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Summary. Every linear system can be naturally identified with a rational curve in

a Grassmann variety. The associated curve is often referred to as Hermann-Martin

curve of the system.

This article explains this crucial link between systems theory and geometry. The

geometric translation also provides important tools when studying control design

problems. In a second part of the article it is shown how it is possible to tackle some

important control design problems by geometric means.
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1 Introduction

In the late seventies Bob Hermann and Clyde Martin published a series of
papers [14, 13, 19, 20] which showed a way how problems in linear systems
theory can be translated into problems of algebraic geometry.

On the conceptual level this link provided a much deeper understanding
for questions where topological properties of the class of linear systems played
a role. The geometric understanding gave also tools at hand which helped to
progress the research in several prominent problems like e.g. the static and
dynamic pole placement problem.
? Supported in part by NSF grant DMS-00-72383
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In Section 2 we will explain the link between systems theory and geometry
provided by the Hermann-Martin curve. For this purpose we will have to
review some basic notions in systems theory as well as some basic notions in
algebraic geometry.

In Section 3 we will be concerned with topological properties of the set
of linear systems having a fixed number of inputs, a fixed number of outputs
and a fixed McMillan degree. An understanding of topological properties of
this set has importance in the area of system identification and the area of
robust controller design, to mention a few. The section will revisit two com-
pactifications studied in the literature. Finally in Section 4 we will show how
the geometric translation provided by the Hermann-Martin identification led
to new results in the area of pole placement.

2 Linear systems and rational curves in Grassmannians

Consider an m-inputs, p-outputs linear system Σn having McMillan degree n.
In state space form this system is governed by the equations:

Σn :
{

ẋ = Ax + Bu

y = Cx + Du.
(1)

In terms of the frequency domain system (1) has an associated transfer func-
tion

G(s) := C(sI −A)−1B + D. (2)

By definition G(s) is a p ×m matrix with rational entries. The concept of a
transfer function can be defined for an arbitrary field K and we will work to a
large degree in this general setting. Whenever some additional properties on
the field are required we will say so. The transfer function G(s) captures the
input-output behavior of the linear system. We say the matrices A,B,C, D
form a realization of the transfer function G(s). When A,B forms a control-
lable pair of matrices (i.e. the matrix pencil [sI−A B] is left prime) and if A,C

forms an observable pair (i.e. the matrix pencil
[
sI −A

C

]
is right prime), then

we say that (1) forms a minimal realization of the transfer function (2). The
size of the square matrix A in a minimal realization is called the McMillan
degree of the transfer function G(s).

Minimal realizations of proper transfer functions are unique in the follow-
ing way: If (Ã, B̃) is a controllable pair and (Ã, C̃) is an observable pair with
G(s) = C̃(sI − Ã)−1B̃ + D̃ then there is a unique invertible matrix S of size
n× n such that

(Ã, B̃, C̃, D̃) = (SAS−1, SB,CS−1, D). (3)
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We can identify the matrix S with an element of the general linear group
Gln and we can view (3) as an orbit of a Gln action on a vector space. In this
way we can view a linear system either through its transfer function G(s) or
as a Gln orbit in a vector space of dimension n(n + m + p) + mp.

For many applications it is very important to understand families of linear
systems with a fixed number of inputs, fixed number of outputs and a fixed
McMillan degree. Denote by Sn

p,m the set of all proper p×m transfer functions
having a fixed McMillan degree n. If the underlying base field are the real
numbers Clark [3] showed in 1976 that Sn

p,m has the structure of a smooth
manifold of dimension n(m + p) + mp. Around the same time Hazewinkel [9]
was able to show that Sn

p,m has the structure of a quasi-affine variety, as
soon as the base field K is algebraically closed. The basic proof techniques of
Hazewinkel came from geometric invariant theory (GIT) and the interested
reader is referred to [21, 36].

The work of Martin and Hermann [20] provided a new avenue to under-
stand the algebraic and topological properties of the set Sn

p,m. For simplicity
assume that the base field constitutes the complex numbers C. Denote by

P1
C := {` ⊂ C2 | dim ` = 1}=̂{(x, 1) | x ∈ C} ∪ {(1, 0) =: ∞}

the projective line over C, i.e. the Riemann sphere and consider the Grassmann
variety

Grass(p, Cp+m) := {W ⊂ Cn | dim W = p}

which parameterizes all p-dimensional linear subspace of the vector space Cn.
Martin and Hermann had the original idea to associate to each linear system
a rational curve of genus zero inside Grass(p, Cp+m).

Definition 1 Let G(s) be a p×m proper transfer function and consider the
map

h : C −→ Grass(p, Cp+m), s 7→ rowspaceC[Ip G(s)]. (4)

Then h is called the Hermann-Martin map associated to the transfer function
G(s).

The Hermann-Martin map is a rational map. As the target space is com-
pact all poles are removable and the map extends therefore to a holomorphic
map:

ĥ : P1
C −→ Grass(p, Cp+m). (5)

The image of the map ĥ defines a curve of genus zero and degree n inside the
Grassmannian Grass(p, Cp+m), sometimes referred to as the Hermann-Martin
curve associated to the linear system G(s).

Note that every holomorphic map from the Riemann sphere P1
C to the

Grassmannian is also rational. The following lemma is easily proved:
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Lemma 2 Let ĥ : P1
C −→ Grass(p, Cp+m) be a rational map with ĥ(∞) =

rowspaceC[M1 M2] where M1 is a p × p invertible matrix. Then ĥ is the
Hermann-Martin map of some proper transfer function G(s).

Given a system Σn described by the equations (1). Then one defines the

observability indices of Σn as the left Kronecker indices of the pencil
[
sI −A

C

]
.

See [15, page 413] for details. Similarly one defines the controllability indices
of Σn as the right Kronecker indices of the pencil [sI −A | B]. In [20] Martin
and Hermann were able to connect the observability indices of Σn to the
Grothendieck indices of an associated vector bundle. In order to make this
precise we recall Grothendieck’s theorem about the classification of vector
bundles over the Riemann sphere:

Theorem 3 ([7]). If ξ is a holomorphic vector bundle over P1
C then ξ decom-

poses as a sum of line bundles:

ξ = O(ν1)⊕ · · · ⊕O(νp),

where ν1, . . . , νp are the multiplicities of the line bundles. The nonnegative
integers ν1, . . . , νp depend up to order only on ξ.

The indices ν1, . . . , νp are sometimes referred to as the Grothendieck indices
of ξ. The integer ν =

∑p
j=1 νj is called the degree of ξ.

Remark 4 Theorem 3 was derived by Grothendieck using general results
from the theory of holomorphic vector bundles like Serre duality and splitting
theorems for subbundles. At the time he was not aware that his result is also
a straight forward consequence of some results by Dedekind and Weber [4].
The interested reader will find more details in [28].

Remark 5 Grothendieck’s theorem is valid over any base field and a short
elementary proof was given by Hazewinkel and Martin [11].

The Grassmann manifold is equipped with a natural vector bundle called
the universal bundle U . Let U∗ be its dual. The following theorem is due to
Martin and Hermann [20]:

Theorem 6. Let ξ be the pull back of the bundle U∗ under the holomorphic
map ĥ. Then the Grothendieck indices ν1, . . . , νp of ξ are up to order equal to
the observability indices of the system Σn. Moreover the degree ν =

∑p
j=1 νj

of ξ is equal to the McMillan degree of Σn.

One way to gain more insight into the connection between the Grothendieck
indices of a vector bundle and the observability indices of a system is via the
concept of minimal bases as introduced by Forney [6]. For this assume that
the transfer function G(s) = C(sI − a)−1B + D has a left coprime factoriza-
tion G(s) = D−1(s)N(s). Without loss of generality we can assume that the
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rows of [D(s) | N(s)] form a minimal polynomial basis of the rational vector
space rowspaceC(s)[Ip G(s)] having ordered Forney indices ν1 ≥ · · · ≥ νp and
total degree n =

∑p
j=1 νj . Then one has [6]:

Theorem 7. 1. detD(s) is equal to the characteristic polynomial of the
transfer function G(s), in particular n = deg detD(s) is equal to the
McMillan degree of Σn.

2. The indices νj are equal to the observability indices of G(s).

Remark 8 Since the observability indices are also equal to the Grothendieck
indices it follows that under suitable translation the Forney indices of the
polynomial matrix [D(s) | N(s)] are also equal to the Grothendieck indices.

3 Compactification of the set of linear systems having
fixed McMillan degree

For many problems in linear systems theory such as questions of robustness
and problems in identification theory it is very important to have an under-
standing of the topology of the set Sn

p,m of systems having m inputs, p outputs
and McMillan degree n. We already mentioned that Sn

p,m has both the struc-
ture of a manifold and the structure of a quasi-affine variety [3, 9]. Further
topological properties of Sn

p,m have been derived over the years and we refer
the reader e.g. to [12].

To understand degeneration phenomena of systems [10] or to understand
the pole placement problem, a compactification of this space is desirable as
well. The Hermann-Martin identification gives a natural way to achieve both
these goals. We will explain this procedure for a general base field K.

Denote by Ratn(P1, PN ) the set of rational maps from the projective
line P1

K to the projective space PN
K having degree n. Every element of

ϕ ∈ Ratn(P1, PN ) can be described through:

ϕ : P1 −→ PN , (s, t) 7−→ (a0(s, t), . . . , aN (s, t)), (6)

where ai(x, y) ∈ K[x, y], i = 0, . . . , N are homogeneous polynomials of de-
gree n. The description (6) is unique up to a nonzero constant factor c ∈ K∗.
In this way we can view an element of Ratn(P1, PN ) as a point in the projective
space

P(Kn+1 ⊗KN+1) = PnN+n+N
K .

Since we can view a linear system as a rational map from the projective
line to some Grassmannian and since a Grassmannian can be naturally seen
as a subset of a projective space via the Plücker embedding we can view a
linear system ultimately as a point of a projective space. This gives raise to an
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embedding of Sn
p,m into a projective space as the following sequence of maps

makes this precise:

Sn
p,m

Her.−Mar.−→ Ratn(P1,Grass(p, m + p))
Plücker−→ Ratn(P1, P1(∧pKm+p))

τ−→ P(Kn+1 ⊗ ∧pKm+p). (7)

Definition 9 Denote by Kn
p,m the Zariski closure of the image of Sn

p,m inside
the projective space P(Kn+1 ⊗ ∧pKm+p).

In [26, 27] it has been shown:

Theorem 10. For any base field K, Kn
p,m is a projective variety of dimension

n(m + p) + mp containing the set Sn
p,m of p×m proper transfer functions of

McMillan degree n as a Zariski dense subset.

The space Kn
p,m has also been studied in the area of conformal quantum

field theory. For this reason Sottile [33, 34] calls the variety Kn
p,m the quantum

Grassmannian. In [1] this variety is also called the Uhlenbeck compactification.
When min(m, p) = 1 then Kn

p,m represents simply a projective space. In gen-
eral Kn

p,m is however a singular variety [27].
On the side of Kn

p,m there is a second well studied compactification of
Sn

p,m due to Grothendieck. In [8] Grothendieck showed that the set Qn
p,m

parameterizing all quotient sheaves B of Km+p⊗OP having rank m, degree n
and Hilbert polynomial χ(B(x)) = px + p + n has naturally the structure
of a scheme. In the algebraic geometry literature Qn

p,m is usually referred as
a Quot scheme. For the particular Quot scheme Qn

p,m under consideration
Strømme [35] showed that Qn

p,m has the structure of a smooth projective
variety of dimension n(m+p)+mp. Furthermore Qn

p,m compactifies the space
Ratn(P1,Grass(p, m+ p)) of all rational maps of degree n from the projective
line to the Grassmannian Grass(p, m + p).

The fact that Grothendieck’s Quot scheme Qn
p,m has a relevance in linear

systems theory was first recognized by Lomadze [18]. The author in collabo-
ration with Ravi was able to give a direct systems theoretic interpretation of
Qn

p,m in terms of matrix pencils and polynomial matrices. We follow here the
original description in [22, 23].

Let K be an arbitrary field and consider a p× (m + p) polynomial matrix

P (s, t) :=


f11(s, t) f12(s, t) . . . f1,m+p(s, t)
f21(s, t) f22(s, t) . . . f2,m+p(s, t)

...
...

...
fp1(s, t) fp2(s, t) . . . fp,m+p(s, t)

 . (8)

We say P (s, t) is homogeneous if each element fij(s, t) ∈ K[s, t] is a homo-
geneous polynomial of degree νi. We say two homogeneous matrices P (s, t)
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and P̃ (s, t) are equivalent if after a possible permutation they have the same
row-degrees and if there is a unimodular matrix U(s, t) such that P = UP̃ .
Using this equivalence relation we define:

Definition 11 An equivalence class of full rank homogeneous polynomial ma-
trices P (s, t) will be called a homogeneous autoregressive system. The McMil-
lan degree of a homogeneous autoregressive system is defined as the sum of
the row degrees, i.e. through n :=

∑p
i=1 νi.

The main theorem of [22] states:

Theorem 12. The set of p × (m + p) homogeneous autoregressive systems
of degree n is in bijective correspondence to the points of the Grothendieck
Quot scheme Qn

p,m. The set Sn
p,m of proper transfer functions can be viewed

as a Zariski open subset of Qn
p,m. In particular we can view Qn

p,m as a smooth
compactification of Sn

p,m.

In the sequel we will elaborate on the connection of homogeneous autore-
gressive systems to algebraic geometry and to systems theory.

The connection to algebraic geometry can be seen in the following way: If
the row degrees of the p× (m + p) matrix P (s, t) are νi then there is a short
exact sequence:

0 −→
p⊕

i=1

OP(−νi)
P (s,t)−→ Km+p

⊗
OP

Φ−→ B −→ 0. (9)

In this way every homogeneous autoregressive system defines in a natural
way a quotient sheaf B.

There is also a direct connection to Hermann-Martin maps. When m, p > 0
then every p× (m + p) matrix P (s, t) defines a rational map:

ĥ : P1
K −→ Grass(p, Kp+m), (s, t) 7−→ rowspaceKP (s, t). (10)

In case that P (s, t) is left prime then the morphism ĥ has no poles and
therefore is a regular map.

Having introduced a smooth compactification of the set Sn
p,m which pa-

rameterizes all m-input, p-output systems of McMillan degree n it is of course
an interesting question if one can give a systems theoretic interpretation for
the systems added in the compactification process. This can indeed be done.

We will need the notion of generalized state space systems as studied by
Kuijper and Schumacher [17]. For this let G, F be matrices of size n× (m+n)
and let H be a matrix of size (m + p) × (m + n). The matrices (G, F, H)
describe over any field a discrete time linear system through:

Gz(t + 1) = Fz(t), w(t) = Hz(t). (11)
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In this representation z(t) ∈ Z ' Km+n describes the set of “internal
variables” and w(t) ∈ Km+p describes the set of “external variables”. The
matrices G, F are linear maps from the space of internal variables Z ' Km+n

to the state space X ' Kn. Corresponding to change of coordinates in X and
Z one has a natural equivalence among pencil representations:

(G, F, H) ∼ (SGT−1, SFT−1,HT−1). (12)

In above equivalence it is assumed that S ∈ Gln and T ∈ Glm+n. The
realization (11) reduces to the familiar A,B, C, D representation (1) as soon
as there is an invertible matrix T such that:

GT−1 =
[
I 0

]
, FT−1 =

[
A B

]
, HT−1 =

[
0 I

C D

]
. (13)

If there is no invertible matrix T to do such a transformation then (11) does

not describe an input output system under the natural partitioning w =
[
u

y

]
.

The main theorem of [23] states:

Theorem 13. Let X be the set of all matrix triples (G, F, H) where G, F are
matrices of size n × (m + n) and H is a matrix of size (m + p) × (m + n).
Then the stable points in the sense of GIT [21] under the Gln×Glm+n action
induced by (12) are given by the conditions:

1. [sG− tF ] has full row rank n.

2.
[
sG− tF

H

]
has full column rank m + n for all (s, t) ∈ K2 \ {(0, 0)}.

Finally the geometric quotient of the stable points modulo the group action is
equal to the variety Qn

p,m.

We would like to conclude this section with the remark that generalized
first order representations of the form (11) as well as Grothendieck’s Quot
scheme Qn

p,m are well defined when m = 0. In systems theoretic terms we are
then dealing with observable A,C systems having no inputs. When m = 0 the
Hermann-Martin map (10) is however very degenerate and a sheaf theoretic
interpretation is required to distinguish among the different points of Qn

p,0.

4 Results on pole placement by geometric methods

An area where algebraic geometric methods were very successfully applied in
systems theory are the different questions of pole placement and stabilization
of linear system. Crucial for the solution of these problems was the under-
standing of the manifold Sn

p,m and its compactifications Kn
p,m and Qn

p,m. In
this section we will explain these results.



The Hermann-Martin Curve 9

Consider a strictly proper linear system Σn of McMillan degree n:

Σn :
{

ẋ = Ax + Bu

y = Cx
(14)

A dynamic compensator of order q is a linear system of degree q, having the
following state space representation:

Σq :
{

ż = Fz + Gy

u = Hz + Ky
(15)

In this representation, z is a q–vector, which describes the state of the com-
pensator. The special case of q = 0 corresponds to the case of static feedback.
The overall system is described by:[

ẋ

ż

]
=

[
A + BKC BH

GC F

]
︸ ︷︷ ︸

M

[
x

z

]
(16)

y = Cx (17)

which is a linear system of McMillan degree n+ q. Stability of the closed loop
system depends on the location of the eigenvalues of the matrix M .

We will parameterize the eigenvalues of the matrix M through its char-
acteristic polynomial χM (x) = det(xI −M) ∈ K[x]. The polynomial χM (x)
is a monic polynomial of degree n + q and we can identify this polynomial
with a point in the vector space Kn+q. Similarly we can identify a tuple of
matrices F,G, H,K with a point in the vector space Kq(m+p+q)+mp. With this
identification we define the affine pole placement map through:

ϕ : Kq(m+p+q)+mp −→ Kn+q (18)

(F,G, H,K) 7−→ det(xI −M).

One says system (14) is arbitrary pole assignable with compensators of McMil-
lan degree at most q as soon as the pole placement map (18) is surjective.

An important special case of the general question is the static pole place-
ment problem. This is the situation when q = 0, i.e. the compensator (15) has
the simple form u = Ky and K is an m× p matrix.

In order to study this problem Hermann and Martin used the dominant
morphism theorem of algebraic geometry to derive the result [14]:

Theorem 14. Assume that the base field K is algebraically closed. Then for
a generic set of systems Σn having the state space form (14) almost arbitrary
pole placement by static compensators is possible if and only if n ≤ mp.

To derive this theorem it was probably the first time that deeper methods
from algebraic geometry were used to tackle a problem in control systems de-
sign. The dominant morphism theorem does a ‘local computation’ and there-
fore cannot achieve results of full surjectivity.
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A couple of years later Brockett and Byrnes studied the static pole place-
ment problem by considering also the effects ‘at the boundary’ of the param-
eter space. They realized that it is best to compactify the compensator space
via the Grassmann variety Grass(m, Fm+p). Note that this compactification
simply consists of all degree 0 Hermann-Martin maps from the projective line
to Grass(m, Fm+p)! The main result of [2] states:

Theorem 15. Assume that the base field K is algebraically closed. Then for
a generic set of systems Σn having the state space form (14) arbitrary pole
placement by static compensators is possible if and only if n ≤ mp. Moreover
when n = mp the number of solutions (when counted with multiplicities) is
exactly equal to the degree of the Grassmann variety:

deg Grass(m,m + p) =
1!2! · · · (p− 1)!(mp)!

m!(m + 1)! · · · (m + p− 1)!
. (19)

In particular if deg Grass(m,m + p) is odd, pole assignment by real static
feedback is possible.

This was quite a surprising result. The degree of the Grassmannian as
described in formula (19) was computed in the 19th century by Schubert [32].
At the time Schubert’s computations were not generally accepted and Hilbert
devoted his 15th problem to the Schubert calculus. The modern way to see
Schubert’s number (19) as the degree of a Grassmann variety has its origin in
the 20th century and the interested reader will enjoy the article of Kleiman [16]
in this regard.

Both the results of Theorem 14 and Theorem 15 required that the base
field is algebraically closed, e.g. the field of complex numbers. This is not
surprising as some of the strongest results in algebraic geometry require that
the base field is algebraically closed.

In 1992 Alex Wang adapted algebraic geometric methods for the study
of the real Grassmannian to derive the following at the time very surprising
result [38]:

Theorem 16. For a generic set of real systems Σn having the state space
form (14) arbitrary pole placement by static pole placement is possible as soon
as n < mp.

It was later realized that Wang’s proof can be considerably simplified without
requiring too deep results from algebraic geometry. The interested reader will
find an elementary proof in [29].

In order to progress on the solution of the general pole placement prob-
lem with dynamic compensators it was necessary to come up with a suitable
compactification of the space Sq

m,p, or equivalently the set of Hermann-Martin
maps Ratq(P1,Grass(m, Km+p). As a generalization of the result by Brockett
and Byrnes (Theorem 15), the author derived the following result [27]:
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Theorem 17. Assume that the base field K is algebraically closed. Then for
a generic set of systems Σn having the state space form (14) arbitrary pole
placement by dynamic compensators is possible if and only if

n ≤ q(m + p− 1) + mp.

Moreover when n = q(m+ p− 1)+mp the number of solutions (when counted
with multiplicities) is exactly equal to the degree of the quantum Grassmannian
Kq

m,p.

This theorem made it a challenge to compute the degree of the quantum
Grassmannian and in this way to come up with a generalization of Schubert’s
famous formula (19). The result of this effort was:

Theorem 18 ([24, 25]). The degree of the quantum Grassmannian Kq
m,p is

given by:

(−1)q(m+1)(mp + q(m + p))!
∑

n1+···+nm=q

∏
k<j

(j−k+(nj−nk)(m+p))

m∏
j=1

(p+j+nj(m+p)−1)!

(20)

The general pole placement problem over an arbitrary field K as described
in this section is still not completely solved. Even for static compensators
(when q = 0) and over the reals there is a gap of one degree of freedom
in Wang’s result. Eremenko and Gabrielov [5] have recently closed this gap
for many cases but the gap still exists for infinite many cases. It would also
be worthwhile to study the pole placement problem over other fields. E.g.
convolutional codes can be viewed as linear systems over finite fields (see
e.g. [30]) and the decoding problem seems to be closely connected to the
problem of designing a linear observer.

5 Conclusion

In this paper we provided a survey about the Hermann-Martin curve, a crucial
link between linear systems theory and algebraic geometry.

The Hermann-Martin curve provided a better understanding of the topol-
ogy of the class of linear systems Sn

p,m parameterizing the set of m-inputs,
p-outputs system of McMillan degree n. The geometric point of view led to
natural compactifications of the space Sn

p,m and this was ultimately key in the
progress on the static and dynamic pole placement problem.

It is our believe that a further investigation of the space Sn
p,m would be

very beneficial for many linear systems theory problems. E.g. the manifold
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Sn
p,m comes with some natural metrics which allows one to compute distances

between linear systems. A first attempt in this direction was done in [31].
Another area where a topological understanding of the space Sn

p,m is important
is the design of stable numerical algorithms while solving control problems. As
an example we mention the recent paper by Verschelde and Wang [37] where
this issue stands out.

As all these remarks make it clear the translation from systems theoretic
questions to geometric questions has been very fruitful in the past and we
expect that further results will come out from this. A crucial starting point
to explore this connection is the paper by Martin and Hermann [20].
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