
A Smooth Compati�ation of the Spae ofTransfer Funtions with Fixed MMillan DegreeM. S. Ravi and J. RosenthalDepartment of MathematisUniversity of Notre DameNotre Dame, IN 46556May 1992AbstratIt is a lassial result of Clark that the spae of all proper or stritly properp�m transfer funtions of a �xed MMillan degree d has in a natural way thestruture of a non-ompat, smooth manifold. There is a natural embeddingof this spae into the set of all p � (m + p) autoregressive systems of degreeat most d. Extending the topology in a natural way we will show that thisenlarged topologial spae is ompat. Finally we desribe a homogenizationproess whih produes a smooth ompati�ation.1 IntrodutionLet G(s) be a proper p � m transfer funtion. As is well known, there exists arealization in the time domain given through�x = Ax +Bu; y = Cx +Du: (1.1)Here � denotes either the shift operator or the di�erentiation operator depending onwhether one studies disrete time or ontinuous time problems.If the realization 1.1 of the transfer funtion G(s) = C(sI � A)�1B +D has theproperty that the dimension d of the state vetor x is minimal among all possiblerealizations one says that G(s) has MMillan degree d. In this paper we will studytopologial properties of the spae of all transfer funtions with a �xed MMillandegree. 1



As shown by Clark [2℄ the set of all real (or omplex) proper p � m transferfuntions of �xed MMillan degree d has in a natural way the struture of a real(omplex) manifold of dimension d(m+ p) +mp, whih we denote by Sdp;m.Many physial systems, whih are linear in their nature, annot be modeled by adynamial system of the form 1.1. Due to this reason, reently there has been a greatinterest in the study of singular systems, i.e. systems desribed by�Ex = Ax +Bu; y = Cx +Du; (1.2)where the square matrix E is not neessarily invertible. Examples of singular dynam-ial systems arise for example, in the theory of iruit systems or if one studies ertainfeedbak on�gurations involving high gain ompensators. Moreover as was alreadypointed out by Hazewinkel [5℄, it is possible for a system of type 1.1 to degenerate toa singular system of type 1.2 under parameter disturbanes.In the frequeny domain, the lass of singular systems orresponds to the lass ofimproper transfer funtions and more generally to the lass of autoregressive systemsof the form R1(�)u+R2(�)y = 0: (1.3)For questions onerning the state spae realization of systems of autoregressive equa-tions and improper transfer funtions we refer the interested reader to the reent paperof Kuijper and Shumaher [8℄ and to the dissertation of Gl�using-L�uer�en [4℄ wheremore referenes to the literature an be found.Let Grass(p; jCk) denote the Grassmann manifold onsisting of all p-dimensionalsubspaes of the vetor spae jCk. As shown by Hermann and Martin [11℄ every p�mtransfer funtion G(s) with entries in the �eld jC(s) and MMillan degree d desribes aholomorphi map of degree d from the Riemann sphere IP1(jC) into the GrassmannianGrass(p; jCm+p).Let Ratd;p;m denote the spae of all base point preserving holomorphi maps fromIP1(jC) to Grass(p; jCm+p) of degree d. Under the Hermann-Martin identi�ation thespae of stritly proper p�m transfer funtions of degree d orresponds to Ratd;p;m, amanifold that has been well studied in the literature. (See e.g. [10℄.) It is not diÆultto show that the spae Sdp;m of proper p � m transfer funtions of MMillan degreed orresponds to the trivial bundle jCmp � Ratd;p;m and the spae of all irreduiblep� (m + p) autoregressive systems of degree d is a �bre bundle over Grass(p; jCm+p)with �bres isomorphi to Ratd;p;m. In partiular, both those spaes are (non-ompat)manifolds as well. (Compare with [4, 10, 14℄.)2



Although homologial properties of the above manifolds are important we believethat for many questions in systems theory it is even more important to have a goodmetri on those spaes and to have a good understanding of the boundary strutureof those manifolds as well. Indeed, most ontrol design questions an be viewed asan intersetion problem in the spae of possible ompensators whih is preferably aompat manifold. Due to this reason we were interested in a good ompati�ationof the manifold Sdp;m.As we will explain in this paper, one an view the transition from the spae ofproper transfer funtions to the lass of improper transfer funtions and eventually,to the lass of autoregressive systems as a ompati�ation proess of the manifoldSdp;m. We will show in this paper that the set of all autoregressive systems of MMillandegree at most d has in a natural way the struture of a ompat topologial spae.Using a homogenization proess we will onstrut a smooth manifold, whih we denoteby ~Kdp;m and whih ontains the manifold Sdp;m as a dense submanifold.The ompati�ation we present here was �rst onstruted by Stromme in [16℄, inan attempt to understand maps of a �xed degree from the projetive line into a Grass-mannian. This ompati�ation was also disovered by Lomadze in [9℄. Lomadze'snotation for our spae was Sod;m. Both Stromme and Lomadze use tehniques fromalgebrai geometry and Grothendiek's onstrution of Quot shemes. In this paperwe give, what we believe to be, a more elementary exposition of the onstrution ofthis spae. However, we have not been able to avoid all use of algebrai geometry. Inpartiular, our proof that ~Kdp;m is ompat, uses some ideas from algebrai geometry,though we feel that even here our methods are more elementary. Stromme also showsthat ~Kdp;m is smooth. Our proof of smoothness is new and ompletely elementary,though it is long. From a systems theoreti point of view however we believe thatthis proof is very appealing beause it involves the onstrution of an expliit set ofharts.Stromme obtains more information on ~Kdp;m, in partiular on its ohomologygroups. We intend to disuss the system theoreti impliations of this in our sub-sequent work. We feel that [16℄ is a virtual gold mine of information on the spae~Kdp;m.The paper is strutured as follows: The next setion desribes the main resultsof the paper. In setion 3 we will prove those results and �nally in the last setionwe will ompare our ompati�ation with other ompati�ations existing in theliterature. 3



2 The topology of the spae of autoregressive sys-temsLet IK be an arbitrary �eld and let IK[s℄ denote the polynomial ring in the indeter-minate s. Consider a p � k matrix P (s) = (fij(s)) whose entries are elements ofthe ring IK[s℄. Over the real or over the omplex numbers P (s) indues a system ofautoregressive equations given by: P ( ddt)w(t) = 0: (2.1)Clearly a hange in the row spae of P (s) does not hange the solution set, so thebehavior of the system 2.1 in the sense of Willems [17℄ remains the same. Moreoverthe behavior of two systems of autoregressive equations represented by P (s); Q(s) isdi�erent if the matries P (s); Q(s) are not row equivalent.Based on this observation we say P (s) and ~P (s) are externally equivalent or rowequivalent if there is a unimodular p � p matrix U(s) with ~P (s) = U(s)P (s). Usingthis equivalene relation we de�ne:De�nition 2.1 An equivalene lass of p � k polynomial matries is alled an au-toregressive system.The set of autoregressive systems generalizes the set of transfer funtions in thefollowing way:Assume G(s) is an arbitrary proper or improper transfer funtion desribing theinput-output relation between an input u and an output y in the frequeny domainthrough: y = G(s)u: (2.2)If D(s)�1N(s) = G(s) is a left oprime fatorization of the rational matrix G(s)one an rewrite Equation 2.2 in form of a system of autoregressive equations giventhrough: (N(s) D(s)) �  u�y! (s) = 0: (2.3)Moreover, if ~D(s)�1 ~N(s) = G(s) is another left oprime fatorization then the poly-nomial matries (N(s)D(s)) and ( ~N(s) ~D(s)) are row equivalent and de�ne thereforethe same autoregressive system. Note �nally that the assignments 7�! rowsp(N(s)D(s)) (2.4)4



desribes exatly the Hermann-Martin map [11℄ assoiated to the transfer funtionG(s).The following de�nition extends the notion of MMillan degree to the lass ofautoregressive systems:De�nition 2.2 ([14℄) The degree of an autoregressive system P (s) is given by themaximal degree of the full size minors of P (s).Clearly row equivalent polynomial matries have the same degree. Moreover ifD�1(s)N(s) is a left oprime fatorization of the transfer funtion G(s) then thedegree of (N(s)D(s)) oinides with the MMillan degree of G(s) whih itself isequal to the topologial degree of the assoiated Hermann-Martin urve [11℄.Without loss of generality assume in the following that P (s) is row redued withrow indies equal to d1 � d2 � : : : � dp. Note that these row indies are di�erentfrom the minimal indies de�ned by Forney [3℄ if the polynomial matrix P (s) is not offull rank for some value s 2 �IK. However if P (s) has full rank for all s 2 �IK, i.e. P (s)is irreduible, then the two sets of indies oinide. Also, if G(s) = D�1(s)N(s) is aleft oprime fatorization of a transfer funtion G(s), then (N(s)D(s)) is irreduibleand the row indies of (N(s)D(s)) oinide with the observability indies of G(s) [3℄.Motivated by the fat that the Hermann-Martin map an be extended to1, i.e. isa map de�ned on the whole projetive line IP1 we homogenize the polynomial matrixP (s), whih we assume to have row indies d1 � d2 � : : : � dp, in the following way:Denote by fi(s) the i-th row-vetor of the polynomial matrix P (s). In otherwords using earlier notation one has fi(s) = (fi1(s); : : : ; fik(s)) and the degree offi(s) is given by maxfdeg fij(s) j j = 1; : : : ; kg = di. The homogenization of the i-throw-vetor fi(s) is then de�ned by:̂fi(s; t) := tdifi(st ): (2.5)Using this homogenization proess we an assoiate to eah autoregressive systemP (s) the homogeneous systemP (s; t) := 0BBBBB� f̂11(s; t) f̂12(s; t) : : : f̂1k(s; t)f̂21(s; t) f̂22(s; t) : : : f̂2k(s; t)... ... ...f̂p1(s; t) f̂p2(s; t) : : : f̂pk(s; t)
1CCCCCA : (2.6)
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In the lass of homogeneous systems we say two systems P (s; t) and ~P (s; t) areequivalent if they have the same row-degrees and if there is a unimodular matrixU(s; t), whose entries are homogeneous polynomials, suh that ~P = UP . A morepreise formulation will be given in De�nition 3.9. Again we all an equivalene lassof homogeneous systems a homogeneous autoregressive system.Note that P (s; 1) = P (s) and the matrix P (1; 0) desribes the behavior at in�nity.The degree of a homogeneous autoregressive system is now de�ned in the obvious way,namely through the sum of the row-degrees.The following set will now be the main interest in our studies:De�nition 2.3 ~Kdp;m denotes the set of all homogeneous autoregressive systems ofdegree d.We are now in a position to formulate one of the main results of this paper. Theproof of this result will oupy all of the next setion.Theorem 2.4 ~Kdp;m is a smooth projetive variety ontaining the manifold Sdp;m as aZariski dense subset.Note that this result establishes a smooth ompati�ation of the variety Sdp;m, aresult sought after in systems theory for a long time. There are several other om-pati�ations of this spae published in the literature. We are aware of the followingompati�ations: [1, 5, 7, 9, 12, 13℄. We will ompare these ompati�ations in thelast setion of this paper.We now explain the relation with the spae of (inhomogeneous) autoregressivesystems. Denote with Adp;m the set of all p� (m+ p) autoregressive systems of degreed and with A�dp;m := d[i=0Aip;m: (2.7)This notation is the same as the one used in [14℄. One has a natural projetion� : ~Kdp;m �! A�dp;m (2.8)P (s; t) 7�! P (s; 1)whih is generially one-one. The map � indues on A�dp;m a topology, namely thequotient topology. Using this topology the set A�dp;m beomes a ompat topologialspae. Moreover it is immediate that the set Sdp;m of proper transfer funtions is densein A�dp;m. 6



Before we go over to the proof of Theorem 2.4 in the next setion we like toonlude this setion with two examples.Example 2.5 Consider the ase of a \single output", i.e. p = 1. It is immediatethat in this ase ~Kd1;m is a projetive spae and the projetion � is an isomorphism.To be preise one has~Kd1;m �= A�d1;m �= IP(IKd+1 
 IKm+1) = IPmd+m+d (2.9)We want to mention at this point that in the ase p = 1, the ompati�ation ~Kd1;mis the same as the one given in [1, 13℄, but di�erent from the ones presented in [7, 12℄Example 2.6 The set of 2� 2 homogeneous systems ~K12;0 of degree 1 is isomorphito IP1� IP1. For this assume that a; b; ; d; e; f 2 IK. Then an expliit isomorphism isgiven through: ' : ~K12;0 �! IP1 � IP1 (2.10) as + bt s + dte f ! 7�! (e; f); (af � e; de� bf)3 Proof of the main theorem and further resultsLet d, m and p be �xed positive integers. Set k = m + p. Sd will denote thevetor spae of homogeneous polynomials of degree d in two variables s and t withoeÆients in a �eld IK. We do not assume that IK is algebraially losed or thatit has harateristi zero. Sd is a IK-vetor spae of dimension d + 1. The standardordered basis that we will use for Sd is fsd; sd�1t; : : : ; tdg.De�nition 3.1 Let X be the set of all p� k matriesA = 0BBBB� f11 f12 : : : f1kf21 f22 : : : f2k... ... ...fp1 fp2 : : : fpk 1CCCCA := 0BBBB� f1f2...fp 1CCCCA (3.1)where fij 2 Sdi is a homogeneous polynomial of degree di. We assume thatPpi=1 di = dand that at least one of the maximal minors of the matrix is a nonzero polynomial,neessarily of degree d. 7



We allow the row-degrees (d1; : : : ; dp) to vary subjet to the restrition that theirsum is d. The ondition on the non-vanishing of a maximal minor is equivalent toassuming that as a matrix of polynomials, A is \generially surjetive". We de�ne� = k(d + 1) and � = pd � d + p. We shall now de�ne a map � from X to IM�;�,the set of all � � � matries with onstant entries. With the notation for A 2 X asabove, let fij = di+1Xl=1 alijsdi�l+1tl�1: (3.2)We set alij = 0 for l > di and also for l � 0 and for all j. In order to desribe theimage of A we de�ne �rst the matries
Aj =

0BBBBBBBBBBBBBBBBBBB�
aj11 : : : aj1kaj�111 : : : aj�11k... ...aj�d+d111 : : : aj�d+d11kaj21 : : : aj2k... ...aj�d+d221 : : : aj�d+d22k... ...aj�d+dpp1 : : : aj�d+dppk

1CCCCCCCCCCCCCCCCCCCA : (3.3)
Using this notation the image �(A) is given as follows:�(A) = (A1jA2j : : : jAd+1) (3.4)So �(A) is made up of (d+1) vertial bloks of k olumns eah and m horizontalbloks. The i-th horizontal blok has d� di + 1 rows.Before proeeding any further, we wish to desribe this map � intrinsially . LetVk and Vp be IK-vetor spaes of dimension k and p respetively. Choose ordered bases(u1; u2; : : : ; uk) and (v1; : : : ; vp) for Vk and Vm respetively. The matrix A de�nes amap, �A from Wp = Lpi=1 Sd�di � vi to Wk =Lki=1 Sd � ui as follows:�A( pX1 givi) = (g1; g2; : : : ; gp) � A: (3.5)Now, hoose the ordered IK-basis fsd �u1; sd �u2; : : : sd �uk; sd�1t �u1; : : : td �ukg for Wkand the ordered IK-basis fsd�d1 � v1; sd�d1�1t � v1; : : : td�d1 � v1; : : : ; sd�dpvp; : : : ; td�dpvpgfor Wp. Then �(A) is the matrix of �A as a map of vetor spaes, with the bases forWp and Wk hosen above. 8



Remark 3.2 Sine our desriptions of � depends on the hoie of the bases for Wkand Wp, we wish to point out that there are two group ations on the image �(X) inIM�;�:1. The group PGL(2) ats on IP1 by hanging oordinates (s; t) to (s0; t0). Eah el-ement of PGL(2) indues a bijetive map between �(X) in these two oordinatesystems.2. The group GL(Vk) ats on Vk in the natural way. If g 2GL(Vk), then there isan � � � matrix B, whih is the matrix of the isomorphism indued by g onWk with respet to the anonial bases hosen. Post multipliation by B setsup a bijetion between the matries �(A) and �0(A) de�ned with these di�erentbases on Vk.De�nition 3.3 Fix positive integers �1 � �2 : : : � �p suh thatP�i = �. Let 0 = 0and let i = Pi1 �j for i = 1; : : : ; p. We say that a matrix A 2 IM�;� is in anonial(�1; : : : ; �p) form, if A = (A1jA2j : : : jAd+1) and for �l < j � �l+1 we have Aj in thefollowing form:
Aj =

0BBBBBBBBBBBBBBBBBBB�
aj11 : : : aj1l 0 0 : : : 0 aj1;p+1 : : : aj1kaj21 : : : aj2l 0 0 : : : 0 aj2;p+1 : : : aj2k... ... ... ... ... ...ajl+j;1 : : : ajl+j;l 1 0 : : : 0 ajl+j;p+1 : : : ajl+j;k... ... ... ... ... ...ajl+1+j;1 : : : ajl+1+j;l+1 0 1 : : : 0 ajl+1+j;p+1 : : : ajl+1+j;k... ... ... ... ...ajl+p+j;1 : : : ajl+p+j;l+1 0 0 : : : 1 ajl+p+j;p+1 : : : ajl+p+j;kaj�1 : : : aj�l 0 0 : : : 0 aj�;p+1 : : : aj�k

1CCCCCCCCCCCCCCCCCCCA : (3.6)
Proposition 3.4 Let A 2 X have row-degrees d1 � d2 � : : : � dp. Let �i = d�di+1.Then after an appropriate hange of oordinates on IP1 and a hange of basis for Vk,�(A) is row equivalent to a matrix that is in anonial (�1; : : : ; �p) form.Proof: Firstly, by hanging basis on Vk, we an assume that the determinant of the�rst p olumns of A is non-zero. Further, by hanging oordinates on IP1, we an
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assume that the oeÆient of sd in this determinant is non-zero. LetA = 0BBBB� a111sd1 a112sd1 : : : a11;ksd1a121sd2 a122sd2 : : : a12;ksd2... ...... ...a1p1sdp a1p2sdp : : : a1p;ksdp 1CCCCA+ terms of lower degree in s. (3.7)Let A0 = 0BBBB� a111 a112 : : : a11;ka121 a122 : : : a12;k... ...... ...a1p1 a1p2 : : : a1p;k 1CCCCA and A0p = 0BBBB� a111 a112 : : : a11;pa121 a122 : : : a12;p... ... . . . ...a1p1 a1p2 : : : a1p;p 1CCCCA (3.8)By our hoie of oordinates, A0p is an invertible matrix. After a further reorderingof the basis of Vk, we an assume that for j = 1; : : : ; p, the matrix0BB� a1j1 : : : a1jp... ...a1p1 : : : a1pp 1CCA is row equivalent to 0BB� � � � : : : �... ... Ip�j+1� � 1CCA : (3.9)Now
A1 =

0BBBBBBBBBBBBBBBBBBBB�
a111 : : : a11k0 : : : 0... ...a121 : : : a12k0 : : : 0... ...a1p1 : : : a1pk0 : : : 0... ...0 : : : 0

1CCCCCCCCCCCCCCCCCCCCA : (3.10)
By our assumption on A0p, we an row redue the matrix A1 to:

A1 =
0BBBBBBBBBBBBBBBB�

1 0 : : : 0 � : : : �0 0 : : : 0 0 : : : 0... ... ... ... ...0 1 : : : 0 � : : : �... ... ... ... ...0 0 : : : 1 � : : : �... ... ... ... ...0 0 : : : 0 0 : : : 0
1CCCCCCCCCCCCCCCCA : (3.11)
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We perform these row operations on all of �(A). We observe that these row operationsdo not e�et a row l, if l 6= i for any i. Now, in A2, the p rows i+1, for i = 1; : : : ; pform the matrix A0p. As in the �rst step, we an perform row operations on �(A) toget A2 in anonial (�1; : : : ; �p) form. Again the row operations performed on �(A)so far, do not a�et row l, so long as l 6= i and l 6= i + 1 for any i.Hene, the proedure above an be repeated, indutively, until A�1 . For �1 < j ��2, the matrixAj ontains the last (p�1) rows ofA0p. Again, we an do row operationson �(A), that will row redue it to a matrix, where Aj is in (�1; : : : ; �p) anonialform. We ontinue this sequene of row operations, until we reah the blok A�p. Theresulting matrix �(A) is in (�1; : : : ; �p) anonial form. Q.e.d.Corollary 3.5 For eah A 2 X, the matrix �(A) has full rank � = pd � d + p.Therefore, � de�nes a map � : X ! Grass(�;Wk) obtained by mapping a matrix Ain X to the row spae of the matrix �(A).Proof: By the previous Proposition, we know that if A 2 X then there exist invert-ible matries C and D suh that CAD = B where B is in (�1; : : : ; �p) anonialform. Therefore the rank of A is the same as the rank of B, whih is learly �.Q.e.d.Remark 3.6 We would like to note for future referene that the group ations spe-i�ed in Remark 3.2 on �(X) arise from the ation of a subgroup of GL(Wk) on theGrassmannian.We now have a map from our spae X to the Grassmannian of �-dimensionalplanes in Wk = Vk 
 Sd. First of all we want to identify the image of X in theGrassmannian through this map. Seondly, we wish to show that the map � is one-to-one on ertain equivalene lasses of matries in X. To ahieve the �rst objetive,we introdue a map  from our Grassmannian into the spae of (2�)�(�+k) matrieswith onstant entries. Let W 2 Grass(�;Wk) be a � plane. Reall that we have aanonial basis for Wk. Choose matriesAj = 0BBBBB� aj11 : : : aj1kaj21 : : : aj2k... ...aj�1 : : : aj�k
1CCCCCA (3.12)
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suh that the � � � matrix AW := (A1jA2j : : : jAd+1) (3.13)has row spae equal to W . We set a0ij = ad+2ij = 0 for all i and j and de�ne:
A(j;j+1) := 0BBBBBBBBBB�

aj+111 aj+112 : : : aj+11kaj11 aj12 : : : aj1kaj+121 aj+122 : : : aj+12kaj21 aj22 : : : aj2k... ... ...aj�1 aj�2 : : : aj�k
1CCCCCCCCCCA : (3.14)

The image of the map  is now de�ned through: (AW ) := (A(0;1)jA(1;2)j : : : jA(d+1;d+2)): (3.15)The map  depends on the hoie of the representative AW for the plane W , but ifwe hoose another representation BW for W , then it is easy to see that  (AW ) is rowequivalent to  (BW ). Therefore, the following de�nition makes sense.De�nition 3.7 Let~K = fW 2 Grass(�;Wk) j rank of  (AW ) = � + pg: (3.16)This subset of the Grassmannian is the main objet of study in this paper.Theorem 3.8 ~K = �(X).Proof: To show that �(X) is ontained in ~K, it suÆes to observe that eah matrixA in X gives rise to a map pMi=1 Sd+1�di � vi Ad+1�! kMi=1 Sd+1 � ui: (3.17)The row spae of  (�(A)) is the image of the map Ad+1. As in 3.5, this map isinjetive. Therefore the rank of  (�(A)) is the sum of the dimensions of Sd+1�diwhih is � + p.The other inlusion is somewhat harder and we will use some tehniques fromalgebrai geometry in the proof. Let W 2 ~K. So W � Vk 
 Sd. Consider the12



subsheaf L of Vk 
 OIP1(d) de�ned as follows:0 0# #0 ! MW ! W 
 OIP1 ! L ! 0# #(Vk 
 Sd)
 OIP1 ! Vk 
 OIP1(d) ! 0 (3.18)HereMW is just de�ned to be the kernel of the middle right map. Observe that bothL and MW are loally free sheaves on IP1. Therefore, MW = L��li=1 OIP1(�ai) andL = Lli=1OIP1(bi) and P ai = P bi = Æ: Further, sine L is generated by setions andsine it is a subsheaf of Vk 
 OIP1(d), we have that 0 � bi � d. Taking ohomologies,on the top row of 3.18, we get0! H0(IP1;MW) �!W ! H0(L)! H1(IP1;MW)! 0 (3.19)The map � is injetive by onstrution. Therefore, H0(IP1;MW) = 0. Hene ai � 1.On twisting the middle row of 3.18 by OIP1(1) and taking ohomologies again, onegets:0 ! H0(IP1;MW(1)) ! W 
H0(IP1; OIP1(1)) ! H0(IP1;L(1))#Vk 
H0(IP1; OIP1(d+ 1))(3.20)The omposition indiated is the map whose matrix is  (AW ). Sine W is in ~K, theimage of  has rank �+p. Therefore the dimension of H0(IP1;MW(1)) = 2����p =��p. Thus the rank ofMW = �� l � ��p and l � p. Also, Dim H0(IP1;L) = l+Æ.From the sequene 3.19 one has,DimH1(IP1;MW) = DimH0(IP1;L)� �= l + Æ � �= l + Æ � (pd� d+ p)� 0 if l � p: (3.21)Therefore, l = p, Æ = � � p and L ' Lpi=1OIP1(bi). So we have:0! pMi=1OIP1(bi � d) �! Vk 
OIP1 : (3.22)The map � is given by a p � k matrix A whose, i-th row onsists of homogeneouspolynomials of degree di = d � bi, where P di = d. So A 2 X and the row spae13



of �(A) is H0(IP1;L) = W . Thus eah W 2 ~K arises as �(A) for some A 2 X.Q.e.d.We now introdue an equivalene relation on the spae of matries X. Let d1 �d2 : : : � dp be nonnegative integers and letG = fU(s; t) = (pij(s; t)) j U(s; t) is unimodular i.e. det U(s; t) 2 IK�and pij(s; t) is homogeneous of degree di � djg: (3.23)It is lear that G is a subgroup of the unimodular group ating transitively on the setof matries with row-degrees d1 � d2 : : : � dp. Indeed this group was of ruial im-portane in the paper [14℄. Using this group we de�ne on X the following equivalenerelation:De�nition 3.9 Two matries A and A0 in X are equivalent if after a possible re-ordering of the rows they have the same row-degrees d1 � d2 : : : � dp and if thereexists a U(s; t) 2 G with A0 = U(s; t)A.Note that the set of equivalene lasses inX is exatly the spae ~Kdp;m of homogeneousautoregressive systems as introdued in De�nition 2.3.It is easy to see from our desription of the map �, that if A and A0 are equivalent,then �(A) and �(A0) de�ne the same plane in the Grassmannian.Proposition 3.10 � : X ! Grass(�;Wk) gives a one-to-one map on equivalenelasses of matries in X. Therefore � : ~Kdp;m ! ~K � Grass(�;Wk) is a bijetion.Proof: From the remarks preeding the statement, we only need to verify that if�(A) = �(A0) =W , then A and A0 are equivalent. From the proof of the Theorem 3.8,it is lear that W = H0(IP1;L), where L is the subsheaf generated by W . Now, Aand A0 are two matrix representations of the inlusion map of sheaves L ,! Vk
OIP1 .Two suh representations di�er by an isomorphism of the sheaf Lpi=1OIP1(bi) to itself.All isomorphisms of this sheaf are given by matries in the group G de�ned above.Thus A and A0 are equivalent in X. Q.e.d.Theorem 3.11 ~K is a smooth, onneted, algebrai subvariety of Grass(�;Wk).Corollary 3.12 ~Kdp;m has the struture of a smooth, onneted and ompat mani-fold.Before we give the proof of Theorem 3.11 we reinterpret Example 2.6.14



Example 3.13 The set ~K12;0 is embedded through � in Grass(3; IK4) �= IP3 as follows:� : ~K12;0 �! Grass(3; IK4) (3.24) as+ bt s+ dte f ! 7�! 0B�a  b de f 0 00 0 e f1CAUsing Pl�uker oordinates one veri�es that the image of � is IP1� IP1 under the Segreembedding.Proof of Theorem 3.11: By Theorem 3.8, eah point W 2 ~K is �(A) for somematrix A 2 X. Further, by Proposition 3.4 and remark 3.6, there is an isomorphismg 2GL(Wk) of the Grassmannian, and there exist positive integers �1 � : : : � �p suhthat a matrix representation of g(W ) is in anonial (�1; : : : ; �p) form. From here onwe replae W by g(W ). Let U = U(�1;:::;�p) be the set of all matries in IM��� whihare in anonial (�1; : : : ; �p) form. U an be naturally identi�ed with an aÆne opensubset of the Grassmannian. We shall parametrize ~K \ U and show that this is asmooth aÆne subset of U .Let A 2 U .  (A) = (A(1;0)jA(1;2)j : : : jA(d+1;d+2)) where for �l � j � �l+1 we have:
A(j;j+1) =

0BBBBBBBBBBBBBBBBBB�
aj+111 : : : aj+11l 0 0 : : : 0 aj+11;p+1 : : : aj+11kaj11 : : : aj1l 0 0 : : : 0 aj1;p+1 : : : aj1kaj+121 : : : aj+12l 0 0 : : : 0 aj+12;p+1 : : : aj+12kaj21 : : : aj2l 0 0 : : : 0 aj2;p+1 : : : aj2k... ... ... ... ... ...aj+1l+j�1;1 : : : aj+1l+j�1;l 1 0 : : : 0 aj+1l+j�1;p+1 : : : aj+1l+j�1;kajl+j;1 : : : ajl+j;l 1 0 : : : 0 ajl+j;p+1 : : : ajl+j;k... ... ... ... ... ...aj�1 : : : aj�l 0 0 : : : 0 aj�;p+1 : : : aj�k

1CCCCCCCCCCCCCCCCCCA :(3.25)So  (A) is a (2�) � (� + k) matrix. We perform the following row operations on (A): for i = 1; : : : ; p, and 1 � j � �i+1 � 1, subtrat the (2i + 2j) -row from the(2i + 2j + 1)-row of  (A).
15



After these row operations the matrix  (A) = (A(1;0)jA(1;2)j : : : jA(d+1;d+2)) wherefor �l � j � �l+1, A(j;j+1) is given by:0BBBBBBBBBBBBBBBBBB�
aj+111 : : : aj+11l 0 0 : : : 0 aj+11;p+1 : : : aj+11kaj11 : : : aj1l 0 0 : : : 0 aj1;p+1 : : : aj1kaj+121 : : : aj+12l 0 0 : : : 0 aj+12;p+1 : : : aj+12kaj21�aj+121 : : : aj2l�aj+12l 0 0 : : : 0 aj2;p+1�aj+12;p+1 : : : aj2k�aj+12k... ... ... ... ... ...aj+1l+j�1;1 : : : aj+1l+j�1;l 1 0 : : : 0 aj+1l+j�1;p+1 : : : aj+1l+j�1;kajl+j;1�aj+1l+j�1;1 : : : ajl+j;l�aj+1l+j�1;l 0 0 : : : 0 ajl+j;p+1�aj+1l+j�1;p+1 : : : ajl+j;k�aj+1l+j�1;k... ... ... ... ... ...aj�1 : : : aj�l 0 0 : : : 0 aj�;p+1 : : : aj�k

1CCCCCCCCCCCCCCCCCCA :(3.26)This matrix has � standard unit vetors as olumns. Let B be the submatrix ofA obtained by deleting the rows that ontain the non-zero entry in these standardolumn vetors. B = (B(0;1)jB(1;2)j : : : jB(d+1;d+2)) where:
B(0;1) =

0BBBBBBBBBBBBBBBB�
a12;p+1 : : : a12ka13;p+1 : : : a13;p+1... ...a11;p+1 : : : a11;k0 : : : 0a11+1;p+1 : : :... ...0 ... 0

1CCCCCCCCCCCCCCCCA : (3.27)
B(1;2) = 0BBBB� 0 : : : 0 a22;p+1 � a11;p+1 : : : a22;k � a11;k0 : : : 0 a23;p+1 � a12;p+1 : : : a23;p+1 � a12;k... ...0 : : : 0 a1�;p+1 : : : a1�k 1CCCCA : (3.28)For, 1 � i � p,

B(�i;�i+1) = 0BBBBBBBBBBBBB�
a�i+121 0 : : : 0 a�i+12;p+1 � a�i1;p+1 : : : a�i+12k � a�i1k... ... ... ... ...a�i+11 ;1 0 : : : 0 a�i+11;p+1 � a�i�1;p+1 : : : a�i+11k a�i1�1k1 0 : : : 0 a�i1;p+1 : : : a�i1ka�i+11+2;1 0 : : : 0 � : : : �... ... ... ... ...0 0 : : : 0 a�i�;p+1 : : : a�i�k

1CCCCCCCCCCCCCA : (3.29)
16



We observe that the rank of  (A) is � plus the rank of B. Consider the p � psubmatrix of B obtained by hoosing the rows 1; : : : ; p and the i-th olumn ofB(�i;�i+1). This is a p� p identity matrix. Hene rank of B is at least p. Thus~K \ U = fA 2 U j  (A) has rank � + pg (3.30)= fA 2 U j  (A) has rank � � + pg: (3.31)The seond subset is de�ned by setting all the minors of order greater than p to bezero. Hene, ~K \ U is learly an algebrai subset of U . Sine eah point of ~K hasa neighborhood U in G for whih ~K \ U is an algebrai subvariety, ~K itself is analgebrai subvariety of Grass(�;Wk). Before starting the proof of the smoothness of~K, we need to introdue some more notation.S = fajl;q j either 9i s.t. l = i and q � p+ 1 and j � �i + 1or q � p and j = �q + 1 and l � q + 1g: (3.32)Also, for 1 � i � p and j � d+ 1, we letAji = fajst ji�1 + 1 � s � i and 1 � t � kg: (3.33)Let A 2 ~K \ U . Let 1 � l � � and l 6= i for any i. Let p + 1 � q � k. Let1 � i � p. Consider the (p+1)� (p+1) submatrix of B obtained by adding the l-throw and the q-th olumn to the identity submatrix. This submatrix is of the form:0BBBBBBB� � : : : �Ii � : : : �0 : : : 0 a1l;q... ... � Ip�i0 : : : 0 �
1CCCCCCCA : (3.34)Sine A 2 ~K \ U , B(0;1) = 0. Further, for all i � 1 a1l;q = 0 for p + 1 � q � k andl 6= i + 1.For 0 � j � �1 � 2 and r � j, we assume by indution on j that B(r;r+1) = 0for all r � j and that ar+1l;q = 0 for i�1 + r + 1 � l � i. We an also assume thatfor i � r � 1 � l � i�1, arl;q is a funtion of A(j+1)i for all r � j. We onsider the(p+1)� (p+1) submatrix of B obtained by adding the l-th row and the q-th olumn
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of the B(j+1;j+2) blok to the identity submatrix of B. This matrix is of the form:0BBBBBBB� � : : : �Ii � : : : �0 : : : 0 a(j+2)l+1;q � a(j+1)l;q... ... a(j+1)1;q = 0 Ip�i0 : : : 0 a(j+1)p;q = 0
1CCCCCCCA : (3.35)

Again on ~K\U , we get thatB(j+1;j+2) = 0. Further, for i�1+j+2 � l � i; a(j+1)l;q = 0and for i � (j + 1)� 1 � l � i � 1; a(j+1)l;q is a funtion of A(j+2)i .So by indution on j, we have that B(j;j+1) = 0 for all j � �1 � 1. Also Aji iseither 0 or an be expressed as a funtion of A�1i and a�1l;q = 0 for i + �1 � l � i+1.We now subtrat (a�1+1l;1 ) times the 1-row of B from the l-th row, for l � 1 + 1and l 6= i for any i. We shall all the resulting matrix B as well. Thus for j � �1and l as above, we haveb(j;j+1)l;q = aj+1l+1;q � ajl;q � aj1;q � a�1+1l+1;1 for q = 1; p+ 1; p+ 2; : : : ; k: (3.36)= aj+1l+1;q � ajl;q + a funtion of the variables in S: (3.37)Now, let i � 2 and let q = 1 or p + 1 � q � k. Let �1 � j � �2 � 1. Considerthe submatrix of B obtained by adding the l-th row of B and the q-th olumn of theB(j;j+1) to the identity submatrix. This submatrix is of the form:0BBBBBB� 1 � � : : : �0 b(j;j+1)l;q � : : : �0 �0 � Ip�10 �
1CCCCCCA : (3.38)Hene B(j;j+1)i = 0. We onsider two ranges for l.1. Let i+1 � 1 � l � i + j + 1. By indution on j we an assume that we haveajl;q = f jl;q(S) as a funtion of the variables in S. Thus, b(j;j+1)l;q = 0 implies thataj+1l+1;q = f j+1l+1;q(S), for l in this range.2. Let i + j � l � i�1 + 1. Here, we proeed by desending indution on j.We an assume that aj+1l+1;q = f j+1l+1;q(S;A�2i ). Now, b(j;j+1)l;q = 0 implies thatajl;q = f jl;q(S;A�2i ). 18



Thus, for i � 1, b(j;j+1)l;q = 0 for l � i + 1 and 1 � j � �2 � 1. Further,ajl;q = ( f jl;q(S) if i+1 � 1 � l � i + j + 1f(S;A�2i ) if i + j � l � i�1 + 1 (3.39)Also, a�2l;q = f�2l;q (S) if i + �2 � l � i+1 � 1.Indutive step for i: Let 1 � i � p � 1. Let 1 � q � i or p + 1 � q � k. Lett � i + 1.By indution on i, we an assume that b(j;j+1)l;q = 0 for j � �i � 1 andl � i + 1. Further, we an assume that, for j � �i,ajl;q = ( f jl;q(S) if t+1 � 1 � l � t + j + 1f(S;A�it ) if t + j � l � t�1 + 1 (3.40)Also, a�il;q = f�il;q(S) if t + �i � l � t+1 � 1.For, l � i+1 and l 6= t for any t, we subtrat (a�i+1l;i ) times the row i of B fromthe l-th row. We all this matrix B again. Note thatbj;j+1l;q = aj+1l+1;q � ajlq � some funtion of S: (3.41)Let �i � j � �i+1 � 1. Consider the submatrix of B obtained by adding the l-th rowof B and the q-th olumn of the B(j;j+1). This submatrix is of the form:0BBBBBBB� � : : : �Ii � : : : �0 : : : 0 b(j;j+1)lq... ... � Ip�i0 : : : 0 �
1CCCCCCCA : (3.42)

Again, on ~K \ U , b(j;j+1)l;q = 0 for l � i + 1 and 0 � j � �i+1 � 1. As before, todetermine the values of a, we onsider two ranges for l.1. Let t � 1 � l � t + j + 1. By an asending indution on j, we an assumethat ajl;q = f jl;q(S). Now, bj;j+1l;q = 0 implies that aj+1l+1;q = f j+1l+1;q(S) is a funtionof S.2. Let t + j � l � t�1 + 1. Proeeding by a downward indution on j, wean assume that aj+1l+1;q = f j+1l+1;q(S;A�i+1t ). So bj;j+1l;q = 0 implies that ajl;q =f jl;q(S;A�i+1t ). 19



Thus, one is eventually left with a matrix B suh that b(j;j+1)l;q = 0 for 1 � p andt�1 + 1 � l � t � 1 and j � �i � 1. Also, for j and l in this range, eitherajl;q = f jl;q(S) or ajl;q = f jl;q(S;A�i;i). Sine this is true for all t � i+1, this �nishes theproof for the indutive step for i.We next perform the following row operations on B. For i = 1; : : : ; p and i�1+1 �l � i � 1, subtrat (a�i+1l;i ) times the row i from the l-th row. As usual, we willall the resulting matrix also B. The i-th olumn of the (�i; �i + 1) blok of B is astandard unit vetor with a 1 in the row i. Hene if A 2 ~K \ U , then b(j;j+1)l;q = 0 ifl 6= i for any i between 1 and p. Also, for �i � j � d+ 1 and i�1 + 1 � l � i � 1,b(j;j+1) = aj+1l+1;q � ajl;q � pXr=1 a�r+1l+1;r � arr;q: (3.43)For j = d + 1; a(j+1)l;q = 0. We now proeed by desending indution on j. Wean assume that aj+1l;q = f j+1l;q (S).Thus b(j;j+1) = 0 implies that we an solve forajl;q = f jl;q(S). So we have that if A 2 ~K \U , then ajl;q = f jl;q(S) for all indies j; l andq. Conversely, onsider a matrix A 2 U , given by f jl;q(S), where these are the fun-tions found above. Let B be the matrix onstruted from  (A) as before. Due to thehoie of the funtions f jl;q, we see that B(j;j+1) = 0 for j � �1 � 1.Applying the same sequene of row operations as before, we see that B is rowequivalent to a matrix C that has m standard unit olumn vetors and if l 6= i, thenall the entries in the row l are zero. So  (A) has rank � + p and A 2 ~K. So eahmatrix A 2 ~K \ U an be parameterized as A = (f jl;q(S)). Thus ~K \ U is isomorphito IKs, where s is the ardinality of the set S.s = (Ppi=1m(d+ 1� �i)) + p(m+ p)(d� �p) +Ppi=1(p� i)(�p � �i))= (m + p)d+mp: (3.44)Notie that s is independent of the hoie of the p-tuple (�1; : : : ; �p). Thus eahpoint W 2 ~K has a neighborhood U = g�1(U(�1;:::;�p)) in Grass(�;Wk) suh that~K \ U ' IKs. Thus ~K is a nonsingular variety, rational variety of dimension s.To see that ~K is onneted, let W1 and W2 be two points in ~K. There exist aÆneopen sets, Ui 3 Wi and ~K \Ui ' IKs. Now, U1 \U2 6= �. Let W 2 ~K \U1 \U2. Thenthere is a path 1 from W1 to W in U1 and a path 2 from W to W2 in U2. Thus ~Kis onneted. Q.e.d.20



4 A omparative study of di�erent ompati�a-tionsIt was Hazewinkel [5, Theorem 2.22℄ who �rst showed that any sequene of timeinvariant linear systems of MMillan degree at most n naturally onverges to a singularsystem of the form _x = Ax +Bu; y = Cx +D( ddt)u: (4.1)Moreover if one de�nes the MMillan degree for 4.1 as the sum of the MMillan degreesof C(sI �A)�1B and D(s�1) then this MMillan degree is neessarily at most n andany system of type 4.1 having MMillan degree at most n an be obtained as thelimit of a sequene of time invariant linear systems of MMillan degree n.Probably the �rst expliit ompati�ation of the spae of proper transfer fun-tions was introdued by Byrnes [1℄ who introdued this spae in order to study thedynami pole plaement problem. The ompati�ation of Byrnes was done om-pletely in the frequeny domain. The idea behind the ompati�ation of Byrnes isan embedding of the set of all transfer funtions in a large dimensional Grassmannvariety and the losure serves as a ompati�ation.We are aware of two ompati�ations whih were derived in the time domain.One ompati�ation was derived by the seond author as the ategorial quotientobtained from an ation of a redutive group on a projetive variety and details aregiven in [12℄.Reently Helmke [7℄ proposed a ompati�ation, whih was partially derivedby geometri invariant theory as well and whih is based on earlier results derivedtogether with Shayman [6℄. This ompat spae ontains the lass of ontrollablesingular systems of the form E _x = Ax + Bu; Fy = Cx + Du where the regularityonditions det(�E � �A) 6= 0 and rank(F;C;D) = p are satis�ed. Helmke shows thesurprising result that the ategorial quotient of this extended lass of systems underan extended group ation is ompat and smooth.It is interesting to ompare the above three ompati�ations in the ase m = p =d = 1, i.e. in the ase of one-input, one-output and MMillan degree 1. In this asethe ompati�ation of Byrnes [1℄ (as well as the ompati�ations we will desribein a moment [9, 13, 16℄) are equal to IP3 whereas the ompati�ation in [12℄ in thisase is equal to IP1� IP1� IP1 and the ompati�ation in [7℄ has the same homotopytype as IP1 � IP2. In partiular they are all di�erent.In [9℄ Lomadze onsiders a more general lass of linear systems. In terms of21



his de�nition [9, De�nition 1, Setion 2℄, our spae ~Kdp;m oresponds to the spaeof all ompletely observable systems of MMillan degree d, input number m andoutput number p. He shows that this spae is ompat using some tehniques fromGrothendiek's onstrution of Quot shemes. The smoothness of the spae is notshown in [9℄.Closely related to the ompati�ation onstruted in this paper is the one ob-tained by the seond author in [13℄, denoted by Kdp;m there. For the pole plaementproblem with dynami ompensators this ompati�ation is of interest. On one handone an identify this ompat spae with the set of all autoregressive systems of orderat most n and size p� (m+ p). On the other hand the pole plaement map with dy-nami ompensators an be viewed as a entral projetion from this projetive varietyto the spae of losed loop polynomials. In the following we establish the relationbetween the ompati�ation Kdp;m and the ompati�ation ~Kdp;m presented in thispaper.Proposition 4.1 There is a surjetive map � : ~Kdp;m ! Kdp;m suh that � is anisomorphism on an open subset of Kdp;m. In other words, ~Kdp;m is desingularization ofKdp;m.Proof: Let x 2 ~Kdp;m. So x 2 Grass(�;Wk) orresponds to an equivalene lass ofmatries in X. Choose a representative matrix A for x. Let �(A) = (f1; : : : fN ) bethe ordered maximal minors of A. So eah fi 2 Sd. If A0 is another matrix thatrepresents x, then �(A0) is obtained by multiplying �(A) by a salar in IK. Thus �de�nes a map � : ~Kdp;m ! IP(LN1 Sd) where IP(LN1 Sd) is the projetive spae of alllines in the IK vetor spae LN1 Sd. The spae Kdp;m is, by de�nition the losure of�(X) in IP(LN1 Sd). Sine ~Kdp;m is ompat, � is surjetive.To see that � is an isomorphism on an open subset, let X 0 be the subset of allmatries A in X suh that, the minors �(A) = (f1; : : : fN ) do not have any ommonfators. Then as is shown in [13℄, the map � restrited to �(X 0) � ~Kdp;m is anisomorphism.Referenes[1℄ C.I.Byrnes, \On Compati�ations of Spaes of Systems and Dynami Com-pensation," Proeedings of the IEEE Conferene on Deision and Control, SanAntonio, Texas, 1983, pp. 889{894. 22
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