
Efficient recovering of operation tables
of black box groups and rings
Jens Zumbrägel, Gérard Maze and Joachim Rosenthal

Mathematics Institute
University of Zurich
Winterthurerstrasse 190

CH - 8057 Zurich, Switzerland
www.math.unizh.ch/aa

Abstract—People have been studying the following prob-
lem: Given a finite set S with a hidden (black box) binary
operation ∗ : S × S → S which might come from a group
law, and suppose you have access to an oracle that you
can ask for the operation x ∗ y of single pairs (x, y) ∈ S2

you choose. What is the minimal number of queries to the
oracle until the whole binary operation is recovered, i.e.
you know x ∗ y for all x, y ∈ S?
This problem can trivially be solved by using |S|2

queries to the oracle, so the question arises under which
circumstances you can succeed with a significantly smaller
number of queries.
In this presentation we give a lower bound on the

number of queries needed for general binary operations.
On the other hand, we present algorithms solving this
problem by using |S| queries, provided that ∗ is an abelian
group operation. We also investigate black box rings and
give lower und upper bounds for the number of queries
needed to solve product recovering in this case.

I. INTRODUCTION

There is a considerable literature on algebraic objects
whose operations are described by a ‘black box’. There
are different motivations for studying such objects.
In computational group theory, black box groups be-

came an important and frequently used tool. They were
introduced by Babai and Szemerédi [BS84] in order
to study algorithms for matrix groups. In a black box
group elements are encoded as (not necessarily unique)
bitstrings and there are oracles (the black box) providing
multiplication and inversion of the encoded group ele-
ments as well as recognition of the identity element—
but often the isomorphy class and even the order of the
underlying group is unknown. The research is ongoing
and a collection of some algorithms for black box groups
can be found in Seress’ monograph [Ser03, Ch. 2].

Authors were supported in part by Swiss National Science Foun-
dation Grant no. 107887.

One major question in black box group research is the
recognition problem which asks whether a given black
box group is isomorphic to a fixed finite group like Sn or
SLn(Fq) and possibly to provide an explicit description
of such an isomorphism, see e.g. [BLGN+03], [BP00],
[KS01]. The constructive recognition problem in the case
of abelian groups has been investigated by Buchmann,
Jacobson, Schmidt and Teske [BJT97], [BS05].
Also in cryptography the use of black box groups

and fields proved themselves useful when analyzing
the hardness of the discrete logarithm problem, e.g.
Shoup obtained this way lower bounds for generic al-
gorithms [Sho97]. Black box fields of prime order were
used by Boneh and Lipton [BL96] when studying the
discrete logarithm problem in a presence of a Diffie-
Hellman oracle. Note that the isomorphy class of the
underlying objects are known in these cases.
The basic question we are interested in this paper

is, given a black box group or black box ring, how
many calls to the oracle are necessary to recover the
whole operation tables. To illustrate the importance of
this question we mention its relevance for estimating the
information content of an algebraic operation table and
for designing practical compression algorithms for these
tables. Furthermore, a black box object might be a crucial
device in a symmetric cryptosystem and one wishes to
analyze the cost to describe this black box completely.
We shall be interested in the problem of recovering the

hidden operation by using a minimal number of queries
to the oracle. In algorithm analysis we neglect here the
remaining computational costs, i.e. we assume unlimited
computational and storage power but limited access to
the oracle.
When investigating the product recovering problem it

is natural to assume unique encoding of group elements,
since for the black box operation to depend only on the
underlying group and not on some encoding arbitrariness
this is necessary. However we include some remarks

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

639978-1-4244-2571-6/08/$25.00 ©2008 IEEE

and comments concerning the general case of nonunique
encoding.
The organization of this paper is as follows. In Sec-

tion II, which forms the main part, we consider the case
of one binary black box operation. After a formalization
of the problem we are able to prove lower bounds for
the general case in Subsection II-B and for some special
cases in Subsection II-C. Afterwards we present some
upper bounds and give the corresponding algorithms for
the case of abelian groups in Subsection II-D. Here the
lower and upper bounds are quite close together.
Finally in Section III we consider algebraic structures

with two binary operations. We deal with the situation
where we have a ring with known addition but unknown
multiplication.

II. ONE BINARY OPERATION
We define a black box with one binary operation in

the most general way:
Defintion 1: A black box groupoid is a given finite set

S together with a binary operation ∗ : S×S → S which
is accessible by an oracle. The oracle can be asked for
the multiplication x ∗ y of single pairs (x, y) ∈ S2.
The set S can be thought of as a set of bitstrings and

the binary operation ∗ is the black box we only have
limited access to.
Given a black box groupoid, we are interested in the

problem of recovering the hidden operation ∗ by using a
minimal number of queries to the oracle. We also assume
that some information on the operation ∗ is available, i.e.
a set X of possible binary operations ∗ : S × S → S
is given. For example, if we know that ∗ is a group
operation, then

XGroups = {∗ : S × S → S | (S, ∗) is a group}.
Another example is the situation where we know that

(S, ∗) is isomorphic to a particular groupoid (G, ·). In
this case

XG = {∗ : S × S → S | there is
an isomorphism f : (S, ∗) → (G, ·)}.

Algorithms solving the product recovering problem
must specify the appropriate set X .
Remark 2: When only the existence of an epimor-

phism f : (S, ∗) → (G, ·) is known, then we may have
nonunique encoding of group(oid) elements. This is usu-
ally the case in black box group literature, where there
is also an oracle for testing whether f(x) = 1 holds.
However, in general we cannot exploit the algebraic
structure of G to recover exactly ∗. Instead we can hope
to find a subset S̃ ⊆ S such that f |S̃ : S̃ → G is bijective

a ∗ b
a b

a ∗ c
a c

a ∗ c
a c

b ∗ c
b c

b < a < c c < a < b b ∗ c
b c

c < b < a b < c < a a < c < b a < b < c

Fig. 1. A query-algorithm for a totally ordered set {a, b, c}

and to find ∗̃ : S̃ × S̃ → S̃ such that f(a ∗ b) = f(a∗̃b)
for all a, b ∈ S.

A. Query-algorithms
We model query-algorithms as certain labeled trees

with the nodes corresponding to queries to the oracle
and the edges corresponding to its possible answers:
Defintion 3: A query-algorithm with respect to a set

X of binary operations ∗ : S × S → S on a set S is a
rooted tree T with labels such that
• any node v of T which is not a leaf is labeled with
‘x∗y’ where x, y ∈ S (to be thought of as a query),
leaves are unlabeled,

• the branches to the children of v are labeled with ‘z’
with elements z ∈ S (to be thought of as possible
answers), such that different branches have different
labels.

Furthermore we require completeness of answers in
the following sense. For every possible binary operation
∗ ∈ X there exists a corresponding path (v0, . . . , vk)
from the root v0 to a leaf vk such that if vi is labeled
with ‘xi ∗ yi’ then the branch (vi, vi+1) is labeled with
‘zi’ where zi = xi ∗ yi, for 0 ≤ i < k.
The leaf L(∗) =: vk is then uniquely determined by

this property, so that there is a well-defined map

L : X → {leaves of T}.
The query-algorithm T is said to solve product-
recovering if this map L is bijective, i.e. there is a one-
one correspondence between the leaves of T and the
operations ∗ ∈ X .
Example 4: Let X be the set of all binary operations

∗ on a three-element-set S = {a, b, c} such that (S, ∗)
is isomorphic to the semigroup ({0, 1, 2},max). Thus,
there is an unknown total ordering of the elements of S,
and the problem of product-recovering is equivalent to
find back this ordering.
A query-algorithm solving product-recovering is

shown in Fig. 1. Every leaf v is labeled with the ordering
which corresponds to the binary operation ∗v = L−1(v).

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

640

a ∗ a
a

b c

d

b ∗ b
a

c
d

a ∗ b
a

c
d

a ∗ c
a

b
d

a ∗ d
a

b
c

a = 0

b = 2

a = 0

c = 2

a = 0

d = 2

b = 0

a = 2

d = 0

b = 2

c = 0

b = 2

c = 0

a = 2

d = 0

c = 2

b = 0

c = 2

d = 0

a = 2

c = 0

d = 2

b = 0

d = 2

Fig. 2. A query-algorithm for the group Z4 = {0, 1, 2, 3}

Example 5: Let (G, ·) = (Z4,+) be the cyclic group
of order 4 and let S = {a, b, c, d}. Fig. 2 shows a query-
algorithm T solving product-recovering for this group,
i.e. with respect to XG.
The leaves v are labeled with a shortened presentation

of the binary operation ∗v = L−1(v). Note that the
elements 1 and 3 of Z4 are exchangeable, so we do not
have to specify their corresponding elements in S.
Since T has 12 leaves we have |XG| = 12 = 4!

|Aut(Z4)|
,

which also follows from Lemma 7 below.

B. Lower bounds
The next lemma establishes a general lower bound.
Lemma 6: Let T be any query-algorithm which solves

product-recovering with respect to a set of X of binary
operations on a set S, and let N be its number of queries
to the oracle. Assuming a uniform distribution on X we
have for the expectation

E(N) ≥ log|S| |X |.
(We say T needs at least log|S| |X | queries on average.)

Proof: E(N) is the average height of all leaves of
the tree T . Now any node of T has at most |S| children
and T has exactly |X | leaves. This yields the result.
Lemma 7: For any groupoid (G, ·) with |G| = n we

have
|XG| =

n!

|Aut(G, ·)| .
Proof: Without loss of generality we may assume

that S = G as sets.
Consider the set X of all binary operations ∗ : G ×

G → G and the group action

Sym(G) × X → X, (ϕ, ∗) �→ ∗ϕ,

where ∗ϕ is defined by x ∗ϕ y = ϕ−1(ϕ(x) ∗ ϕ(y)) for
all x, y ∈ G, so that ϕ : (G, ∗ϕ) → (G, ∗) is a groupoid
isomorphism.
Now under this group action, the operation · ∈ X,

coming from the known groupoid (G, ·), has exactly
XG as orbit and Aut(G, ·) as stabilizer group. Thus the
lemma follows from the orbit-stabilizer theorem.

Now if G1, . . . , Gm are pairwise non-isomorphic
groupoids (e.g. the family of all abelian groups of a
given size), then the XGi

are pairwise disjoint. Let
X := XG1

∪ · · · ∪ XGm
, then

|X | = n!

(
m∑

i=1

1

|Aut(Gi, ·)|

)
.

C. Special cases
1) max-semigroups: Assume that (S, ∗) is isomor-

phic to the semigroup (G, ·) = ({0, 1, . . . , n − 1},max)
(see Example 4 for the case n = 3).
Corollary 8: Any query-algorithm which solves

product-recovering with respect to XG needs at least

log2(n!) ≥ n log2 n − n

ln 2
+

log2 n

2

queries to the oracle on average.
Proof: Since |Aut(G, ·)| = 1 we have |XG| =

n! by Lemma 7. Now in this semigroup any node of a
query-algorithm has at most 2 children, so by the same
argument given in the proof of Lemma 6 we see that
at least log2(n!) queries on average are needed. Finally
the stated inequality is a consequence of n! ≥ (n

e

)n √
n,

coming from Stirling’s formula.
Note that solving product-recovering reduces to the

well-studied problem of sorting an n-element set, where
the queries to the oracle correspond to comparisons
of elements. There are several sorting algorithms (e.g.
merge sort) which use O(n ln n) comparisons in the
worst case.
2) Abelian groups: Now assume that (S, ∗) ∼= (G, ·)

is an abelian group with n elements (see Example 5).
Corollary 9: Suppose that (G, ·) is generated by r

elements. Any query-algorithm which solves product-
recovering with respect to XG needs at least

n − n

ln n
+

1

2
− r

queries to the oracle on average.
Proof: Note that any endomorphism of G is

determined by its image on its r generators. Hence
|Aut(G)| ≤ |End(G)| ≤ nr. On the other hand we

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

641

have n! ≥ (
n
e

)n √
n from Stirling’s formula, so that

logn(n!) ≥ n − n
ln n

+ 1
2 . Now the result follows from

Lemma 6 and Lemma 7
Note that any abelian group of size n can be generated

by at most log2 n elements, so that one can achieve r ≤
log2 n in general. Of course, if (G, ·) is cyclic, one can
set r = 1.

D. Upper bounds for abelian groups

We give an upper bound for the worst-case number of
queries needed to solve product-recovering in the case of
abelian groups and present the corresponding algorithm
in the proof.
Proposition 10: Let S be a set of size n and

XAb = {∗ : S × S → S | (S, ∗) is an abelian group}.

Then there is a query-algorithm which solves product-
recovering with respect to XAb using at most n queries
to the oracle for any ∗ ∈ X .

Proof: We write the query-algorithm as a list of
instructions rather than as a tree, because this represen-
tation is more compact and readable. The algorithm is
based on two basic subroutines.
1) Start by choosing some a = a1 ∈ S and apply the

following algorithm.

Repeat computing ak+1 = ak∗a for k = 1, 2, 3, . . .
until ak+1 = a.

After execution, k is the order ord(a) of a, and k
queries to the oracle have been made. We further know
that a0 := ak is the identity element. Also, we deduce
that ai ∗ aj = ai+j mod k for 0 ≤ i, j < k.
Hence if Sa = {a0, a1, . . . , ak−1} is the subgroup

generated by a, then ∗ is known on Sa × Sa.
2) If Sa �= S choose some b = b1 ∈ S \ Sa and apply

the following algorithm.

Repeat computing bk = bk−1 ∗b for k = 2, 3, 4, . . .
until bk ∈ Sa.
For all s ∈ Sa \ {0} and 0 < i < k compute s ∗ bi.

After execution we know s ∗ bi for all s ∈ Sa and all
0 ≤ i < k. Then for any s, t ∈ Sa and 0 ≤ i, j < k we
have by commutativity

(s ∗ bi) ∗ (t ∗ bj) =

{
(s ∗ t) ∗ bi+j if i + j < k,

(s ∗ t ∗ bk) ∗ bi+j−k if i + j ≥ k.

This element is known, since we knew already ∗ on Sa×
Sa. It follows that ∗ is known on Sab × Sab where Sab

is the subgroup generated by Sa and b.

Let m = |Sa|. The number of queries to the oracle
needed by the algorithm is

k − 1 + (m − 1)(k − 1) = m(k − 1) = mk − m.

Now mk = |Sab|, so that |Sab| − |Sa| queries to the
oracle have been used.
3) If Sab �= S choose some c ∈ S \ Sab and repeat 2)

with Sa replaced by Sab and b replaced by c. After that
∗ is known on Sabc × Sabc, the subgroup generated by
Sab and c, and |Sabc| − |Sab| queries to the oracle have
been used, etc.
Writing S1, S2, S3, . . . for Sa, Sab, Sabc, . . . we finally

reach r such that Sr = S. Then we have recovered the
whole operation ∗ on S × S and we have used

|S1|+(|S2|−|S1|)+· · ·+(|Sr|−|Sr−1|) = |Sr| = |S| = n

queries to the oracle in total.
Example 11: Consider a black box group (S, ∗) of

size 11. Then we know that S is isomorphic to the
cyclic group and |Aut(S, ∗)| = 10. By Lemma 6 and
Lemma 7 we conclude that an algorithm solving product-
recovering needs at least log11 3991680� = 7 queries to
the oracle in the worst case.
Proposition 10 ensures the existence of an algorithm

which needs 11 oracle-queries. In fact it is not hard to
see that in the case of groups of prime order the last two
queries in the above algorithm can be omitted, yielding
an algorithm which uses 9 queries to the oracle.
Now a computer search among all possible product re-

covering algorithms has shown that the minimal number
of oracle-queries an algorithm needs in the worst-case
is 8. Such an algorithm can be outlined as follows:
1) choose some a ∈ S and compute asq = a ∗ a
2) if asq �= a let a1 = a and a2 = asq, otherwise let

e = a, choose some a1 �= a and compute a2 = a∗a
3) compute a3 = a2 ∗ a1, a4 = a3 ∗ a1, a5 = a4 ∗ a1

and a7 = a5 ∗ a2

4) if asq �= a compute e = a7 ∗ a4

5) choose three different elements b, c, d from the
four-element-set S \ {e, a1, a2, a3, a4, a5, a7} and
compute b ∗ c and b ∗ d

Remark 12: When we have nonunique encoding of
group elements a variant of the above algorithm will
solve product-recovering provided we are given a gen-
erating set and an oracle for recognizing the identity.
However, to check whether bk lies in Sa (as in the second
subroutine) may be a costly operation.

III. TWO BINARY OPERATIONS
Suppose we are given a finite set S with two hidden

binary operations + and ∗, accessible via an oracle. If we

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

642

know that (S,+, ∗) is a ring, then (S,+) is an abelian
group, so we can use Proposition 10 to recover the
addition table. We now have a ring with known addition,
but unknown multiplication. This section deals with that
situation.
Defintion 13: A black box groupoid with given addi-

tion is a black box groupoid (S, ∗) such that there is a
known binary operation + : S × S → S on S, and the
following distributive laws hold on S with respect to +
and ∗, i.e.

a ∗ (b + c) = (a ∗ b) + (a ∗ c)
(a + b) ∗ c = (a ∗ c) + (b ∗ c)

}
for all a, b, c ∈ S.

In this case, all binary operations ∗ ∈ X in question
will satisfy the distributive laws above. Suppose, for
example, we know that (S,+, ∗) is isomorphic to some
known ring (R,+, ·). Then the set of possible operations
we are dealing with is

XR := {∗ : S × S → S | there is an
isomorphism ϕ : (S,+, ∗) → (R,+, ·)}.

Its size is given in the next result.
Lemma 14: For any ring (R,+, ·) we have

|XR| =
|Aut(R,+)|
|Aut(R,+, ·)| ,

where Aut(R,+) are the additive group automorphisms
and Aut(R,+, ·) are the ring automorphisms.

Proof: The arguments are the same as in the proof
of Lemma 7. We identify S = R as sets and consider the
action of Aut(R,+) on the setX of all binary operations
∗ : R × R → R. Then XR is exactly the orbit of · ∈ X
and Aut(R,+, ·) is its stabilizer group.
Now we specialize to the case when (S,+, ∗) ∼=

(Fq,+, ·) is a field of size q = pr with p prime.
Corollary 15: Any query-algorithm which solves

product-recovering for a field of size q = pr with known
addition needs at least

r − logq(4r)

queries to the oracle on average.
Proof: The automorphisms Aut(Fq,+) are exactly

the vector space automorphisms of the Fp-vector space
(Fp)

r, so that

|Aut(Fq,+)| = (q − 1)(q − p) · · · (q − pr−1)

= qr

(
1 − 1

p

)(
1 − 1

p2

)
· · ·
(

1 − 1

pr

)
,

where (1− 1
p
) · · · (1− 1

pr) >
∏
i≥1

(1− 1
2i) >

∏
i≥0

(1
2)

1

2i = 1
4 .

On the other hand, |Aut(Fq,+, ·)| = |Aut(Fpr/Fp)| =
[Fpr : Fp] = r, by basic Galois theory. Hence

|Aut(Fq,+)|
|Aut(Fq,+, ·)| ≥

qr

4r

and the result follows from Lemma 6 and Lemma 14.
We now give an upper bound for the number of queries

needed to solve product-recovering for rings (S,+, ∗) of
size |S| = n with given addition. For this it suffices to
ask the oracle for all products a∗b of elements a, b ∈ A,
where A is a generating set for the abelian group (S,+).
Then if x, y ∈ S, we can write x = a1 + · · · + ak and
y = b1 + · · · + bl with ai, bj ∈ A for all i, j, and thus

x∗y = (a1 + · · ·+ak)∗ (b1 + · · ·+ bl) =
k∑

i=1

l∑
j=1

ai ∗ bj ;

now, since all ai∗bj are known and the addition is known,
we also know x ∗ y.
Because (S,+) can be generated by at most log2 n

elements, we thus have (log2 n)2 as an upper bound.
Together with Proposition 10 this proves:
Proposition 16: If (S,+, ∗) is a ring of size n,

then there is a query-algorithm which solves product-
recovering for both operations + and ∗ with at most

n + (log2 n)2

queries to the oracle in the worst case.

REFERENCES
[BJT97] J. Buchmann, M. J. Jacobson, Jr., and E. Teske, On

some computational problems in finite abelian groups,
Math. Comp. 66 (1997), no. 220, 1663–1687.

[BL96] D. Boneh and R. J. Lipton, Algorithms for black-
box fields and their application to cryptography (ex-
tended abstract), Advances in cryptology—CRYPTO
’96 (Santa Barbara, CA), Lecture Notes in Comput.
Sci., vol. 1109, Springer, Berlin, 1996, pp. 283–297.

[BLGN+03] R. Beals, C. R. Leedham-Green, A. C. Niemeyer, C. E.
Praeger, and Á. Seress, A black-box group algorithm for
recognizing finite symmetric and alternating groups. I,
Trans. Amer. Math. Soc. 355 (2003), no. 5, 2097–2113
(electronic).

[BP00] S. Bratus and I. Pak, Fast constructive recognition of
a black box group isomorphic to Sn or An using
Goldbach’s conjecture, J. Symbolic Comput. 29 (2000),
no. 1, 33–57.

[BS84] L. Babai and E. Szemerédi, On the complexity of
matrix group problems i, 25th Annual Symposium on
Foundations of Computer Science (1984), 229–240.

[BS05] J. Buchmann and A. Schmidt, Computing the structure
of a finite abelian group, Math. Comp. 74 (2005),
no. 252, 2017–2026 (electronic).

[KS01] W. M. Kantor and Á. Seress, Black box classical
groups, Mem. Amer. Math. Soc. 149 (2001), no. 708,
viii+168.

[Ser03] Á. Seress, Permutation group algorithms, Cambridge
Tracts in Mathematics, vol. 152, Cambridge University
Press, Cambridge, 2003.

[Sho97] V. Shoup, Lower bounds for discrete logarithms
and related problems, Advances in cryptology—
EUROCRYPT ’97 (Konstanz), Lecture Notes in Com-
put. Sci., vol. 1233, Springer, Berlin, 1997, pp. 256–
266.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

643

