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where ¢ is a constant. The hypotheses imply that the right
side is finite, finishing the proof of 2).

We say that (8) is open-loop stabilizable ByU**!) control if
for everyzo € X there exists{u, }n2, € *(UP*") such that the
solution {#,,}32, C X of (8) is inI*(X). The next result follows
immediately from Lemmas 2.2 and 2.3.

Corollary 2.4: Equation (1) is open-loop stabilizable &y piece-
wise polynomial control if and only if (8) is open-loop stabilizable
by 1*(U"*") control. Abstract—\We investigate which first-order representations can be ob-

Corollary 2.5: Equation (1) is open-loop stabilizable iy piece- tained from high-order representations of linear systems “by inspection,”
wise polynomial control if and only if there existy, € B(X,U?*!) thatis, just by rearrangement of the data. Under quite weak conditions
such thatA] + B Fy is power stable. it is possible to obtain minimal realizations in the so-called pencil

. . .~ _  form; under stronger conditions one can obtain minimal realizations in
Proof: Combining Theorems 6.1 and 6.2 of [8] (with= @ = standard state-space form by inspection. The development is based on

I) shows that if (8) is open-loop stabilizable B(U”*") control, a reformulation of the realization problem as a problem of finding a
then there is a bounded feedbaEk such that the spectral radiuscomplete set of basis vectors for the nullspace of a given constant matrix.
of A7 + BjF, is less than one. It follows that, + B} F, is Since no numerical computation is needed, the realization method in

power stable. Combining this with Corollary 2.4 proves that if (12%:'53:% r'ztﬁg'rtiﬁfnf%igﬁégns in which some of the coefficients are
is open-loop stabilizable by piecewise polynomial control, then there '
exists F; € B(X, UP“) such that47 + B F, is power stable. Index Terms—Computational algebra, first-order representations, lin-
Conversely, if there exist&; € B(X, UP+1) such thatd] + BT F, ear systems, polynomial representation, realization.
is power stable, then it is clear that (8) is open-loop stabilizable by
{un}nZo = {Fawn}72o € P(UPT), s0 (1) is open-loop stabilizable I. INTRODUCTION
2 ; :
by L” piecewise polynomial corl1t.rol. . - As is well known, the set of solutions of a higher order linear
Proof of Theorem 1.3:Conditions 1)-4) in Theorem 1.3 are ,. . S .
) - " differential equation in one variable
shown in [2, Th. 4] to be necessary and sufficient conditions for

Realization by Inspection

Joachim Rosenthal and J. M. Schumacher

there to existF; € B(X,UP"") such thatd] + B]F, is power WOt 4+ po_w V@) + -+ pow(t) = 0 (1)
stable whenB is compact. Therefore the proof of Theorem 1.3
follows from Lemma 2.1, Coro”ary 25. may also be described in first-order form by
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where one can take for instance complete set of basis vectors for the nullset of a given constant matrix.
0 1 0 .- 0 Actually, this reduction can be done in several ways, depending on
. the choice of what we call a “polynomial basis matrix.”

0 1 In Section Ill we recall some characterizations of minimality prop-
F= : - 0 erties. Minimality for realizations of the form (3) refers to minimality
0 0 1 of the size of the matrice§ and F' among all representations of the
—Po  —P1 e ot —Pr—i same behavior.
H =11,0,---.,0]. ) In Section IV we note that finding a basis for the nullset of a given

matrix is under some conditions a problem that can be solved without
The above equations give a “realization” (in the behavioral sense, s€fculations, and we can in fact ensure that these conditions hold by
[1]) of (1). There is a straightforward generalization of this for vectomaking use of the freedom we have in selecting a polynomial basis
equations of the formP(d/dt)u(t) = 0 when P(s) € R?*P[s] is  matrix. This leads immediately to a number of realization algorithms
monic i.e., P(s) = S{—o Pis' with P, = I. In [2] and [3] the that are free of numerical computations.
term “linearization” is used rather than “realization.” The situation In Section V we illustrate the realization a|gorithm presented in
becomes more complicated #; is singular or not even square.Section IV by two examples. We conclude the paper with a table in
Indeed, assume thd(s) = S{_, Pis' is ap x (m +p) polynomial ~Section VI which summarizes the relations between the properties

matrix. One readily verifies that the systef(d/dt)w = 0 is of high-order representations and of the corresponding first-order
represented by the first-order equations realizations that can be obtained with no computations, i.e., by
Gi(t)= Fx(t),  w(t)= Hz(t 3) Inspecton. N
®) ®) wit) ) ® In connection with quantities that depend on a complex parameter
if one chooses matrices s, we shall sometimes use the symbm®lto denote equality for all
I 0 ... 0 s € C. A polynomial matrixR(s) will be said to haveconstant rank
b if there exists an integer such that rankR(s) = r.
G=19
: I, 0 Il. REALIZATION VIA A POLYNOMIAL BASIS MATRIX
:0 0 P First let us briefly recall what is understood by realization in the
0 - e e =D behavioral sense; see for instance [1] and [7]-[9] for a more extensive
I, 0 -b account. Given a polynomial matri(s) € RP*(™+?)[s], the (C*°)
_ " : behavior associated witk(s) is defined by
F=10 1I, . :
: d
: .0 : B(P) = {u € C™(R; IR”"“))|P<I—>1U = 0}. (6)
10 -~ 0 I, —Pu, dt
H =1[0]—Im+p] (4)  Note that elementary row operations @s) will not change the

behavior. Such row operations correspond to premultiplication of
respectively. However, this may be rather crude since the obtain;gr(gg zulljlyrgvxl/]?allr:lﬁ gzll?:];nn?itgﬂfzﬁgzr?g;;f io?(l;(;s ?fzr;?jl;(rjl;/
representation turns out to be minimal onlyAf has full row rank (see if there is a unimodular matrig’(s) ’such thatP(s) = U(s)P(s)
Example 5.1 below). On the other hand, (4) is easy to obtain sincilib Corollary 2.5] RO

ion’ e

only requires a reordering of the data and no numerical computat M mi : . . .
o o o : urning now to first-order representations, the behavior associated
at all is involved; in other words, the realization is obtained from the

) ; with a triple of matrices F, G, H) (F and G in R"*""+"™) H in
data by inspection (m+p)x(n+m)y s given by

It is the purpose of the present paper to investigate more precisely
which first-order representations can be obtained from a given polg¢ F, ¢, H)
ngmlal r.epresentaltlon by mspectllo‘n, paying attention in particular to fweC™ (R R™7) |32 € C=(RR™™): G2 = Fz, w = Hz).
minimality properties. In general it is too much to ask that a standard

having sizepl x (p{ +m),pl x (p +m) and (m + p) X (pl +m),

state-space representation The triple (F, G, H) is said to be aealization of the polynomial
) y matrix P(s) if B(F,G,H) = B(P). Note that if (F,G,H) is a
& =Azr+ Bu, y=Cuax+ Du, { } =w (5)  realization of P(s), then so i SFT~',SGT~', HT~'), where S

andT are nonsingular matrices. Triples that are related in this way
can be obtained only by rearrangement of the data, but as we Willl be said to beisomorphic
demonstrate in this paper a representation in “pencil” form (3), whichThe following basic lemma gives algebraic conditions for
is so-called completely observable (see Definition 2.4), can always, ¢, H) to be a realization ofP(s). The lemma is a special
be obtained by inspection. Pencil representations have recently begge of [8, Lemma 4.1], although we do add a small extension.

studied in [4]-[6], and we describe in Remark 3.6 below how standagihce a large part of this paper is based on the lemma we outline
state-space representations can be obtained from them (in gengi@!short proof.

at the cost of some numerical computation). Of course, realization_emma 2.1: Let a polynomial matrixP(s) € RP*("*P)[s] and a
theory has been studied extensively for several decades (seetfiple of constant matrice$F. G, H) (F and G in Rex (et g
instance [11]), and not surprisingly our algorithms show similaritigg R(»+2)x(n+m)y pe given. If there exists a polynomial matrix
to those that are already available in the literature. However, oWr(s) ¢ RP*"[s] such that[X (s)|P(s)] has constant rank and the
purpose here is to determine to what extent realization algorithraguality
survive when the constraint of no numerical computations is imposed.

The paper is organized as follows. In the next section we show kerpcs) [X (5)|P(s)] = imgs) {5G - F} @)
that the realization problem can be reduced to a problem of finding a H
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holds, thenB3(P) = B(F,G,H), so (F,G, H) is a realization of  Definition 2.2: Let P(s) and X (s) be polynomial matrices such

P(s). that [X (s)|P(s)] has constant rank. A triple of constant matrices
Proof: There exists (see for instance [11, Th. 6.3-2]) a unimod+, GG, H) is said to be aealization of P(s) associated taX (s) if
ular matrix U(s) such that it satisfies both (7) and (8).
The following lemma shows that for realizations associated to
U(s)[X(s)|P(s)] = {XDO(S) Poés)} X (s), the matrix[sGT — FT|HT]T is guaranteed to have full column
rank (even for all individuak € C as well as at infinity) ifX(s) is

chosen to have linearly independent columns.

where [Xo(s)|Po(s)] has full row rank as a rational matrix. . .
Lemma 2.3: Let P(s) and X(s) be polynomial matrices, and

By the assumption thafX(s)|P(s)] has constant rank, we : X
get that [Xo(s)|Py(s)] even has full row rank for all separateSUp_pose_ th:at the columns df(s) are linearly independent over
s € C. Moreover, it is obvious that3(Py) = B(P) and that R (e, if X (_s): = ()_ for some constant_vecto:r, :[hen; = 0).
kerg ) [Xo(s)|Po(s5)] = kerg(s) [X(5)|P(s)]. So, replacingP(s) If (F,G,H) is a realization ofP(s) associated toX(s), then the

by Py(s) and X (s) by Xo(s) if necessary, it is no restriction of following holds true.

generality to assume thpX (s)| P(s)] has full row rank for alls € C. 1) [IC{] has full column rank.
Then one can find (see for instance [11, Lemma 6.3-9]) polynomial2) |[*“; "] has full column rank for alk € C.
matricesU;(s),U2(s) such that Proof: To prove Part 1), suppose the{iﬁ]z = () for some
Ui(s) Us(s) _constant vector. From the equatiorX (s)(sG — F)+ P(s)H =0
U(s):= {)&f(;) ;(;) } it then follows thatX (s)Fz = 0. Because the columns o (s)
are linearly independent ovez, this implies thatf'z = 0. It now
is a unimodular matrix. Lefl'(s):= U1 (s)(sG — F) + Us(s)H. follows from (8) that: = 0. So we have proved thdt’ ] has full
Because of (7) and the identity column rank. L
For Part 2), suppose that“,* ]z = 0 for some\ € C and some
Ui(s) Us(s)|[sG—-F| _|T(s) constantz. SincesG — F = (s — A\)G + (AG — F), the equation
|:X(s) P(s) :| |: H :| - |: 0 :| X(s)(sG— F)+ P(s)H = 0 implies thatX (s)(s — \)Gz = 0.

From this it follows thatX (s)Gz = 0 and henceéZz = 0. But then,

it follows that the(n + m) x (n + m) polynomial matrixT'(s) is since(AG — F)= = 0, we also haveF'» = 0, and (8) implies that

nonsingular. This implies (cf. [1, Proposition 3.3]) that the linear map _ (|t follows that [sGEF] has full column rank for alk. -
o ntm 100 ntm Following the terminology of [5], we have the following definition.
T: C®(R;R"™™) — C*(R;R"* owing inology ol n
(R: )= (R ) Definition 2.4: A triple (F, G, H) that satisfies Conditions 1) and
2(t) T(i);@) 2) of the above lemma is callezbmpletely observable
dt Condition 1) corresponds to “observability at infinity,” and Con-

dition 2) characterizes the “observability of the finite modes.” In

is surjective. Note also that the differential equations 4 . ; . . : .
connection with a particular interpretation of the dynamics associated

iC _F 0 to the triple(F, G, H), the term “ex-in nulling” has also been used
dt z(t) = { , } instead of “completely observable” [12].
H w(t) . . . .
We now introduce a class of polynomial matrices from which we
and shall choose the matriX'(s) on which our realization procedure is
d based.
T(i) U, o _ Definition 2.5: Letf/ =(n - -‘u,,)_ be ap-tuple of non_negatl\_/e
{ (;’t :|z(t) = P w(t) |ntegers. A polynqmlal matrl?(X(s) is called apolynqmlal basis
P <—> matrix of typev or simply abasis matrixif every polynomialp-vector
dat &(s) € RP[s] whoseith component has degree at mest— 1 can

describe the same smooth behavior. (Just transform the first equatioiquely be written ag(s) = X (s)«, wherea is a constant vector.

by the unimodular matriXi.) By the surjectivity of T'(d/dt), the Remark 2.6: If »; = 0 for somei, then it is understood in the

latter equation describes exacth( P). m definition that theith component of(s) is zero. Note that one can
In the lemma, the matriX (s) acts as a certification that the givenidentify the space of polynomials of degree at mest- 1 with the

triple (F, G, H) is indeed a realization of’(s), but one may of vector spac&”:. So a basis matrix of type = (v1,---,#,) can be

course also reverse this: start with some cho$¢n). then try to find viewed as providing a basis for the vector space

a realization ofP(s) by looking for a triple(F, G, H) that satisfies R x - X RY? ~ R"

(7). The question then is how to choaXd s) so that this can indeed

be done (easily), and that will be our main concern in this paper. wheren = X7_, v;. In particular, it follows that a basis matrix must
When looking for solutions of (7), one may restrict attention thave sizep x ». It also follows that a basis matrix of a given type

triples (F, G, H) such that is determined uniquely up to right multiplication by a nonsingular
constant matrix; more specifically, every basis mafkixs) can be
ker F' N ker G Nker H = {0}. (8) written in the form X (s) = X,(s)S where S is a nonsingular
constant matrix and\, (s) is the “canonical” basis matrix of type

Indeed, if(F, G, H) is a solution that does not satisfy (8), then therg =(

’ i X vi,---,v,) given by (9), as shown at the bottom of the next
exists a nonsingular matriX’ such that

page.
F F, 0 If some indexw; is zero, it is understood that the corresponding
Gglr=1¢, o ith row of X, (s) is zero.
H H 0 We now arrive at the main result of this section. The realization

method used in the proof will be the basis of the algorithms to be
and (Fi,G1, H,) satisfies both (8) and (7). presented in Section IV.
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Theorem 2.7:Let P(s) be ap x (m+p) polynomial matrix whose The fact that actual equality holds in (12) follows from a dimension
ith row degree is at most. and letX (s) be a basis matrix of type count: by Lemma 2.3, we havéim img,) [sG' — F'|H"] =

v = (v1,---,1p). Under these conditions, the following holds. n 4+ m 4 r = dim kerg,y [X(s)]P(5)].

1) The matrix[X (s)|P(s)] has constant rank. Claim 3) is immediate from Lemma 2.3. Finally, if a triple

2) There exist realizations dP(s) associated to¥ (s). (F.G, H) satisfies (7) and (8), then the matricé3¢, and H

3) All realizations of P(s) associated taX (s) are completely Must haven + m + r columns, and—F"|G"|H"]" must be a
observable. basis matrix forkerg ¢. All such matrices are related by nonsingular

4) If (F,G,H) and (F',G', H') are both realizations oP(s) transformations as described in Claim 4). [ ]
associated taX (s), then there exists a nonsingular constant
matrix T such thatF’ = FT, G = GT, and H' = HT. I11. MINIMALITY CONDITIONS

Proof: In order to prove the first part of the statement we a pencil representatiofF, G, H) with F and @ in Ry X ()
will assume without loss of generality tha (s) is the canonical s said to beminimal if, whenever(F’,G’,H’) with F/ and &’ in
basis matrix X, (s) and that the row degrees are ordered witfn’x (n’+m") satisfiesB(F', G', H') = B(F, G, H), one has’ > n

vi 2 vz 2 - 2 vy 2 Lande, = 0 for i>j. Under those gng 7 4 4/ > n 4+ m. This means that both the number of

assumptions we have auxiliary variables and the number of equations in those variables
, ) is minimal. For the relation between minimal pencil representations
- AN )(1(.5) Pl(a) g !
[X)IP)] =" P, (10)  and standard input/state/output representations see Remark 3.6 below.
The following algebraic conditions for minimality are well known
where X (s) is the canonical basis matrix of tyge.,---.,v;), and (see for instance [8, Proposition 1.1]).
where by assumptioR. is a constant matrix of size—j) X (p+m). Proposition 3.1: A pencil representation F, G, H) is minimal

Let the rank of» bep — j — r. Note that thej x j submatrix of (in the sense of smooth behaviors) if and only if it is completely
X1 (s) consisting of the columns with indexésy; + 1,1 +v2 +  observable and the matri¥ has full row rank. Minimal realizations

1,-++,v14+---+v;—1 +1isin fact the identity matrix, so tha¥1(s) are unique up to isomorphism.
must have full row rank for alk € C. It follows that [X (s)|P(s)] The full row rank condition on the matrix7 corresponds to
has constant rank — r. This proves Claim 1). “controllability at infinity.” Triples (F, G, H) can be used also for

Sincep — r is of course also the rank ¢X (s)|P(s)] as a rational the representation of so-called impulsive-smooth behaviors [13],
matrix, and since the matrikX (s)|P(s)] has sizep x (n +p + [12]. The definition of minimality is the same as above, with
m) wheren = XP_, v, it follows that kerg,) [X(s)[P(s)] has the smooth behavior$(F, G, H) replaced by impulsive-smooth
dimensionn 4 m + r. In order to prove Part 2) identify the set of allbehaviors3;-:(F, G, H). For this situation we have the following
polynomial vectors)(s) € RP[s] whoseith component has degree atresult [12, Th. 4.1 and 4.2].
mostw; with the vector spac®™"”. Now consider the linear map Proposition 3.2: A pencil representatiofF, G, H) is minimal in
the sense of impulsive-smooth behaviors if and only if it is completely
observable andG— F has full row rank as a rational matrix. Minimal

v = [X(5)]sX (5)|P(s)]v. (11) realizations are unique up to isomorphism.
) ] ) o When we speak below of “minimal” representations without further
The dimension of the image af as a real vector space is given byingication, we shall always mean minimality in the sense of smooth
the number of-linearly independent columns of the matrix behaviors. The following lemma shows that minimality in the sense

(b: R2n+p+1n _)Rn+p

7 Xi(s) sXi(s) Pi(s) of impulsive-smooth behaviors is automatically obtained wiv¢g)
[X(s)sX () P(s)] = | 0 r | has full row rank.

Lemma 3.3: Let P(s) be ap X (m +p) polynomial matrix whose

Since all columns of? (s) can be written aR-linear combinations ith row degree is at most;, and letX (s) be a basis matrix of type

of the columns ofX; (s) andsX; (s) (by the assumption that the row» = (v,,---,1,). Assume, furthermore, tha®(s) has full row rank
degrees ofP(s) are at mosv;, and by the definition of a polynomial as a rational matrix. If F, G, H) is a realization associated (),
basis matrix), we get then the matrixsG — F' has full row rank as a rational matrix.

Proof: We refer to the notation used in the proof of Th. 2.7. Note
that the full row rank assumption af(s) implies thatr = 0, so that
=(n+j)+(p—-j—r)y=n+p—r. the matrixsG — F has sizen x (n +m). Now take any\ € C such
thatrank P(\) = p. The equationX (\)(AG — F) + P(M)H =0
implies that H mapsker (AG — F) into ker P()), and because of
the observability of the triplé F, G, H) it does so in a one-to-one
way. Therefore, we have

dim img ¢ = rankg [X1(s)|sX1(s)] + rankg P

From this we obtaindim kerg ¢ = n + m + r. Choose constant
matricesF, G, and H such thaf—F"|GT|HT]" is a basis matrix
for kerg ¢; of course these matrices must have- m + r columns.
Then (8) certainly holds, and we hay&(s)(sG — F)+ P(s)H =0

so that dim ker (AG — F) < dim ker P()\) = m. (13)
imps) {SG}; F} C kerg(s) [X(5)|P(s)]. (12) ©On thc_a other hand, we also ha¥en ker (‘AG—F) > m sincexG—-F
has sizen x (n + m). It follows that dim ker (A\G — F) = m and

1 s ... 171 o ... 0
Xo(s)=|. . . . 9)
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sorank (AG — F') = n. This implies thatsG — F has full row rank through the expansion

n as a rational matrix. [ ] 7,
Remark 3.4: The proof actually shows that for any € C, the fi(s) = Zfiksk, £k e gt
matrix A\G — F will have full row rank if P(X) has full row rank. h—o

In particular, it follows that if the conditions of the lemma hold and ) R ~ o
P(s) has constant full row rank, thensG — F has constant full row and definef;" = 0 for~k >vi. Letv = (i, +.vp) be positive
rankn. Recall that the first condition is the algebraic characterizatidAtegers satisfying; > #;. Fori = 1,---, p define matrices of sizes
of controllability of the behavioBS( ) in the sense of Willems [9, Th. ¥i X (i = 1) andwi x (m + p), respectively

V.2], whereas the second characterizes controllability of the system rs 0 - 0

Gz = F=z. 1 :

We now consider the more specialized situation in whigts)
is row proper, and the type of the polynomial basis mafiks) is Bi(s)i=1 o . . 0
matched to the row degrees &f(s). : .

Lemma 3.5: Let P(s) be a row proper polynomial matrix of size '0 0' 1
p X (m + p), with row degreesr = (v1,---,v,). Let X(s) be a
basis matrix of types, and let(F., G, H) be a realization associated Y
with this basis matrix. Then the matri¥ must have full row rank.

Proof: The statement follows from the previous lemma and [12, Wi(s):= :
Lemma 3.3]. i

Remark 3.6: From a minimal pencil representation, a standard Lsfri 4 frit
state-space representation can be obtained as follows. Gihas full . . ) '
row rank and|[ §; | has full column rank, we can select a submaffik astsg\r/Zm'lflﬁiﬁLEt P(s) be given and le®(s), ¥i(s) be defined
from H such that[ ;] is an invertible matrix. After a permutation '

of the external variables and a transformatiBneé Gl,,.» of the Pi(s) 0 - 0 Ti(s)
internal variables the tripleF, G, H ) appears in the following form: P 0 Py(s) : Wy(s)
F=[A-B., G=[0., H= {C D}. (14) 1 g 0 g
0 I 0 0 Bp(s) Wp(s)
Denoting the two components ef by y and «, respectively, we H :=[0]=Lntp)

arrive at the familiar form: = Az + Bu,y = Cx + Du. For the

fieul i is a completely observable realization Bf s).
particular penci

Proof: Let X, (s) be the standard basis matrix as introduced in

oo F sI—A B (9). A direct computation verifies that
s —
{ H } - S ? Xo(9)[sG = F] = [0px(n—p)| P(s)] = = P(s)H.

. » . . By a dimension count we find that (7) holds. Sin¢&, G, H)
the algebraic conditions for observability and controllability then s, satisfies (8), it follows from Theorem 2.7 thdk, G, H) is a
reduce to the standard conditions. An algorithm to obtain a minim@t‘)mpletely observable realization &(s). -
pencil representation from an arbitrary one is given in [10]. For casesRemark 4.2: It follows from the Lemmas 3.3 and 3.5 that the
in which an input-output structure is giverpriori and in such away egjization obtained above will be minimal in the sense of impulsive-
that the corresponding submatrix [6F" | ] is not invertible, see smooth behaviors i’(s) has full row rank as a rational matrix, and
[4]. it will be minimal if P(s) is row proper and’; = v, for all i. Note
that the latter requirement implies th&(s) can have no constant
IV. REALIZATION ALGORITHMS rows. So the following obstructions can exist to obtain a minimal

In Section Il we have seen that the problem of finding a realizaticfﬁprre_se”tation by inspgction: B@ does not have full row rank; 2)
can be reduced to the problem of finding a complete set of badis®) iS not row proper; and 3P(s) has some constant rows. All of
vectors for the nullset of a given matrix. Note now that in Som{pe.se obstructions may be overcome at the cost of some computation,
cases this problem is rather easy, namely when the given matrix{8ich one may choose to carry out on the polynomial level (before

of the form[I|1]. Obviously, we can immediately write realization) or on the first-order level (after realization).
' We now present a theorem that produces a standard state-space

-M representation by inspection for strictly proper systems. Naturally, this
I is only possible whet(s) satisfies a rather special condition. Again,

we first introduce some notation. Assume thts) is partitioned

and no calculation is necessary. If the given matrix is a colu Rto P(s) = [D(s)|N(s)] where D(s) is ap x p polynomial
permuted form of I|A], then some rearrangement will be needeq,, i e will assume thaf(s) is row proper with row degrees
but still no numerical calculations will be involved. By judicious —

v >~ >, > 1L Fori,j=1,---,plet

choice of the polynomial basis matriX(s) (for instance the canon- =~ —

ical basis matrix is suitable) we can in fact create such a situation. (s) = o kG
The following two theorems are based on this observation. The proofs dij(s) = Z @i.3®
are in both cases straightforward applications of Lemma 2.1, applied

ker [I|M] = im |:

k=0

with the canonical basis matrix. denote the polynomial entries d@¥(s). Similarly let
First we introduce some notation. For a given polynomial matrix vi
P(s) of sizep x (m + p). let f:(s) € R™”[s] denote theith row ni(s) = nks*

of P(s), and let#; be its degree. Fdb < k < #; define vectorsfF k=0
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denote the'th row of N (s). Define fori = 1,- - -, p matrices of sizes
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TABLE |

Realization by inspection

High-order form [ First-order form | Reference

No special properties Completely observable pencil form Thm.4.1

P(s) of full generic row rank Completely observable pencil form, Thm. 4.1,
minimal in the sense of impulsive-smooth | Lemma 3.3
behaviors

P(s) row proper, no constant rows Minimal pencil representation Thm. 4.1,

Lemma 3.5

P(s) = [D(s) | N(s)], high-order coefficient | Observable standard state space Thm. 4.3

matrix is [I | 0], no constant rows representation

The above plus coprimeness of Observable and controllable Thm. 4.3,

D(s) and N(s) standard state space representation Remark 4.4

vi X vi,v; X m, and1 x v;, respectively

Finally, fori,j =1,---

IR —
1 0 —d};
Aigi=10 1
; 0 :
o -~ 0 1 —ay!
rond
77,%
B;:= .
=1
LN
Cz:[oa' _1]

0 --- 0 —d?,j

—d' .

:’L‘J: dl’J
0 - 0 —di!

With these definitions we can state the following.

Theorem 4.3:If, in the situation discussed above, the high-ordefrOrm P(s

row coefficient matrixP.. is of the form P, = [I,|0], then

(A -+ Al By
= )+ | ¢ |u(®)
_Ap-l e Ap-p Bp
[C 0
y(t) = x(t)
| 0 C,

represents a minimal state-space realization of the system

d A d
D<%>y(z‘) + N <E>U(t) =0.

sI—A B
(X.()Ps)] ¢ o] =o.
0o I

,p, i # j define matrices of size; x v,

Remark 4.4: Because behavioral equivalence is an extension of
transfer equivalence, we have in particular that

—D7'(5)N(s)=C(s[ — A)"'B.

It follows from Remark 3.4 (see also Remark 3.6) that the obtained
realization will be controllable if the matri¥(s) has full row rank

for all s, or in other words, if the paitD(s), N(s)) is left coprime.

So in this case we even have minimality in the transfer sense; see
[14] for a review of the various notions of minimality.

Remark 4.5: The choice of the canonical basis matr¥, (s)
introduced in (9) has produced a matrxn a well-known companion
form as it can be found, for example, in [15, p. 82]. Of course other
choices of basis matrices are possible and lead to various results; see
for instance Example 5.1 below. There is clearly a connection here
to canonical forms, and this is discussed in more detail in [14].

Remark 4.6: If the high-order coefficient matrix is of the form
[P1|P2] with P; invertible, then the situation of the theorem can be
achieved (at the cost of some computation) by a linear transformation
in the space of external variables. Reversion of this transformation
after realization will lead to a realization ¥, B, C, D) form.

V. EXAMPLES

Example 5.1: Consider g x (m + p) polynomial matrix of the
):=%, P;s' € R[s]P*(™TP), Although we have worked
with the canonical basis matriX, (s) (as introduced in Section )
throughout the main part of the paper, other choices are quite possible.
Consider for instance the basis matrix

X(s):=[IplsIy|--- |5£71[p]-

Let (F, G, H) be the triple of matrices introduced in (4). One readily
verifies that

X (s)[sG — F] = [0px(c—1)p)|P(s)] = —P(s)H.

By Theorem 2.7(F.,G, H) is a completely observable realization
and by Proposition 3.1 this realization is minimal if and onlyFi,

and thereforeGG has full row rank. Actually it is not difficult to
derive these facts from first principles; the example shows, however,
that also in the present approach the particular realization (4) appears

Proof: As in the proof of Theorem 4.1 one readily verifies tha@s the result of making some simple choices. To compare this with

Theorem 4.1, note thd®(s) is row proper wheneveP, has full row
rank, but not conversely.

Example 5.2: This example illustrates Theorem 4.1. We consider
the situation of a 2 4 polynomial systenP(s) having row degrees
v1 = 3 andv, = 2. Using earlier notatiorP(s) is of the form

Again, a dimension count confirms that we do have a realization.

Minimality (in the behavioral sense) is guaranteed by Theorem 2.7.

_ f1(5) _ f1,1(8)>"'gf1,4(5)
P(s) = {fz(vs’)} = {f2,1(3)7"'=f2,4(5)
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where

3 .
Frilse) =S fls*
k=0

[2]
Poyls) =D fs" =14
k=0

[3]
The canonical basis matrix of size= (3,2) has the form [4]
1 00 o
S s
Xenls) = {0 0 1 s:|'

(6]

The computation of the kernel of
[7]

[X(3.,2)(8)|5X(3,2)(8)|P(s)]

is equivalent to finding a complete set of basis vectors for the spadél
determined by the equation

1000000000 f 4]
01 00010000 f
001 0007100 0 ff [10]
0001 000UO0O0O0O f£le=0
0000100010 f (11]
2 [12]
000 0O0UO0O0OT10 0 f
000O0O0OO0GO0O0OO0 1 f2
[13]

Since the minor consisting of columns 1, 2, 3, 4, 5, 8, 10 is just an
identity matrix, the kernel is found “by inspection” and is given b

Y,
(see Theorem 4.1) (14]

[15]
-1 0 0 —fi

0 -1 0 —ff [16]
0 0 0 —ff
_F 0 0 -1 —f
Gl=]1 0 o0 0
H 0 1 0 0
0 0 0 —ff
0 0 1 0
0O 0 0 —f2
Ld 0 0 I,

The realization is minimal if and only if the row vectof§ and f2
are linearly independent.

VI.

In this paper we showed that a linear system represented by a sys-
tem of higher order differential equations of the foffad/dt)w(t) =
0 can always be realized in a generalized first-order pencil form by a
simple rearrangement of the coefficients. Since no numerical compu-
tation is involved, the approach is suitable, in particular, in situations
where some of the coefficients are symbolic parameters rather than
actual numbers. The first-order realizations that are obtained by the
methods of this paper will contain the same parameters, together
with zeros and fixed constants. Genericity issues for such systems
have been studied by Murota [16]. Another possibility that presents
itself is to allow for coefficients that come from a ring rather than
from a field, but we shall not go into that here.

Whether the first-order form that is obtained by inspection can be
made to have certain desirable properties depends on the data from
which one starts. This is detailed in Table I.

CONCLUSIONS
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