
830 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 6, JUNE 1996 

utput Feedback Pole Placement 
with Dynamic Compensators 

Joachim Rosenthal, Senior Member, IEEE, and Xiaochang Alex Wang, Member, IEEE 

Abstract-In this paper we derive a new rank condition which 
guarantees the arbitrary Pole assignability of a given system 

rank condition we establish several new sufficiency conditions 
which ensure the arbitrary pole assignability of a generic system. 
Our proofs also come with a concrete numerical procedure to 
construct a particular compensator which assigns a given set of 
closed-loop poles. 

can all be expressed through polynomial equations, it is not 
surprising that one way of studying this problem is by means of 

theorems available in algebraic geometry require that the field 
is algebraically closed, a ProPertY which the complex numbers 
have but the reals do not have. Still, it was possible to show 
through the use of the so-called dominant morphism theorem 
(Hermann and Martin [4]) and the use of Schubert calculus 
(Brockett and Bymes [SI, see also [ 2 ] )  that (3) is also a 

by dynamic compensators of degree at most Y *  By using this algebraic geometry, Unfortunately some of the most powerful 

I. INTRODUCTION 

NE of the main open problems in linear system theory 
is to determine the minimum order q of a dynamic 

compensator which can arbitrarily assign the closed-loop poles 
of a generic m-input, p-output system of McMillan degree n. 
This problem has the pole placement problem by memoryless 
feedback as a special case, a subject which was studied by 
many researchers. 

A classical result of Brash and Pearson [ l ]  states that 
arbitrary pole assignment for a controllable and observable 
system can be achieved using dynamic compensators of order 

4 = min(&“; %”) ( 1 )  

where K,~~,,, and I/,,, are the largest controllability and 
observability index of the plant, respectively. A corollary of 
this result is that arbitrary pole assignment is possible for the 
generic system if (see, e.g., [2]) 

max(m,p)(q + 1) 2 n. ( 2 )  

Despite many attempts and despite many small improve- 
ments, one has to say that the result of Brash and Pearson 
remained one of the major results until a couple of years 
ago. Of course the question arises “how much better” can one 
possibly do, and this question was answered by Willems and 
Hesselink [3] who showed through a “parameter count” that 

q ( m + p -  1) + m p  2 n (3) 

is a necessary condition for generic pole 
assignment. 

We would like to note at this point that the problem at hand 
is clearly a nonlinear problem. Since the constraints involved 

‘ri - rrip i.e., 4 2 71L+p--1 
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sufficient condition for the static pole placement problem (i.e., 
q has to be zero) if complex compensators can be implemented 
in the feedback loop. 

For the general dynamic problem (i.e., q can be larger than 
zero) Rosenthal [6] proved by applying the so-called projective 
dimension theorem that (3) is a necessary and sufficient 
condition if complex compensators can be implemented. 

Of course from an engineering point of view the “real 
problem,” i.e., the problem which requires that the compen- 
sators have real parameters, remained a long way away from 
its complexified counterpart. Only recently has significant 
progress been made. 

A first breakthrough was established in 1992 by Wang [7] 
for the static ( q  = 0) pole placement problem. Using algebraic 
geometric techniques, Wang established the result that the 
generic system has arbitrary pole assignability if 

m p  > n (4) 

missing the necessary condition (3) by only one degree of 
freedom. 

Again, using geometric techniques, Wang and Rosenthal [8] 
were able to derive the result that 

( 5 )  q max(m, p)  + mp > 

implies generic pole assignability over the reals. Note that (5) 
comes close to (3) as long as q and min(m,p) are small. 

Seemingly independently Ariki [9 ] ,  Leventides and Karca- 
nias [lo], [11], and Wang [12] all realized that the geometric 
techniques employed in [7] and [8] are essentially based 
on a linearization procedure around a so-called dependent 
compensator. While Leventides and Karcanias [ 1 11 and Wang 
[12] were using this idea mainly to derive numerical schemes 
and formulas capable of constructing static ( q  = 0) feedback 
compensators, it was used by Ariki [9] to derive a simplified 
proof of the sufficiency result (5). Finally independent of [9] 
and [ 111, Rosenthal et al. [ 131 derived a proof of Wang’s result 
which also describes through explicit polynomial equation an 
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open set of matrices A ,  B ,  C which have the pole assignability 
property. 

In this paper we elaborate on the linearization techniques de- 
veloped in [9]-[14], and we derive a new rank condition which 
ensures arbitrary pole assignability. Using this condition we 
prove that the generic system has arbitrary pole assignability 
if 

q(m + p - 1) + mp - min(r,(p - 1), rP(m - 1)) > n (6) 

where rm = q - m[q/m] and rp = q - p [ q / p ]  are the 
remainders of q divided by m and p ,  respectively. In particular, 
when q is a multiple of either m or p ,  one has the sufficient 
condition 

q ( m + p -  1) +mp > n (7) 

which misses the necessary condition of (3) by only one degree 
of freedom. Note also that Willems and Hesselink [3] already 
showed that when q(m + p - 1) t m p  = n, then a real solution 
may not exist, i.e., (6) is the best possible bound in many 
situations. 

The paper is structured as follows. In the next section we 
will develop the theory using system descriptions as they have 
been recently considered in the “behavioral literature.” There 
are many advantages for this approach, and we will say more 
about this in the course of the paper. Using this quite general 
setup, we will extend and summarize in this section several 
of the major theorems which exists in the area of dynamic 
pole placement. 

The main results will be given in Section 111. Using gener- 
alized first-order representations, we will formulate first the 
main tlheorem of this paper and several of its corollaries. 
The results are mainly based on a careful study of the so- 
called pole placement map. Of particular importance will be 
the linearization around a so-called dependent compensator. 
In Section 111 we present the main ideas of the proofs, and we 
illustrate the results on several examples. The more technical 
parts of the proofs are given in the Appendix. 

,In Section IV we describe an effective computational 
method to compute the dynamic compensators assigning any 
self-conjugate set of poles for any given system which satisfies 
the rank condition described in Section 111. 

11. PRELIMINARY RESULTS AND PROBLEM FORMULATION 

In tlhis section we collect some preliminary results and 
simultaneously establish our notation. It is our intention to de- 
velop the theory in a behavioral framework, since the essence 
of the problems and their solutions are most transparent in 
this language. For the connection between the behavioral point 
of view and the classical state-space formulation, we refer to 
[15]-[I71 and also to the recent preprint [18]. 

As it was already stated in the introduction, it is the goal 
of this paper to provide a strong sufficiency condition which 
guarantees that a “generic system” describing “some generic 
behavior” is arbitrary pole assignable using real dynamic 
compensators of a bounded McMillan degree. 

Recall from [ 171 that by definition a dynamical system C is a 
triple C = (T,  W, B ) ,  where T c R is the time axis, W is the 

signal space, and B c WT is called tht: behavior. In this paper 
we will only consider dynamical systems C whose time axis 
T = E, whose signal space W = E t m f p ,  and whose behavior 
B c C” (R, Em+”) has a so-called “kernel representation,” 
i.e., there exists a polynomial matrix P ( s )  such that 

d 
at w(t) E C”(IR, IR”+P) I P (-) w(t) = 0 

Behaviors having particular kernel representation of the form 
of (8) are sometimes called “AI?’-systems (compare with [19] 
and [17]), and we will abbreviate it through B(P) .  Every such 
AR-system comes with two important invariants called the 
rank r (E) and the McMillun degree n( E) which are defined as 
follows: .(E) is equal to the minimal number of rows needed 
for a polynomial matrix P ( s )  which describes the behavior 
B in a representation of the form of (8). We will call such a 
representation a (row) minimal reprehentation. 

If the polynomial matrix P ( s )  is row minimal, then we 
define the McMillan degree .(E) i iS  the maximal degree 
of the full-size minors in one and therefore any minimal 
representation. 

The rank .(E) and the McMillan degree .(E) are quite 
“rough” system invariants. A much finer set of (projective) 
system invariants are the set of all full-size minors of P ( s )  
in a minimal polynomial representation. This set of system 
invariants is of particular irriportan2e if the system C is 
autonomous. Recall that a system C = (IR, , B )  is called 
autonomous if the rank .(E) = m f p .  If the (m+p) x (m+p) 
matrix P ( s )  describes an aufonomous behavior, we define 
det P ( s )  as the characteristic polynoinial of C which we will 
abbreviate with X C .  As we just mentioned, xc is a projective 
invariant, i.e., if 

det P ( s )  = a0 + a l s  + . . + an+g~nS.q 

then (a0 , . . . , a,) defines a unique on e-dimensional subspace, 
i.e., a point in the projective space lPn (see, e.g., [20]). This 
point then only depends on the autlmomous system C and 
does not depend on the particular representation. The roots of 
det P ( s )  are by definition the poles of E. 

Next we would like to introduce feedback. For this, assume 
that C1 = (R,Rm+p,B1) and CZ = (E , IR”+p ,B~)  are 
two AR-systems. Then the interconnected system E1 A C2 
is defined as 

We say C1 A Ez is a regular jlnterconnection (see [IS]) if the 
ranks “add up,” i.e., if 

r(Ci A Cz) .(Cl) + .(E,) 

and we speak of a singular interconnection if this is not the 
case. 

As it is immediate from the definition, the interconnected 
system C1 A Cz is defined through 
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where P I ,  P2 are polynomial matrices representing C1, respec- 
tively, C2. If P I ,  P2 are in addition row minimal representa- 
tions, then one verifies that C1 AC2 is a regular interconnection 
if and only if (2) is row minimal. 

The fundamental question, which is in fact a generalized 
pole placement problem and which implies many of the 
"traditional" pole placement questions, now follows. 

Problem 2.1: Let m,,p,n, q be fixed positive integers. Un- 
der what condition is it true that for a generic set of systems 
system C1 = (IR,Rn'+p,U,) having rank T ( & )  = p and 
McMillan degree n(C1)  = n the following holds: For every 
polynomial I$ E R[s] of degree n + q there exists a system 
Cz = (IR, Rm,+p, B,) having rank .(E,) = m and McMillan 
degree .(E,) 5 q such that X C ~ A C ~  = 4 .  

If Problem 2.1 has a positive answer, we will say that the 
generic rank p system of McMillan degree n is arbitrary pole 
assignable in the class of feedback compensators of McMillan 
degree at most q .  As it will turn out, in this case the generic 
m-input, p-output system of McMillan degree n is then also 
arbitrary pole assignable using compensators of McMillan 
degree q only (compare with Theorem 3.3). 

A major difficulty in the formulation of Problem 2.1 is of 
course the term "generic" which we now want to make precise. 
For this note Kuijper and Schumacher [21] have shown that 
every AR-system C = (IR, 8)  has an equivalent first- 
order representation, i.e., a "realization." To be precise they 
showed [21, Th. 4.11 (compare also with [22], [23], [13]) for 
every system C having rank .(E) = p and McMillan degree 
n(E) = n the existence of n x ( m  + n) matrices F ,  G and a 
( m  + p )  x (m  + n)  matrix H such that the behavior U of C is 
equivalently described through the first-order representation 

GZ(t) = F z ( t ) ,  ~ ( t )  = H z ( t ) .  (9) 

In this representation z ( t )  E 2 'v Etm+" describes the set of 
"internal variables" and w(t)  E describes the behavior 
8. The matrices F,  G are linear maps from the space of internal 
variables 2 'v to the state-space X 'v IR". The 
triple ( F ,  G, H )  is essentially the same as "a linear machine" 
as defined in [23, p. 1781. Clearly (9) describes a behavior 
B c Cm(R,IRm+P), and we will abbreviate this behavior 
with B(F ,  G, H ) .  Corresponding to a change of coordinates 
in X and 2, one has a natural equivalence among pencil 
representations 

( F , G , H )  - ( S G T 1 , S F T 1 > H T - ' )  (10) 

where S E GI,, and T t GI,,+,. Note that the behavior 
B ( F ,  G ,  H )  is invariant under those two changes of base. 

Recall that a subset S of a vector space V is called a generic 
set if the complement of S in V is contained in a proper 
algebraic set. In the sequel we will view triples of matrices 
F, G, H ,  where F, G are of size n x (m + n) and H is of 
size (m + p )  x (m + n) simply as points in the vector space 
RR("+p+2n)(m+n). Based on (9) we will give the following 
definition. 

of systems if the set 

{ ( F ,  G ,  H )  I B(F ,  G ,  H )  s> (1 1) 

forms a generic set of the vector space IR(m+p+2n)(m+n). 
We would like to motivate this definition a little. First note 

that the behaviors of the form 8 ( F ,  G, H )  represent a slightly 
more general class of behaviors than the set of behaviors 
representable by a kernel representation of the form of (8), 
and we refer to [24] and [25] for a detailed treatment. There 
is an important notion of minimality which extends the notion 
of observability in a natural way (compare with [25, Th. 2.31 
and [26, Def. 2.11). 

Dejinition 2.3: System (9) is called minimal if the homo- 
geneous pencil [sG - t F ]  has (generically) full row rank and 
if the pencil [sGGtF]  has full column rank for all ( s , t )  E 

One of the main results derived in [25. Th. 4.41 states that 
two minimal triples (F1, GI,  H I )  and (3'2, Gal H2) define the 
same (impulsive) behavior if and only if those triples are 
equivalent in the sense of (10). 

Let Y c RR("+P+2")("+") denote the set of all minimal 
triples (F: G. H ) .  Theorem 4.4 in [25] essentially says that 
the orbit space Y/(Gl ,  x Gl,+,) parameterizes behaviors 
having a fixed rank and a fixed McMillan degree. Moreover, 
the main theorem in [26] states that Y/(Gl ,  x GI,+,L) is 
isomorphic to the set of so-called homogeneous AR-systems 
having rank p and McMillan degree n, and because of this we 
will denote this set with 'R;,,. The main result in [27] states 
that 'Hi,, has the structure of a smooth projective variety, i.e., 
it also has the structure of a compact manifold. In the algebraic 
geometry literature 'Flp";, is also referred to as a Quot scheme. 
For further reference we will quickly calculate the dimension 
of 'H;;,. This one verifies that the group GI, x GI,+, acts 
freely on the set Y .  We therefore conclude that 

(E2 \ {(O.O)}. 

dimXFt,",, = dimYJ(G1, x GI,+,) 
= dim Y - dim G1, - dim GI,+, 

=n(m+p)+mp.  (12) 

From the above remarks one sees that a subset S c 
R('r1+p+2")("+") is a generic set if and only if nl(S n Y )  c 
K;,, is a generic set, where T I :  Y - X;,, is the canonical 
projection. 

Crucial in our investigation will be the so-called pole 
placement map associated to a particular plant P ( s )  := Pl ( s ) .  
Roughly speaking, the pole placement map assigns to a 
compensator P2 ( s )  the closed-loop characteristic polynomial 
det( 2:;;). To make this precise, we will again use first- 
order representations. For this we will represent the polynomial 
matrix P~(s) which is of size m x (m + p )  through a triple 
( F ,  G, H ) ,  where F, G are of size q x ( p  + q )  and H is of size 
(m + p )  x (p + q )  and has the property that B ( F ,  G, H )  = 
B(P2). Let 

N := (m + p + 2 q ) ( p  + 4 ) .  
Definition 2.2: Let A,",,, denote the set of all AR-systems 

C = (R,IR,m+p,Z3) having rank .(E) = p and McMillan 
Identify a polynomial 

degree n(E) = n. A subset S c A,",, is called a generic set d ( s )  t a0 + a1s + ' .  ' + Un+<]Sn+q E IR[s] 
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of degree at most n + q with the point (ao, a l ,  . . . , an+q) in 
the vector space RrL+*+’. Then the pole placement map is 
defined as 

Proposition 2.5: For a generic set S c A;”,,, of (real) sys- 
tems C = (R, B ( P ) )  E A,”,,, having rank .(E) = p 
and McMillan degree n(E) = n, the extended pole placement 
map xc: (EN i is onto as soon as (15) is satisfied. 
Moreover, if the number 

x :  R N  - IRn+q+’ 

(13) 
d ( m , p ,  q )  := (mp t- q ( m  -1 p ) ) !  ‘ c (16) 

(F .  G, H )  - det 

The map x is a polynomial map and it is characterized 

1) For every X E IR one has 
through the following important properties: 

x ( W ,  XG. A H )  = X p + 4 ~ ( F ,  G, H )  

i.e., x is homogeneous of degree p + q. 
2) If S E G1, and T E GI,+,, then 

det S 
det T 

x(SGT-’, 5’FT-l; H T - l )  = ---x(F, G ,  H ) .  

The second property just states that the roots of x ( F ,  G, H )  
(i.e., the poles of the closed-loop system!) do not depend on 
the representation. In this way we like to see x as a map which 
associates to a particular behavior B(F ,  G, H )  a point in the 
projective space Pn+q. To clarify this we give the following 
definition. 

Definition 2.4: A compensator (F, G. H )  (i.e., the be- 
havior B(P’.G.H)) is called a dependent compensator if 
x ( F .  G, If) = 0. The set of all dependent compensators in 
E” will be denoted with YD. 

Using those notations, we have a well-defined polynomial 
map 

x : R” \Yo i Ipn+q 

( F ,  G, H )  - det (g$) 
which assigns to every behavior B(F, G. H )  a unique point 
in IPn+q. We conclude this section by formulating two main 
sufficiency conditions. 

First note that part 2) in the previous remark also states that 
x “factors” over the orbit space 

Since 

dim%;,, = q(m + p )  + mp 

and since dimIPrL++4 = n + q, we immediately conclude that 
the McMillan degree of the compensators must satisfy 

n - mp 
r n - t p -  1’ s >  

The main theorem in [6] e5sentially states that as soon as 
“complex compensators” are allowed in the feedback loop, 
then (15) is necessary and sufficient. In our context this means 
that the dlomain of the pole placement map x is extended to the 
whole complex vector spaceCN resulting in an extended pole 
placement map x“:  i ntq+l. With this preliminary 
we have an extension of some results reported in [16]. 

where the constant c: is defined as 

is odd, then the (real) pole placement map x is onto as well. 

The techniques developed in [6] and [16] al,o provide 
results for the “traditional dynamic pole placement problem.” 
For this assume that the plant C1 is a m-input, p-output linear 
system of McMillan degree n described through 

Prooj See the Appendix. 0 

X = A x + B u .  y = C x  

and assume that the compensator C2 is a p-input, m-output 
linear system of McMillan degree y described through 

i = PZ + Gy, U = H z  + Ky.  (17) 

The closed-loop behavior is then described through 

In this situation the following proposition (see [16, Th. 5.11) 
is true. 

Proposition 2.6: Let q 2 Zy3. Then for a generic set of 
matrices ( A .  B.  G )  E lRn(n+mtp) the following is true: For 
every monic polynomial d(s) E R[s] of degree n + q there 
exists a complex dynamic compensator of the form of (17) 
resulting in the closed-loop characteristic polynomial q’(s). If 
in addition the number d ( m , p .  CJ) introduced in (16) is odd, 
then there exists a real compensator assigning the closed-loop 
characteristic polynomial 4( s). 

Note that Propositions 2.5 and 2.6 state that for certain 
triples m . p ,  q (namely the ones for which d ( m . p .  q )  is odd) 
(15) is necessary and sufficient. For the. static pole placement 
problem this has been observed earlier tiy Brockett and Byrnes 
[SI. If d ( m , p . q )  is even, then the best known sufficient 
condition for the static pole placement problem misses the 
complex bound n = m p  only by one degree of freedom [7]. 
In the next section we show that the same is true when q is 
a multiple of either m or p .  

111. MAIN RESULTS 
In the sequel we will assume that m. n, p ,  q are fixed positive 

integers. p ,  n characterizes the rank and the McMillan degree 
of the plant, and m,q will characterize the rank and the 
McMillan degree of the compensator. Let [x] denote the Gauss 
bracket, Le., [x] stands for the largest integer smaller than or 
equal to T .  Let T,, = q - rn[q/m] arid rP = q - p [ q / p ]  be 
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the remainders of q divided by m and p ,  respectively. In all 
following sufficiency criterions we will assume that 

q ( m + p ) + m p - m i n ( r , ( p - l ) , ~ ~ ( m -  1)) > n+q. (19) 

Theorem 3.1: Let m, n, p ;  q be fixed integers satisfying 
(19). Then for a generic set of (real) systems C = 
( R , I R m + p , B ( P ) )  E A;., having rank .(E) = p and 
McMillan degree n ( C )  = n, the pole placement map x 
introduced in (14) is onto. 

Proof: See the Appendix. 0 
We would like to remark that (19) is always at least as good 

as (5). Moreover, if q is an integer multiple of either m or p ,  
then (19) reduces to 

4(m +PI + m p  > n + 4 

missing in this way the complex bound of (3) by only one 
degree of freedom. As a direct consequence we obtain a 
sufficient condition for Problem 2.1. 

Corollary 3.2: Let m, n, p ;  q be fixed integers satisfying 
(19). Then every element of a generic set S c A;,, of plants is 
arbitrary pole assignable in the class of feedback compensators 
of McMillan degree at most q. In other words, Problem 2.1 
has a positive answer in this situation. 

Proof: See the Appendix. 0 
As it will turn out, the two statements above also give a 

strong sufficiency criterion for the “traditional’’ pole placement 
as formulated before Proposition 2.6. For the “real situation” 
we have the following theorem. 

Theorem 3.3: Let (A! B ,  C) be a generic set of real matri- 
ces of size n x n, n x m, and p x n, respectively. Let q be 
a number satisfying (19). Then for every monic polynomial 
q5 E R[s] of degree n + q there exist real matrices F; G,  H; 
and K of size q x q;  q x p ,  m x q;  and m x p ,  respectively, 
such that 

Proof: See the Appendix. 0 
Instead of using an AR-description for the compensator, we 

can also use an image or MA-description. 
For this let P ( s )  be a p x (m + p )  polynomial matrix which 

describes the behavior of the plant C1 through the system of 
autoregressive equations 

(20) 

Next consider a ( m + p )  x m polynomial matrix Q ( s )  which 
describes the behavior of the compensator Cz through the 
image representation 

Here t ( t )  is a so-called latent variable [17]. The behavior of 
the interconnected system is described through 

t ( t )  = 0, ~ ( t )  = Q 

As we can describe the behavior (20) of E1 through first- 
order representations of the form (9), it is also possible to 
describe the behavior (21) of the compensator through a state- 
space system (compare with [17, p. 2691 and [22]) of the 
form 

K i ( t )  + Lz( t )  + M w ( t )  = 0, z ( t )  E R”, w(t) E I R m + p .  

Here K .  L are matrices of size ( q  + m) x q, and M is a matrix 
of size (q+m) x ( m f p ) .  Then we have the following theorem. 

Theorem 3.4: Let F, G be generic matrices of size n x (m+ 
n), and let H be a generic matrix of size (m + p )  x (m + n). 
Let q be a number satisfying (19). Then for every polynomial 
d E IR[s] of degree at most n + q,  there exist real matrices 
K.  L. M of size ( q f m )  x q ,  (q fm)  x q,  and (q+m) x (m+p), 
respectively, such that 

Prooj? See the Appendix. 0 
The next theorem shows that over the reals “not even” the 

bound q(m + p )  + mp > n + q is in general sufficient. 
Theorem 3.5: q(m + p )  + m p  > n + q does not guarantee 

even the almost arbitrary pole assignability for the generic 
system generally if q is not an integer multiple of both m 
and p .  

Proof: See the Appendix. 0 
After having formulated all those results we will now 

explain the main ingredients of the proof. The main idea is 
based on a polynomial map $ which will be closely related 
to the pole placement map x. For this let m, n, p ,  q be fixed 
integers. Let n = dp+Z, where 1 = n - p [ n / p ]  is the remainder 
of n divided by p ,  and let 

v l = = . . . = v l = d + l ,  a n d u l + l = . . . =  up = d. (24) 

In the sequel we will identify the set of all p x (m + p )  
polynomial matrices P ( s )  whose ith row degree is at most 
v, with a point in the vector space IR(”+p)(”sp). In this way 
it also makes sense to speak about a “generic” p x (m + p )  
polynomial matrix P ( s )  of order n. 

Similarly let q = k p  + T ,  where T = q - p [ q / p ]  is the 
remainder of q divided by p ,  and let 

p1 = . . .  = p, = IC+ 1, and pT+1 = . . .  - - p p  = k .  (25) 

Using those definitions we can identify a (m + p )  x p 
polynomial matrices Q ( s )  whose ith column degree is at most 
pz with a point in the vector space IR(4’p)(m+p). 

For every polynomial matrix P( s ) ,  we define now a polyno- 
mial map $ which will be closely related to the pole placement 
map x 

In analogy to the properties of x, the map $ satisfies: 
1) For every X E IR one has $(XQ(s)) = XP$(Q(s)), i.e., 

$ is homogeneous of degree p .  
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2) If S E SI,, i.e., if S E Rpxp is a matrix with Let q 1 , " . , q p  and x l , " . , x p  be the Zolumns of Q ( s )  and 
determinant one, then $( Q( s) S )  = $ ( Q  ('5)). X ( s ) ,  respectively. Computing the quotient difference 

The main technical result, which we will prove in the 
appendix and which will be the starting point for many proofs 
in this paper, is shown. 

Proposition 3.6: Let P(s )  E R("ip)("+p) be a generic 
p x (m + p )  matrix of order n. If (19) is satisfied, then 4 
is onto. 

In the remainder of this section we study the linearization of 
the map $, and we will show that if this linearization around 
a so-called dependent matrix Q ( s )  is an onto linear map, then 
the map itself is onto. For this we give the following definition 
in analogy to [13]. 

DeJinition 3.7: A matrix Q ( s ) ,  whose Jacobian d+Q is an 
onto linear map, will be a full compensator for the plant P(s) .  

A priori full compensators are only defined for the generic 
set of Kronecker indexes since the map + was introduced 
in this way. By linearizing, e.g., the pole placement map x 
introduced in (14), the definition also extends to compensators 
not having the generic set of indexes. 

Theorem 3.8: The map $ introduced in (26) is onto as soon 
as there i s  a dependent and full compensator &(s). 

Proof: By the Inverse Function Theorem, 4) maps a 
neighborhood Q onto a neighborhood of 0 in lRn+q+l. Since 

0 
Remark 3.9: If 4 has no full compensators, then according 

to Sard's theorem (see, e.g., [20]) the image Im($) has 
measure zero. The existence of a full compensator is therefore 
also necessary. The domain and the range of the map $ can be 
naturally extended to the complex vector spaces dq+p)(m+p) 
and respectively. We will denote this resulting map 
with 4)'. By using the dominant morphism theorem (see [4]), 
it follows that $1' is almost onto o v e r a  if and only if there 

4 i s  homogeneous, $ is onto. 

$(&(SI + ~ x ( s ) )  ~ _ _ _  - ,$ (Q(s) )  lim 
E H @  E 

immediately gives 

d$QX(s) = detP(s)[x1,qZ,.,.,qp] 
+ det P ( s ) [ q l , m . .  . . , q,] + . . .  

+ det P(s)[qi. q 2 ,  . . . , x,]. (30) 

Using the definitions of adjoint and trace, one gets the result. 0 
Corollary 3.11: Let B be the ( p  + q )  x p matrix defined 

through 

B := block diag[bl,. . . , bp], b, := ,: 1 .  
SPL" 

Then a compensator Q ( s )  is a full compensator if and only if 
the polynomial entries of the matrix 

B(adj ( P (  s) C? (3 1) 1 FYs) (31) 

generate the vector space Rn+q '' viewed as the space of all 
polynomials of degree at most 1% + q. 

Remark 3.12: It seems that there are ( q  + p)(m + p )  
freedoms in lR(4+p)(""p). Since for ary matrix S E SI, one 
has +(Q(s)S) = + ( Q ( s ) ) ,  the rank of the Jacobian d$Q can 
be at most ( q + p ) ( m + p )  - ( p 2  - 1), i.e., a necessary condition 
for the existence of full compensators is 

q(m + p )  + m p  2 71. + q. 
is a full compensator. 

In the sequel we will derive conditions which guarantee the 
existence of full dependent compensators. First recall that the 
adjoint of a p x p matrix A, denoted by adj A, is the p x p 
matrix defined by 

When a compensator Q ( s )  is in addition dependent, then the 
tangent line in direction of Q ( s )  is in the kernel of d $ ~ .  
So a necessary condition for the existence of dependent full 
compensators is 

where A,, denotes the determinant of the ( p  - 1) x ( p  - 1) 
matrix obtained from A by removing the j t h  row and the ith 
column. Finally let tr denote the trace of a matrix. 

Theorem 3. IO:  The Jacobian 

d,qJQ: E(4+P)("+")  + J R ( " + 4 + 1 )  

is given by 

X ( s )  - tr (adj ( P (  s) Q (3)) P ( s ) X  ( s )  ) (28) 

where X ( s )  i s  an arbitrary (m + p )  x p polynomial matrix 
whose ith column degree 5 pz, i.e., X ( s )  describes an 
arbitrary element of the tangent space R(4+p)("+p). 

Proofi Consider the Taylor series expansion in direction 
of X ( s ) ,  i.e., 

g(Q(s.1 + & X ( s ) )  = 41(4?(s)) + & d $ ~ X ( s )  
+ terms of higher order in E .  (29) 

For a dependent compensator Q ( s ) ,  the expression for the 
Jacobian becomes much simpler. Indeed if P ( s ) Q ( s )  has rank 
<p - 2, then adj P ( s ) Q ( s )  = 0 and it follows that d$Q = 0 
as well. If P ( s ) Q ( s )  has rank p - I ,  then one can show 
that adj P ( s ) Q ( s )  has rank one and can be factored into 
adj P ( s ) Q ( s )  = r ( s ) I ( s ) ,  where l ( s )  is a specific vector in 
the left kernel of P ( s ) Q ( s )  and r ( s )  is a specific vector in 
the right kernel of P( s )Q (s). As a con sequence the Jacobian 
d$Q has the simple form X ( s )  H l ( s ) P ( s ) X ( s ) r ( s ) .  Since 
we will not need this result later, we only derive a weaker 
form of it. 

Corollary 3.13: Let P ( s )  = [:::! , where a(s )  denotes 
the last row of P ( s ) .  Let Q ( s )  be a dependent compensator 
satisfying a ( s ) Q ( s )  = 0, and let P(.s) be the last column 
of adj P(s)Q(s) .  Then the Jacobian &/)Q: RR(4+p)('"+p) + 

R(n+qfl) is given by 

X ( s )  H a(s)X(s ) ;?(s )  (32) 
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and Q ( s )  is full if and only if Then pl(s)Q(s) = [s4 - s, 11 and p 2 ( s ) Q ( s )  = 0, hence Q ( s )  

spanIR{s"ai(s)P,(s)} = IRn+4+' 
is a dependent compensator. Using the notations of Corollary 
3.13, we have N ( S )  = p 2 ( s )  = [0 ,1  + s , s 2 , s 3 ] ,  P1 = -1, (33) 

w h e r e i = l ,  . . . ,  m+p,  j = 1 ,  . . . ,  p .  k = O . l  . . . . .  p,. 

adjP(s)Q(s) is nonzero. So 

42 = s4 - s. Since {a&, sa&, a,Pz 1 z = 1 , . . . , 4 }  
Proof: Only the last column p ( s )  of the matrix span the space of all polynomials of degree 57 ,  Q ( s )  is also 

a full compensator, and according to Theorem 3.8 the map 

0 
Though we introduced the map $ simply as a map between 

real vector spaces, it should be apparent from the paragraph 
before Theorem 3.4 that the surjectiveness of 11, has direct 
consequences for the pole placement problem. For this note 
that if Q ( s )  is a (m  + p )  x p-dependent compensator having 
column degrees p1 2 . . .  2 pp (not necessarily the generic 
set of indexes), then it follows immediately that the rank 
condition (33) guarantees the arbitrary pole assignability in the 
class of feedback compensators of McMillan degree at most 
q := E:='=, pi.  The following example gives a first illustration. 

Example 3.14: Consider the system 

. 0 1  0 0 0  0 0 -1 
2 =  l o  0 0 0 0 o l x -  10 l1U 

OI 1:: :1 L 0 0 - 1 0 1  0 
0 0  0 1 0  

We will use a dynamic compensator of McMillan degree 
q = 1 (which is the minimum) to assign the closed-loop 
poles. Generally when m = p = 2, n = 6 .  q = 1, there 
is a nonempty open set of systems which do not have any 
dependent compensator and whose pole placement maps are 
not almost onto (see Example 3.19 and the proof of Theorem 
3.5). On the other hand, there also exists a nonempty open set 
of systems which do have dependent compensators and whose 
pole placement maps are onto (one can easily write down the 
conditions). This system is such an example. 

By eliminating the state variable 2, the system becomes 

1 3 - ( d / d t ) 2  ( ~ Z / d t ) ~  d / d t  
[0 1 + d / d t  ( d / d t ) '  ( d / ~ L t ) ~ ]  [;] = 0' 

Let 

0 l + s  s2 s3 " 1  p 1 ( s )  1 3 -  s2 s3 
p ( s )  = [ p 2 ( s ) ]  = [ 

and 

$ is onto. Using Lemma A.l  one concludes that the map x 
introduced in (14) is surjective as well, i.e., the poles of the 
closed-loop system can be arbitrarily placed by compensators 
of McMillan degree 51. 

To apply Theorem 3.8 to a system P ( s ) ,  one needs to find 
a dependent compensator first. Following are some known 
results from [6] and [7j about existence (and nonexistence) 
of dependent compensators. 

Proposition 3.15: 
1) A complex dependent compensator always exists if 

q ( m + p ) + m p  > q+n. 

2) When q = 0, a real dependent compensator always exists 
if 

m p  > n. 

In the following we give a new condition which ensures the 
existence of a real dependent compensator. 

Lemma 3.16 Assume a plant P ( s )  has row indexes v1 2 
. . . 2 vP and McMillan degree n = E U,. Let q = k p  + r 
where k = [ q / p ] .  Then a real dependent compensator of degree 
at most q exists as soon as 

up < k(m + p - 1) + m + T p  

Proof Let p ( s )  be the last row of a row-reduced [28] 
representation of the plant, and let the column vectors 

be a minimal basis of the kernel ker p ( s )  in the sense of Forney 
[28j, i.e., p ( s ) q J ( s )  = 0 for all 3 .  

Let pL3 := degqJ (s ) ,  PI I . . .  5 P,+~-I. Then 

m+p-1 

p , = u p < k ( m + p - l ) + m + r p .  (34) 
3=1 

We claim that cy=, p, 5 q .  By contradiction, assume that 
ET=, p3 > 4. Then p p  2 k + 1 and 

P 

j=1 

Then the (pole placement) map is given by $ ( Q )  = 
dct P ( s ) Q ( s ) .  Let which contradicts (34). Let 
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0 1 0 0  0 0 0 0 - 1  
0 0 1 0  0 0 0 0  0 

X = O O O l  0 0 0 0  0 
0 0 0 0 - 1 0 0 0  0 
0 0 0 0  0 1 0 0  0 
0 0 0 0  0 0 1 0  0 

, 0 0 0 0  0 0 0 1  0 

Theorem 3.17: Let T,, = q - m[q/m] and rp = q - p[q /p ]  where ci3 (s) = a,, + b2,s is the 2 x 2 minor of Q ( s )  consisting 
of the ith and j t h  rows. The solutions of (37) are given by be the remainders of q divided by m and p ,  respectively. If 

b14 = -b23, 1312 = -(3/2)a14. then a real dependent compensator of McMillan degree at most 
q exists. 

Prosf: First we will assume that rp(m - 1) = 
The minors of &(s) must satisfy [6] 

min(r,(;o - 1 ) , r p ( m  - 1)). Let P ( s )  be row reduced with c12(s)c34(s) - c13(s)c24(s) + c14(s)c23(s) = 0 
row degrees u1 2 . . . 2 up. Then, since i.e., 

VI + .  . . + u p  

= n < q ( m + p -  1) + m p - r p ( m  - 1) 

= p ( k ( m  + p - 1) + m + r P )  

one must have up < k(m + p - 1) + m + rp,  and the 
result follows from the previous Lemma. Now assume that 
~ ~ ~ ( m - 1 )  = min(r,(p-l),Tp(m-l)). According to Lemma 
A.l, there exists a (m+p)  x m polynomial matrix P ( s )  having 
the property that det(P(s), Q ( s ) )  = det P ( s ) Q ( s ) .  Using 
the previous argument once more, one readily establishes the 
existence of a m x (m + p )  compensator Q ( s )  having the 
property that det Q ( s ) P ( s )  = 0. But this establishes the 
existence of a dependent compensator of McMillan degree at 
most q. 0 

Remark 3.18: 
1)  The condition 

q(m + p )  + m p  - min(r,(p - I ) ,  ~ ~ ( m  - 1)) > + q 

improves the condition 

q max(m, p )  + mp > n 

given in [8]. 
When q is an integer multiple of either m or p ,  the 
condition reduces to 

q ( m + p ) + v > n + q  

which is also necessary for the existence of a dependent 
cornpensator for a generic system. 
In general, q(m + p )  + m p  > n + q does not guarantee 
the existence of a real dependent compensator of degree 
at most q (compare it with Proposition 3.15). 

The following example proves the third claim of the pre- 

Example 3.19: Consider the system with m = p = 2, 
vious remark. 

T L  = 6 

We will show that all the compensators of degree <1 are not 
dependent. For this assume det P ( s ) Q ( s )  = 0. Then 

qS4 + i)c12(s) + s3c13(~)  + (2s5 + s)c14(s) 

- (2 + 2s)c23(s) - s3c24(s) + (s6 + s2 )c34( s )  = 0 
(37) 

a12a34 - a13a24  + a14a23  = 0 

(39) 
b12b34 - b13b24 + b14b23 0 

a12334 - a13b24 + a14623 f b12a34 
- b13a24 + b14a23 = 0 

Substituting (38) into the first two equations of (39) results 
in uz4 + ai3 = 0, b& + bi3 = 0. Since the equations have 
only the trivial solution 0, Q ( s )  does not have full rank and 
therefore is not a compensator. 

Remark 3.20: Here is the use the language of [16]: (39) 
defines the projective variety in It'll, where the homo- 
geneous coordinates are given by {az3,  b,, I 1 < i < j 5 4). 
If {a,,, b,,} are considered as affine icoordinates, then (39) 
defines the affine cone of in Et1'. The center of the pole 
placement map is defined by (38). 

Example 3.21: Consider the system 

0 0 0 0  0 0 0 0 - 1  
L o o 0  0 0 0 0  0 1  

X -  

0 0  
0 0  
0 1  
0 0  
0 1  
0 0  

- 1  0 

By eliminating the state variable 2, the dynamics of the system 
is equivalently described through P(d/d t )[  F]  = 0, where 

By Theorem 3.17, any two-input, two-output system of degree 
nine has a dependent compensator Q(s)  of degree 52 which 
can be solved from the equation cu(s)Q(s) = 0, where a ( s )  
is the row of degree 5 4  of P ( s ) .  Far this system ~ ( s )  = 
[s3, s, 1, s4] and the solution of a ( s ) Q ( ~ )  = 0 (which is unique 
up to equivalence) are given by 

Let p l ( s )  be the first row of P(s ) .  Then p l ( s ) Q ( s )  = 
[-1,s6 - s4 - 11, i.e., p1 = --s6 + <s4 + 1 and /?2 = -1. 
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Since { ~ ~ a J s ) / 3 ~ ( s )  1 i = 1. . . .  , 4 ,  2 = 1,2. k = 0. l} span 
the space of all polynomials of degree 511. Q ( s )  is full and 
the closed-loop poles of the system can be arbitrarily placed 
by compensators of McMillan degree 5 2 .  

Example 4.1: We have computed the compensators of de- 
gree 2 to assign all the closed-loop poles at -1, i.e., to assign 
the closed-loop characteristic polynomial to 

4(s) = (s + 1)11 (41) 
Iv. COMPUTATION OF THE COMPENSATORS 

Note that Theorem 3.8 gives not only an existence con- 
dition but also provides a concrete numerical procedure on 
how to construct a particular compensator which assigns a 
given closed-loop characteristic polynomial. Indeed if d$Q 
has full rank, then by the Inverse Function Theorem a small 
neighborhood of Q ( s )  is mapped to a small neighborhood 
of the origin of Rn+q+l. Since the solution exists locally, 

for the system of Example 3.21. Let 

s + 2 1  

25s ::6 - I ] }  ~ 1 2  ~ 1 6  + 5 8  

29s + 210 - 1 211s + 2 1 2  

Newton's Method is very effective. 
To find the compensator, one can choose an n + q + 1- 

dimensional linear subspace S c IR(q+p)("+p) such that Q E 
S, the Jacobian of $)is at Q is onto, and S S IRn+q+l locally 
around &. Since we assume that Q is a full compensator, such 
a subspace S always exists. 

Let z = [ x ~ , .  . . , z,+~]~ be a point in S and J ( J )  be the 
Jacobian matrix of $ 1 ~  at IC. Let 4 be the desired closed-loop 
characteristic polynomial whose coefficients we will represent 
as a column vector. Starting with the initial value ic0 := Q. 
Newton's method computes iteratively 

2k+l - - zk  - J - y d ) ( $ ( 2 k )  - 64). 

As long as S is chosen sufficiently close to zero, the procedure 
converges and in the limit one has 

and @(z) is equal to the determinant of the matrix 

Then from Example 3.21 we know that +(0) = 0, and the 
Jacobian dd, is invertible. 

We have chosen 10 6's ranging from S = 0.0001 to S = 100. 
The whole computation for the 10 compensators took less than 
1 s using the Matlab Program implemented on a Sun Sparc 
Station 5. The error of the coefficients of the closed-loop 
characteristic polynomials are less than The solution 
for 6 = 0.0001 is given by 

If P ( s )  = [-Ne(s) De(s)] is a strictly proper system, then 
det De(s) is the only p x p minor which has degree n. If 4(s) 
has been chosen monic and if 

is a solution of 
2 =  

$ ( Q ( s ) )  = 64(s) (40) 

then the determinant of the high-order coefficient matrix of 
F2(s) must be 6 which means that some of the coefficients 
of the feedback 

0.002 140 043 415 81 
-0.021 045 047 523 24 
-0.008 843 102 883 05 
-0.029 449 284 981 49 
-0.022 786 638 001 98 
-0.039 125 421 731 45 
-0.054 020 706 789 22 
-0.059 229 254 433 54 
-0.000 100 000 000 00 

0.003 550 554 736 49 
-0.074 108 717 718 78 
-0.083 836 874 06781 

may be very large if IS[ is too small. To find the solution of 
(40) for not too small 161, one can choose a sequence 61 , 62, . . . 
and use Newton's method to solve 

At each step, as long as the Jacobian has full rank and 
16, - S z - l l  is not too large, Newton's method will always 
converge to the solution. The following example will illustrate 
this procedure. 

A realization of the corresponding compensator having the 
form Z = Fz + Gy, U = H z  + Ky is given through 

1 -10 004.528 505 739 3 -8.822 627816 5 
5.402 070 678 9 0.059 229 254 4 

F =  [ 
1 -741.087 177 1878 -100 

100 0 G =  [ 
1 -10 004.526 365 695 8 

88.440 394 637 3 
-741.087 177 187 8 

-8.822 838 2670 
0.067 614 654 9 
- 10 000 

H =  [ 
K =  [ 1 6.530 723 515 2 88.431 028 830 5 ' 
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One can see that some of the coefficients are pretty large. 
A better compensator occurs at S = 0.007 

2 =  

0.070 239 655 233 22 

0.293 192 630 816 87 
0.282 885 245 493 30 

-1.642 632 887 325 98 

-0.524 743 904 250 59 
-6.198 400 119 921 10 
-0.352 799 083 822 39 
-8.072 575 136 594 06 
-0.007 000 000 000 00 

0.244 765 209 812 81 
-6.407 803 582 329 09 
.-3.589 828 548 477 21 

A realization of the compensator is 

1 -430.843 146 192 391 -55.317304 427365 
50.399 869 117 485 8.072 575 136 594 

F =  [ 
1 -640.780 358 232 909 -100 

100 0 G =  
1. A 

I -615.389 866 481 653 
-180.317 542 035 331 

-268.913 428 198 654 -41.884 661 545 267 1 ’ -915.400 511 761 299 

-79.041 146 939 395 
-23.283 810 082 511 
-142.857 142 857 143 

H =  1; 
K =  [ 
Although it is quite straightforward to compute a particular 

compensator, we would like to note that practically it might be 
infeasible to implement those compensators to such accuracy. 

We also did some computations for the system of Example 
3.14. The following is a compensator of degree one, having the 
form ,i = f z  + Gy, U = H z  + y ,  and assigning the closed- 
loop characteristic polynomial to (s + with the error less 
than 

f = [20.629 539 551 519 00,]  
G = [-20.739 048 585 621 70 

-0.425 907910 303 79 
-1.262 953 955 151 90 H =  

17.069 005 415 038 211 

V. CONCLUSION 

In this paper we studied the dynamic pole placement prob- 
lem using dynamic compensators of bounded McMillan de- 
gree. We provided a strong new sufficiency condition which 
guarantees arbitrary pole placement with real compensators 
and which comes very close to the best known necessary 
condition. We showed the implications of this sufficiency 
condition through several new theorems, and we illustrated 
the theory through several examples. In a last section we 
outlined a way of computing compensators which are capable 
of assigning a desired closed-loop characteristic polynomial. 

APPENDIX 

We start with a technical lemma which will be needed at 
several points in this paper. 

Lemma A.]: Let P ( s )  be an arbitrary polynomial matrix 
of size p x (m  + p ) .  If &(s) is a polynomial matrix of 
size (m + p) x p, then there exists a riot necessarily unique 
polynomial matrix Q(s) having the prcperty that 

(i;::;) det(P(s)Q(s)) = det 

Pro08 If Q ( s )  has not-full column rank, then 
det(P(s)Q(s)) = 0, and the statem1:nt is trivial. So we 
assume that Q ( s )  has full column rank. In this case there 
exists a factorization Q ( s )  = Q l ( s ) R l (  s) having the property 
that Ql(s) has full column rank for all s E a, and R l ( s )  is 
a p x p polynomial matrix. Define a m x (m  + p) matrix 
Ql(s) and a m x m matrix R l ( s )  through the requirements 
KerQl(s) = Im(Ql(s) and detRl(s)  = detRl(s).  Then 

0 
RemarkA.2: From the proof it also follows that the 

“McMillan degrees,” i.e., the degrees of the full-size minors 
of Q ( s )  and Q ( s )  are the same. 

Proof of Proposition 2.5: The pro3f of this proposition 
largely follows from [16, Th. 2.151. Some of the notations 
rely on those papers. Let Kp,, be the variety introduced in [6] 
and studied in [ 161 and let 7r2: Xs + K j  be the canonical 
projection. (r2 assigns to a homogenecus AR-system of size 
p x ( m f p )  all the p x p  full-size minors.) Let p :  Kp,m 4 lPn+q 
be the associated pole placement map, and let YO be the set 
of dependent compensators introduced in Definition 2.4. Those 
maps are related through the commutative diagram 

Q ( s )  := Rl(s)Ql(s) has the desired properties. 

T 7rl I /I (42) 

Y \ Yo 3 IPr l - -q .  

By the assumptions of the Proposition and by [16, Th. 2.151, 
p is surjective of mapping degree d(m.,o, q )  (overa), but then 

0 
The following proofs all will rely on Proposition 3.6 which 

we will prove at the end of this Appendix. 
Proof of Theorem 3. I :  We give a short proof which relies 

on some properties of the commutativt: diagram (42). In the 
proof of Theorem 3.3 we outline a different way which can 
also be used to proof Theorem 3.1. 

Let S c IR(7”+p)(’”+p) be the set of polynomial matrices 
whose associated pole placement map $I introduced in (26) 
is onto. According to Proposition 3.6, S is a generic set in 
the vector space IR(”+p)(m+p) and clearly every P ( s )  E S 
has full rank p .  Consider the map T :  S --f K&, which 
assigns to P ( s )  the full-size rninors of P ( s ) .  Since S is 
generic ?r(S) is also generic in the variety K&rL. Let T I .  TZ 

be the morphisms used in (42). Then by “continuity of the 
Zariski topology” ~ 1 ~ ( ~ ; ~ ( 7 r ( S ) ) )  c Y c IRA- is a generic 
set. This shows that for the generic system Cl (generic this 
time with respect to Definition 2.2) represented through the 
polynomial matrix P ( s ) ,  the map 1/1 is surjective. Applying 
Lemma A.l  and “realizing” the resulting compensator o ( s )  
through a first-order triple ( F ,  G, H )  establishes the result. 0 

the same is true for X. 
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Proof of Corollary 3.2: We have to show that for the 
generic p x (m  + p )  polynomial matrix PI (s) of degree n and 
for every polynomial $ ( s )  E R[s] of degree at most n + q, 
there exists a m x (m + p )  polynomial matrix Pz(s) of degree 
at most q having the property that det( ::[:;) = 4(s). Due to 
Theorem 3.1 there exist matrices F, G; H such that 

det ([i plis)] ["i "I> = qh(s). 

By applying Lemma A.l with P ( s )  := [i plJs)] and Q(s) := 

0 
Proof of Theorem 3.3: We outline here a proof which 

extends techniques developed in [ 131. The same techniques 
can also be used for an alternative proof of Theorem 3.1. 
Consider the set of triples F , G , H  which represent strictly 
proper systems of McMillan degree n, i.e., consider all triples 
of the form 

[ ""G-"], the proof is readily established. 

where A,  C forms an observable pair. (F, G; H is then ob- 
servable as well [26, Lemma 2.21.) Let the rows of the 
p x (n+m+p) matrix L ( s )  be a minimal basis of the left kernel 
of [ sG;F], and let P ( s )  represent the last m + p columns of 
L ( s ) .  Realization theory (compare, e.g., with [21, Th. 4.11 and 
[24, Th. 5.151) tells us that the behaviors B ( P )  and B(F:  G: H )  
are the same. Without loss of generality we can assume that 
the row degrees of P ( s )  are ordered. As in Corollary 3.13 
we will denote the last row of P ( s )  with Q(s). The crucial 
point is now that using the generalized observability matrix 
defined in [26, Lemma 2.21, it is possible to express Q ( S )  and 
therefore the dependent compensator Q( s) polynomially in the 
parameters of A, l3, C. (This was done for the static problem 
in [13, Lemma 4.21). As for the proof of Proposition 3.6, one 
shows that the rank condition for the Jacobian becomes purely 
polynomial in terms of the parameters A. B, C. As in [ 131, 
the proof is complete if we can construct one example. Since 
the examples constructed in the proof of Proposition 3.6 all 
represent strictly proper systems, the same example can be 
used. U 

Proof of Theorem 3.4: The proof of Theorem 3.1 also 
showed that $ is onto for a polynomial matrix P ( s )  repre- 
senting a generic system C1 E A:,,. ( P ( s )  does not have, 
in this case, the generic row indexes.) Rewriting both P ( s )  
and Q ( s )  in terms of first-order representations establishes the 
result. 0 

Proqf qf Theorem 3.5: We will show that f o r m  = p = 2, 
q = 1, and n = 6, there exists a nonempty open set of systems 
such that the set of unassignable polynomials of each system 
is a nonempty open set. Since the set of all 2 x 4 systems of 
degree 56 is a compact set (see [ 191) and the pole placement 
map 1c, is continuous, one needs only to find one system with at 
least one unassignable polynomial. Consider the system (36) in 
Example 3.19. We will show that the polynomial s7-s5+s3-s 
cannot be achieved by any compensator of degree 51. As in 

Example 3.19, one needs to solve 

2(s4 + 1)c12(s) + s3c13(s) + (2s5 + s)c14(s) 
- (s5 + 2s)czu(s) - s3c24( s )  + (s6 + s2 )c34( s )  

(43) = s7 - 35  + s 3  - s 

subject to the constraints (39) for c i j ( s )  = ai3 + bijs.  The 
solutions of (43) are given by 

a34  = 3b23, 

a14  = - ~ 2 3 ,  

b34 = 1, 
b14 = -b23, 

a 1 3  = a 2 4  

a12  = 0 
b13 = b24 
b12 = -(1 - 3 a 2 3 ) / 2 .  

(44) 

Substitute (44) into the first two equations of (39) 

The equations have no real solution. 0 
Proof of Proposition 3.6: Without loss of generality we 

may assume (compare with the proof of Theorem 3.17) that 

and q is the smallest integer such that 

To simplify the notation we use T for rp.  Let k , r ,  d ,  I ,  v, p 
satisfy the definitions as given before Proposition 3.6. Then 
by (45), we have that 

d 5 k(m + p  - 1) + m + T - 1. (46) 

Since we assume that q is the smallest integer satisfying (45), 
it follows that 

k(m + p  - 1) + m + T - 2 < d 

and (47) 
( k  - l ) ( m + p -  1) + m + p -  2 < d 

I k ( m + p - l ) + m + r - 1 ,  i f r > O  

5 k ( m + p  - 1) + m - 1, i f r = O  

i.e.. 

Let S c R(p+")("+p) be the set of p x (m + p )  full rank 
polynomial matrices P ( s )  of row degrees vi such that 

the first k(m + p )  + m + T entries of 

M S ) ,  . . . > S l C ~ ( S ) I  

generate all polynomials of degree I d  + k [note that 
d + k + 1 L k ( m  + p )  + m + T by (4611; 
at least one of the first m entries of a ( s )  is a polynomial 
of degree d ;  
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where a(s )  is the last row of a matrix. S is a Zariski open set 

a matrix in S .  For any P ( s )  E S let Q ( s )  be the (m + p )  x p 
full rank matrix of column degrees U such that 

(note that bp(s)  = sk(m+p-l)+mfr-l-e = sd ) ,  and choose 
of IR(p+'L)(("L+p), and the generic system can be represented by nonzero a l . .  . .  , ap-l such that the rows of 

Pi ( s )  Q = - .  
a ( s ) Q ( s )  = 0. 

Then the coefficients of Q(s)  are polynomials of the coef- 
ficients of Q(s). Therefore the rank condition (33) defines a 
Zariski open set of S .  To finish the proof we just need to find 
one system in S which satisfies (33). 

Since m = 1 is covered by Proposition 2.5 and since 
n < m p  was done in [7], we may assume that 

n 2 mp and m 2 2. (49) 

Then 

form a minimal basis in the sense of Fomey [28] (one can 
prove by induction on p that such ai 's exist). Let P ( s )  be 
the last column of adj Pl(s)Q(s) .  Then according to (33), we 
have to show that 

We first consider the case 

k > 0. (51) 

See (52), shown at the bottom of the page, and 

. . .  r 0 0 0 1  

1 0  o . . .  0 ! I  

where b,(s) is defined by 

bl(s) == 1 
b i ( s )  =: skh,-l(s) 

bi(s) =: s"'b;-l(s) 

for 2 5 i 5 p - T + 1 and 

for p - T + 2 5 i 5 p + 1 and 
p + 2 5 i l p + e + l  (54) 

p f e + % < i  

dimspR{si&(s) I i = 0 , .  . .  , ~ j ,  
j = l,.,.,p} = n + q + l  

where r1 = . . .  = r, = d + k + 1, and where r,+1 = . . .  = 
rp = d + k .  For 

consider the polynomials { s i p j ( s ) } .  It is enough to show that 
this set of polynomials forms a linearly independent set over 
R. (Note that there are exactly n + q + 1 polynomials). If not, 
then see (56) shown at the bottom of the previous page, for 
some nonzero polynomials { fi ( s ) }  with 

Since the p -  1 rows of P l ( s )Q(s )  form a minimal basis, by the 
main result of [28] there are polynomials h l ( s ) ,  . . . .  h,-l(s) 
such that 

det 

. . .  . . .  0 0 a1 0 sV1 0 . ' .  0 
0 0 0 a2 0 s"2 * . .  0 . . .  . . .  

. .  

. . .  
0 . . .  0 0 0 . . . . . .  ap-l 0 s " p - I  

b,+,(s) b 3 ( 3 )  bz(s )  bl(L1) . . . . . . . . . . . . . . . . . .  

= 0  
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(59) 

P ( s )  = 
. . .  . . . . . .  0 a1 0 sv1 0 0 0 0 

0 0 a2 0 s V 2  0 0 0 . . .  . . . . . .  

. . .  . . . . . .  0 0 0 a,-l 0 svF- l  0 0 
0 0 a, 0 s’, 0 
0 0 0 0 U,+l s++1 

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  0 . . .  0 0 0 0  
s d  . . . . . . . . . . . . . . .  s2 s 1 0 . . .  

. . .  

. . .  

. . .  

. . .  

. . .  

up-I 
0 

0 
0 

0 
0 
0 

sup-1  

0 

0 . . .  

0 . . .  0 U,-lS 
0 0 

0 0 

. . .  . . .  

. . .  . . .  

. . .  . . .  0 0 
0 0 . . .  . . .  

Let a be the smallest such that Then see (60) shown at the top of the page. The same argument 
as in the case k > 0 can be applied as well. Hence a 
full dependent compensator exists for the generic polynomial 
matrix P ( s )  E R(p+“)(”+p) and the proof is complete. 0 

> deg h, ( s )  for all J < z 
d e d 4 s i {  2 degh,(s) for all 1 > z.  

f %+I (3) = -f-’ h,-l(s) + s v ~ + ~ ~ + l  h,(s)  

Then 
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(Let the corresponding term be zero if there is no such 
subscript.) By (48) and (49), v,-l 5 U ,  + p,+1 and p,+1 < 

+pz+I, so deg ft+l(s) = {,, +pz+l +deg qs) 2 +pz+l 
which is a contradiction. 

N~~ we consider the case k = 0, F~~ this see (58 )  shown 
at the top of the page [note that d + 1 = m + T by (45) and 


