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SUMMARY

In this paper we present cubature methods for the approximation of surface integrals
arising from Galerkin discretizations of 3-d boundary integral equations. This numerical
integrator is fully implicit in the sense that the form of the kernel function, the surface
parametrization, the trial and test space, and the order of the singularity of the kernel
function is not used explicitly. Different kernels can be treated by just replacing the
subroutine which evalutes the kernel function in certain surface points.

Furthermore, the implementation of the integrator is relatively easy since it can be
checked on simple test kernels as, e.g., polynomials where the exact integrals are available.

We discuss the convergence of the cubature methods together with a stability and
consistency analysis in order to determine the minimal cubature orders a priori.

INTRODUCTION

In this paper we will discuss Galerkin discretizations of Fredholm integral equations
on two-dimensional surfaces. From the theoretical point of view as, e.g., convergence,
stability, and symmetry behaviour, the Galerkin method is advantageous compared with
collocation or Nystrom discretizations. In practice, however, especially in the case of 2-d
surfaces, the collocation or Nystrom method is usually implemented. The only reason
for this is that, for Galerkin discretizations, the elements of the system matrix are given
by two two-dimensional integrations over pairs of surface patches which, in particular,
contain a kernel function with a characteristic singular and near-singular behaviour.

In our paper we will present efficient cubature methods for the approximation of that
kind of integrals. (Note that in more than one dimension the terminus quadrature is
replaced by cubature). These integrators are fully automatic, which means, that they
neither depend on the explicit form of the kernel function nor on the choice of the trial



space and surface parametrization. Different kernels can be treated by just replacing the
subroutine which evaluates the kernel function at certain surface points while the numer-
ical integrator has not to be modified. In contrast to analytic and semi-analytic methods
such kind of strategies have the advantage that they are relatively easy to implement
and behave robustly with respect to cancellation errors. They can be tested isolated for
polynomial test kernel where the exact solution is available.

The cubature strategy is based on the following idea. First all singular integrals are
transformed into integrals with analytic integrands by employing regularizing coordinate
transforms. These coordinate transforms were first introduced in [12] and [4] where they
were combined with semi-analytic optimization techniques based on expansions of the ker-
nel function and surface parametrization. A fully implicit treatment of such integrals for
special applications as wavelets and hp-methods were presented in [11]. Here, we present
a modified version of these coordinate transforms for the h-version of the Galerkin BEM
together with an error analysis. Furthermore, the results of a stability and consistency
analysis will be presented which allow to choose the order of integration minimally. We
emphasize the importance of a proper consistency analysis for this kind of problem, since
the bottleneck in any 3-d implementation of Galerkin discretizations of boundary integrals
equations is the evaluation of the four dimensional integrals defining the matrix entries.
Only slight over-integration usually will lead to an increase of the CPU-time by orders
of magnitude. Such a stability and consistency analysis for the regular integrals was pre-
sented in [13]. Here, we will focus on the singular and near-singular integrals which can
be regarded as Part II of the mentioned paper [13].

Due the limited space in these proceedings the proofs are only sketched. We concen-
trate here on the practical point of view, i.e., present the cubature techniques such that
they can be implemented in a straightforward manner. The full mathematical analysis
and implementation details are worked out in [9].

BOUNDARY INTEGRAL EQUATIONS

We consider the variational formulation of Fredholm integral equations. Let I' be a
piecewise analytic, orientable Lipschitz surface of a bounded domain  C R?. Let W*# (T")
denote the usual Sobolev space as defined, e.g., in the book of Adams [1]. The norm of
WP is denoted by ], and the seminorm containing only the highest derivatives by

[, For p =2 we write H* instead of W*? and |||, instead of |||, ,-
For given right-hand side f € H*', we are seeking u € H*' (I') such that

(v, Mu)y + (v, Kqu)g = (v, Ao f)y + (v, K2 f )y Yo e H* (1) (1)

where (-, -), denotes the L?-scalar product. The associated operators A\; I+ K; are assumed
to be of order 2s; and explicitly given by

Kiu = pf/FkZ (x,y)u(y)dy

where the integral has to be understood in the finite part sense (see [16]) and k; denotes
the kernel functions. The functions A; : [' — IR are assumed to be piecewise constant on



smooth patches of the surface and may jump across corners and edges. The regularity
exponent s for the right-hand side should be such that Ao f+ Ko f € H™' ie., 8] = —s1—
255. The left-hand side of (1) defines the bilinear forms a, ay,ay : H** (I') x H** (I') — C

as follows

ay (Ua U) L= (Uv )‘lu)o )
az (u,v) : = (v, Kju),, (2)
a : = a1+ as.

The right-hand side defines the functionals F, Fy, Iy : H* — C:

Fy (U) = (Uv)‘Qf)O?
Fy(v) = (v, Kyf),,
F = F1 + FQ.

Remark 1 The order of the operator ;1 + K; can be negative which implies in particular

Throughout this paper we assume that the bilinear form a is continuous
ja (u, o) < Callull,, Mol > Vu,v e H?(T) (3)

and elliptic
2 2 st
la (w, w)l| = Ceflully, = Cellully  Vue H*(T) (4)

with suitable ¢ < s;. For simplicity, we assume that (1) has a unique solution for every f €

H* (TI'). Otherwise, one has to introduce suitable normalizations or to restrict H* (I') to

some quotient space. Then, the theory presented below directly applies to these situations.
The following model problem illustrates the abstract setting.

Example 2 Consider the Laplace equation in the exterior of the bounded domain Q C IR®.

Au =0, in R\ Q,
g—;‘ =f, on ' := 09, (5)
u(z) =0, |lz]] = oo,

where n (x) denotes the normal in x € T' pointing into Q and 9/0n := (n,V-). Let the
bilinear form a : H'/? x H'? — R be defined by

a(u,v) ::/Fv(:zj)p.f./lﬂu(y)

and the functional of the right-hand side by

o 9 1
On, Ony |lw — yl|

dydx

P (o) =50l = [ 0@t [ £0) g

Let [ be such that I' € (Hl/Q/lR)/. Then the problem of finding u € H'? /R such that
!
a(u,v)=F(v), VYve (H'?R)

has a unique solution. This function u is the trace of the solution of (5).



GALERKIN BOUNDARY ELEMENT METHODS

Let © be a three-dimensional domain with piecewise analytic, orientable Lipschitz
surface I'. We assume that I" is a smooth image of an interpolating polyhedron. To be
more concrete, let T' be a surface of a polyhedron consisting of plane faces fj such that
there exists a bijective mapping n : I' — I’ with the following properties.

1. n 1s bi-Lipschitz continuous, i.e.,

Cillz =gl <ln(@) —n@l < Cellz —gll,  VEgel,

2. there exists plane extensions f; of fj, le., fj CcC fj where n |1:] can be extended
analytically.

In this paper we restrict the presentation to triangular elements. Generalizations to
the quadrilateral case are straightforward by using the techniques presented in [15] and

[14]. Let 7 := {]&’1, K, ..., RN} denote a grid of the surface I' consisting of plane triangles
having the property that

= U [{’7

Ker
KNK =0, VK,K' crwith K # K’ (6)
This grid induces a grid on the true surface I' by 7 := {77 ([{’) }f"e*' Note that the

transformation 7 is independent of the grid 7.

In order to define finite element spaces on I', we lift polynomial spaces on a reference
element onto the surface elements. In this light, we define, for a domain D C R?, the
space of polynomials of total degree p by

I, (D) := {v (x) = Z cqx” for some ¢, € € } ,
lo|<p

where a € INZ is a multi-index and |a| denotes the I'-norm.
For triangular elements we employ the master element

KO={t e RL|0<iy <1,0< i < iy}

and the polynomials of degree p are given by II,, (K?). The transformation of K onto K
is affine linear and denoted by s while the mapping on the true surface element is given
by kx :=n o rg. The space I, (K°) is lifted onto the surface patch K by rx :

I, (K):=={u: K - € |uong €I, (K°)}. (7)
The global finite element space is given by

Vip ={u€C*(I)|VK € 71 u |ge II, (K)} . (8)



The Galerkin boundary element discretization to (1) is characterized by replacing the
infinite dimensional Sobolev spaces H*' by the finite dimensional subspace Vj, ,: for given
f € H*\, we are seeking ug € Vi, such that

a(ug,v) = F(v), Yo € Vip. (9)

In this paper we are only considering conforming methods, i.e., the exponent k in (8) has
to be chosen such that Vj , C H*'.

In order to compute the solution to problem (9), we introduce a basis {p;i}, ;«n of
Vip- Any function u € V;, has a unique basis representation

= iuz’% ()

For 1 <1,5 < N, let the system matrix K and the vector of the right-hand side be defined
by

Ki; : =alpi), (10)
Fi .= F(g@z) .
Then the solution of
KUG =F

is linked to the solution of (9) by

x) = EUG,M ()

For the computation of the matrix K and right-hand side F, integrals over (pairs
of ) surface patches have to be evaluated. This can be done exactly only in very special
situations. In general, one has to use numerical cubature techniques to approximates the
coefficients. The effect of numerical integration is considered as an approximation of the
continuous (bi-)linear forms. The bilinear forms @, @, and @, are defined by replacing the
integrals by numerical cubature, while the deﬁmtlon of I, Iy and I, is analogously. Note
that these approximate (bi- )hnear forms have to be deﬁned only on the discrete level, i.e.,
for functions in Vj, and not necessarily for functions in H*' (I).

The Galerkin discretization including numerical cubature is given by seeking u¢g € Vi,
such that )

a(tg,v)=F(v), Yvé& Vg,

In the next section we will present families of cubature methods which approximates
the continuous (bi-)linear forms to any desired accuracy. Then, we will estimate the
cubature error which, in combination with a stability and consistency analysis, enables
us to determine the minimal cubature orders a priori.



KERNEL PROPERTIES OF BOUNDARY INTEGRAL EQUATIONS

Before presenting the cubature methods we have to collect the characteristic proper-
ties of the kernel functions. The kernel functions are suitable Gateau derivatives of the
fundamental solution of the underlying boundary value problem. The following properties
are satisfied for all common kernels which arise by transforming elliptic boundary value
problems in R? into integral equations (see [16]). We formulate these conditions in a way
which will turn out to be convenient for the cubature analysis. We assume that & (z,y)
can be written in the form

Fy) = Y s (o) L

1)
o+t (
loe|>t |y — |
with functions s, : I' x I' = € being analytic on pairs of smooth surface patches of T
The integer o denotes the order of the singularity and we assume that ¢ < 3 holds. For
o < 2, we assume that the kernel is anti-symmetric, i.e.,

(y — )"
ly — ||

k() +k(y,z)= Y Sa(x,y)

lal>t+1

(12)

This condition is stronger than the common Tricomi-Giraud-Mikhlin condition and implies
that the kernel is Cauchy-singular, i.e.,

lim k(x,y) f(y)dy

e=0JK\B. (=)

exists for all elements K € 7, Lipschitz-continuous functions f € C%' (K), and z € T\OK.

For o = 3, the kernel function is called hyper-singular and an appropriate regulariza-
tion has to be performed on the continuous level. We assume that the bilinear form ay of
(2) can be rewritten as follows

mi m2

a (,0) =35 [ [ D:[o] (oo y) K () Dy ] 2, ) dyd

=0 5=0
with my 9 € {0,1}. The operators D, are of order i satisfying
1Di [w] (z, y)llo < C llwll;,

while the kernel functions &; %7 satisfy (11) and (12) with ¢} < 2. Furthermore, through-
out the paper, we assume the relations ;% +1 + 7 < 3 and s; < m; < p. An analogous
representation has to be employed if the kernel function &y is hyper-singular. For weakly

or Cauchy singular kernels we put kg = k and my = my = 0.



Example 3 The bilinear form a (u,v) of example (2) can be rewritten as follows
a(u0) = [ [ Dilo] (o) D [ () 0 (2, ) dyda
with Dy [w] (2,9 == (w0 (y) — w (2)) / |}y — ] and

0? 1

k" (l',y) = Hy_ tz an an Hl' _ yH
alUTly

The following representation is proved in [10])

(,0) = = [ (=) 2 Vule) [ 00) X V) 0 (4) dda,

Using this kind of regularization it is natural to assume in the following that the
bilinear form has a representation with a Cauchy-singular kernel function (o < 2) while,
possibly, the functions u and v have to replaced by D, [-]. We state that for much more
general kernel functions such representation are available, too (see [10], [6], [7], [5], [3])-
Another approach is presented in [8] which can be treated by a slight modification of the
cubature techniques below.

We are now ready for the presentation of the cubature techniques.

CUBATURE TECHNIQUES FOR GALERKIN DISCRETIZATIONS

In view of the previous section, the (bi-) linear forms can be decomposed as follows

ar (u,v) = Y ag (u,v) az (u,v) = b A, K, (U,v)
Ker KexKyerxr
Fy (U) = ) Fx (U) Fy (U) = > FKmey (U)
Ker Ky xKyerxr
with
ar (u,0) := Jg Muode,  ag,xk, (w,0) = 1lm Ji g Az, y) by (e, y) dyde,
llz—yl|>e
Fre (v) == [ Ao foda, Iy (v) = lir% mexKy B (2, y) k2 (2, y) dydz.
llz—yl|>e

The functions A and B are given by A (x,y) = Dy [u] (z,y) D2 [v] (z,y) and B (z,y) :=
D5 [f] (x,y) D4 [v] (2, y) with the operators D; of order m; defined in the previous section.
The kernel functions k; are assumed to satisfy the assumptions of the previous section
with o < 2.

In the first part we will present coordinate transforms which render the integrands
above analytic such that they can be treated by standard cubature methods. We empha-
size that these transformations does not contain any approximation process.

The integrands of the integrals corresponding to ax and Fy are analytic and can be
approximated by standard techniques. In the following we will concentrate on the integrals
as and F;,. Here, the integrands have a singular, near-singular, or regular behaviour which
requires different transformations. The following four basis cases have to be distinguished.



1. “Identical Panels”: K, = K.
2. “Common Edge”: K, and K, share exactly an edge.
3. “Common Vertex”: K, and K, share exactly a vertex.

4. “Regular Case”: K, and K, are disjoint.

Condition (6) does not guarantee that every pair K, K, € 7 satisfies one of the four
cases listed above. However, it is clear that one of the panels K,, K, can be subdi-
vided such that the arising sub-panels satisfy one of the conditions above. The methods
presented below then have to be applied to the sub-panels. Hence, we assume for the
following that any pair of panels K, x K, satisfies one and only one of the conditions
above.

In the following we will discuss these four cases in detail.

THE CASE OF IDENTICAL PANELS

Here, we consider integrals of the type

L == 1lim H(z,y)k(z,y)dydz
e=0 JKxK ( 7y) ( 7y) Y
llz—ylI>e
with H 1s either the function A or B defined above. The kernel function & is assumed to
satisfy the assumptions on the kernel functions with ¢ < 2. We transform this integral

onto the scaled master element A" := AA? by the transformation s} (2) := ki (2/h)
with kg defined by (7) and h := diam K. In local coordinates, the integrand is given by
Bioo (,9) =k (ki (2), 5 ()
Hioe (2,9) © = gr (%) gk (9) H ("3?« (2),/ (Q))

with
1/2

o IRl (%) IRl (2)
ax (2) _‘{< e |

In local coordinates the integral I; takes the form

71
- ll_g% / / / / loc l’ kloc (l’ ) dydl’

llz—9l|2=

The problem with this integral is that the location of the singularity is not fixed and
cannot be cancelled by degenerate coordinate transforms as, e.g., polar coordinates. The
purpose of the following coordinate transforms is to fix the singularity by introducing
relative coordinates as proposed in [12] and [4]. The variable ¢ is replaced by § = z + &
and hence, the singularity of the kernel function is fixed at the origin z = § — 2 = 0.



The domain of the (I, z)-integration can be described by the union of the following six

domains

—hSZlgo, nglghv
_h§22§217 Zl—hSZQSO,
Dl— A D2: A
—z; < <h, —22 <1 < h— 2z,
—zy < &y < Iy, —zy < &y < 2.
—hSZlgo, nglghv
21 < 23 <0, 71 <z <h,
D3: ~ D4: ~
-z < <h, 29—z <y < h—2,
—29 < Ty < 21+ &y — 29, 0 <2y <z 42— 2.
—hSZlgo, nglghv
0 <z <z +h, 0 <z <2y,
D5: ~ D6: ~
29 — 21 <y < h, 0<ay <h-—z,
0< 2y <2z 421 — 2. 0 <z, <2y

Hence, the integral I; takes the form

6
I, :11_1;%2: /D Hioe (8,2 + &) kipe (2,2 + @) didz.

ll=l1>=
Let T% denote the scaled d—dimensional unit simplex
1y ={i e R | |alp <h}

and Ry := (0, l)d. The following coordinate transforms map (1, w;,wq,ws) € By x TP
onto the domain D;.

z ) —wn <1 : wyn
S I D we-
! wy 4wy 4wy | ) wi (1 —n)+wy+ws |’
@(21) wy + wy @(22) wy (1 —n) + wy
Zf) —wy Z§4) wyn
L) Cw (4)
2 _ 17 &) _ wy
7 wy +wy +ws | 7 wi (1 —n)+w, +ws |’
@(23) win + we @(24) wWoy
Z§5) —win Z§6) wy
S I ) A0 | w
R wy 4wy 4wy | 3 wy + ws
§}(25) o) §}(26) Wa

The determinant of the Jacobi matrix equals w; and thus, the integral [; can be written
in the form

= (7) ~ (1) () o 40)
[_/Rl/TthZHIOC —I—:z:])kloc(x],z:] —I—:L'])dwdn. (13)

71=1



It was shown in [12], [11], [15] that the integrand above is analytic. This implies that stan-
dard cubature techniques with properly chosen orders approximates (13) to any required
accuracy.

THE CASE OF A COMMON EDGE

In this section we consider the computation of
L= [ H () k(,y)dyda.
IXl XI\Q

The transformations in the case of a common edge are similar as for identical panels.
However, the character of the singularity slightly changes. Let K, Ky be two surface
triangles which share exactly one edge. Let the parameter domains are given by A% := A’
and Al := {Q c R* | (41, —QQ)T € Ah}. Let the mapping x : A} UAY = K, U K, be bi-
Lipschitz continuous. For # € A? and § € A%, the integrand in local coordinates is given

by

ho iy pho 0
L= [0 Hie (8) b (5, 9) g
0 0 -1

Due to the fact that x is bi-Lipschitz continuous, the kernel function behaves singular if
and only if 2 = y, i.e., ;1 — 1 = &3 = y2 = 0. The location of the singularity is fixed
by introducing one-dimensional relative coordinates §; = z1 + 21, §2 = 29, T3 = z3. The
integration domain can be described as the union of the following six four-dimensional

domains

—h <z < -z —z3 <z <0

Dl = b ) DQ: b . . )
h—z <2 <0 h—z <2< —z3— 2
—zn—2 <1 <h —zn—2 <1 <h
—23< 2z <0 0<z <h—=z

D3 - _ . 9 D4: _ _ _ Y
23— 21 < 23 <0 h <z < —23—2
23 <1 <h —zn—n <2 <h—-z
0<z <h-—z 0<z <h—zs

Dy = , Dg =
—23—21 < 23 < —23 —23< 2, <0
23 <21 <h—-2z 23 <) <h—2z

The integral in these coordinates has the representation

6 - - - -
o= 3 f, e (2 (2 e () (7)) i



The following coordinate transforms map the coordinates (17,w) € Ry x TJ onto the
domain of integration.

(1 2

Z§ ) —wm Z§ : —win2m

Zél) _ wy (771 - 1) Z£2) wy (772771 - 1)

Z:())l) w12 7 z:(f) w1 7

2 wi + wy 7 wi + wy

2(3) 2(4)

213) wy (m — 1) 214) wy (1 — 12m1)

Zy . —w1in2h 22 _ — W1

Z:())S) B wy 7 z:(f) B w12 7
@(13) wy 4 we :;;(14) wy (1 —m1 + n2m1) + wo
+(5) +(6)

215) wy (1 —mnam) 216) wy (1 —m)

<2 _ —wim Z9 _ —wWiMN2M

Z:())E)) w12 z:(f) wim

@55) wiN2M1 + Wa @56) win + wa

The determinant of the Jacobi matrix is given for any of the transformations above by
wi. Analogously as in [12], [11], [15] one shows that the integrand of the following repre-
sentation of I. is analytic.

/ / meZHl((f))(()f)())kl((fi)) (25]L§f5]))dwdn. (14)

Again, this integral can be approximated to any desired accuracy by standard cubature
methods with properly chosen order.

Finally, we have to discuss the case that the panels have a common vertex. This is
done in the following section.

THE CASE OF A COMMON VERTEX

Let K1, K5 be two surface triangles which have exactly one common point. The refer-
ence domains are given by A" := A" and A? := {y cR?| -y € Ah} By our assumptions
on the surface and the triangulation we may assume that there is a bi-Lipschitz-continuous
mapping « : A} U AL — K, U K, which is analytic on each reference element. The inte-
gral in local coordinates is given by

h p&1 p0 O o o
[p:/ / / / Hloc (l’,y) kloc ($7y) dydx7
0 Jo Skt

where we adopt the notations of the previous section. We split the domain of integration
according to

[ —/ / / / Hloc )kloc dyd$+/ / / yl/ Hloc kloc( )djjdg
—1’1 Y1 Y1



The following transformations maps (11,72, 73, w) € Rz x T} onto the domains of integra-
tion.

‘%(11) w ‘%(12) mw
7+ ~(2)

2 _ T2w Ly _ | Bhw
gt —mw |’ g —w
i ) o) g )\

In the new coordinates, the integral takes the form
: O 5@ O 5@
_ 3 A Al ()
I, = /Rs - nw ;Hloc (:1; .Y ) Eioe (:1; .Y ) dwdn. (15)

In [12], [11], [15] it was shown that the integrand above is analytic and thus, can be
approximated to any required accuracy with standard methods of properly chosen order.

It remains to consider the farfield case where K7 N K, = 0 holds. However, in this case
the integrand is analytic and can be approximated by standard cubature methods with
properly chosen order to any desired accuracy. In the following section we briefly sketch
the cubature error analysis in appropriate norms.

APPROXIMATION OF THE INTEGRALS AND CUBATURE ERROR ANALYSIS

As mentioned above the integrands of the final integral representations are analytic
and can be approximated by standard cubature formulae. The domains of integration
are given by tensor products of the form Ry x T;; with dy + dy = 4. We will use tensor
product Gauf formulae for the integration over Ry, while for the variables contained in T;;
we employ abstract cubature formulae which are exact for polynomials of a predescribed
degree. The reason for working with abstract formulae of a certain degree of exactness is
that, especially for the h-version of the BEM, the use of Gauf-Legendre tensor formulae
is sub-optimal on T;; for practical problem sizes. However, the question which rule is
optimal or convenient depends on the specific implementation and might be different for
different situations. We refer to [2] and [17] for formulae which are exact for polynomials
of certain orders on the domains T;;.

The estimates for the (local) cubature error are used to adapt the degrees of exactness
to the consistency and stability requirements of the Galerkin discretization. Therefore, we
will present the error estimates in terms of Sobolev norms since the consistency analysis
for Galerkin methods is conveniently expressed in such norms.

In order to avoid too many technicalities, we restrict to triangulations which are quasi-
uniform and non-degenerate

max {diam K : K € 7} := h,
min {diam B : K € 7} > ph,

where By denotes the largest ball contained in K and the constant p does not depend on

K.



Furthermore, we assume that the inverse estimate holds which we will use in the form
that, for integers [, m with —oo < [ < m, there exists a constant C' = C (I, m) such that,
for all v € V;, (K), the estimate

ol < CH=H27 o],

holds.
We will now come to the cubature error estimates. Let D C IR? be a domain. A
cubature rule M} has exactness degree v if, for all f € [T, (D),

= |[ r@yae =y 10 =0

holds. The domains under consideration are of the form R; x Tj; with dy + dy = 4.
The notation Q7 [f] stands for the tensor cubature method G]%ldl M7, where G]%ldl denotes

d
the tensor Gaufl formula composed of properly scaled one-dimensional Gauf-Legendre

formulae G7} ,, of order 7.

In [13] we have already considered the farfield case. Hence, we will concentrate here on
the singular cases. We begin with the case of identical panels Ky = K5. The representation
(13) is approximated by G, MW [g:] where g; (n,w) is an abbreviation of the integrand

of (13). The following theorem concerns the cubature error.

Theorem 4 The cubature error is given by ER Th

and p denote the polynomial degree of the trial space. In the case of H (x,y) = A(x,y)
we have

= I — EM;} [gz]‘ Let 0 < s,t

By qn < Ch (0427 lull, [0ll,, + 5277 Yl llo],o)

with a constant X independent of the discretization parameters h and p and the orders m;
of the operators D; defined at the beginning of the previous section.
For H (x,y) = B (x,y) we obtain

gz < O (N ol + 505 loll, )

Proof. The proof is essentially the same as the proof of [15]. The only difference is the
estimate of the trial functions u and v in suitable ellipses £ of analyticity. The arguments
of u and v range in intervals [ of length i. Hence, we obtain

for any y of the integration interval and = € £. In combination with the inverse estimate

we obtain for dist (0&,1) = O (1):
maxu (x)] < Z [ty (dist (OF Dy < Ch™ull,
and for dist (0&,1) = O (h):

maxu (2)] < Ch™ 3 Jul, b < Ch™ 37 [l b2 = Ch

i=0 i=0

lo -



If D; is not the identity but a differentiating operator the estimate can be obtained
in the same fashion but the inverse inequality has to be applied in the form of |u|] <
1 .

Next we consider the case that the panels K; and K5 share exactly one edge. We
approximate the integral in (14) by G, M%:; [ge] where g. (n,w) denotes the integrand of

(14). The following theorem concerns the cubature error.

Theorem 5 Let s,t > 0. For H = A, the cubature error E}%xTh =
2

I~ G, M7 (o]

can be estimated by
B ez < C (07l ol + 547l ol )
while for H = B we obtain

v —1 _
g < C (LN 1l Bl + =5 0l )
Proof. The proof is essentially the same as worked out in [15] with the same modifications
as pointed out in the previous proof. R
It remains to discuss the case that Ky and K, share exactly one vertex. We approx-
imate the integral representation (15) by Gz, M5 [g,] where g, denotes the integrand of
1

(15). The cubature error is estimated in the following

Theorem 6 Let s,t > 0. For H = A, the cubature error Elwio,xTh =
1

[p - 7%13 M%fh [gp]

can be estimated by

By qn < C (L4207 all,, o, + 002 ], ol

while, for H = B, we get

v —1 _
B egn < C (LN 1 ol + 151U )
Proof. Again, the proof of this theorem is analogous as worked out in [15]. W
The regular integrals ax and F are transformed to the scaled master element Tzh and

approximated by a formula @, with exactness degree . The following theorem concerns

2
the arising cubature error.

Theorem 7 Lets,t > 0. Forthe approximation of ax (u,v), the error E%zh = ‘aK — Qqp

can be estimated by

By < CRO= ]

p—s HUHp—t

while for the approximation of Fi (v) we get

By < CH ull,_, 111
Proof. The proof of the first assertion is straightforward, while the second one was
proved in [13, Theorem 6].

Remark 8 The reqularity assumptions on f in the estimates above can be relaxed such
that the required order of differentiability is independent of the degree of exactness (see
[13, Theorem 5]).



ANALYSIS OF THE FULLY DISCRETE GALERKIN BEM

The effect of numerical cubature is treated as an approximation of the discrete (bi-)
linear forms. The cubature orders have to be chosen such that the asymptotic convergence
of the Galerkin method is preserved. In [13], the effect of the local cubature error to
the global discretization process was investigated thoroughly in view of stability and
consistency. We can use these results directly to determine the required cubature orders.
They will depend on the polynomial degree of approximation p, the step size h, the norm
in which the error is measured, and are possibly different for different variables.

For simplicity, we assume here full regularity of the variational problem, i.e., the right-

hand side of (1) is such that

< ORI ]

lw = ucll,, - <

pH1-2(s1+s2)

is satisfied for ¢ € [0,p + 1 — s1]. In the following, the orders 4 of the cubature formulae
defined above are given such that the error u — g converges with the same asymptotic
rate as the Galerkin solution ug. The notation [x] stands for the smallest integer larger
than or equal to .

The bilinear form ax is approximated by @}, with

v=12(p—s1)]
o “Case of identical panels”: the bilinear form ag «x is approximated by Q;%le; with
n=[(p=2s1+1+m)llogh| =11, 9 =[2(p—s)]. (16)

e “Case of a common edge”: the bilinear form ar,xx, is approximated by Q?ﬁxT;
with
n=[p+1=2s +t+my)llogh|—1], 7 =[2(p—=)]. (17)

e “Case of a common point”: the bilinear form ar, «x, is approximated by QR3leh
with
n=[p+1=2s +t+my)llogh|—1], 7 =[2(p—=)]. (18)

The degrees of exactness for the approximation of the linear form Fr, i, «x, are the
same as the analog orders of the bilinear form. The cubature orders for the farfield cases
can be found in [13].
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