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On Decentralized Dynamic Pole 
Placement and Feedback Stabilization 

M. S .  Ravi, Member, IEEE, Joachim Rosenthal, and Xiaochang A. Wang, Member, IEEE 

Abstract-In this paper we study the feedback control prob- 
lem using an r-channel decentralized dynamic feedback control 
scheme. We will develop the theory in the behavioral framework. 
Using this framework we introduce an algebraic parameterization 
of the space of all possible feedback compensators having a 
bounded McMillan degree, and we show that this parameter- 
ization bas the structure of an algebraic variety. We define 
the pole-placement map for this problem, and we give exact 
conditions when this map is onto, and almost onto. Finally we 
provide new necessary and sufficient conditions which guarantee 
that the set of stabilizable plants is a generic set. 

I. INTRODUCTION 

OR many large scale systems like electric power systems, F transportation systems, and whole economic systems, 
it is desirable to decentralize the control task. This is in 
particular preferable if the measurements have been taken on 
decentralized local channels and the controls can be applied 
on local channels only. There are two major results about 
decentralized stabilization and pole assignment. Wang and 
Davison [ 161 proved that decentralized stabilization using local 
dynamic compensators is possible if and only if the fixed 
modes are stable. Corfmat and Morse [3] proved that a strongly 
connected system can be made controllable and observable 
through a single channel by local static feedback if and only 
if the set of fixed modes is empty. Thus the poles of such a 
system can be assigned freely. The control strategy of [3] is 
to apply local static feedback to all but one channel to make 
the resulting single channel system controllable. They identify 
a property of systems, called completeness, that is a necessary 
and sufficient condition for their control strategy to work. It is 
not clear to us that this property of completeness is a necessary 
condition for pole assignability, if one does not constrain all 
but one channel to have static feedback. 

The problem we are interested in is to find minimal or- 
der decentralized dynamic compensators to stabilize or to 
assign the poles of a given system. Recent developments on 
centralized dynamic and decentralized static pole assignment 
[18], [12] indicate that the current estimates on the order of 
the dynamic compensators are too conservative. In [18], e.g.. 
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Wang proved that if the dimension of the set of all local 
compensators is greater than the McMillan degree, then almost 
all r-channel systems having the same number of inputs or 
outputs on the local channels are arbitrarily pole assignable 
by decentralized static output feedback. For example, almost 
all systems of McMillan degree 7 with two two-input two- 
output local channels are arbitrarily pole assignable by two 
static local controllers. This result compares very favorably to 
the earlier results in the literature and indeed even the strong 
results by Corfmat and Morse [3] require in this situation a 
static compensator and a dynamic compensator of McMillan 
degree at least three. 

In this paper we will study the decentralized dynamic pole 
placement and stabilization problem. Crucial for this study is 
the associated pole-placement map (see Section 111), which is 
a map from a parameterization of the set of all compensators 
to a parameterization of the set of closed-loop characteristic 
polynomials. Using an algebraic geometric framework we 
arrive at new general results describing exact conditions when 
the associated pole-placement map is onto, and almost onto. In 
addition we will report new necessary and sufficient conditions 
which guarantee that the set of stabilizable plants is a generic 
set. In special instances (e.g., if one only considers the 
centralized problem or if one restricts to static compensators), 
these results incorporate the ones reported in [l], [2], [IO], 
[121, and [181. 

First let us say a word about our methods. We use some 
ideas and results from algebraic geometry. Even though these 
are classical in mathematics, they have not been used very 
often in control theory. We have therefore made an attempt to 
provide examples that illustrate these ideas. In these illustra- 
tions we also show that for problems in low dimensions, one 
needs to solve a few linear and polynomial equations only. For 
readers who would like to learn more of algebraic geometry 
we highly recommend the graduate text book by Harris [5] 
which contains all the tools used in this paper. 

The paper is organized as follows: In Section I1 we for- 
mulate the problem as it can be found, e.g., in [3] and 
[16]. We also establish the connection to the behavioral 
framework [20], since we believe that a general theory should 
incorporate singular systems and more general autoregressive 
(AR) systems in the sense of [lo] and [14]. In a concluding 
paragraph we formulate our results in an intuitive, nontechnical 
form and discuss the nature of our results. 

In Section I11 we introduce a new parameterization of 
the space of all pcssible feedback compensators which we 
will denote by K:,$ This parameterization might be of 
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P(S)  
Q1(S) 0 * * e  0 

0 Qz(s) ... 0 . (2.7) 

0 .. 0 
- 0  . . .  

independent interest for the study of questions like robustness, 
for instance. But we will use the set K$,$ in this paper for 
our investigation on pole placement and stabilization only. As 
we will show in this section, K$La is a projective variety and 
the pole-placement map from K$,$ to the set of closed-loop 
characteristic polynomials is a central projection. From the 
properties of a central projection we deduce (Theorem 3.13 
and Theorem 3.15) that the pole-placement map is onto over 
C if dim K$, p' is at least the degree of the desired closed- 
loop polynomial and if the center of this map intersecp the 
variety K$, p' properly. If the degree of the variety K$, a is 
in addition odd, we show that the pole-placement map is even 
onto over the reals R. We work out an illustrative example 
of a two-channel system of McMillan degree three and show 
that it can be pole assigned by two decentralized feedback 
compensators, one static and the other of McMillan degree 
one. We conclude this section with a closed formula [formula 
(3.12)] of the topological degree- of the pole-placement map 
in the critical dimension (dim K;, p' equals the degree of the 
closed-loop polynomial). By Thcorem 3.13 this degree is equal 
to the degree of the variety K$,p. 

In Section IV we study the important technical concept of 
f-nondegeneracy (Lemma 4.1). Using this concept, we deduce 
(Corollary 4.2 and Corollary 4.5) that all the results derived 
in Section I11 hold generically. 

In Section V we consider the problem of generic stabiliza- 
tion using decentralized controllers. The main result i,n this 
section is Theorem 5.1 which states that when dim K k ,  p: is 
strictly less than the degree of the closed-loop polynomal, 
then the set of systems that can be stabilized by real (or even 
complex) decentralized dynamic compensators is not a generic 
set. This result establishes a generalization of a result reported 
in [lo] from the centralized (one-channel) to the decentralized 
(multichannel) situation. We conclude this section with an 
illustrative example which connects our framework with the 
concept of decentralized fixed modes as originally introduced 
by Wang and Davison [16]. 

Finally in the Appendix, the more technical proofs of this 
paper can be found. 

11. PROBLEM FORMULATION 

Consider an r-channel linear system 
T 

0: i- = A X +  CB,~,,  ya = cZx, = 1, 2 , .  . . , T  (2.1) 
a=1 

where z, U,, y, are n,  m,, p ,  vectors over W, respectively, 
and U ,  and yz are the input and output of the ith channel. If 
dynamic compensators of order q2 

wa = Fzw, + Eay,,  ua = Haw, + Kzya, a = 1, 2,...,r 
(2.2) 

are applied to the local channels, respectively, the closed-loop 
system becomes 

y = cx (2.3) 

where 

B = [BI , .  . . , Br] 

and K, H ,  E, F are the block diagonal matrices with 
{Ki}, {Hi}, {E i } ,  { F i }  on the diagonals, respectively. The 
closed-loop characteristic polynomial is 

S I  - B H 1  - F 
S I  - A -  BKC [ -EC $(s) = det 

= det ( s l  - A) det ( I  - G(s )T( s ) )  det ( S I  - F) 

where G(s) = C(s1 - A ) - l B  and T ( s )  = K + H ( s l  - 
F ) - l E  are the transfer functions of the system and com- 
pensator, respectively. Let G(s )  = D(s ) - lN(s )  and T ( s )  = 
TT1 (s)T, (s) be left coprime factorizations over the polyno- 
mial ring. If representations (2.1) and (2.2) are minimal and 
if the coprime factorizations have in addition the property 
that det ( s 1  - A) = detD(s) and det (SI - F) = detTd(s) 
(note det ( S I  - A )  = cdet D(s )  for some nonzero number c 
generally), then it is well known that 
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v ( t )  = 0. (2.9) 

compute to be E:==, q;(mi + p i )  + mipi. Our main result is 
that this necessary condition is in fact sufficient to ensure that 
a “generic” plant P ( s )  is pole assignable over C, and over R 
if the degree of K;,F is also an odd number. The degree of 
KZ, p’ given by (3.12) is an integer that depends on the number 
of inputs, outputs, and the order of dynamic compensator of 
each local channel. For a precise statement of these results 
see Theorem 3.13, Corollaries 4.2 and 4.3, and Theorem 4.6. 
We also show that the necessary and sufficient condition given 
above for a “generic” plant to be pole assignable is in fact also 
a necessary and sufficient condition for a “generic” plant to 
be stabilizable. This result is formulated in Corollary 5.3. 

Our methods raise various questions: 
1) Given a plant P ( s )  is it possible to decide if it is 

“generic” enough for our result to hold? The answer 
to this question is yes, in theory. Given a plant P ( s ) ,  
it is possible to write down a list of polynomials in a 
large number of variables, such that the dimension of 
the common zero set of these polynomials decides if P 
is “generic.” The dimension computation can be done 
by many computer algebra systems. While this can be 
done in principle, we do not expect this to be feasible 
in most practical situations. 

2) Given a plant P ( s )  and a desired closed-loop polyno- 
mial, is there an algorithm to find the compensators? 
Again, the answer to this question is yes, in principle. 
As in the preceding question, one can write down a 
list of polynomials and find their common solutions. In 
practice, we do not expect this method to be a useful 
method of designing compensators. 

111. THE POLE PLACEMENT MAP AND A 
PARAMETERIZATION OF THE COMPENSATOR SPACE 

In this section we will develop a framework which will then 
enable us to derive new conditions for stabilizability and pole 
assignability. Crucial in our investigation will be the so-called 
pole-placement map which is a map having as domain the set 
of all compensators and having as range the set of closed-loop 
characteristic polynomials. Once we have parameterized both 
the domain and the range of this map in a suitable algebraic 
way, it will turn out that the pole-placement map is a linear 
map restricted to an algebraic variety. 

We first give some definitions. Let K be either W or C. 
Recall that the projective n-space P” is the set of all lines 
through the origin in K”+’. (Compare with [5,  Lecture 11.) A 
point in P” (i.e., a line through the origin in K“+’) can be 
represented by homogeneous coordinates 

(20, 21,. . * , 4 
with the properties that at least one of the zi # 0 where 
(20, 21, . . . , z,) is not distinguished from ( czo, cz1, . . , cz,) 
for any nonzero number c. The Euclidean topology on K”+l, 
induces a topology on P”, that we will refer to as the classical 
topology. There is another topology on P”, called the Zariski 
topology, where the closed sets are zero sets of homogeneous 
polynomials in 20,. . . , 2,. In particular a Zariski open set is 
the complement of a zero set of polynomials. A Zariski open 
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set is also open in the classical topology, but the converse is 
not in general true. 

Dejnition 3.1: (Compare with [5, Lecture 61.) The Grass- 
mannian Grass (m, m + p) is the set of all equivalence classes 
of m x ( m + p )  full rank matrices over K under the equivalence 
relation 

Z' QZ 

for any m x m invertible matrix Q. 
For any m x (m + p )  full rank matrix Z and any multi-index 

i=(il,...,Zm), llil <i2<...<imIm+p 

let zi be the m x m minor of Z consisting of the 21th through 
i,th columns. As homogeneous coordinate, the set of all 21 

2 = (2i) 

depends only on the equivalence class of 2. The map 2 H z 
induces an embedding 

(""P)-I 
Grass (m, m + p )  C P 

which is called the Plucker embedding, and z is called the 
Plucker coordinate of 2. The Grass (m, m + p )  in PN, where 
N = ("2) - 1 is defined by a set of quadratic equations (see 
[5, pp. 65-66], for example) and is a variety of dimension mp. 

Remark 3.2: The Grass (m, m + p) can also be thought of 
as the space of all m-dimensional subspaces of Km+p, where 
the Plucker embedding is induced by the map L -+ el A. .Ae, 
for any basis { e l , . . .  ,em} of L. 

Example 3.3: Let P5 be the projective space with homoge- 
neous coordinates (212, 213, Z14, 223, 224, 234). Grass(2, 4) 
is embedded in P5 by the Plucker embedding. For example, 
the class of the matrix 

A = ( ;  ; ; ;) 
is sent to the point (1, -2, 1, -2, -1, 4) in P5. Given any 
2 x 4 matrix A, let zij be the 2 x 2 minor of A formed by 
the columns i and j. Then by performing cofactor expansion 
along the first two rows one has 

0 = det (i) = 2(212234 - 213224 4- 214223) 

i.e., 

212234 - 213224 + 214223 = 0. 

In fact, one can show that the image of Grass (2, 4) is exactly 
the set of points ( z i j )  E P5 that satisfy the above equation. 

Definition 3.4 [12]: Let K&, be the set of all equivalence 
classes of m x (m + p )  full rank matrices over K[s] whose 
maximum degree of m x m minors is at most q, under the 
equivalence relation 

P ( s )  Q(s )  U P(s)  = H ( s ) Q ( s )  (3.1) 

for some m x nz rational matrix H ( s )  whose determinant is 
a nonzero constant. 

K%, is a projective variety in ~(q+l)( *LP I-' of dimension 
q(m + p) + mp defined by a set of quadratic equations: For 
any multi-index 

i=(i1,...,Zm), 1 _ < i l  5 2 2  < - . . < i , < m + p  

P&) = Z ( j ;  0) + q i ;  1)s + . . a + Z ( i ;  q)S9 

let 

be the m x m minor of P(s )  consisting of the il through 
i, columns. Then { p ; ( s o ) }  must satisfy the set of quadratic 
equations defining Grass (m, m + p) for each SO E (c. So one 
gets a set of quadratic equations satisfied by { z ( ~ ;  d ) }  (see (3.6) 

for details). The projective variety in P(q+l)( "2" )-' defined 
by this set of polynomial equations is the variety K&,, (see 
[12] for detail). 

Example 3.5: Consider K:, p .  Every element P(s )  E K;, 
is described through an equivalence class of 1 x (p+ 1) nonzero 
matrices of the form 

P(s )  = (fo(s), fl(S), . . . 1 f,(.)>. 
Here fi(s) are arbitrary polynomials of degree at most q and 
the equivalence relation (3.1) reduces to 

P ( s )  G Q ( s )  U P(s)  = cQ(s )  

for some nonzero constant c E K. 
Note that in this situation there are no Plucker relations 

present and every equivalence class simply describes a line in 
the vector space 8 Kp+l = Kpq+P+q+l , i.e., a point in 
the projective space Ppq+p+q. The variety K I P  is therefore 
simply the whole projective space PPq+P+q = P(9+1)( 'tl )-'. 

Finally note that if f o ( s )  # 0 and if {fi(s)li = 0, a . , p }  
are coprime then the equivalence class of P(s )  defines in a 
unique way the transfer function 

Example 3.6: Consider Ki,  2. Let pij(S) = qij; o)+z(ij; 1)s 
be the 2 x 2 minor consisting of the ith and j th  columns. Then 
{ p i j  (s)} has to satisfy one quadratic equation coming from the 
defining equation of Grass (2, 4) (see Example 3.3) 

p12(s)p34(s) - p13(s)p24(s) + p14(s)p23(s) 
= 2(12;0)2(34;0) - 2(13;0)2(24;0) + z(14;0)z(23;0) 
+ (2(12;0)2(34;1) - 2(13;0)2(24;1) + 2(14;0)2(23;1) 
+ 2(12;1)2(34;0) - 2(13;1)2(24;0) + 2(14;1)2(23;0))s 

2 + (.( 12; 1) Z(34; 1) - z( 13;l) 2(24;1) + z( 14;l) 2(23; 1) Is 
= 0. 

Equating coefficients we arrive at three quadratic equations 

z(12; 0)2(34; 0) - 2(13; 0)2(24; 0) + 2(14;0)2(23; 0) = 0 
2(12; 0)2(34; 1) - 2(13; 0)2(24; 1) + 2(14; 0)2(23; 1) 
fz(l2; 1)2(34; 0) - 2(13; 1)2(24; 0) + 2(14; 1)z(23; 0) = 0 
2(12; 1)2(34; 1) - z(13; 1)2(24; 1) + z(14; 1)2(23; 1) = 0 

which define the variety Ki ,  in Pl1. 
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P ( s )  
Qi(3) 0 0 

0 Q ~ ( s )  . . .  0 

0 ... 0 

We call an autoregressive system irreducible or controllable 
(compare with [ 101 and [ 141) if the full size minors of one and 
therefore any polynomial representation P(  s) are relatively 
prime, i.e., P ( s )  has full rank for all s E CC. As shown by 
Rosenthal in [12], two irreducible polynomial matrices P ( s )  
and Q(s) are equivalent under the equivalence relation (3.1), 
if and only if P(s )  and Q(s) are unimodular row equivalent; 
so each irreducible autoregressive system of McMillan degree 
at most q corresponds to one and only one point in K&. 
In particular K&,,,: contains the set of m x p proper transfer 
functions of McMillan degree at most q as a Zariski dense 
subset. 

Definition 3.7: (Compare with [5, p. 251.) Let P" and Pm 
be two projective spaces. For any points (7: = (20 .  . . . , (7:") E 
P" and y = (y",...,ym) E P", the map (x, y) H zty 
induces an embedding P" x P" c where the 
homogeneous coordinates of Pmn+"+" are given by the 
entries of (n + 1) x (m + 1) matrix W = zty. This embedding 
is called the Segre embedding and P" x P" c Pmn+"+" is 
defined by rank W = 1; i.e., all the 2 x 2 minors are equal to 
zero. Similarly for a set of points 2% = ((7:,0, ( ~ ~ 1 , .  . . , xant) E 
PnL , z = 1, 2, . . . , T the Segre embedding P"' x . . . x PNr c 
P", N = f l y = ,  (n ,  + I) - 1 is defined through the assignment 

Finally we give a definition of central projections. 
Definition 3.8: (Compare with [5, Lecture 31.) Let M be an 

(n+l)x(N+l)ful l rankmatr ix ,z  = (20, z~,...,zN)~ E P" 
and 

E = { z  E PNIMz = O}. 

E is a linear subspace of dimension N - n - 1. Then the 
projection with center E is the map p :  PN - E -+ P" defined 
by 

p ( z )  = M z  

i.e., a central projection is a linear map restricted on an open 
set of a projective variety. 

A central projection can be geometrically interpreted as 
follows: Take any projective n-subspace H C PN disjoint 
from E. If one identifies H with P", then the map p is given 
by the following geometric construction. Through any point 
z E PN - E and E, there passes a unique projective (N - n)- 
subspace L,. L, intersects H in a unique point, namely p(z). 
For example, let E be a point. To find the image of any 
other point z one can draw a line through E and z, then the 
intersection of the line with P" will be the image of z. 

Proposition 3.9: Let p :  PN - E + P" be a central 
projection with 

dimE = N - n - 1 

and X c PN - E  be a projective variety of dimension n. Then 
p :  X -+ P" is onto over (I: and there are degX complex 
solutions (counted with multiplicity) of p ( z )  = b in X for 
each b E P". 

Pro08 (Compare also with [5, p. 2351 and [9, Corollary 
(2.29), Corollary (5.6)].) Let b E P". Then z E p-l(b) n X 
if and only if the ( N  - n) linear subspace Lb of P N  spanned 
by E and b intersects X at z. Note that X and L b  intersect 
properly, i.e., dimX n Lb = 0, because otherwise X n E, 
which is the intersection of X n Lb and a hyperplane would 
be nonempty by the projection dimension theorem (see, e.g., 
[6, p. 481). Now, by BCzout's theorem (see, e.g., [5, p. 227]), 
every (N - n)  dimensional linear subspace of PN intersects 

0 
It is our first goal to parameterize all compensators ap- 

pearing in (2.9) in a suitable way. To deal with the general 
r-channel problem consider the variety 

X in degX points counted with multiplicity. 

(3.2) 

AS it will turn out ~ 2 , ~  serves as a natural parameterization 
in the general decentrailzed situation. Since each set KZtLp,,  
i = 1, . . . , T is a projective variety we conclude that K;, 
is a projective variety as well. Moreover using the Segre 
embedding we can view it as variety in PN where 

(3.3) 

Note also that the dimension is given through 

r r 

(3.5) 
a 

where for each multi-index i = (21, . . , i m )  qi(s) is the m x m 
minor of 

(3.6) 

consisting of the 21th through i,th columns, and p i ( s )  is 
the cofactor of qi(s)  in determinant (3.5). Due to the special 

'Laplace: M6m. Acad. Sci. Paris 1772. 



structure of the compensator Q(s), many of its full size minors 
q2(s )  are zero. Note that ql (s)  is nonzero only if it is a product 
of full size minors of Q1(s), Q2(s) , . . . ,Qr(s) ,  with one 
minor from each Qa(s). Note also that the coefficients of such 
products are efractly the coordinates of the projective space 
PN, where K;, p’ is embedded through the Segre embedding. 
Therefore if we let z = (20, . . . , z ~ )  be the coordinates of PN, 
we can represent the characteristic polynomial through 4(s) = 
ELo fi(s)zz, where f a ( s )  are induced by the expansion (3.3, 
i.e., 

{ f d s ) )  = ISdP,(S)10 I d 5 4 ,  q&> # 01. 

M s ) l q , ( 4  # 01 

Remark 3.10: The greatest common divisor of 

(and therefore the greatest common divisor of {fi}) is the 
decentralized fixed polynomial of the system, and its zeros are 
the fixed modes [15]. 

To define the pole-placement map let Bp be the linear 
subspace of PN defined through B p : =  { z  E PN IC,”=, 
f , ( s ) z ,  = 0). Identify a nonzero polynomial $(s)  = a0 + 
ais+. . -+an+q~n+q with a point in the projective space Pn+q 

(compare with [ 121). Then the decentralized pole-placement 
map p p  for a plant P ( s )  is defined through 

N 

pp : K$,F - Bp -+ Pn+q, z H c f a ( s ) z i .  (3.7) 

Due to the fact that p p  is induced by a linear map defined on 
all P N ,  namely the map z H fa(s)zar we immediately 
have the following result. 

Theorem 3.11: The pole-placement map p p  is a central 
projection with center Bp. 

We would like to remark that for q = 0 (static situation) 
this result reduces to the one obtained by Wang [18], if T = 1 
(centralized situation) the result was obtained by Rosenthal 
[12], and if q = 0 and r = 1 we reduce to a result of 
Brockett and Bymes [I]. The following definition generalizes 
the important technical concepts defined in [l], [12], and [18]. 

Dejinition 3.12: A particular plant P ( s )  is cflled { nonde- 
generate in the class of d, 6, <controllers if K $ , A B p  = 0. 

In other words P ( s )  is {nondegenerate if every controller 
Q(s) in the class 6, $, { is admissible (compare with [12], 
[20]), i.e., the pole-placement map is well defined for all 
compensators Q(s) E K$,T We need to define one other 
concept from algebraic geometry: If V c P is a projective 
variety of dimension n, then a generic linear space in P of 
codimension n, intersects V in a finite number of points and 
the number of points of intersection is independent of the linear 
space and is called the degree of the variety V ( [ 5 ,  18.11). We 
are now ready to state one of the main results of this paper. 

Theorem 3.13: For a { nondegenerate system of McMillan 
degree n = dim K;, p‘ - q the pole-placement map p p  is onto 
over C and there are deg K;, p’ (counted with multiplicity) 
complex decentralized dynamic compensators in K$, p’ which 
solve the pole-placement problem. In particular, if the coef- 
ficients- of the desired closed-loop polynomial are real and 
deg K;, p’ is odd, then a real solution always exists. 

a=O 

Remark3.14: In the above theorem, the number of com- 
pensators-refers to the number of equivalence classes, in the 
space K$,$ as defined in 3.4. Also: 

a) n + q 5 dim K$, p’ is a necessary condition for p p  to be 
onto (or almost onto) over either C or R by a dimension 
argument. 

b) n + q 2 dimK;,, is a necessary condition for the 
existence of a < nondegenerate system, since otherwise 
K;, p’ n Bp # 0 by the projective dimension theorem 
[9, Corollary (3.3p)I. 

c) If n + q = dim K;, p‘ and the system is anondegenerate, 
then codimBp = n + q + 1 (see the proof of Theorem 
3.13 in the Appendix). 

When n < dim K$, p’ - q, we have the following result. 
Theorem 3.15: If for some given system, n < dim K;, $- q 

and dim K i ,  p’ fl Bp = dim K$, p’ - q - n - 1, then the pole- 
placement map pp is onto over e. If in addition deg K$, p’ is 
odd, then pp is also onto over R. 

The following example illustrates the concepts introduced 
and the results derived in this section. 

Example 3.16: Consider the two-channel system of McMil- 
lan degree 3 

The transfer function of the system is 

1 s 2 + s + l  = [ s - 1 1 7  1 01 
m[2 + s + 1 s2 -1 s 2  s + l  s .  

It is our goal to tune the natural frequencies of this system 
using two decentralized output feedback controllers, one static 
and one of McMillan degree 1 

We will show that all assumptions of Theorem 3.13 are 
satisfied, and we therefore will conclude that the associated 
pole-placement map is onto. The closed-loop characteristic 
polynomial becomes 

r s  -1 1 0 1  

s + l  1 0 I -1 s2 
a1 0 

4( s )  = det 

L O  ~ 2 ~ + / 3 3  o s + p i J  
r s  1 -1 0 
-1 s + l  5 2  S 

0 0 = -det 

where /33 = ab + pi,&. 
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By including all possible AR compensators of McMillan 
degree zero, respectively one, of the form 

aou1 = QlYl 

POU2 + P1u2 = /32$2 -k P3Y2 

the closed-loop system in AR representation is given through 

1 -1 0 1  
( $ ) + 1  (g)2 I 

One readily computes the closed-loop characteristic polyno- 
mial as 

d ( ~ )  = a o ~ o . 5 4  + bopl - 00p2 - al~o)s3 
+ (ad32 - alBl - a1Po - aoB3)s2 
+ (alp3 - QlLjl - alp0 - @ O P O ) * $  

- alBl - .oh. 

Next we parameterize the space of all compensators. For 
this we will identify every static autoregressive system of the 
form (a1, ag) with a point on the projective line P1 and every 
dynamic compensator of the form (P2s + P 3 ,  DOS + PI) with 
a point in P3. The total compensator space is then the product 
variety 

K,O, 1 x Ki ,  1 = P1 x P3. 

Thus the dimension of KY? 
is n + q in this case. 

a subset of P7 

x Kt,  is equal to four, which 

Under the Segre embedding P1 x P3 can be identified with 

and the Segre coordinates z = (20 :  . . . , z7)  E P1 x P3 c P7 
must satisfy 

202'5 = Z1z4, ZoZ6 = Z2Z4, ZoZ7 = Z 3 2 4 ,  

2126 = 2225, 21x7 = 2325, z2z7 = 2 3 2 6 .  

In terms of those Segre coordinates the pole-placement map 
for the system becomes 

p p ( z )  = zos' f (21 - z2 - 24)s3 f (z6 - 25 - 24 - z3)s2 
+(27 - 2.5 - z4 - 20)s - 25 - z1 

which is a linear map from P7 to P4, i.e., a central projection 
with center Bp defined through 

20 = 0, Z1 = 22 f 24, 26 = 2 5  + 24 + 2 3 ,  

z7 = 25  + z4 + 20, z5 = --.GI. (3.9) 

Next we verify that the system is (0, 1)-nondegenerate in the 
class of = (1, I), p' = (1, I), c =  (0 ,  1) controllers (see 
Definition 3.12), i.e., 

Bp n P1 x P3 = 0. 

For this note that if a. = 0 it follows from (3.9) that z4 = 0, 
z5 = 0, 2& = 0 and z7 = 0 which is only possible if a1 = 0 
or PO = P1 = ,& = P3 = 0. 

If a0 # 0 it follows that 

124, 25, z6, 271 = alail[zO, 21, 22, 231 

and because of (3.9) this is only possible if zi = 0, i = 
0 , .  . . ,7. But this just means that the system is nondegenerate. 

The pole-placement map 

p p :  P1 x P3 + P4 

is therefore well defined for all two-channel compensators hav- 
ing McMillan degree zero on the first channel and McMillan 
degree one on the second channel. Moreover pp is onto over 
(c by Theorem 3.13 and for each closed-loop characteristic 
polynomial there are 4 = deg P' x P3 dynamic compensators 
which solve the pole-placement problem. 

We would like to conclude this example with the remark 
that the compensators which achieve a particular closed- 
loop characteristic polynomial of degree four can even be 
represented by a proper transfer function, because zo # 0 
which implies that both a0 and Po are nonzero. This is true 
for any regular strictly proper system. 

We conclude this section with a closed formula of the degree 
of the variety K$,$ By Theorem 3.13 this number is also 
equal to the number of complex compensators which assigns 
a given closed-loop characteristic polynomial, i.e., this number 
is equal to the topological degree of the p$e-placement map 
in the critical dimension (n + q = dim K i ,  $). 

The formula can be readily established by combining [18, 
Proposition 2.11 

(n1 + . . . + n,)! Tl[mi , deg(X1 x . . .  x X,) = 
nl!. . * n,! i = l  

where deg X ;  = m;, dim X ;  = ni (3.10) 

(3.11) 

By doing so we have the following. - 
Proposition 3.17: The degree of K i ,  p' is 

r 

degK$,$ is odd if and only if the degrees of all { K $ t , p s }  
are odd, and the sets of exponents appearing in the binary 
representations of {dim Kg,,  p ,  li = 1, 2 , .  . . , T-} are disjoint. 
(Given a positive integer A, one has A = 2"' + 2"2 + . . . + 
2"b, 0 5 a1 < a2 < . . .  < ab and the set {ul,...,ab} is the 
set of exponents of A in its binary representation.) 
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Example 3.18: deg Ki7 x KY, is odd because deg Ki, 
and deg KY, are both odd (see [ 111 for the method to deter- 
mine odd or even of deg Kk,, without actually computing 
the degree), and dimKi,3 = 11 = 2’ + 2l + 23 and 
dim KY, = 4 = 22 have disjoint exponents in their binary 
representations. One could also directly compute the degree 
using dormula 3.12 to get 

deg Ki ,  x KY, = 75075. 

IV. GENERIC POLE-PLACEMENT RESULTS 
Our main goal in this section is to show that “almost 

all” plants of McMillan degree n = dimK;,$ - q satisfy 
the hypothesis of Theorem 2.13 and “almost all” plants of 
McMillan degree n < dim K;, p’ - q satisfy the hypothesis of 
Theorem 3.15. To make this statement rigorous we will use 
the concept of genericity. 

Firstly, note that each plant P ( s )  is an element of the 
parameterizing variety KF, -. We call a set of systems generic 
if it contains a nonempty Zariski open set of KF, m. We say 
a property holds for the generic system if the set of systems 
satisfying the property is a generic set. 

The following lemma as well as most other results which 
follow are proved in the Appendix. 

Lemma 4. I: The generic system is nondegenerate if 

n + q = dimK;,,. 

Combining this lemma with Theorem 3.13 we then have 

Corollary 4.2: If 
the following. 

n + q = dim KS, p’ (4.1) 

then the pole-placement map p p  is onto over (I: (over R if 
deg K$,$ is also odd) for the generic system. 

The following corollary considers the case when only proper 
transfer functions of form (2.2) are allowed in the feedback 

Corollary 4.3: Let x = Ax + Bu,  = Cx + Du be 
a generic r-channel system as introduced in Section II. If 
n + q = dimK$,,- and if +(s)  is a generic polynomial of 
degree n+q then there exist r proper complex compensators of 
form (2.2) such that the closed-loop characteristic polynpmial 
is $(s) .  If, in addition, the degree of the variety K$,$ is 
odd one can choose a set of T real compensators of the form 
(2.2). In particular under these assumptions a generic r-channel 
system can be stabilized by a proper compensator. 

Pro08 The set of r-channel proper-transfer functions is 
a Zariski dense subset of the variety K$,$ By a dimension 
argument it therefore follows that the pole-placement map p p  
restricted to the set of proper transfer functions is almost onto, 
i.e., the generic closed-loop characteristic polynomial $( s )  is 

U 
Remark 4.4: If x = Ax + Bu, y = Cx is a generic strictly 

proper system, then for every polynomial $(s)  of degree n + 
q = dim K;, p’ there exist r proper complex compensators of 
form (2.2) such that the closed-loop characteristic polynomial 

loop. 

in the image of p p .  

-. 

S I - A - B K C  -BH 
det [ -EC SI - F 

Indeed in (2.7) the detD(s) is the only minor of P ( s )  which 
has degree n. Therefore if Q1 ( s ) ,  . . . , Q,. ( s )  are solutions for 
$ ( s ) ,  det Ta, must have degree q2,  z = 1, . . . , T ,  which means 
that there are K,, H,, F,, and E, such that Til(s)T,,(s) = 
K, + H , ( d  - F,)-lE,. 

The following corollary is proved in the Appendix. 
Corollary 4.5: The pole-placement map p p  is onto over (I: 

n 5 dimK$,$- q. (4.2) 

Moreoyer condition (4.2) is also sufficient over R when 
deg K$, p‘ is odd. 

A little stronger result can also be proved. Recall [18] that 
deg K i ,  p‘ is odd if and only if {deg Kgz, are all odd and 
the sets of exponents appearing in the binary representations 
of {dim Kg,, p ,  } are disjoint. 

Theorem 4.6: The pole-placement map p p  is pnto over 
R for the generic system of degree n 5 dimK$,$ - q if 
deg K$%, p ,  is odd for z = 1. . . . , T and if there are positive 
integers 5, 5 dim Kg,, p , ,  z = 1,. . . , r,  such that the sets of 
exponents appearing in the binary representations of { kz} are 
disjoint and 

for the generic system if and only if 

cz- k > n + q .  (4.3) 

The following example illustrates what type of results are 
included in the statements of this section. 

Example 4.7: Let P ( s )  be a generic 7 x 10 autoregressive 
system of McMillan degree at most 14. Since n 5 14 = 
dim (Ki, x KY, 4) - 1 and since deg ( K i ,  x KY, 4) is odd 
(see Example 3.18), P(s )  can be arbitrarily pole assigned with 
a real 2 x 5 compensator Q ~ ( s )  of order 1 which acts only 
on the first five components of the behavior v(t)  and a real 
static 1 x 5 compensator Q ~ ( s )  which acts only on the last 
five components of v ( t ) .  

Example 4.8: Let P ( s )  be a generic 5 x 10 autoregressive 
system of McMillan degree at most 15. Although deg (Ki ,  x 
Ki,2) is even, but because 8 < dimKi,, = 11, 7 < 
dlm Ki, = 11, 8 and 7 have disjoint exponents in their binary 
representations and n 5 8 + 7 = 15, P(s )  can be arbitrarily 
pole assigned with a real 2 x 5 compensator Q1(s) of order 1 
which acts only on the first five components of the behavior 
v(t) and a real 3 x 5 compensator Q ~ ( s )  of order 1 which acts 
only on the last five components of v( t ) .  

v .  GENERIC STABILIZATION OF SYSTEMS 
WITH FIXED MCMILLAN DEGREE 

From the dimension argument one knows that the condition 

dimK;,$> n + q 

is a necessary condition for arbitrary pole-placement by decen- 
tralized dynamic compensators. The question is: Can generic 
systems be stabilized by decentralized dynamic compensators 
if 

dimK;,$<n+q? 

As we will show in this section, the answer is no. For the 
one-channel problem such a result has been proven in [lo]. 
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Theorem 5.1: If n+q > dim KZ, p' there exists a nonempty 
classical open neighborhood U of K;, ( R )  whose elements 
cannot be stabilized by any real (,or even complex) decentral- 
ized dynamic compensator in K$,$ 

Let SF, ,(W) be the real manifold of all p x m proper 
transfer functions of McMillan degree n. Since Sg, ,(R) is 
Zariski dense in Kp, ,(R) we immediately have the following 
corollary. 

(qZ(m, + p z )  + m,p,)) 
there exists a nonempty classical open neighborhood U of 
S;, m(R) whose elements cannot be stabilized by any real (or 
even complex) decentralized dynamic compensator in K z ,  p" 

Combining Theorem 5.1 with Corollary 4.5 we have the 
following. 

Corollary 5.3: The set of m-input, p-output linear systems 
of McMillan degree n is generically pole assignable (over (2) 
using r-channel decentralized controllers of type &, pi a if, 
and only if this set is generically stabilizable. 

We conclude this sectior, with an illustrative example ex- 
plaining the ingredients of Theorem 5.1 and Corollaries 5.2 
and 5.3. 

Example 5.4: Consider the two-channel system of McMil- 
lan degree 3 

Corollary 5.2: If 71 + q > 

-1 0 0 

0 0 -2 

(5.1) 

This observable and controllable system was provided by 
Davison and Chang [4] to illustrate the concept of decentral- 
ized fixed mode (DFM). 

Note that it is impossible to stabilize this system with two 
decentralized static controllers of the form 

11,1 = alyl. 

since the closed-loop system 

212 = PllJZ 

- I t a 1  a1 0 
? = [  0 1 P1 1.: 

0 0 - 2 + &  

has always an eigenvalue (DFM) at one independent of the 
applied feedback. It is our goal to show that even after a small 
perturbation in the system parameters, the resulting system can 
still not be stabilized even with general decentralized static 
AR compensators. 

For this we rewrite the dynamics in autoregressive form 

One readily verifies that for any compensators ( ( a 1 ,  ao), (PI, 
00)) E P1 x P1 system (5.2) is autonomous, i.e., every 

static decentralized compensator is admissible or equivalently 
Bp n P1 x P1 = 0. The pole-placement map 

p p :  P1 x P' + P3 

is therefore well defined. The fact that (5.1) has a fixed mode 
at one is expressed through the fact that every polynomial 
in the image of p p  contains a root at one. From the proof of 
Theorem 5.1 it therefore follows that (5.1) cannot be stabilized 
even after a small perturbation. In other words 

€1 - 1 €2 €3 €10 + 1 
x = [ €4 €5 + 1 f 6  ] 5 + [ z:: z:2 t ]  U 

f 7  €8 €9 - 2 

[ ,6  f 1 €17 + 1 €18 1. 
€20 €21 + 1 Y =  

€19 

cannot be stabilized, as long as the numbers are sufficiently 
small. (16; 1 5 0.1 seems sufficient, based on numerical calcula- 
tions). Notice that the perturbed systems do not have in general 
a fixed mode. Also, these systems cannot be stabilized even 
with high gain feedback since there are no static decentralized 
AR compensators available. 

It is a matter of future research to determine ezact pertur- 
bation bounds, and we believe that the variety K;,$ will be 
of importance in this task. 

VI. CONCLUSION 

In this paper we studied the pole-placement problem and the 
stabilizability problem for a generic linear system of McMillan 
degree n using a decentralized dynamic control scheme acting 
on T decentralized channels. We establish new necessary and 
sufficient conditions which guarantee arbitrary pole placement 
with dynamic compensators of a bounded McMillan degree. 

We develop the theory for general autoregressive systems 
since we believe that a complete theory should incorporate 
improper transfer functions as well as more general descriptor 
systems. 

In the last section we prove that if a generic system P 
cannot be arbitrarily pole assigned by compensators of fixed 
degrees ij', then the set of systems which can be stabilized 
by these compensators is not a generic set. Further, there is 
a small neighborhood of P inside the manifold of proper 
transfer functions with the property that any element in this 
neighborhood cannot be stabilized by compensators of degree 
rl: 

APPENDIX 

Proof of Theorem 3.13: The linear subspace Bp defined 
by a nondegenerate plant P has dimension at least N - n - q - 1 
since it is defined by n + q + 1 equations arising out of setting 
the n + q + 1 coefficients of the characteristic polynomial 
of the closed-loop system (3.5) to be zero, On the other 
hand, since P is nondegenerate Bp n K;,, = 0. By 
the projective dimension theorem (see, e.g., [6,  p. 48]), if 
dim Bp > N - n - q - 1 then Bp must intersect K z ,  p" Thus 
dim Bp = N - n - q - 1, and we can apply Proposition 3.9. 

The only thing remaining to prove is the last sentence in 
the statement of the theorem. For this, we first observe that 
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the variety K$, p' and Bp are defined over the real numbers. 
Also under the assumptions on the closed-loop polynomial, 
the point b E Pn+q in the image has real coordinates. Thus 
the linear subspace La spanned by b and Bp is also defined 
over the reals. Now, as in the proof of Proposition 3.9, the 
compensators that give the _ c l d l o o p  polynomial b are found 
by intersecting Lb and K$,-. Since both these varieties are 
defined over the reals, all intersections occur in complex 
conjug_ate pairs. Thus if the number of solutions, which is 
deg K$,F is odd, at least one of the solutions is real. 0 

Proof of Theorem 3.15: Under the given condition, there 
exists ,a plane L c F" having codimension equ-al to 
dim K$,F - q - n and having the property that K$,$ n 
B p  n L = 0 [9, Corollary (2.29)]. 

Let 7r1 be the central pfojection with center Bp n L. 
Then T I  : K$,$ + PdimK:, 6 is onto over (c and over W 
if deg K$, p' is odd. So 

is onto over (I: and over W if deg K$,$ is odd, where 

7r2 : Pdim K$3 6 -+ Pn+q is the central projection with center 

Proof of Lemma 4.1: Since the set of a nondegenerate 
systems is Zariski open, we only need to prove that this set is 
nonempty. For this consider an r-tuple of systems Pi(s) which 
are qi nondegenerate and have size pi x (mi +pi) and McMillan 
degree ni = qi(m; + p i  - 1) + mipi. By [12, Corollary 5.61 
such systems exist. One readily verifies that 

T l ( B P ) .  0 

1 0 . . .  0 P&)l 

is a nondegenerate system. 0 
Proof of Corollary 4.5: The only case that remains to 

be considered is when n < dimK$,$ - q.  The proof of 
this case turns out to be quite technical. To structure the 
proof we first show a lemma (Lemma A.l) and a proposition 
(Proposition A.2). The proof of Corollary 4.5 will then be a 
direct consequence of Theorem 3.15 and Proposition A.2. 

We first recall the following. 
Let Ep be the center of the centralized pole-placement map 

defined by formula (5.4) of [12]. Then Ep is a plane in 

and it follows from [12, Theorem 5.51 that 

dim E p  n Kk, , = q(m + p )  + mp - n - q - 1 (14.3) 

for the generic system P of McMillan degree n < q(m + p - 
1) + m p .  

Lemma A.l:  For any positive integer 1, there exist 1 
distinct h rplanes H I ,  . . . , Hl in the projective space 
P ( q + 1 ) ( m 2 y 1  such that for any integer k 5 1 and any 
choice of k distinct integers ( 2 1 ,  . . . , z k }  c { 1, . . . , I }  

n Hi, = q(m + p )  + mp - IC (A.4) dimK&,, n Hi, n 
and 

dimEp n K&,, n Hi, n n Hib 
= q ( m + p )  +mp - n - q - k - 1 (A.5) 

for the generic system P E Ki ,  m ,  with the convention that 
the empty set has negative dimension. 

Proof: We first consider the case when n 2 q(m + p - 
l ) + m p .  In this case, for a generic system P, EpnK&, , = 0, 
so the second condition (AS) is vacuously true for any choice 
of hyperplanes. So we only need to choose 1 hyperplanes, 
that satisfy the first condition (AS). For this, it suffices to 
choose Z hyperplanes H1 . . . , H I  such that for any IC 5 1, the 
codimension of the intersection of any IC of these hyperplanes 
is IC. Now, a hyperplane in a projective space is given by a 
homogeneous linear equation. So, to choose our hyperplanes 
we need a system of 1 homogeneous linear equations, such 
that the row rank of any submatrix of IC rows is maximal. 
This is clearly satisfied by a generic system of E homogeneous 
equations. 

Now, we consider the case when n I: q(m + p - 1) + 
mp. We first choose a generic plant P such that dim Ep n 
K&,, = q(m + p )  + mp - n - q - 1. We choose the 
hyperplanes inductively. Now, let us assume that we have 
chosen 1 hyperplanes that satisfy the hypothesis. We will use 
the fact that given any projective variety V E P, the set 
of hyperplanes that intersect with V to give a variety of 
dimension one less that of V, form a Zariski open set in 
the variety of hyperplanes in P. To choose Hl+1, consider 
all possible subsets I of (1, . . .  ,Z}. For each subset the 
intersection of H L + ~  with VI = EP fl K&,, n (niEI H i )  
and with Wr = K&,, fl ((lie, H i )  must have dimension one 
less than that of VI and W,. So for each I, the hyperplanes 
Hl+1 that satisfy this condition form a nonempty open set. 
Thus we can choose Hl+1 to be any hyperplane that is in the 
intersection of these 2l Zariski open sets. Having chosen the 
1 hyperplanes, the set of plants P for which Ep satisfies A.4 

0 is again a Zariski open subset of KF, m .  

Proposition A.2: If n < dim KL, p' - q, then 

dim K$,Fn Bp = dimK$,$ - q - n - 1 (A.6) 

for the generic system P E Ki ,  m .  

Pro08 Let 1 = dim K$, p' - n - q.  Choose 1 hyperplanes 
H{ , . :. , H: as in Lemma A. 1 for each of the r factors Kz,, p ,  

in K$,$ Assume that H i  is defined by f,' = 0 for some 
linear homogeneous polynomial f:. The product fi of f:, 
j = 1 , .  . , r ,  is a linear equation in the coordeates of PN and 
thus defines a hyperplane Hi in PN. Now, K$,$ (nf=, Hi) 
is a union of algebraic sets of the form Z I ~ ,  IC,  x . . x ZrT, k, 
where ICj = 1, Ij is a subset of kj distinct integers 
between one and E, and Z I ~ ,  k, = K$j,p, n (nicr, H i ) .  By 
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Lemma A. I ,  Ep, n Zr3,  k, is empty for the generic system 
P3 of degree n3 = g3(m, + p 3 )  + m,p, - q, - k3 in 
Kp:, ,,. Then P: = block diag ( P I ,  . . . , P,) has McMillan 
degree dimK$,$ - g - k2 = n and has the property 
that Bp r l  ( Z I ~ , ~ ~  x . . .  x Z I ? , ~ ~ )  = 0. Hence there is a 
nonempty Zariski open set UT E K;,, such that for all 

finite components of KL,F n H,) gives rise to such a 
nonempty Zariski open set. Let U be the intersection of all 
these open sets. Then for P E U 

+ 

P E VI, B p  n ( z ~ ~ , k ~ + X  . . .  X z l 7 , k T )  = 0. Each O f  the 

So by the projective dimension theorem [9, Corollary (3.30)] 

dimBp n K$ p’ 5 E - 1 = dimK$,$- n - q - 1. 

On the other hand, the equations defining + Bp impose at 
most n + q + 1 algebraic conditions on because the 
characteristic polynomial has degree at most n + q. So 

- + 

dimBp n K$ p. 2 dimK$?$- n - q - 1 

for any P E KF, m .  Therefore 
+ 

d i m B p r l K s , F = d i m K L , j -  n - g -  1 

for all systems P in the nonempty Zariski open set U of 

Combining Theorem 3.15 and Proposition A.2 results in the 

Proof of Theorem 4.6: Let E ,  = dim K $ z , p t  - k ,  and 
H i , .  .. , Ht, be the hyperplanes defined in Lemma A.l for 
K $ , , p t .  Since degK$,,.% is odd, by BCzout’s Theorem 
(see, e.g., [5 ,  p. 227]), Z,:= K$t ,pz  n (n:=, H i )  contains 
at least one irreducible component X ,  of odd degree. So 
deg X1 x . . . x X ,  is odd and 

K;, m‘ 0 

proof of Corollary 4.5. 0 

+ 

Replacing K$, p’ by X 1  x . . . x X ,  and using the same argument 
one shows that 

p p  : XI x . . . x x, + P+* 

is onto over R. 0 
nondegen- 

erate system Po(.) in K;, ,(W) which cannot be stabilized by 
any compensator in Take a real anondegenerate system 
PI (s) of degree dim K;, - q. Such a system exists because 
when k = dim K;, - q the set of degenerate systems is 
a proper algebraic subset of Ki,  m(a!), and Ki,  ,(W), which 
has a Zariski open subset isomorphic to W q ( m f p ) + m p ,  cannot 
be contained in any proper algebraic subset of K:, m(a!). Let 

Proof of Theorem 5.1: We first construct a 

+ 

+ 

rs-  1 o ... 01 

Then Po(s) E KF, , (R),  Po(s) is 
stabilizable by any compensator K:, Let 0 C K:, 
open set of all anondegenerate systems and define 

4: K z , F  x 0 + Pn+q, 

nondegenerate and is not 
be the 

.+ 

( z ,  P )  I-+ p p ( z ) .  (A.8) 

Then 4 is continuous in both the classical and Zariski topolo- 
gies. Let S c Pn+* be the classical open set of all the 
polynomials which have at least one root whose real part is 
greater than one-half. Since 4 ( z ,  PO) E S there exists for any 
z E K s , q  classical open neighborhoods U, C 0 of PO and 
W, c K;,$ of z such that 

.+ 

4(Wz x UZ) c s. 
+ 

By construction {WzI,z E 

compactness of 
is an open cover and by 

there exists a finite subcover 

{WZ, li = 1, 2 , .  . . ,E}. 

Let 
1 

U = nuz,. 
i= l  

Then $(K$, x U) C S which implies that all the systems in 
0 

+ 

U are not stabilizable by K&. 
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