gz)) —\IJ(I)(q)) @
with Y@ (g) = WO (p)*, W@ (p) = WP (p)T, for all ¢ € T". Writing
‘I‘k
b = Id —+ v + \1»’22, ‘1’22 = F (4:23)

k>2

By (2.127) we have @,.L(p) = ®(¢)" (L(@)P(p) — @ - 3,P(¢)). By the expansion (4.23),
recalling the definition of the projector operator I1yR given in (2.74), one gets that

L@)P(p) — - 3,2(p) = P()D + (~w - 3,V + [D, ¥(p)] + Iy R(p)) + My R(p)

— - 3,V=2(p) +[D, V=2(0)] + R(9)(P(p) — Id). (4.24)
We want to determine the operator W(¢) so that

— - 9,¥(p) + [D, ¥(@)] + Ny R(¢) = NyRaiag (4.25)
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where recalling the definitions (2.73) and (2.74)

MyR.) 0
MyRaigg i=1( 4% P (4.26)
0 ~TI R g

Lemma 4.1 (Homological equation). Forall w € Q}_, (see (4.11)), there exists a solution

k+1
W of the homological equation (4.25), which is Hamiltonian and satisfies

|\Ij|£ip(y) S N21+4d+1y—1|R|£_.ip(y). (4.27)

Proof. Recalling (4.21) and (4.22), the equation (4.25) is split in the two equations

—iw - 3,9V (@) + [PV, ¥V (p)] +iMlyR™M () = iMlyRyy,,, (4.28)
—iw - 3,9 () + (DO () + W2 (D) + illyRP (¢) = 0. (4.29)

Using the decomposition (2.45) and recalling (2.72), the equations (4.28) and (4.29) become
forany «, 8 € op(W/—A), L € 2’

0 LIV@O + [DVETD @) — [FO@OPIDVY = —A[TTyR (OF + il Ry (O

(4.30)
- IO + [DVETO O + [F2OPD ) = MR ©F.  (@31)
By the definitions (4.12) and (4.13), namely setting
A~ (6, B) = 0 L,y + M(IDVT) — Ma((DVT), A*(¢,a, B)
= - 0, + M;(IDV1Y) + Ma (D" 15) (4.32)

the equations (4.30) and (4.31) can be written in the form

A~ (L@, HITOOF = MR (O + 1My Ry, (OF, A0, HIT?©))

= MR (1.
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14

Then, since w € Q recalling the Definition (2.74), we can define for any (¢,«,8) €

k1
7" x 0o(v/—A) x 09(v/—A)
[@(1)(6)]5 - iA—(ela,/g)—l[R(l)(Z)]g lf (Z,a,,B) 7& (0,0[,O[), (Z,O[,,B) < N (433)
0 otherwise

. AL, o, )R @) if (€« B) <N
0 otherwise.

We have

dd()r

_ _ a”pe(l _ ("
1A (¢, o, B) 1||Op(a,,8) < T, AT, o, B) 1”Op(a,ﬂ) =<

y(x+ B)

and since [fll\(”(é)]ﬁ, @ (0))? are nonzero only if (¢,«, B) < N, we get immediately that
||[®(1)(€)]5”HS < N7yt ||[7/€(1)(€)]5||Hs, ||[‘3(2)(5)]§||Hs < NIV_1||[7/€(2)(5)]§||HS~ (4.35)
Hence, recalling the definition (2.76) of the block-decay norm, one gets that

(WO S N2 HRD|, (WP < Ny HRP . (4.36)

v

Now, let w;,w, € Qs

As a notation for any function f = f(w) depending on the

parameter o, we write A,f := f(w;) — f(w;). By (4.33), one has
Aw[@(l)(E)]ﬁ = iAwA_(fla,ﬂ)_l[ﬁ(”(ﬂ;w1)]ff + iA‘(ﬁ,a,ﬂ;wz)‘lAw[ﬁ“)(ﬂ)]ﬁ. (4.37)
As in (4.35), one gets
187 @, B; @) AJRP (O llms S N7y~ AR @1, s, (4.38)
hence it remains to estimate only the first term in (4.37). We have
AA (Lo, B = Ao, Bio) ! (ALA o, B) A (L, o, B wr) 7, (4.39)
Therefore

21a2d52d

|ALA™ (€, o, B)7} llopw.p < ————I1AA (&, o, B)llop.p)- (4.40)
2
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Moreover
AA o, B) = (01 —w3) - £ Iy p +ML(Aw[D(1)]Z) - MR(Aw[D“)]ﬁ) (4.41)
and using that, by (4.5) and (4.14)

DY) = ul(@)I, +[DY —DP1e,  with [PV —DP 1 HPY <, a5, Va € og(v/—A),
(4.42)

we get

M (AL[DV]%) — Mp(AIDP1Y) = Ay (18 — 1) T s + My(AL[DD — D§P12)

— Mp(A,[DY —DP5).

Using that the constant m is independent of w, that is A,m = 0 and by recalling (4.5)
and (3.65), one gets

1A, (e — 1) S 1ALc@)] +A,c(B S sup  [e(@)]™Plo; — w

acog(v/—A)
Syt osup  c(@)|MPY|w; — oy
aecog(v—A)
Sq ey — o). (4.43)

By (4.42), (4.43) and using the property (2.66) one gets

| = My (AL[DV1) + Mr(Au DV llop.

SIAL G = ) Ta,p llopeepy
+ IMg(ALD® = D1 — My (AP — D1 lopa.p

Sq ey oy — wal. (4.44)
Recalling (4.41), we get the estimate
IALA™, a, B)llopeps < (C(Z) + C/(Q)S)/fl) |y — Wz,

for some constants C,C'(q) > 0, hence, by (4.40), by taking §, in (4.8) small enough (so
that C’'(@)sy~! < 1), one gets that for (¢,«a, ) <N

ALA™ (e, B)7" lop@.p S N2 72101 — wy.



56 R. Montalto

The above estimate implies that

H{ALA™ o, ARV € o) las < Ny 2| [RD (G 0D laslwor — wal.  (4.45)
By (4.37), (4.38), and (4.45) we get the estimate

AT O s S Ny ARV O s + N>y 2 IRD (4 o) llns.  (4.46)
Thus (4.36) and (4.46) and the definitions (2.76) and (2.77) imply

|‘_I,(1)|£:ip(y) 5 N2T+4d+1y*1|R(l)|§-ip(V).

The estimate of ¥® in terms of R® follows by similar arguments and then (4.27) is
proved. |

By (4.24) and (4.25), we get

£+((P) = q)w*ﬁ((/)) = D+ + ’R’+(§0)r (S T, (4.47)
D,:=D+ HNRdiag: Ry = (q)_l - Id)nNRdiag

+@ 7 (MR — w9, V=z + [D, ¥op] + R(P — 1d)) . (4.48)

Lemma 4.2 (The new block-diagonal part). The new block-diagonal part is given by

) _D(l) 0 )
D, =D+ MyRaigg = i < 0+ S0 DY := DY + yRY,,, = diag,., ., [DL 1L,
+
(4.49)
where
DI+ [RV(O)  if a<N
[D]% = ( (4.50)
(DI otherwise.
As a consequence
DL — DLNEEY S« SURIGTY,  Va € op(v/=A). (4.51)
O

Proof. Notice that, since R (p) is selfadjoint, the operators [7/2\(1)(0)]3 : E, — E, are
self-adjoint, that is [7@“(0)]5 € S(E,), for any « € 0¢(+/—A) and using that [DV]* is self-
adjoint, we get that [DS})]g is self-adjoint for all « € oo(+/—A). The formula (4.50) follows
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by (4.49) and recalling the definitions (2.73), (2.74). The estimate (4.51) follows by

i o Li mma 2.6 i
sup o5 I ['Dil)]a [D]a ”L p(y) | < sup aSa I [R(l)(o)] ”L p() L S |R|§qp(}/) (4.52)
oceao(«/z) oteao(\/q)
which implies the estimate (4.51). [

4.3 The iteration

Let k > 0 and let us suppose that (Si); are true. We prove (Si)x,;. To simplify notations,
in this proof we write | - | for | - [LP®),

Proof of (S1);,,. Since the self-adjoint operators [D(l)]‘” € S(E,) are defined on

o

Q. the set Q, is well-defined and by Lemma 4.1, the following estimates hold on

Wil S NEHS TRy SO NEHINC R, Vs € [s0,[g/21 -7l (453)
In particular, by (4.6)—(4.8), taking §, small enough,
|Wils < 1. (4.54)
By (4.54), we can apply Lemma 2.8 to the map ®;"' := exp(£¥;), obtaining that
|07 —Idls S [Wils, @5 —Idls S [Wkls, Vs € [50,[q/2] — . (4.55)

By (4.47), we get Li11(9) := (Pr)ws Lr(@) = Dis1 + Ris1(9), where Dy := Dy + Iy, (Ri) diag

and

R = (@' — Iy, (Ri) diag + Pic' (HﬁkRk —w- 0,V 2 + [Dr, Yi,22] + Ry (P — Id)) .
(4.56)

Since Ry is defined on Q] and W is defined on Q]

Qi
symplectic and the operator £;,, is Hamiltonian.

k1, the remainder Ry, is defined on

too. Since the remainder Ry is Hamiltonian, the map W, is Hamiltonian, then &y is

Now let us prove the estimates (4.15) for Rk+1. Applying Lemmata 2.6-2.8 and
the estimates (4.53)-(4.55), for any s € [sq, [q/2] — ], we get

|(@! — Id) My, (Ri)diagls: 1P Rie(Px — Id) |y S Ny 7 Ryels | Reclsg (4.57)
and

| Ty, Rils S 1My, Ricls + Ny ™ Rils| Riclsy - (4.58)
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Then, it remains to estimate the term @' (—w - 0, Wk -2 + [Dx, Wi,>2]) in (4.56). A direct

calculation shows that for all n > 2

—w - 0,(W) + Dy, Uil = D Wi(—w- 8,V + [De, U)W,

i+j=n—1

Z ‘.I’;C (HNk (Rk)diag - HNkRk) \I’i, (4.59)

i+j=n-1

(4.25)
therefore using (4.53) and (4.54), Lemmata 2.6 and 2.7, and the estimate (2.85) we get that
for any n > 2, for any s € [sy, [q/2] — 1]

— - 0,(00) + [P, 01| = 20" (1%elly Rels + [Wills 21 Wikl Ry )

(4.53),(4.54)
< 2n%C(S)"NF Yy T Ryl s Rielsy - (4.60)

The estimate (4.60) implies that

1
®- 0,2 + [Dr, \pk,zz]‘s <y m‘w- 0, (W) + [De, 91|

n>2
(4.60) . _ C(s)nnz
S NEY TR Relsg D
o2 n!
So NEF4 1y 7 R Ricls - (4.61)

Using again (4.53)—(4.55) and Lemma 2.7, we get

S NE Ly " Ry 5| Riclsg, Vs € [50,[q/2] — 1], (4.62)

N

‘(DI;I (- 8, Wk =2 + [Dr, Wk 22])

Collecting the estimates (4.57)-(4.62), we obtain
IRisils Ss 1Ty Reels + Ne 4y 7R || Rielsy, Vs € [50,[q/2] — 7al. (4.63)

Recalling that S; = [q/2] — [t — b, see (4.7), using the smoothing property (2.87) and by
(4.8) and (4.15), one gets for any s € [sq, Sql

IRicsils Ss NP Riclssn + NF My R Relegr 1 Rictlsen Ss [ Relsto- (4.64)
By the second inequality in (4.64)

(4.15)
[Ris1ls+p < CS)Rilstp < C(S)|RolstoNi—1 < [RolstoNk
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provided N,f:ll > C(s) for any k > 0, which is verified by taking N, > 0 large enough.
Therefore, the second inequality in (4.15) for R, has been proved. Let us prove the first
inequality in (4.15) at the step k + 1. We have

(415)
2t+4d+1 2 -
|Rk+1|s ~S N Nk 1|R0|s+b +N ey Nk a |R0|50+b|RO|s+b = |R0|s+bN

provided

2a —a—271—4d-1
Nk—lNk

N]}g—aNk_jl > ZC(S)! y_l|R0|50+b =< ZC(S)

, Vk>0

which are verified by (4.4), (4.6)-(4.8), by taking N, > 0 large enough and §, small enough.
The estimate (4.14) for [D(l)l]“ [Dél)]g follows, since

4.51),(4.15) (4.4)

1D, 1 — (DS 12 e <Z||[D“> — P L SR YN Sy e,

j+1da ~ 1 ~q
j=0

Proof of (S2);,;. We now construct a Lipschitz extension of the function w €
QL. [D), (@)% € S(E,), forany « € oy(v/—A). We apply Lemma M.5 in [39] to functions
with values in S(E,). Recall that the space S(E,) is a Hilbert subspace of B(E,) equipped
by the scalar product defined in (2.59), thus Lemma M.5 in [39] can be applied, since it
holds for functions with values in a Hilbert space. By the inductive hypothesis, there
exists a Lipschitz function [D"] : DC(y, 1) — S(E,), satisfying [D" (0)]* = [D" (w)]*, for
all v € Q). For any o € oy(v/—A), let us define Fy, () := [D}}), (@)12 — [D (@)]%, w € QL.
By the estimate (4.51) one has that

: (4.15)
Lip(y) -S Lip(y) -S -
IFrallas” < @™ Rels, " = a7 Rolsg iy

and then by Lemma M.5 in [39] there exists a Lipschitz extension ﬁk,a :DC(y,t) > S(E,)

still satisfying the above estimate. Then we define
DY 1 = D1 + Fry Yo € 0(V/—A)
and the claimed estimate (4.18) holds at the step k + 1.

Corollary 4.1 (KAM transformation). Let q/2 > 5o + & + b + 259 + 2 (recall (3.68) and
(4.7)). Then Vo € Ni=o2), the sequence

P 1= Dyod,0--- 0Dy (4.65)
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is in C}(T", B(H)) for any 0 < s < S, — 2 — 25, (recall the definition of S, given in (4.7))

Lip(y)

and it converges in || - ”CI(TV,B(HB))

to an operator ®., which satisfies

oz - IdH?}’(ﬁrﬁ) stz Sa €Y -1, (4.66)

Moreover, %! is symplectic. O

Proof. To simplify notations, we write | - |; instead of | - [[?%). First, note that for any
k>0

o
O = exp(Wy) =Id + My, My = Z J—f (4.67)

j=1
with
(2 86) (4 17 (4 4)

IMils Ss 1Wils Ss |Ro|sf£”y‘11v2’*4d“N Sg ey INFTIN R L Vs, <s<S,. (4.68)

Therefore, by applying Lemma 2.11-(ii) one gets that for any 0 < s < S; — 2 — 25,
My € W(T", B(HY)) with | Mglly2.c0 0, cas) Sa ey INFTHUIN, 2 | By the property (2.11),
applied with p = 1 and E = B(H}), one gets that M, € C'(T", B(H})) and

—1 7727 +4d+1 pr—
”MkHCl(TV,B(HS)) < [IMillwzoo v, B(HY)) Sq €Y NkH * N %, YO<s5<S,—-2-2s5. (4.69)

Therefore, one gets that &, € C'(T", B(H))) and hence o, € CH(T, B(HS)) for any k > 0,
using the algebra property of the space C'(T", B(H})). By (4.65)—(4.67), for any k > 0, one
gets

Pppr = Pp®pyy = By + DMy, (4.70)
therefore (4.69) imply that
||cbk+1 llct e, BES) = ||cbk||c1(1rv B(HS))(l +ee (@), el = C(Q)SV_INZJ_TMHN ° (4.71)

Iterating the above inequality, one then prove that for any k > 0

[E P p—— H(l +(Q). (4.72)
j=0
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Using that
k-l k1 (4.71),(4.7),(4.8)
In|[[A+eg@) | =) In0+5@) <) g@ = Ci@,
j=0 j=0 j=0
one gets that
1Drller v s < exP(Ci(@) =: Co(@), ¥v > 0. (4.73)

Now we show that (5k)k20 is a Cauchy sequence with respect to the norm || - ||61(TU,B(H8)).

One has
N N ki1 N (@70 K1
||q>k+j - q’k“cl(TV,B(Hg)) = Z [P — ‘Di”cl(w,B(Hg)) 5 Z ||¢i||c1(1rV,B<Hg))||Mi+1||c1(1rV,B(Hg))
i=k i=k
(4.78)4.69) 1 27+4d+1 1 pr2t+4d+1
_ T —a - T —a
Sq &Y NN Sqgey N i VN2 — 0 (4.74)
i>k
by using (4.6) and (4.7). Thus &, converges with respect to the norm | - ”clmr”,B(Hg)) to an

operator ®., which satisfies the estimate
[P — Id”cl(T\;’B(HS)) Sq ey~ L.
Similarly, one can show that
P l=dlo...0d;"

is a Cauchy sequence and since 5;15% =Id for any k > 0O, 5;1 converges to ®_! and the
estimate (4.66) for ®_! holds. Since ®; is symplectic for any k > 0, @, is a symplectic

map too. |

Let us define for all @ € oq(v/—A), for all w € DC(y, t), the self-adjoint blocks
[DY(w)]” as

(DL @) == lim [D @)];. (4.79)

It could happen that Qyo = () (see (4.11)) for some k. In such a case the iterative process of

[CORT
kg o’

Vk > ko, for all @ € op(+/—A) and the functions [DY)()]* : DC(y,t) — S(E,) are always
well defined.

Theorem 4.1 stops after finitely many steps. However, we can always set [5,11)]3 = [D
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Corollary 4.2 (Final blocks). Forany k > 0,a € ap(v/—A),

(@1 Lip(y) — — @1 Lip(y) _
DL — D158 Sq @ SeN 2, IIDD1 — D1 5" Sq o 56, (4.76)
O

Proof. The bound (4.76) follows by (4.18), (4.15), and (4.4) by summing the telescoping
series. [ |

Now we define the set

dgd gy
Qi! . {w eDC(y,1): ||A;O(E,Ol,/3;a))*1||0p(a,ﬁ) < %,

Y, a,B) € Z" x ag(v/—A) x og(v/—A),

Z T
(€0, B) % (0,0,0), |ALE e B 0)  lopep < zy(ﬂd—im,

Y, a, B) € Z' x ao(v/—A) x Uo(«/—A)} 4.77)

where the operators AL (¢,a, ) = AL (L, a,B;w) : B(Eg, E,) — B(Eg, E,) are defined for
any w € DC(y,71), {,a,B) € Z' X og(v/—A) X 0p(+/—A) as

AL e, B) =0 s+ M (DY) — Ma(IDL15) (4.78)
AL(6,a,B) =0 ll,y + My(IDVTY) + Me((D15). (4.79)

Lemma 4.3. One has

Q2 C N=0S2y. (4.80)
O

Proof. It suffices to show that for any k > 0, Q% C Q). We argue by induction. For
k = 0, since Q) = DC(y, ), it follows from the definition (4.77) that Q% C Q. Assume
that Q¥ Cc Q} for some k > 0 and let us prove that Q¥ € Q . Let w € Q2. By the
inductive hypothesis w € Q¥, hence by Theorem 4.1, the operators [D,S)(w)]g e S(E,) are
well defined for all « € o(+/—A) and [P (w)]* = [D (w)]2.

Let (¢,a,B) € Z' x oo(~/—A) x 0o(v/—A) with (¢,a, ) # (0,a, @), ({,a,B) < Ni. By the
definitions (4.12) and (4.13), also the operators Af(ﬁ,a,ﬂ;a)) are well defined. Since w €

ngy, the operator A_ (¢, «, B; ) is invertible and we may write

AL a,Bo)=A o Bw)+ ALE o, B w)

=A_ (¢ B;w) (]ng +A (¢ a,p; a))_lA;(ﬂ,a, B; a)))
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where
AL, i) =My (IDP @2 - (DY @)2) = M (1D @) — DL @)1}
By the property (2.66) and by the estimate (4.76)
AL, @, B @) llop.py Sq Ni2ye(a™0 4 g759), (4.81)

Since (¢, «, B) < Ni, one has

(g)radﬂd

AL, o, ;) AL ], T ®)lop@.p) Sq TNI:IE(Q_S‘Z + B759)

@7)-@.8) 1
S NIPAN R eyt < > (4.82)
for N > O in (4.8) large enough and §, in (4.8) small enough. Thus the operator

A, (¢,a, B; w) is invertible, with inverse given by the Neumann series. Hence

1AL, o, B; @) llopws
AL, e, B; w)~! AL, o, B; ©)lop@,p)
(4.82) @.77) {(£)T a9 B

< 2”A;o(£rarﬂ;a))_IHOp(a,ﬁ) < T

IA; (¢, B; @) lopas) < .

By similar arguments, one can also obtain that ||A] (¢, «, B; ©)  lopwp < y(if—i:ﬂ), for any

W, a,B) € Z'" x ag(v/—A) x 0g(+/—A) with (¢{,a,B) < Ni, then v € Qzﬂ and the proof is
concluded. |

To state the main result of this section, we introduce the operator

. [—DL(w) 0 .
Doo = Doo(w) =1 < 0 ’Z_)(l)(a)) , Dg))(w) = dlagaeao(m)[D&)(a))]g, (483)
for any w € DC(y, t), where the self-adjoint operators [D)()]* € S(E,), @ € oo(+/—A),
are defined in (4.75). For any w € DC(y, t), the vector field D (w) is a ¢-independent

block-diagonal bounded linear operator Dy (w) : Hj — Hf{l, for any s > 1.

Theorem 4.2. Let q/2 > so + it + b + 2sq + 2. Then there exists a constant §, =
8(q,7,d,v,d) > 0 (possibly smaller than the one in (4.8)) such that if

A (4.84)
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on the set Q%, the Hamiltonian vector field £y(¢) in (4.1) is conjugated to the Hamiltonian

vector field D,, by @, namely for all w € Q27,

O

(4.80)
Proof. Since Q% C Ny}, the estimate (4.66) holds on the set Q%, and
193 — 1Al GH sy Saer ™ VO <5 <8 25— 2.

By (4.16) and (4.65), for any k > 1, we get

Li(9) = (Pp_1)onLo = Pr(@) " (Lo(@) Prle) — @ - 3, Pr(9)) = Di+Rilgp), Py = Pgo...oPy.

(4.86)
For all k > 0, for any s € [0, S4]
|Dé:>) _ D](cl)ﬁ‘ip()/) < |D§;) _ Dl(cl)@jlp(y) — sup CYSq ”[Dl(cl)]a [D(l)]a”LlP(V)
acon(v—A)
(4.76) ke . (4.15),(4.4) ke
< eN2 570 and  [RyFPY <, eNg? TS0, (4.87)

Hence, |Lx — Do [MPP) 75 “ZI*0forallsy, < s < S,. By applying Lemma 2.11 and the property
(2.11), Ry € WI=(T", B(H3)) € CO(T”, B(H)) for any 0 < s < S, — 25, — 1 with

”Rk”CO(T”,B(Hs)) = ”Rk”WIDO(TV BHEHS)) ~S |Rk|s+250+1 — 0
and
Pk — Peollsas) < 1Dk — Doolsiasy = O.
Thus, £y — D, with respect to the norm || - ||co(p, BES) forany 0 < s < S; — 2s9 — 1.
Since, by Lemma 4.1, 5:1 kzgeo ®*! with respect to the norm | - ||I£11p¥v)B(Hs)) formula (4.85)
follows by taking the limit for k — 400 in (4.86). |

5 Measure Estimates

In this section, we estimate the measure of the set Q2" defined in (4.77). We fix the

constants T and d in (4.77) as
d:=2d, T:=v+4d. (5.1)

We prove the following theorem:
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Theorem 5.1. Under the same assumptions of Theorem 4.2, one has
1\ Q%] = 0(y). O

The rest of this section is devoted to the proof of Theorem 5.1.

By the definition (4.77), one can write that
Q\ Q% = (Q\DC(y, 1)) U (DC(y, 1)\ Q%). (5.2)
By a standard volume estimate one has
IQ\DC(y, D) S v- (5.3)

Using again the definition (4.77), we write

DC(y, 1)\ QY = U R(¢,a, B) U ae,a,p), (5.4)
(Lo, B)ELY x00 (v —B) x00(v/—A) (6,2,8)€ZY x00(v/—A) xag (v —A)
(a,B)#(0,0,0)

where for any (¢,«, 8) € Z' X 0o(V—A) X og(+/—A), (£, a, B) # (0, x,®),

R,a,pB) = {w € DC(y,7v) : A_({,a, B; w)is not invertible or it is invertible and

(Xd,Bd(E)r }

2y (5.5)

- RN
||Aoo(£,a,,3,a)) ||0p(o(,ﬁ) >

and for any (¢,«, B) € Z" x co(v/—A) X go(+/—A)
Ql, o, pB) = {a) e DC(y,7): A;(K,a, B; w) is not invertible or it is invertible and
IAL (o, B; @) lopws > L} (5.6)
2y (e +B)
By (4.5), for any o € go(/—A), we can write

DD = ull, + Roowr  Roow := [PV — D12 € S(Ey)

which is self-adjoint and Lipschitz continuous with respect to the parameter v €
DC(y,t). We set

SpeC(Rog o (®)) 1= [r,@”(w),k:l,...,da} with r”@) <rf’ (@) <...<r@w), (5.7)
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where n, is the dimension of the finite dimensional space E,
n, = card {j € Z4\ {0} : |j| = a} = a®". (5.8)

By the property (A.2 in Appendix), one has that

(@) Lemma 2.4—(i) (4.76) s
Ire (@] < IRwallsey = [Recellus Sq e (5.9)

uniformly for any w € DC(y, 7).

Furthermore, by Lemma A.2-(i) the functions w +— r,(c‘)‘)(cu) are Lipschitz with respect to

w, since
(o) () Lemma 2.4—(i)
[Ty (@1) — 1" (@2)] < |Roo,e(@1) = Rooa(@2) | Beg) < IRoow(@1) — Rooo(@2)|lms
lip (4.76) L s
< |Rooallgslwr — w2l Sq ey a7 w — wel. (5.10)

We also set
spec((DL(@)]?) 1= {xg’”(w), k=1,..., na} with 2%(0) < 2%) < ... < 2(w).
By Lemma A.2-(ii), we have that
A2w) = p2(@) + 1) L ma + r? (), r¥ =cl)+r?, Vk=1,...,n, (5.11)
By the estimates (3.65), (5.9), and (5.10), one gets
T |HP0) < ea”l, Va € op(v/—=A), Vk=1,...,n,. (5.12)

By the definitions (4.78), (4.79) and by Lemmata 2.5, A.2-(ii), the operators Aoio(e,a,ﬂ) :
B(Es, E,) — B(Eg, E,) are self-adjoint with respect to the scalar product (2.59) and the
following holds:

for any (¢,a, B) € Z' x ao(v/—A) x 0o(+/=A), (¢,a,B) # (0, a, )

spec (AL (L, «, B; ) = {w LA @) = @), k=1,...,n, j=1,.. .,nﬁ]
and for any (¢, «, 8) € Z’ X ao(+/—A) x go(/—A)

spec (A% (0, o, i ) = {a)-@—i—)»;f)(a)) 1P @), k=1,...,n, j= 1,...,n,3].
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Therefore, recalling the definitions (5.5) and (5.6) and also by applying Lemma A.2-(iii),

one has
ng "
R(t,a,B) SR, o, B) = J|JRut, o, ), V(l,a,B) € Z' x 06(v/=A) x 0(v/=A),
k=1 j=1

¢, a,B)# 0,a,a), (5.13)

ng "B
ai,e,p) < 0, a,p) =y, a B), Yt ap) el xo(=A)x o(v=A) (5.14)

k=1 j=1

where for any (¢,«,8) € Z' x og(W/—A) X oo(V—A), (¢,a,B) # 0,a,a), kK = 1,...,1,,
j = 1,...,n'3

S o 2y
Ryt a, B) = {w eDC(y, 1) oL+ 1" ) — 1 ()] < W} (5.15)

and for any (¢,a, B) € Z’ x og(v/—A) x oo(v—A), k=1,...,n,,j=1,...,n4

- 2
Qi (L, a, B) == {a) eDC(y, 1) : oL+ 1" ) + 1" ()] < ”(é—;rﬁ)} ) (5.16)
Thus, by (5.4) one has
DC(y, 1)\ Q¥ C U R, a,B) U Q,a,p). (5.17)
(L0, B)EZ’ x00(V=RA)x00(vV—=A) (£,0,B)€ZY xa0 (v —A)xag(v/—A)

(€,a,B)7#(0,0,c0)

Lemma 5.1. (i) If ﬁ(ﬂ,a,ﬁ) # ¢, then |a — 8| < (£). Moreover, for any «, B € oo(v/—A),
a # B, then R(0,a, B) = 0.

(i) If 5(£,a,,3) # ), then a,8 < (¢). Moreover, for any «,f € oo(+/—A) then
Q(0,a, B) = 0. O

Proof. We prove item (i). The proof of item (ii) is similar. Assume that ﬁ(ﬂ,a,ﬁ) # 0.
Then there exist k € {1,...,n,}, j € {1,...,ng} such that ﬁkj(ﬂ,a,ﬂ) # . For any w €
ﬁkj(ﬂ,a,ﬂ), one has

2y
(@) (023}
o Er (@ =4O < Taaps

and using (5.11) and the estimates (3.27) and (5.12), for ¢ small enough, one gets that

1
AL — 2P| > Sl =Bl - C@e(@™ + 87 (5.18)
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implying that

2y _ _
lo — Bl < |wl||€] + Oraipe + C(@e@™ + 7 S (0.

Now we show that if «,8 € oo(v/—A) with a« # B, then IN%kj(O,oc,ﬁ) = ¢ for any k €

{1,...,n4},j €{1,...,n4}. By using (5.18) and Lemma A.1-(ii), for ¢ small enough one gets
1 1\ ap>1 C

|)\](€a) —)»(.ﬁ)| >c=+= > _1, (5.19)
7 a B af

for some constant C; > 0 implying that F{kj(o,a,ﬂ) = ¢ by the definition (5.15), since
d > 1 and taking 0 < y < C;. Item (i) then follows by recalling the definition of ﬁ(ﬁ, o, B)
in (5.13). [ |

Lemma 5.2. For ¢y ! small enough, the following holds:

(i) For any (£, a, B) € Z' x oo(v/—A) x 0o(~/—A), (€, a, B) # (0,a,a), if R(¢,a, B) # @ then
IR(t,a, )| S yadimapd1=d(g)=r1,

(ii) For any (£,a,B) € Z' x oo(~—A) x ao(~/—A), if Q(¢,a,B) # ¢ then |QE,a, B)| <
yad B4 o + B)() L U

Proof. Let us prove item (i). The proof of item (i) can be done by using similar argu-
ments. Let (¢, a, B) € Z® x oo(~/—A) x 0o(~/—A) with (¢,a, B) # (0,a,a). By (5.13), it is
enough to estimate the measure of the set ﬁkj(Z,a,,B) foranyk=1,...,n,,j=1,...,ng

Since, by Lemma 5.1-(i), £ # 0, we can write
b4 .
w:ms—i—v, with v-£=0

and we define

¢ (s) == lels + 1 () — 17 (), (5.20)

¢
AL (s) 1= A (WH v) , Vaeos(W—=A), Vk=1,...,n,

and according to (5.11) and (5.12)

)»,(f‘)(s) =—ma+ r,(:‘) (s), |r,(:‘)|Lip(V) Sq sal. (5.21)
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Using that |- ['P < y~1| . |MP") recalling that m does not depend on o (see Section 3.3),
one gets
950 = 9] = (161 = (=1 + 1)) Isy — 5|

-1 Li (B)|Li
> (16— 77 (2152 4 2?1520 ) |5y — s

(5.21) . 12|
> (Il —C(@ey)Is: — 52|Z7|S1 — o (5.22)
for ey ~! small enough. The above estimate implies that
14

Hs Lty efckj(z,a,ﬁ)}

: ‘ «__r
|e| ~ adﬁd<z>1+1

and by Fubini Theorem we get |}~¥k]~(ﬁ,a, Bl < Finally recalling (5.8) and (5.13),

we get the claimed estimate for the measure of ﬁ(ﬁ, «, B) and the proof is concluded. R

14
mdﬂd(@)t+l .

Proof of Theorem 5.1 concluded. By (5.17), by applying Lemmata 5.1 and 5.2 and

recalling the definitions of the constants r and d made in (5.1), one gets the estimate

2 Z 14 Z 14
|DC(J/:T)\Q£| S, Narl-d/ndrl_d 1 + m g Y. (523)
0 g’ (€) (€)
ez’ j i ez? tez,jj' ez
LU 10

Hence, the Theorem 5.1 follows by (5.2), (5.3), (5.23).

6 Proof of Theorem 1.1 and Corollary 1.1

In this section, we prove Theorem 1.1 and Corollary 1.1. We define

Wi(p) :==S(p) oC, Wa(p) :=T (@) o Poo(9), ¢ €T (6.1)

where the maps S, C, 7 are defined in (3.1), (2.39), and(3.69) and the map &, is given in
Corollary 4.1. We define the constants

aza(‘)/d) = 2(50+ﬁ+b+230+2)

and for any q > g, we define

S, =6(q,v,d):=S,—2—25,=1[q/2] — T — b — 25 — 2
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where we recall the definitions (3.68), (4.7), (5.1). By Lemmata 3.1, 3.6, 2.13, and Corollary
4.1, one gets that for ey ! < §, (for some constant §, small enough depending on g, v, d),
for any ¢ € T", for any w € Q2 the maps Wi(¢p) = W;(¢; ®), i = 1,2 are bounded and

invertible with
Wi(p) : HY(T?) — H;Jr%(ﬂl‘d,R)ng_%(Td,R), Wi (@)™ :Hg+%(Td,R)ng_%(Td,R) — H5(TY),
forany 1/2 <s < &, and

Wa(p)* : Hy(T?) — HE(T?), Y0 <s < G,

Let 1/2 < s < &, and (v?,y @) € H”%(’]I‘d,R) X HS*%(’]I“’Z,R). For any o € Q%, defining
Woo (@) := Wi (9) o A o Wy(¢p), by the change of variable

(), ¥ (@) = WeloD[u(, )], u=(u,n) (6.2)

(recall that A is the reparameterization of time defined in (3.18)), the Cauchy problem

(0¢v, 0¢y) = L(wt)[(u, ¥)]. (6.3)
v(©0,),%(0,)) = v, ¢?)
is transformed into
o;u = Du
t , u® =@, 7% = W0 o W (0) (v, Y )] (6.4)
u(,-) =u®
iDL 0
where the operator D,, = 0 o g is defined in (4.83). Since for any « € og(v/—A),
1 o0

the block [DV']” is self-adjoint, one has that the operator D)) is self-adjoint, that is.
DY = (DY)". (6.5)

Then, we consider the Cauchy problem

(6.6)

ou =—iDPu
u(0,) = u?,

We prove that

lut, ey = 1w lag, vt e R. (6.7)
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Since D) is a block-diagonal operator, one can easily verify that the commutator
[|DI5, D{Y] = 0 and therefore

6.5)
2

dullh(t, )is = — (DY) — (DL))IDI°R, |DI*R) 0

which implies (6.7).
Now, by (6.2) one has that forany 1/2 <s < &,

I, @D oy oy
Hy 2 xH,

XHy

(3.18)
SallAe W (et)[u(t, )l Sq IWelot + wa(wr))[u(t + a(wt), )]llas

(6.7) (6.4)
0 0
Sallutr +a@n), g So Mol < 1070y -
X

xHy

Sety =¢% with 0 < a <1 and Q. := Q2. Then ¢y ! = ¢'* and hence the small-
ness condition ey ! < §, is fulfilled by taking ¢ small enough. Furthermore, by Theorem
5.1, since y = &%, we get that (1.12) holds and therefore Theorem 1.1 and Corollary 1.1

have been proved.
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Appendix

We prove some elementary properties of the set oq(v/—A) defined in (2.2).
Lemma A.1. (i) Let p > d. Then Za@o(ﬂ)“w <400 Ifp>d+v, Y v {f,a)P <
n acog(v/—A)

00.

(ii) Let o, B € 0o(—A) with @ # 8. Then there exists a constant C > 0 such that |« — 8| >
Ca™! + 7). O



72 R. Montalto

Proof of (i). By the definition (2.2) one has that

R N I P SR (A R e N2 )

acog(v/—A) jezd tez Lez”
acog(v=A) jezd

the first series on the right-hand side converges if p > d and the second one forp > v+d.

Proof of (ii). First, we note that if x,y € N, x # y one has that

Iﬁ—ﬁlzmaX{%,%}zC<%+%>,

for some constant C > 0. Since by the definition of oq(v/—A), if o, 8 € oo(v/—A), @ # B,
they are square roots of integer numbers, that is o?, 2 € N, the claimed inequality
follows. ]

Now we recall some well-known facts concerning linear self-adjoint operators on finite
dimensional Hilbert spaces. Let H a finite dimensional Hilbert space of dimension n
equipped by the inner product (-, -)». Let us denote by B(H) the space of the linear
operators from H onto itself, equipped by the operator norm || - || (). For any self-adjoint

operator A : H — H, we order its eigenvalues as
spec(4) := (A1 (A) < A(A) < ... < A, (A)}. (A.1)
We recall the well-known property
lAll53) = MaX;especia)lAl- (A.2)
Moreover, the following lemma holds
Lemma A.2. Let H be a Hilbert space of dimension n. Then the following holds:

(i) LetA;,A,:H — H beself-adjoint operators. Then their eigenvalues, ranked
as in (A.1), satisfy the Lipschitz property

[Ak(A1) — A(A2)| < 1Ay — AzllBoy, Vk=1,...,n.

(i) LetA = nldy + B, where n € R, Idy, : H — H is the identity and B: H — H is
selfadjoint. Then

Ar(A) = n+ Ae(B), Vk=1,...,n.
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(iii) Let A :H — H be self-adjoint and assume that spec(4) C R\ {0}. Then A is

invertible and its inverse satisfies

1A 500 = — : O
BP0 ming_y, o, [A(A)]
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