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An Observability Criterion for Dynamical Systems 
Governed by Riccati Differential Equations 

Joachim Rosenthal 

Note that the “read-out map” (2) is not as artificial as it might 
appear, since we include in particular the situation 

Y ( t )  = Cl + C2X(t )  

where CI and CZ are arbitrary but fixed matrices. Moreover, the 
linear observability problem 2 = A z , ~ z ,  y = C ~ X  is included as 
well, and it is one goal of this note to provide an algebraic criterion of 

similar to the well-known observability criterion 
of Popov, Belevitch, and Hautus [3]. 

In the sequel we derive a sufficient and a necessary condition for 
observability. For this let 

Abstract- In this Paper we Present an observability Critafon for 
systems whose state is governed by a matrix Riccati differential equation 
and whose output is given by an affine transformation. for 

I. INTRODUCTION 

Count J. Riccati, born in Venice in 1676, is known to be the 
first researcher who studied differential equations which included 
quadratic nonlinearities. 

A i , i  Ai,z c3 e4 
A:= [Az,, Az,z]’ ‘:= [CI C Z ] ‘  

By the matrix Riccati differential equation (WE), we understand Theorem 2.1: If for all (real and complex) eigenvalues 
the quadratic differential equation 

where X is an m x n matrix and where A ~ , ~ , - ~ ~ , z , A z J , A z , ~  
are matrices of appropriate size. There exists an impressive set of 
applications ranging from optimal control theory to H ,  optimization 
and stochastic realization whose solution is governed by the solution 
of an RDE. We refer readers interested in this material to the 
recent special volume [1] on Riccati equations, where many different 
research directions are surveyed by experts in the field. 

In this paper we will investigate the question of observability of 
the state X ( t )  if the output Y ( t )  is related to X ( t )  through an 
affine transformation and more generally through a linear fractional 
transformation. In Theorem 2.1 we will provide a new sufficiency 
criterion, and in Theorem 2.2 we will provide a new necessary 
criterion. The proof of those results and several illustrative examples 
are given in the last section. In the last section we also establish the 
connection to the recent paper by Ghosh and the author [2] where 
the main technical result needed in this paper has been derived. 

11. MAIN RESULTS 

We will treat, in our presentation, the real and the complex situation 
simultaneously. For this, let 06 be either the field of real (K = W) or 
the field of complex (W = C) numbers. 

LetA1,1,A1~2,A2,1rAz,2 be matrices o f s i z e n x n , n x m , m x n  
and m x m, respectively, and assume that the state variables X ( t )  
are given through a matrix RDE 

X = A z , ~  + A2,zX - XA1,1 - XA1,zX. (1) 

Let C1, CZ,  C3, C4 be matrices of size p x n ,  p x m, n x n. and 
n x m, and assume that the output measurements of the systems 
parameters are given through the Mobius transformation 

Y ( t )  = (C1 + CzX(t))(C3 + c,x(t))-’. (2) 

one has 

then X ( t )  can be observed from Y( t ) .  
The proof will be given in the next section. 
Then give a necessary condition: For this, let e, be the ith standard 

basis vector of Km+n. We call a set 

a cyclic set of generalized eigenvectors if the vectors in S are linearly 
independent, and if S has the property that if p E S is a generalized 
eigenvector of -4 with corresponding eigenvalue X then /3 is an 
eigenvector or ( A  - X1)p E S. 

Theorem 2.2: If the matrix A has a cyclic set of generalized 
eigenvectors 

{ P i ,  . . . I Pn+l} 

span {PI , .  . . , ,&+I, en+i, . . . , em+n} = K ~ + ~  

{ c p 1 , ~ ~ ~ , c p ” 2 + 1 }  

such that 

and 

are linearly dependent, then the state X ( t )  cannot be observed from 
the output measurements Y ( t )  as defined in (2). 

We will give the proof again in the next section. 
So far we just presented a sufficient and a necessary condition, and 

it is not quite clear how those conditions are related. The following 
lemma establishes this connection. The lemma essentially states that 
if the sufficient condition of Theorem 2.1 is not satisfied, then under 
certain “generic” conditions the necessary condition of Theorem 2.2 
is satisfied, i.e., (1) is not observable. 

Lemma 2.3: If there are eigenvalues XI,, . . . , Xn+l of A such that 

We say that the state parameters X ( t )  are observable from the output 
measurements Y ( t ) ,  if for any 0 5 tl < t 2  it is possible to compute 
X ( t )  from the observation 

(4) rank [(A - X i 1 1  ... (A - X n + l C  < + 1 Y( t ) ,  tl < t < t z .  
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then there exists a cyclic set of generalized eigenvectors 

{Pl, . . . > P n + l }  
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such that the vectors if for any 0 5 tl < t 2 ,  it is possible to calculate P(0) from the 
observation of the "moving plane" 

Q(t)  = CPdt) = CeAtP(0) 
are linearly dependent. 

111. 
The proof of this Lemma is a direct consequence of [2, Proposition in Kn+p, t l  5 

purposes was derived in [2]  and reads as follows. 
5 b. The main which we need for Our 

111. PROOFS AND EXAMPLES 
It has been observed by many authors (see, e.g., [4]-[6]) that it is 

possible to extend the domain of the RDE from the vector space K"" 
to the Grassmann manifold Grass(n, Km+n) which parameterizes 
the set of n-dimensional subspaces in KmflZ. For this, consider the 
embedding 

4: K"" -+ Grass(n, Km+n) 

x H colspan [;I. (5)  

Let X l , X 2  be matrices of size n x n, respectively, m x n, and 
consider the linear differential equation 

Equation (6) describes the dynamics of an m-dimensional plane 

P(t )  = colspan E$] 
in K m f n ,  i.e., it describes a flow on a Grassmann manifold. Moreover 
one immediately verifies that 

X ( t )  := x,( t )X,( t ) - '  

satisfies (1) as long as X I  ( t )  is invertible and every solution of (1) 
arises in this way. 

Because (6) extends the phase space of the RDE to the whole 
Grassmann manifold, we will call (6) the extended Riccati differential 
equation (ERDE). 

As it is possible to extend the RDE to the Grassmann manifold, it 
is also possible to extend the observation map (2) to the Grassmann 
manifold. For this, consider the linear transformation 

Restricting (7) to matrices X1, X2 having the property that 
rank[$:] = n, we can view (7) as a map 

9: Grass(n, K"+") - B -+ Grass(n, K"+') 

where the base locus B describes all n-planes in Kmf" which are 
projected under C to a lower dimensional plane in Knfp .  From the 
identity 

Y2YL1 = (CIX1 + C'dZ)(C3xl + 64x2)-' 

= (C, + c2X2x;1)(C3X, + c4x2x;y 
it immediately follows that 

X ( t )  := x , ( t ) X l ( t ) - l ,  Y ( t )  := Yz(t)Y,(t)-l 
satisfy (2) whenever X I  (t),Yl ( t )  are both invertible and X I  ( t ) ,  
X z ( t ) ,  Y1(t),Y2(t) satisfy (7). 

After those preliminaries, we can now connect to the main re- 
sult in [2]. For this, consider an n-dimensional plane P ( t )  E 
Grass(n,K"+") and matrices A , C  as introduced earlier. We say 
P( t )  can be observed from the linear system 

d 
-P(t)  = AP(I),  Q(t)  = C P ( t )  (8) d t  

Theorem 3.1: System (8) observes any n-dimensional affine sub- 
space P(0)  through the measurements Q(t)  in K"+p if for any set 
of eigenvalues XI,. . . , X,+I of A one has 

Moreover, this condition is also necessary if n = 0 or if all 
eigenvalues of the matrix A are in K. 

Pro08 Proof of Theorem 2.1: If (3)  is satisfied, then the ex- 
tended system defined through (6) and the observation map of (7) is 
observable by Theorem 3.1. In particular, the original system defined 

H 

span ( P 1 , . . . , P n + l } ,  and let P( t )  := e A t P ~  be the 
unique n + 1-dimensional plane satisfying 

Combining the stated results we have: 

through (1) and (2) is observable as well. 
._ Proof: Proof of Theorem 2.2: Let Po .- 

d 
d t  
-P( t )  AP( t ) ,  P(0) Po Vt .  

Since { cpl,. . . , Cpn+l} are linearly dependent, it follows that 
CPO C K"+p has a dimension at most n. Without loss of generality 
we can assume that the dimension is n, and we leave the small 
additional argument needed for the case when the dimension is strictly 
less than n to the reader. 

It therefore follows that almost any two n-dimensional subspaces 
R I ,  Rz C PO C Kmi-"' have the property that 

CeAtRl = CeAtR2 = CeAtPo A CPo 

almost everywhere. System (6) with the extended read-out map of 
(7) is therefore not observable. Since 

span { P O ,  e,+l, . . . , e,+, } = K ~ + ~  

it follows that (1) cannot be observed from the output measurements 

We illustrate the results through an example whose numbers have 

Example 3.2: Let X be the 2 x 2 matrix X = [:: z : ] ,  and 

of (2) either. 

also been used in [Z]. 

consider the RDE 

~ = [ 6 2  4 3 ] + [ - 4 6  
203 138 -149 31 
-X[-81 -561 -.[ 57 -111, 

146 102 -106 20 

In the following, we will consider two seemingly similar output 
observation maps. As it turns out, only one of the maps has the 
observability property. 

1) First assume that the output is given through 

In this case 

Ai,i   AI,^ 
A := [&,I A2.21 

-81 -56 57 

62 43 -46 
203 138 -149 31 
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and 

One immediately verifies that the eigenvalues of A are 0, 1, 2, 
3, and that for all set of eigenvalues X I ,  XZ, A 3  one has 

rank [(A - XII)(A - r( XzI)(A - A 3 4  1 = 4 .  
J L, 1 

It therefore follows from Theorem 3.1 that the extended RDE is 
observable, and by Theorem 2. I it is also possible to compute 
X ( t )  from the measurements z3 ( t ) ,  z4 ( t ) .  

2) Now assume that the output is given through 

Y ( t )  = (1,O)X(t)  = ( a ( t ) , z z ( t ) ) .  

In this case, A is still the same matrix and 

1 0 0 0  

0 0 1 0  
E=[: 24= I“ 1 0 .I. 

Since 

r - 3  -3 3 01 

A(A - I ) ( A  - 21)  I :1 -4 -is :I 
1-23 -23 23 01 

it is clear that (3) introduced in Theorem 2.1 is not satisfied 
for XI = 0,Xz = 1,Xs = 2.  By Lemma 2.3, there exists 
a cyclic set of (generalized) eigenvectors {PI. Pz ,  03) having 
the property that { CP1, COS, CPs } are linearly dependent. In 
our situation we can choose P I ,  02, ,!33 as eigenvectors of A 
with corresponding eigenvalues 0, 1, 2. Indeed, define 

I PO :=span { b , P z , P 3 }  

and let 

One immediately verifies that R I ,  RZ C PO C K4 and that 

CeAtRl = CeAtRz = CeAtPo = CPo 
-12 35 

=colspan [ I::]. 
We conclude that the two different initial conditions 

result in the same output measurements z1 ( t ) ,  z ~ ( t )  for all time 
t where the trajectory X ( t )  is defined. 

IV. CONCLUSION 

This paper has studied the observability question of systems 
governed by RDE’s. By extending the phase space of the differential 
equation to the Grassmann manifold, the author arrived at a necessary 
and at a sufficient observability criterion. 
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Affine Parameter-Dependent Lyapunov 
Functions and Real Parametric Uncertainty 

Pascal Gahinet, Pierre Apkarian, and Mahmoud Chilali 

Abstract-This paper presents new tests to analyze the robust stability 
and/or performance of linear systems with uncertain real parameters. 
These tests are extensions of the notions of quadratic stability and 
performance where the fixed quadratic Lyapunov function is replaced 
by a Lyapunov function with affine dependence on the uncertain pa- 
rameters. Admittedly with some conservatism, the construction of such 
parameter-dependent Lyapunov functions can be reduced to a linear 
matrix inequality (LMI) problem and hence is numerically tractable. 

These LMI-based tests are applicable to constant or time-varying 
uncertain parameters and are less conservative than quadratic stability 
in the case of slow parametric variations. They also avoid the frequency 
sweep needed in real-p analysis, and numerical experiments indicate 
that they often compare favorably with p analysis for time-invariant 
parameter uncertainty. 

I. INTRODUCTION 

When designing control systems, it is often desirable to obtain 
guarantees of stability and performance against uncertainty on the 
physical parameters of the system. Examples of physical parameters 
include stiffness, inertia, or viscosity coefficients in mechanical 
systems, aerodynamical coefficients in flight control, the values of 
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