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Abstract

Usually, the minimal dimension of a finite element space is closely related
to the geometry of the physical object of interest. This means that sometimes
the resolution of small micro-structures in the domain requires an inadequately
fine finite element grid from the viewpoint of the desired accuracy.

This fact limits also the application of multi-grid methods to practical situ-
ations because the condition that the coarsest grid should resolve the physical
object often leads to a huge number of unknowns on the coarsest level.

We present here a strategy for coarsening finite element spaces indepen-
dently of the shape of the object. This technique can be used to resolve com-
plicated domains with only few degrees of freedom and to apply multi-grid
methods efficiently to PDEs on domains with complex boundary.

In this paper we will prove the approximation property of these generalized
FE spaces.

Mathematics Subject Classification (1991): 65D05, 65N12, 65N 15, 65N30, 65N50,
65NH5

1 Introduction

In this paper, we will introduce so-called Composite Finite Elements on two-dimen-
sional domains. However, we state that generalizations to more spatial variables are
obvious. We have in mind that these domains may have boundaries with complicated
micro-structures. Consequently, every reasonable finite element grid (quasi-uniform,
satisfying the minimal angle condition) which has to resolve the boundary will have a
huge number of elements. Finite element spaces corresponding to such grids and also
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finer grids usually satisfy an asymptotic approximation property. We will define sub-
spaces of these finite element spaces corresponding to “coarser” FE grids which also
satisfy the asymptotic approximation property. The minimal number of unknowns
will not be limited by the shape of the domain.

This new class of finite elements is called Composite Finite Flements for the
following reason. According to the definition of [4, Chapter 2.3], finite elements are
triples consisting of the element domain, the space of shape functions, and the set
of nodal functionals. Usually, the element domains are smooth images of a reference
element and the shape functions are smooth at least in the interior of the element
domain. For composite finite elements, however, the element domain K is the union
of many small standard elements. The shape functions on K are composed locally
of piecewise polynomials on the small elements along with suitable global constraints
on K which leads to the name composite finite elements. !

The ideas are closely related to Shortley-Weller discretizations in the context
of finite difference approximations as described in [13], [7], [10] implemented in a
hierarchical way using the Galerkin product (see [5]).

Another approach for coarsening finite element spaces can be found in [2] and
[3]. There, the authors define a hierarchical basis on non-nested grids and prove grid-
independent convergence rates for the corresponding BPX method. In contrast to the
method presented in our paper the coarsening strategy of the mentioned authors can
be applied to arbitrarily unstructured grids, while our approach uses the logically
regular grid. Consequently, it turns out that, a priori, we know that the coarsest
grid will consist of extremely few degrees of freedom (typically smaller than 10)
independent of the shape of the domain. The coarsening approach in [2] is heuristic
and, hence, it is beforehand not known what the number of unknowns at the coarsest
level will be, when the algorithm terminates.

A further related method is presented in [11]. In that paper, the physical domain
is embedded in a domain of easy shape which is refined by standard methods. The FE
spaces are given by the restriction of the functions on the artificial larger domain to
the physical domain. It was shown that subspace correction methods can be applied
successfully to this method.

Knowing the approximation property and stability behaviour, it is well known
that the Galerkin FEM has quasi-optimal convergence behaviour. Thus, if one is
interested in a relatively crude approximation of the solution, we are now able to
use composite finite element spaces of low dimension independent of the shape of the
domain and obtain the corresponding accuracy.

Following the theory of [6], the convergence of multi-grid methods can be split
in the proof of the approximation and the smoothing property. The approximation
property for multi-grid methods follows from the approximation quality of the finite
element spaces and assumptions on the differential equation on the continuous but

! After submitting the paper we noticed that, in the context of approximating curved boundaries,
a similar finite element was introduced in [12].



not on the discrete level (see [6, Section 6.3.1]).

This paper is organized as follows. In the next chapter, we will introduce strategies
to coarsen triangulations of domains independently of the shape of the domain. Then,
in Chapter 3 we will define finite element spaces on these grids by introducing suitable
interpolation operators. In Chapter 4, we will prove the approximation property of
these FE spaces in the case that the domain is the whole plane. Chapter 5 addresses
the approximation quality of composite finite element spaces on bounded domains €2
using the previous results. Finally, in the Appendix we prove a stability theorem for
the interpolation process involved in the definition of the FE space. This stability
result plays the crucial role for the estimates in the H'-norm of Chapters 3 and 5.

The paper is the first in a sequence of two. A second paper discusses the efficient
construction of the generalized FE spaces, the complexity of the method and will
include numerical experiments.

2 The Construction of Generalized FE Grids

Composite Finite Elements will be defined in Chapter 3 in an abstract way. There,
some geometric assumptions will be imposed on the hierarchy of grids. In order
to make these assumptions more transparent we will first present an example of a
grid generator and a coarsening algorithm which generates an admissible hierarchy of
grids. It turns out that this algorithm carries over to the 3-d case in a straightforward
manner (see [10]).

We will present a strategy of generating FE grids on a complicated domain 2 C R?
which can easily be coarsened to grids which will be related to FE spaces having
only very few degrees of freedom. Before presenting the detailed description of the
method, we will outline the principal underlying idea. An illustration of the process
described below is given in Figure 1. We consider an infinite (virtual) sequence of
uniform square grid triangulations {7/}, .., covering the whole plane R?. These

grids are thought to be nested in the sense that each triangle A € 7 has a father on a
coarser level and four sons on the finer level, which arise by connecting the midpoints
of the edges of A. Let us assume that the grid 7, is fine enough in the sense
that small displacements of grid points in 7 . , which may not destroy the logical
connectivity, result in a grid 7;° having the following property. There is a (finite)
subset 7, ., C 7;° which is a proper triangulation of ). “Proper” is meant in the
sense that standard refinement procedures as, e.g., projecting the midpoint of edges
onto the physical boundary, can be applied successfully. We emphasize that 7, may
not necessarily be the finest grid in the disrcetization process, but can be viewed as
the coarsest grid, where standard refinement procedures (including adaptivity) can
be applied. A fully adaptive version of the coarsening was presented in [8].

Since we have a one-to-one correspondence of 77° —and the virtual grid 7,,,,
coarsening can be performed easily by the following procedure. Let A be a triangle



of 7. and A the corresponding triangle of 7. The father of A, Af € Typae—1 With
vertices {Xz}lsj33
sponding to {XZ}1<'<3
The triangle with V_er_tices {)N(Z} '
1<:<3

This process can be iterated ending with a coarsest grid 7o which consists only of very
few triangles. This grid will not have much to do with the domain ). However, we

, is well defined. The vertices { X}, .., denote grid points corre-
arising by adapting the virtual grid to the physical domain.

is contained in the coarser triangulation 7, 1.

will not define standard finite element spaces on these non-fitting grids, but they are
only used to connect degrees of freedom with each other. The corresponding finite
element space will consist only of functions which are defined on the physical domain.
To avoid confusion, we state that the virtual grids 7, and grids 77 are never used
in actual computations, because, due to the regularity of them, the positions and
connectivity of the triangles are known beforehand.

@ T, 0) © T2
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Figure 1: In the first line, the virtual grid 7., and coarser grids 7, are depicted. The
grid 7;° arise by moving grid points of 7, being close to the boundary onto the
boundary. Coarser grids as, e.g., 74,1 arise by collecting the fathers of triangles
in 7;° , using the logical connection to the uniform reference grid. The triangula-
tion 7, which is used for computations consists of triangles which lie “inside” the
domain. Coarser triangulations consist of the fathers of triangles on finer levels and
cannot be regarded as an approximation of the domain.



2.1 The Hierarchy of Virtual Reference Grids

In this subsection, we will give the precise definition of the sequence of reference grids.
In order to indicate that a quantity belongs to the reference grid, we will use a tilde,
e.g., 7 for the reference grid and # for a grid point of 7. The corresponding quantities
on the true triangulation are denoted by 7, x, etc.

The set (:)g of vertices 1s Nthe square grid of size ;Lg gNiven bNy (:)g = ZLZZQ. We

e of step sizes with hy = 2hy11. Consequently,

we obtain that the vertex sets fo_rm a hierarchy {(:)g}oq< satisfying ©;, C Q.

The corresponding hierarchy of triangulations {7;},, ., is given by the following
procedure. Put lines along the co-ordinate axes through the grid points of ©, resulting

choose an infinite sequence {hg}o

in a Cartesian square grid and insert diagonals through the pairs of points h; ( 73 )

and /iy ( ml— L ), m € Z. The arising triangles define the grid 7 (cf. Figure 1(a)-

(c)). The triangulations 7, are nested in a natural way. For any triangle A e 7,

there exist four sons {A;}K . € Ter1, satisfying U?:1 A; = A. The triangle A is the
<<

father of each A;, and hence, each triangle in 7, has a father in 7,_; provided ¢/ > 0.

2.2 Construction of the Fine Grid

Let us assume that the boundary of the domain €2 has to be resolved with a step width
iLgmaX and micro-structures being smaller can be neglected. Then, an intermediate
grid 7;° is defined by moving grid points & € O,,... of the reference grid 7. which
are close to the boundary, i.e., satisfying dist (&,09) < hy,,,, together with the
corresponding edges onto the physical boundary 9. This procedure defines a one-
to-one mapping ® : O, — 072 . The triangles of 77° are given by the condition:

A triangle with vertices A, B, (' belongs to 7;° . if and only if the triangle with
vertices @71 (A),®~! (B), @~ (C) belongs to 7,,,, -

Thus, any triangle A € 7, is linked to one and only one triangle A € oo
The corresponding mapping is denoted by ®* : 7, . — 77° . Since no confusion is
possible, we skip the superscript *.

The following procedure adapt illustrates, how the reference grid might be adapted
to the domain €2. The procedure adapt is called by

adapt (@gmx, Tlmaxs @5 O, Tfsax) ;
and is defined by

procedure adapt ((:), 7,9.0, 7') ;

Comment This routines generates the adapted triangulation 7 and the corres-

ponding set of nodal points O.
begin
O := 0;7:= 7 & := Identity,



for each triangle A of 7 do begin
A=9 (A),
if ANoJQ # 0 then begin
for : =1 to 3 do begin
Let e := 7, @, be the ith edge of A;
if eN 00 # () then begin
Ay = arg_min [l — x| for g € (1A}
Comment © and ® are updated in the following step;
if ||z, — ALl < ||zy — Ay then z, := A, else z) := A);
Comment 7 is updated in the following step;
=0 (7);

end end end end end.

The result of the procedure adapt applied to the triangulation 7,_, 1is depicted
in Figure 1(d).

Note that the algorithm adapt is not regarded as a subroutine in an implemen-
tation, but as a formal description of the explanations above. In order to obtain the
finite grid 7,,_,_which represents a proper triangulations of the domain {2, we neglect
all triangles, lying essentially outside of the domain.

Ty = {A €T | all vertices of A lie in Q} )

In view of this definition, it is clear, how to modify the procedure adapt such that
only a finite number of triangles appear. One should consider only those elements
of 7., which intersects the boundary and construct the corresponding elements of
.. and, then, extending the triangulation over the whole interior of the domain.
We skip the algorithmic details, since they will be discussed in a second part of the

paper.

2.3 Coarsening of the Fine Grid

Since the grid 77° is linked to the reference grid 7, by the mapping ®, we can use
the logical regularity of the reference grid to construct coarser grids 7,7, for £ < lax.
We define the mapping @, acting on triangles A € 7 by the following conditions.
Let {)N(i}1<.<3 denote the vertices of A and X; = ® ()N(Z) The triangle with vertices

{Xi}cica is denoted by A and we put A = @, (A) Since no confusion is possible,
we skip the index ¢ and simply write ®. The adapted triangulation 77° are given by
(cf. Figure 1(d)-(f))

=0 (h) = {A 07 (A) e )

Obviously, the grids 77° consist of infinitely many triangles and, hence, cannot be
used for practical computations. The coarser finite grids 7, and the corresponding



sets of grid points Oy, for { < /.« are defined recursively by

¢, 1s defined as above,

Oy,.., consists of all vertices of 7.

Assume that 741 and Oy are given. Then, 7, is defined by
T T = {A €7 AA € 7y @71 (A) is the father of 71 (A’)}

u{AeT;o ENE @gH:xEﬁ} (1)

and ©, 1s the set of all vertices of 7.

We will not go further into algorithmic details as, e.g., the application of relaxation
strategies to the grids in order to avoid too large angles in triangles, edge swapping,
the generation of coarse grid triangulations without generating the full fine grid,
etc., but refer to the announced second part of this paper. The main issue of this
paper lies in the definition of suitable finite element spaces for such grids and to
prove the approximation property. This is done in a more abstract setting, thus, the
construction presented in procedure adapt can be regarded as an illustration how
the abstract assumptions which are made in the following chapters can be satisfied.

3 Composite Finite Element Spaces on (2 = R?

In this chapter, we will introduce so-called Composite Finite Element Spaces on coars-
ened finite element grids. We will present the adaption of the uniform, virtual ref-
erence grid 7, . to the true triangulation 7,_. in a more general setting in order
to treat adaptation strategies, possibly different from that described in procedure
adapt, within the same framework. All finite element functions will be defined on
the grid 7, . We recall that in applications 7, usually will not be the finest grid
but can be viewed as the coarsest grid where standard refinement strategies apply.
On the coarser grids 7, for 0 </ < {},.x, we will use the nodal points to define grid
functions in a purely algebraic way. Then, these vectors are interpolated by using
standard finite element interpolation on 7, in order to define the corresponding grid
function on a finer level. Finally, we will get a grid function on 74__ , which will be
interpreted as a finite element function by standard prolongation.

The reason for separating the investigation of the case Q = R? from the case of a
bounded domain is to avoid as much as possible technicalities in the presentation of
the principal ideas.

We consider here the approximation of functions u € H? := H* (R?) by piecewise
linear functions. For this purpose, let R? be partitioned into a hierarchy of uniform
reference triangulations {7}, ..., as explained in the previous chapter. We do not
restrict ourself to the case that the grid 7,__  has to be generated by the procedure



adapt, but assume in an abstract way that ® : O, — O and ®* : 7 — 7°
transfer the reference grid onto the true triangulation. The correspondence of ® and
®* is the same as explained in the previous chapter. Since no confusion is possible,
we skip the superscript x. Since the domain 2 = R?, it is not necessary to restrict
77 to a finite triangulation 7,. Here, we identify 77° with 7, and skip the superscript
00.

The triangulations {7}, ,.,  are not physically nested. However, we will define
a logical hierarchy using the physical hierarchy of the reference grid. For this, we
have to introduce some notations.

3.1 Notations

Let H? () denote the usual Sobolev spaces as, e.g., defined in the book of Adams
(see [1]), equipped with the scalar product (-,), o and norm |[|-|[, o = 1/(+,"), q- The

seminorm containing only the derivatives of highest order is denoted by ||, .
We have to distinguish between a set of triangles and the domain defined by the
union of these triangles. For any set of triangles w, we define domw by

domw := U A.

AEw

Since no confusion is possible, we write Hvaw instead of Hvadomw. On level 7 + E,
? ?

each reference triangle A € 7, has 4% sons characterized by the conditions

Sonﬁ"'k (A) C Teyk
dom son’t* (A) = A.
Similarly, we define the sons of a triangle A € 7, on level £ + k as the set
sonsTH (A) == @ (Sonﬁ"'k (CI)_I (A)))
and as an abbreviation
o (A) = son™> (A). (2)

The sons of a triangle A are not nested in the sense that A = dom (Sonﬁ"'k (A)) is

true in general. A hierarchical structuring is given by o (A) of (2). For all triangles
A € 7y, we obtain

dom o (Sonﬁ"'k (A)) = domo (A)

and

doma (A') C doma (A), VA" € soniTF (A).

This situation is illustrated in Figure 2.



Figure 2: The left picture shows the domain dom (¢ (A)) of a triangle A € 7, o,
while the right one shows A.

The father ff_l_k (A7) of a triangle A" € 744 on coarser levels 7, is defined corre-
spondingly by
ff_l_k (A=A A'e Sonﬁ"'k (A). (3)

Furthermore, we have to associate sets of triangles with the corresponding vertices.
For any set of triangles w C 74, we define V by

V(w)=6,Na. (4)

3.2 Construction of Composite Finite Element Spaces

In order to define the finite element spaces on 7,, we first have to introduce grid

functions which are mappings 7, : @, — C. The space of grid functions on level ¢ is
denoted by C®«,
We introduce prolongation operators P/*!: C® — COu1 by

(P %) (o) = (I75) (2), Yo € Oy,
where the interpolation I;" : C®¢ — C° (R?) is defined by the conditions
[émw is affine on each A € 7, (5)
([émw) () = (z) Ve O,

The prolongation operator P, which associates to each grid function v, € C®¢ a grid

functions on level /.y, finally is defined by
PZ = Pémax_lpémax_21 . Pf‘l‘l

max max

The interpolation of Py, at level /.« describes the following finite element space
Sy = {v e H! (Rz) | 3y € CO .y = [é:;ngw}.

We will illustrate this definition by characterizing the basis functions of S,. For
simplicity we choose ¢ = {;,.x — 1. Let ;' denote the unit vector on 7, i.e.

1 ifv=yu,
vf(x»::{ f

0 otherwise,

9



for all nodal points z, € O,. The affine interpolant of ~, on the grid 7 is the standard
hat function ¢, () on the grid 7. This function ¢, (x) is now used to define the values
of the prolonged unit vector P~/ ie. |

(PZZ+17;) (l’) = Pu (l’), Va € ®g+1.

Finally, the linear interpolant of P/™'~} is the basis function of S; corresponding to
the nodal point x,. The situation is illustrated in Figure 3.

Figure 3: Basisfunction of Sy generated by interpolating the standard basis function
in the nodal points of the finer level.

Remark 1 If the mapping ® : O, — O, is the identily, then the space Sy is the
standard finite element space on the grid 7.
In any case, the spaces Sy are nested in the sense that S; C Sy for k > 7.

3.3 Localization of the Interpolation Process

By the linearity of P, it follows that, for all 4, € C®¢, we can write

(Prye) (x) = > ey (2) 3¢ (y) (6)

UISCY;

with some coefficients ¢, (x) which are independent of 4,. The mapping P, has to be
local in the sense that, for the computation of a value (FPpvy,) (), only values v, (y)
are needed which correspond to grid points y lying close to z. In order to give the
formal definition of this, we need the following

Definition 2 Let w C 74, ... The set of triangles on level I, which influence the
computation of {(Prys) (x)}xEV(w) in (6) is given by

Je(w) = {A €m [y € V(A),y1 #ype € V(W) ie, (@) 0}, (7)

10



This means that the computation of Py, in the vertices of the sons of a triangle
A € 7y on the finest level requires the values of 4, in the vertices of the influence set
Jo (o (A)) which is a subset of 7. The definition of J; (o (A)) is illustrated in Figure
4.

Figure 4: The set V (0 (Ayp)) consists of the points {A, B,C, My, My, Ms}. Since
My lies in Ay and M3 in Aj, the computation of the prolongation for points in
V (0 (Ag)) uses the points {A, B,C, D, E, F'}. Thus, 3, (0 (A)) is given by the union

Using this definition, the representation (6) can be localized as

Peye () = (Z( O ()7 (y), VeeVi(w). (8)

We require that the prolongation is local in the following sense.

Assumption 3 (a) We require that, for all A € 74, there are only finitely many
triangles A" € 7 such that 3, (o (A)) intersects A, i.e.,

sup sup #{A' € | ANT,(c(A) £ 0} < Crocar- (9)

0<0<lmax AET,

(b) Furthermore, the number of triangles in 3, (o (A’)) have to be bounded, i.e.,

sup  sup #J, (0 (A)) < . (10)

Osésémax AGTZ

Obviously, Assumptions (a) and (b) are implicit assumptions on the mapping 9.
If, e.g., ® is the identity, we obtain J; (0 (A)) = A, C3 = 1 and Clpear < C (ag), where
ap denotes the smallest angle of the triangulation 7.

11



Remark 4 Let v = I[" Py, and A € 7. Then the restriction v ldomo(a) @5 uniquely
determined by the values v (x) for @ € V(3,(0(A))). For example, v () = 0 for
all x € V(T4 (0 (A))) implies that v |qomo(a)= 0.

The following assumption controls the regularity of the grid and the distortion of
triangles by ®.

Assumption 5 (a) Fach triangle A = & (A) € 7 has the same orientation as
A€ Ty,

(b) he = supac, diam (A}

(¢) hy < Cdiam{A}, VA€, iec., 7 is quasi-uniform, while 7, is uniform,

(d) sup{diam S | S is a ball contained in A} > Chy, VA € 7,

(€) he > (1 + Crep) hoyr, with 1/2 < Crep <1

while all constants above are positive and independent of A and (.

(f) Let A € 7y and £ < m < lpax. We introduce a parameter which controls the
distortion of dom son™ ! (A} relative to a triangle A’ € 3, (o (A)) by

m

max dist (z, A)
dm (A) ;=  max pédomsonz” (&) (11)
" T AT (0(A)) diam A’ '

We assume that ® is such that for all A € 7,

Zmax -1

S da(A)<C (12)

is satisfied with a constant C independent of U, (1., and A.

Assumption 5(f) can be interpreted in the following way. Let v, € C®¢ denote
a grid function. The computation of 7, _. := Py, can be split by introducing local
intermediate grid function 7,11 for £ < m < l.x — 1 by the recursion

Ympr ()= 3 e (@) (y), Ve € V(Tma (0 (A))).
¥EV(Bin(e(4))

Condition (12) controls the distortion of the triangles of J,, (o (A)) compared with
its sons on the finer level. Later, this will be used in order to prove stability of
the interpolation process P;. Some relations to typical refinement strategies and
implications are concerned in the following

12



Lemma 6 (a) If the grid 7, was constructed by the procedure adapt, then, As-
sumption 5(f) is satisfied.

(b) Let A € 74 be a triangle with an edge e = X1 X5 corresponding to a boundary
piece er of class C*. Let the midpoint of e be projected onto er by a refinement
procedure resulting in x € er. Then, we obtain

dist (x, A) < Chj. (13)

This assumption implies (12), too.
(¢c) If Assumption 5(f), is satisfied, we get
|7 (A)]

A

<C

while for any set of triangles w, |w| denotes the area measure of domw.

Proof. By the procedure adapt each grid point (:)gmx is moved at most by a distance
of O(hy,,). Let A € 7 and ¢; an edge of A. Let M, denote the midpoint of this
edge. Then, we know that

dist (M;, A) = 0.

In view of (11), we have to estimate

max dist (z, A) = max dist (¢ (M;),A) = max dist (¢ (M;), P (&;)) < 2Chy,,,,

xedomsonﬁ'l'l(A) 1<45<3 1<45<3

and in view of the shape regularity of the triangles, i.e., Assumption 5(a)-(e), we get
for any A € 74

max dist (z, A)
dn(A) =  max ZEdomeeni’l(&) SO (1 4 Crog) o
i  AETm(o(A)) diam A’ - ref '

This implies that

brnax—1 brnax—1 C
Yo dn (A)< Y O+ Cp) e < :
m=4{ m=0 Cref

Estimate (13) is well known and proven by introducing a local coordinate system
with origin in the point # of er having maximal distance from e and expanding er as
a Taylor series about . Here, we skip the details. It follows that in this case

dp (A) < C(14+Crep)™™, VA e 1y
holds and, hence,
bmax brmax ¢
S S caten<
m={ £=0 ref



In order to prove statement (c), we proceed as follows. Let w, := A € 7, and
wey; = dom Sonﬁﬂ (A). In view of the coarsening process we know that wy; is a
polygon having a boundary which consists of at most 3 -2/ straight lines. Let &, be
defined by

Opr; = max dist (z,w
L+ CCwiy (2, wej-1) -

Therefore, we can estimate

oy 0
werjr| < e | +3 - 2=
Let 6 := {1« — {. Inductively, we obtain
3 §0—1 3 §0—1 ) 5€+4
|wémax| S |CU[| —I_ Z 2]hé+]5é+] < |A| —I_ Z 2‘7/,LZ-|—]—‘7
j=0 hf-l—]
3 50— 1( 9 ) 5Z-|— 3 5¢ 5Z-|—4
< |Al+ = L <|Al+ -h g
2 i ]Z;) 14 Che)?) hugy 2 Z]Z;) hoy;
since Chep > % implies that ﬁ < 1. Due to the assumption on the shape
ref

regularity of the triangles, we obtain

8¢
Wt | < 1A (1 + O de; (A)) < ClA[.

i=0

Remark 7 In Lemma 6 (a) and (b), it was shown that for two typical refinements
strategies, Assumption 5(f) is satisfied. In view of (12), it is clear that it is allowed to
do finitely many times (independent of lynax) any reasonable adaptation process, while
the sum (12) will still be bounded. This would include , e.g., edge swapping (see [3])
in the coarsening process or movement of coarse grid points during the coarsening
pProcess.

Remark 8 For the refinement strategies presented in Lemma 6, we have not used the
fact that condition (12) is local. This would be important, if in different regions of the
triangulations, the quantities d,, (A) have a different decreasing behaviour with respect
to m. Then, using d,, = supae, dn (A) instead of d,, (A) could possibly violate
condition (12). For example, swapping of edges could be allowed more often imposing
the local condition, provided it takes place in different parts of the triangulation.
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4 Approximation of Functions u € H* (R?)

In this chapter, we will develop the analysis of finite element approximation for func-
tions v € H* (R?*). Throughout this chapter, we will use the notation H' := H' ().
In Chapter 5 the case of a bounded domain will be discussed. Here, we will develop
an estimate of the approximation error in the form that, for all v € H? and ¢ € {0,1},
there exists a function v, € S; such that

v — WHt,R’Z < Ch?_t |U|2,R2 .

The error analysis is split into the following steps. For a function v € H?, we define
the restriction operator R, : C° — C®¢ by

(Rev) (2) :=v (), Vr € 0. (14)

The interpolation operator on the grid 7, was denoted by I;*!. We recall the definition
of the nodal values V (son]*A) corresponding to the sons of A on level m (see (4)).
Let v,, be given by

Oy = I PR,

max

Using the triangle inequality, we obtain

lo = vellopay < 2 (Hv —Vtllosay T D20 N0t — veHg,A/)

Al€a(A)

< 21|lv—v 2 + max v —0 :1;212,
< (H ol T gy o= o) @OF 15,

For the first term on the right side above standard error estimates apply. We will
show that the pointwise errors, appearing in the second term of the right hand side
above, can be estimated by Chy HUHSZ(U(A)) and hence the approximation property in
L? follows. The stability of the interpolation process in H! plays the key role for the
H'-estimate. We will show that

|Uémax|1 S C |UZ|1

is satisfied under moderate assumptions on the refinement (resp. coarsening) process.
In combination with the £?-estimate and the inverse inequality the approximation
property in H* follows.

In this light, we will assume throughout this and the following chapters that
Assumptions 3 and 5 are satisfied.

We begin to estimate the approximation quality of S; in £2.

Lemma 9 Let u € H? and v, € C®¢ be the interpolating grid function of u:

ve (@) =u(z), Vo € Oy
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Let v, = Py be the corresponding grid function on the finest level.
Then, for all A € 7y, the pointwise estimate,

Vtwax () = w ()] < Cheluly 5, 50a) Ve e Vi(o(A)) (15)
is satisfied.

Proof. We define the intermediate grid function 7,41 € C®n+1 arising by (m + 1 — ()-

times interpolating ~;:
Vg1 1= PP Pty

To compute the value v,,41 (2) for a nodal point « € 0,11, one has to determine a

triangle A™ € 7,, with € A™. The vertices of A™ are denoted by {y]}1<]<3. Then
3
Yt (@) = 30 (2) Y (1)
7=1
with some coefficients o (@) satisfying
aj(z) > 0, 1<j<3, (16)

;ozj (z) = L

Hence, we obtain

NEE

aj () ym (yj) — v (@)

Yt (2) —u (@) =

1

ECH
Il

IA
]

aj () (ym (y;) —u(y;))| +

ECH
Il

(SRl

<

TN

Z_: ;) —u(x)].

aj (l’)) max [ym (y7) = (y;)]

71=1

The linear interpolant w;,,; of w on A™ in the vertices {y; } coincides with 2?21 a; (x)u(y;).
Using standard interpolation results, we get (see [4, Theorem 3.1.5])

3

2oy (@)uly;) —u(z)

i=1

< max wint (2) — ()] < Chy, |tly om - (17)

Together, we obtain

s (@) —u @) < max |ym (y;) — 1w (y7)] + Cha futl s -

16



Let yp := argmaxi<j<s |ym (y;) —u(y;)| and yp € A"t € 7,_;. The vertices of
A™= ! are denoted by {Z]‘}1<j<3. Using the same technique as before we get

1 (2) = u(@)] < max -1 (27) = w ()] + Oy fuly amor + Chon ftely o

Since v, () = u (x) for all € Oy, we get inductively

Lrnax—1
|Vémax (x) —u (x)| S C Z hm |u|2,Am :
m=4{
It follows that
frax C

Ve () —u ()] < C |u|27jz(g(A)) Z hm < héc—f |u|27jz(g(A)) ’ Ve e V(o(A))
m=F re

with C).s defined in Assumption 5. B
Using this Lemma, we easily obtain the £?-estimate of the approximation of a
H?-function by interpolation.

Theorem 10 Let v € H?. Then, there exists a function vy € Sy such that
[0 = vellg gz < CClocath [V], g2
is satisfied.
Proof. Let v € H? and v, denote the interpolating grid function:
e () =v(x), Vo € 0,. (18)

In order to define the corresponding finite element function, we first have to prolong
~¢ onto the finest grid level:

Vemax = Peye (19)

and then to interpolate: v, := I;™ ~,. . The global norm can be decomposed into
local norms defined over the patches domo (A) :

|v — WH(Q),R2 = Z v — WH(Z),U(A) :
AET@

In the following we will use the convention that

Yo=Y

JEA Jisupp@; NAZD

This means that {7 € A} denotes the indices of the vertices of A. We obtain

v =vllopny = 2 llv—oellga
Aleg(A)
2 2
< 2 ) o= D vl)ei(a)] 2 >0 D0 (v(xg) —vel(x;) e, (x)
A'Ea(a) jeas 0l Aeo(d)||ied! 0.A”

17



The function Y ;car v (2;) ; () denotes the linear interpolant of v on A’. Therefore
we know (see [7, Theorem 8.4.4]) that

S Ch?max |U |2,A/
0,A’

v — ZA:/U(%)% ()

is fulfilled. Using the fact that vy (2) = 4., (¢) for all nodal points on the finest
level (see (19)) and the pointwise estimate of the Lemma above, we conclude with

lo—vellgoay < 2 20 Chy Jobar+2 30 max by, (x5) = v (@) 1150
ATEa(A) ares(a) '€
< 20%h; |U|§,0(A) +2 ) Ch |U|§,3Z(U(A)) Hng,A'
Alea(A)
2 2 2
= 20y, |vl5 oa) T 20707 01550 0a) 100 (a)
< C?hy |U|§,3Z(U(A)) :

For the last estimate we have used Lemma 6 (c). The global estimate follows from
2 2 2
[v — WHO,R2 = Z [v — WHO,U(A) < 02@ Z |U|2,3,3(0(A))
A€ty A€Ty
< Czclzocalh? |U|§,R2 :

[ |
The estimate of the error in the H' seminorm is more involved. The reason is the
following. Let ~vpy1 = Pf"’lw. Let © € Oy31 and © € A € 75. Then, we obtain

Y ()= D ey (@) (y),

yEvertex of A

and in view of (16), we obtain

Verr (2)] < max e (y).

~ yEvertex of A

Thus, the prolongation operator Py is stable in the maximum norm with constant
1. For the gradients of the interpolation 7,4y this is not true. For j € {0,1}, let
Ve = Ij3oyey; and A € sonsT (A). N (A) denotes the set of neighbouring triangles
of A. We will prove the representation

Vo o= Y. eaaVorla,
AeN(A)ua

where the singular values of the 2 x 2 matrices ¢,, 4 are smaller than one and

> exr A = 1. Unfortunately, an estimate of the form
AeN(ajua

Vo [arfl < max [Voe [4]]
AeN(A)uA

18



is not true for all grid functions v, € C®. Under reasonable assumption we can
still prove stability of P, in the maximum norm, but, since it is rather technical, we
postpone the proof to the Appendix. The assertion is stated in the following

Lemma 11 For any { and any grid function v, € C®¢, the estimate

\V% S m S Emax

PR P Py <0

int
L W‘LR? ’

is satisfied with a constant independent of { and ~,, t.e., the interpolation process P,
is stable in H'.

Using this Lemma, the proof of the approximation property of Sy is straightfor-
ward.

Theorem 12 Let v € H?. Then, there is a function p € Sy such that
[0 = plyre < Chelvlyge -

Proof. For a function v € H?, we set v, := éﬁiXPmRmv (cf. (14)). We will show
that the interpolant p = v, has the asserted approximation property. We know that

|U - UZ|17R2 S |U - Uémax|17R2 —I_ |U€ - Uémax|17R2
Zmax_l

< v Wmax|1,R2 + Z |V — Um+1|1,R2 : (20)

m=£{

Since vy, is the interpolant of v on the grid 7, , we can apply the standard finite
element estimate (see e.g. [7, Theorem 8.4.4]) and obtain

|U - Uémax|17R2 S Chémax |rlj|271:{2 N

We know that &,y := v, — v,41 belongs to S,41. Let v,41 € C®#+ be the
corresponding grid function:

Ym+1 (x) = (Um - Um-l-l) (1’), Vo € 041
and 6%, := I'™ 4,41 the interpolant on the grid 7,,41. Using Lemma 11, we obtain

St < C (21)

int
57”"‘1 ‘1,R2 )

We know that '
5;;33_1 (x) =0, Vz € 0,,.

Similarly as in the proof of Lemma 9, we will show that for each triangle A € 7, the
estimate

5 ()] < Chn 0]y 5,000y - Yo €V (sont! (A)) (22)
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holds. For this, let @ € V (son*! (A)). Then

5ty (2)] = v (2) = Vg (2)] = [oe (2) = 0 (2)]

and (22) follows from Lemma 9. Since the triangulation 7, was assumed to be quasi-
uniform, we obtain for each A € 7., :

int -1 int
A,GSIOE%E&(A) HV(Sm+1 |A/ < Chm+1 5m+1H (sonm+1(A))
o :
< Cm 025,00 < Clvlas,oay -

It follows that

int

wnt ‘
m+1 1,A

5ﬁ+1‘j7R2 = Z Z

A€ETm AlgsonT! (A)

S D S N

AETH A'Esonm+1 (A)

|A]

< Y C |v|23 ‘dlomsonm"'1 (A)‘
AETH 7
< CClocalh |U|2 JR2 - (23)

For the last estimate, we have used Lemma 6 (c). Combining (20), (21), and (23),
we get

Lrnax—1
|U - UZ|1,R2 S |U - Uémax|17R2 —I_ Z |Um - Um+1|1,R2
m=£{
Zmax_l
S Chmax |U|2,R2 ‘I‘ CClocal |U|2,R2 Z hm
m=£{
Clocal
< C he lv
Cref 14 | |27R2 9

yielding the proof. B

5 Composite Finite Element Spaces on Bounded

Domains
In this chapter, we will define Composite Finite Element Spaces S; on bounded do-
mains. We will prove that, for any function v € H? (), there is a function u, such

that
Ju = well,q < Chi™ |lull,q
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is satisfied for ¢t € {0,1}. The definition of the spaces will rely on a proper restriction
of the adapted grids {7,} which contains infinitely many triangles to the domain .

Let 7, denote the reference square grid triangulation as explained in Chapter 2.
We recall that the mapping ®, defined in Chapter 3, adapts the grid points and
reference grid 7, onto the intermediate grid points ©7° and triangulation 7;° .
The triangulation 7, was defined by restricting 7;° to the finite domain 2. The
coarser triangualtion 7, were constructed by using the logical structure of the reference
triangulation (see (1)). The domains corresponding to the triangulation 7, are given
by

Q) :=dom .

We assume here for simplicity that @ = €, . . Since we assumed that 7, is suf-
ficiently close to ), we can treat the general case, namely, that Q # Q,_ . with the
standard theory of finite elements on domains with curved boundary.

Since the extremal points of the polygon €2, are a subset of O, condition (1)
guarantees that

QOQQIQ---QQZID&X:Q- (24)

The finite element space is again defined by a suitable prolongation of grid functions.
In the case of bounded domains, the space of grid functions consists of all mappings
Y10, = C,ie., v € C%, where O, is now a finite set. The prolongation operator
Pt CO — CO41 s given by

Pt (x) = 1"y (x) V€O, (25)
where ;" is the standard finite element interpolation on the (finite) grid 7,. Due to
condition (1), it is guaranteed that for all @ € O, there exists a triangle A € 7
such that € A. Hence, the interpolation process (25) is well defined. Again, we
set Py := Pfr;“:;‘_lpfj:x"__; -+« P, The space of composite finite elements on bounded
domains is defined by

Sy = {v R* = C |3y c CO . = [é”tpgw}.
Remark 13 The dimension of the space S, is given by
dim S, = #0,.

In the following, we will show that for every function in H? (1), there exists
a function in Sy which satisfies the asymptotic approximation property. This can
easily be done by an extension argument and applying the theorems of Chapter 4.
The following theorem concerns the existence of an extension operator for functions

ue H*(Q).

21



Theorem 14 Let Q be a domain with Lipschitz boundary. Then, there exists an
extension operator £ and a constant C independent of [ with the property that for all
0 </l <lpax andu € H*(Q) :

Uerr : = Eu:Qy— C,

Uegt | Q=1u |Qa

[weatllsn, < Cllullq-

Proof. The proof of this theorem is given in the book of Stein [14, p.181, Theorem
5.

The extension theorem is used to construct a function in S, having the required
approximation property.

Theorem 15 Let Q be a domain with Lipschitz boundary and v € H* (Q). Then,
there exists a function u, € Sy such that

lu = wellq < Ch™" lull,q
is satisfied fort € {0,1}.

Proof. Let u € H?(Q) and the extension u.,; defined as explained above. Since the
inclusion (24) holds, we can define a grid function v, € C®¢ by

Ve (l’) = Uewt (x)7 VY - @g
and uy = Z;ZXPZW the corresponding finite element function. All estimates in the
case of ) = R? which have been derived in the previous chapter were local in the
sense that the error on patch o (A) was bounded by the H*—seminorm in a local

neighbourhood of A. If we replace o (A) by o (A) N Q... the theorems of Chapter
4 directly apply yielding

Huel’t - uZHLQ S Ch?_t Huel’tHZ,ﬂg

for t € {0,1}. Using the fact that u. |o= v |q and the continuity of the extension
operator, we get
lu = well, o < ChE lull,gq -

6 Final Remarks

In this paper, we have developed Composite Finite Elements in two dimensions.
However, the modification of procedure adapt to the case of uniform tetrahedral
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partitionings of R? is obvious, where the analysis of the approximation behaviour
can be carried over directly.

On bounded domains, we have considered the approximation of functions in H?
which corresponds to the case of elliptic boundary value problems of second order
with Neuman boundary conditions. Dirichlet boundary conditions can be treated
by modifying the bilinear form using a penalty term. The details can be found in
[8]. The construction of composite finite element spaces satisfying Dirichlet boundary
conditions requires a slight modification of the prolongation operators, to ensure that
the trial spaces are conforming subspaces of H} ()N H? (). The values of prolonged
grid functions at the boundary have to be set to zero. Similiar modifications are
necessary, if interfaces or changing boundary conditions are present. The analysis of
the approximation property has to be modified in these cases and will be presented
in a forthcoming paper.

After having computed the stiffness matrix A, on the finest grid 7,__ . it is easy
to derive coarser discretizations by means of the Galerkin product

Ag= (P) A P, (26)

where (Pf"'l)* denotes the adjoint of P! with respect to a properly weighted Eu-
clidean scalar product. Since the prolongations were assumed to be local, the com-
plexity of computing the sequence of matrices {As}, ., , which is needed, e.g.,

in a multi-grid process, is O (h;jax) arithmetical operations. However, the formula
(26) is not the only way to compute A,. We state that it is possible to compute the
matrix A, by a complexity of O (hz2 + Mgmx), where M, . denotes the numbers
of grid points of O, . which have been moved by adapting the reference grid 7.,
to the physical domain. Typically M, .= O (hé_mlax) is satisfied. The algorithmic
details, together with a discussion of the complexity, is presented in the announced
second part of this paper.

A On the Stability Condition of the Prolongation
Operator in H'

For the proof of the approximation property we have assumed that

int int

Yy, € C®* (27)

,<C

‘1,R2 ’

is satisfied. We will proof this condition under Assumption 5 of Chapter 2. Since some
technicalities will arise in this chapter, we will outline the principal ideas. Firstly,
we will investigate, how piecewise linear functions on a grid 7, are distorted by the
interpolation process defined by F,. Then, in a second step, we will estimate the

int

growth of the gradients VI;™ Py, relative to the gradients of I;"’v, dependent on
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the distortion of the nodal points relative to the reference grid. Finally, in a third
step, we will use Assumption 5 to obtain an estimate of the form (27).
We have to introduce some notations, namely, the neighbours of a triangle A € 7
by
N (A):={A" e | A"# A and A’ has a common edge with A}.

We recall the definition of the father of a triangle on coarser levels (see (3)). Let a
grid function v, € C®¢ be given and v, () := (I;"'v,) (z) denote the linear interpolant
on 7,. We further define

P e
Vitj (51/') = (Q#}szf_lpzfﬁ_% T PfHW) (51/') (28)

The gradient of vyy; can be expressed by the gradients of vey;_;. The details are in
the following

Lemma 16 Let A’ € 50n§i§_1 (A). Then, the gradient of vey; can be written as

Vo [a= Ve [a + Y0 eaa (Voo [z =Vuela), (29)
AeN(A)

where €, o are 2 X 2 matrices of rank smaller than or equal to one. If A" and A have

disjoint interior, then €5, x = 0. The largest singular value p (GA/ A) can be estimated

as
max  dist (z,A)

wEsonﬁ‘H (A)
diam A

Proof. The proof of the Lemma is elementary but technical and can be found in [9,
Appendix|. W

In the following, we will use the Lemma above to estimate the gradients of pro-
longed grid functions. We recall the definition of the influence set J, (see (7)) and
representation formula (8). For given v, € C®¢ let vy, ; be defined by (28) and
A" € 744j. According to the representation formula (29), the gradients Vuyy; |ar can

plearn) <C

be expressed as a linear combination of the gradients of Vv, ;_1 on the father triangle

A= ffj_’j_l (A’) and the neighbouring triangles by (29). For a triangle A" € 74, we

define those neighbours A € A (A) which satisfy ¢4, 4 # 0 :
Ny ={Aen ()t #0}.
The triangles which are used to compute Vv, ; are given by
C(A) = AU AT (A).
Hence, (29) can be rewritten as

Vo [ar= Ve |a + Z GZ,A (Voe |4 =Vue|a). (30)
Aen(ar)

This representation will be used to estimate Vuyyq [ar. The details are in the following
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Theorem 17 We use the notation of Lemma 16. For A € 7y and { < m < lax, let
dim (A) be defined by (11). The function vy was given by (28). For A" € o (A), the

gradients of vy, on the finest level can be estimated as

Zmax_l
[VVtae larll < T (1 4 6d, (&) nax Ve 5]l (31)
m=£{ o

Proof. Let A € 7, and A’ € son‘t! (A). Using (29), we obtain

IVoelall < 1+ 3 plehs) | IVoer all+ X pleans) Vot [4ll

Aenr (A AeN(A)
< 1+6 max ,0( A) max ||Vve_y |AH
Aenr(ar) Aec(a)

Now, let A’ € o (A). Using Lemma 16, we get by induction
V0o arll < (L 6dpp—1 (A)) max || Vog,, -1 |5l
Aec(a’

< (1 Oyt (A) (1 + 62 (A)) max  max || Vog,, 1|5
AEC(A’) AEC(A)

Lrnax—1
< 146d, (A)) max |[|Voe,..—1 [all s
I (146 (2))  max [V s

since the iterated maxima appearing in the induction, namely

max max - --

Aec(A) geC(A) ’

are by definition the maximum over a subset of the influence set J, (o (A)). W
In view of (31), we will assume an estimate of the form

IVvers [arll < Coj |, max - [[Voe || (32)
with A’ € son’™ (A) to estimate the H'-seminorm of vy ;. The details are in the

following
Lemma 18 Let us assume that (32) is true. Then,
|W+J‘|1,son§+ﬂ(A) < CCy, |W|1,3,3(0(A))

is satisfied.
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Proof. Let A € 7, and consider the triangles of Sonﬁﬂ (A). Then, we obtain

ekl ot a) = Yoo Vomilia = X Ve a4
A’Esonﬁ‘“ (A) A’Esonﬁ‘“ (A)
2
2 ltg
< Cp; ( max ||V |AH) ‘domsoné (A)‘
" \AeT(o(A))
< CZ]‘ ‘domsonﬁﬂ (A)‘ Z |V, |AH2
AeT,(0(A))
4 1
= Céz,j ‘domsonﬁﬂ (A)‘ Z X |Ug|iA.
Ae(o(A))
Due to the quasi-uniformity of the grid, we know that
L ¢! VA € 3, (0 (A))
N ~ T ¢\ O .
A Al

. . . . dom son®T7 (A
In Lemma 6, it was shown that Assumption 5 implies that % < C. Con-

sequently, we obtain
|UZ+]|175071§+J(A) < CCy; |W|1,3,3(U(A))-

|
An immediate consequence of this Lemma is the global estimate.

Theorem 19 Let v, € C® be given and vy, vey; be defined by (28). Then,

verjly g < CClocatCeyj o2l g - (33)

Proof. This follows directly from Lemma 18 with the constant Cj,..; defined by (9).
|
Obviously, a sufficient condition for an estimate of the form

[verjly gz < C lvely ro

with a constant (' independent of ¢ and j is that Cy; does not depend on ¢ and ;.
We will show that Assumption 5 implies that Cy; < C. Condition (5) of Assumption
5 reads

S d(A) < C. (34)
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Let A € 7. Hence,

Lrnax—1 Lrnax—1 X
I (1+6d,(A) < exp{ log (1 —|—6Cdg)}

£=0

Zmax_l R
< exp{ 6Cdg} < 897,

£=0

Condition (34) was guaranteed for the refinement strategies presented in Lemma 6 and
Remark 7, and thus, result in the stability estimate of Theorem 19 and finally, in the
required approximation property as has been worked out in the previous chapters.
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