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SUMMARY

In this paper we present cubature methods for the approximation of surface integrals
arising from Galerkin discretizations of ��d boundary integral equations� This numerical
integrator is fully implicit in the sense that the form of the kernel function� the surface
parametrization� the trial and test space� and the order of the singularity of the kernel
function is not used explicitly� Di�erent kernels can be treated by just replacing the
subroutine which evalutes the kernel function in certain surface points�

Furthermore� the implementation of the integrator is relatively easy since it can be
checked on simple test kernels as� e�g�� polynomials where the exact integrals are available�

We discuss the convergence of the cubature methods together with a stability and
consistency analysis in order to determine the minimal cubature orders a priori�

INTRODUCTION

In this paper we will discuss Galerkin discretizations of Fredholm integral equations
on two�dimensional surfaces� From the theoretical point of view as� e�g�� convergence�
stability� and symmetry behaviour� the Galerkin method is advantageous compared with
collocation or Nystr�om discretizations� In practice� however� especially in the case of ��d
surfaces� the collocation or Nystr�om method is usually implemented� The only reason
for this is that� for Galerkin discretizations� the elements of the system matrix are given
by two two�dimensional integrations over pairs of surface patches which� in particular�
contain a kernel function with a characteristic singular and near�singular behaviour�

In our paper we will present e
cient cubature methods for the approximation of that
kind of integrals� �Note that in more than one dimension the terminus quadrature is
replaced by cubature�� These integrators are fully automatic� which means� that they
neither depend on the explicit form of the kernel function nor on the choice of the trial



space and surface parametrization� Di�erent kernels can be treated by just replacing the
subroutine which evaluates the kernel function at certain surface points while the numer�
ical integrator has not to be modi�ed� In contrast to analytic and semi�analytic methods
such kind of strategies have the advantage that they are relatively easy to implement
and behave robustly with respect to cancellation errors� They can be tested isolated for
polynomial test kernel where the exact solution is available�

The cubature strategy is based on the following idea� First all singular integrals are
transformed into integrals with analytic integrands by employing regularizing coordinate
transforms� These coordinate transforms were �rst introduced in ���� and ��� where they
were combined with semi�analytic optimization techniques based on expansions of the ker�
nel function and surface parametrization� A fully implicit treatment of such integrals for
special applications as wavelets and hp�methods were presented in ����� Here� we present
a modi�ed version of these coordinate transforms for the h�version of the Galerkin BEM
together with an error analysis� Furthermore� the results of a stability and consistency
analysis will be presented which allow to choose the order of integration minimally� We
emphasize the importance of a proper consistency analysis for this kind of problem� since
the bottleneck in any ��d implementation of Galerkin discretizations of boundary integrals
equations is the evaluation of the four dimensional integrals de�ning the matrix entries�
Only slight over�integration usually will lead to an increase of the CPU�time by orders
of magnitude� Such a stability and consistency analysis for the regular integrals was pre�
sented in ����� Here� we will focus on the singular and near�singular integrals which can
be regarded as Part II of the mentioned paper �����

Due the limited space in these proceedings the proofs are only sketched� We concen�
trate here on the practical point of view� i�e�� present the cubature techniques such that
they can be implemented in a straightforward manner� The full mathematical analysis
and implementation details are worked out in �	��

BOUNDARY INTEGRAL EQUATIONS

We consider the variational formulation of Fredholm integral equations� Let � be a
piecewise analytic� orientable Lipschitz surface of a bounded domain � � lR

�� LetW k�p ���
denote the usual Sobolev space as de�ned� e�g�� in the book of Adams ���� The norm of
W k�p is denoted by k�kk�p and the seminorm containing only the highest derivatives by

j�jk�p� For p � � we write Hk instead of W k�� and k�kk instead of k�kk���

For given right�hand side f � Hs�� � we are seeking u � Hs� ��� such that

�v� ��u�� � �v�K�u�� � �v� ��f�� � �v�K�f�� � �v � Hs� ��� ���

where ��� ��� denotes the L
��scalar product� The associated operators �iI�Ki are assumed

to be of order �si and explicitly given by

Kiu �� p�f�
Z
�
ki �x� y�u �y� dy

where the integral has to be understood in the �nite part sense �see ����� and ki denotes
the kernel functions� The functions �i � � � lR are assumed to be piecewise constant on



smooth patches of the surface and may jump across corners and edges� The regularity
exponent s�� for the right�hand side should be such that ��f�K�f � H�s� � i�e�� s�� � �s��
�s�� The left�hand side of ��� de�nes the bilinear forms a� a�� a� � Hs� ����Hs� ��� � Cl

as follows

a� �u� v� � � �v� ��u�� �

a� �u� v� � � �v�K�u�� � ���

a � � a� � a��

The right�hand side de�nes the functionals F�F�� F� � H
s� � Cl �

F� �v� �� �v� ��f�� �

F� �v� �� �v�K�f�� �

F �� F� � F��

Remark � The order of the operator �iI�Ki can be negative which implies in particular
�i � ��

Throughout this paper we assume that the bilinear form a is continuous

ja �u� v�j � Ca kuks� kvks� � �u� v � Hs� ��� ���

and elliptic
ka �u� u�k 	 Ce kuk

�
s�
� Cc kuk

�
t �u � Hs� ��� ���

with suitable t � s�� For simplicity� we assume that ��� has a unique solution for every f �
Hs�� ���� Otherwise� one has to introduce suitable normalizations or to restrict Hsi ��� to
some quotient space� Then� the theory presented below directly applies to these situations�

The following model problem illustrates the abstract setting�

Example � Consider the Laplace equation in the exterior of the bounded domain � � lR
��

�u � �� in lR
�n���

�u
�n

� f� on � �� ���
u �x� � �� kxk � 
�

���

where n �x� denotes the normal in x � � pointing into � and ���n �� hn�r�i� Let the
bilinear form a � H��� �H��� � lR be de�ned by

a �u� v� ��
Z
�
v �x� p�f�

Z
�
u �y�

�

�nx

�

�ny

�

kx� yk
dydx

and the functional of the right�hand side by

F �v� ��
�

�
�v� f�� �

Z
�
v �x� p�f�

Z
�
f �y�

�

�nx

�

kx� yk
dydx�

Let f be such that F �
�
H����lR

��
� Then the problem of �nding u � H����lR such that

a �u� v� � F �v� � �v �
�
H����lR

��
has a unique solution� This function u is the trace of the solution of ����



GALERKIN BOUNDARY ELEMENT METHODS

Let � be a three�dimensional domain with piecewise analytic� orientable Lipschitz
surface �� We assume that � is a smooth image of an interpolating polyhedron� To be
more concrete� let �� be a surface of a polyhedron consisting of plane faces ��j such that
there exists a bijective mapping � � �� � � with the following properties�

�� � is bi�Lipschitz continuous� i�e��

C� k�x� �yk � k� ��x�� � ��y�k � C� k�x� �yk � ��x� �y � ���

�� there exists plane extensions ���j of ��j� i�e�� ��j �� ���j where � j��j can be extended
analytically�

In this paper we restrict the presentation to triangular elements� Generalizations to
the quadrilateral case are straightforward by using the techniques presented in ���� and

����� Let �� ��
n
�K�� �K�� � � � � �KN

o
denote a grid of the surface �� consisting of plane triangles

having the property that

�� ��
�
�K���

�K�

�K � �K � � �� � �K� �K � � � with �K 
� �K �� ���

This grid induces a grid on the true surface � by � ��
n
�
�
�K
�o

�K���
� Note that the

transformation � is independent of the grid �� �
In order to de�ne �nite element spaces on �� we lift polynomial spaces on a reference

element onto the surface elements� In this light� we de�ne� for a domain D � lR
d� the

space of polynomials of total degree p by

�p �D� ��

��
�v �x� �

X
j�j�p

c�x
� for some c� � Cl

��
� �

where � � lN
d
� is a multi�index and j�j denotes the l��norm�

For triangular elements we employ the master element

K� ��
n
�x � lR

�
� j � � �x� � �� � � �x� � �x�

o

and the polynomials of degree p are given by �p �K��� The transformation of K� onto �K
is a
ne linear and denoted by 	 �K while the mapping on the true surface element is given
by 	K �� � � 	 �K� The space �p �K�� is lifted onto the surface patch K by 	K �

�p �K� ��
n
u � K � Cl j u � 	K � �p

�
K�
�o

� ���

The global �nite element space is given by

Vk�p ��
n
u � Ck ��� j �K � � � u jK� �p �K�

o
� �
�



The Galerkin boundary element discretization to ��� is characterized by replacing the
in�nite dimensional Sobolev spaces Hs� by the �nite dimensional subspace Vk�p� for given
f � Hs�� � we are seeking uG � Vk�p such that

a �uG� v� � F �v� � �v � Vk�p� �	�

In this paper we are only considering conforming methods� i�e�� the exponent k in �
� has
to be chosen such that Vk�p � Hs��

In order to compute the solution to problem �	�� we introduce a basis f
ig��i�N of
Vk�p� Any function u � Vk�p has a unique basis representation

u �x� �
nX
i��

ui
i �x� �

For � � i� j � N � let the system matrixK and the vector of the right�hand side be de�ned
by

Ki�j � � a �
i� 
j� � ����

Fi � � F �
i� �

Then the solution of
KuG � F

is linked to the solution of �	� by

uG �x� �
NX
i��

uG�i
i �x� �

For the computation of the matrix K and right�hand side F� integrals over �pairs
of� surface patches have to be evaluated� This can be done exactly only in very special
situations� In general� one has to use numerical cubature techniques to approximates the
coe
cients� The e�ect of numerical integration is considered as an approximation of the
continuous �bi��linear forms� The bilinear forms �a� �a�� and �a� are de�ned by replacing the
integrals by numerical cubature� while the de�nition of �F � �F� and �F� is analogously� Note
that these approximate �bi��linear forms have to be de�ned only on the discrete level� i�e��
for functions in Vk�p and not necessarily for functions in Hs� ����

The Galerkin discretization including numerical cubature is given by seeking �uG � Vk�p
such that

�a ��uG� v� � �F �v� � �v � Vk�p�

In the next section we will present families of cubature methods which approximates
the continuous �bi��linear forms to any desired accuracy� Then� we will estimate the
cubature error which� in combination with a stability and consistency analysis� enables
us to determine the minimal cubature orders a priori�



KERNEL PROPERTIES OF BOUNDARY INTEGRAL EQUATIONS

Before presenting the cubature methods we have to collect the characteristic proper�
ties of the kernel functions� The kernel functions are suitable G�ateau derivatives of the
fundamental solution of the underlying boundary value problem� The following properties
are satis�ed for all common kernels which arise by transforming elliptic boundary value
problems in lR

� into integral equations �see ������ We formulate these conditions in a way
which will turn out to be convenient for the cubature analysis� We assume that k �x� y�
can be written in the form

k �x� y� �
X
j�j�t

s� �x� y�
�y � x��

ky � xk��t
����

with functions s� � � � � � Cl being analytic on pairs of smooth surface patches of ��
The integer � denotes the order of the singularity and we assume that � � � holds� For
� � �� we assume that the kernel is anti�symmetric� i�e��

k �x� y� � k �y� x� �
X

j�j�t��

�s� �x� y�
�y � x��

ky � xk��t
� ����

This condition is stronger than the commonTricomi�Giraud�Mikhlin condition and implies
that the kernel is Cauchy�singular� i�e��

lim
���

Z
KnB��x	

k �x� y� f �y� dy

exists for all elementsK � � � Lipschitz�continuous functions f � C��� �K�� and x � �n�K�
For � � �� the kernel function is called hyper�singular and an appropriate regulariza�

tion has to be performed on the continuous level� We assume that the bilinear form a� of
��� can be rewritten as follows

a� �u� v� �
m�X
i��

m�X
j��

Z
�

Z
�
Di �v� �x� y�k

reg
i�j �x� y�Dj �u� �x� y� dydx

with m��� � f�� �g� The operators Di are of order i satisfying

kDi �w� �x� y�k� � C kwki �

while the kernel functions kregi�j satisfy ���� and ���� with �regi�j � �� Furthermore� through�
out the paper� we assume the relations �regi�j � i � j � � and s� � m� � p� An analogous
representation has to be employed if the kernel function k� is hyper�singular� For weakly
or Cauchy singular kernels we put kreg��� � k and m� � m� � ��



Example � The bilinear form a �u� v� of example ��� can be rewritten as follows

a �u� v� �
Z
�

Z
�
D� �v� �x� y�D� �u� �x� y�k

reg �x� y�dydx

with D� �w� �x� y� �� �w �y�� w �x�� � ky � xk and

kreg �x� y� �� ky � xk�
��

�nx�ny

�

kx� yk
�

The following representation is proved in ��	
�

a �u� v� �� �
Z
�
��n �x��rx�u �x�

Z
�

�

kx� yk
�n �y��ry� v �y� dydx�

Using this kind of regularization it is natural to assume in the following that the
bilinear form has a representation with a Cauchy�singular kernel function �� � �� while�
possibly� the functions u and v have to replaced by Dj ���� We state that for much more
general kernel functions such representation are available� too �see ����� ���� ���� ���� �����
Another approach is presented in �
� which can be treated by a slight modi�cation of the
cubature techniques below�

We are now ready for the presentation of the cubature techniques�

CUBATURE TECHNIQUES FOR GALERKIN DISCRETIZATIONS

In view of the previous section� the �bi�� linear forms can be decomposed as follows

a� �u� v� �
P
K��

aK �u� v� a� �u� v� �
P

Kx�Ky����
aKx�Ky �u� v�

F� �v� �
P
K��

FK �v� F� �v� �
P

Kx�Ky����
FKx�Ky �v�

with

aK �u� v� ��
R
K ��uvdx� aKx�Ky �u� v� �� lim

���

R
Kx�Ky

kx�yk��

A �x� y�k� �x� y� dydx�

FK �v� ��
R
K ��fvdx� F� �v� �� lim

���

R
Kx�Ky

kx�yk��

B �x� y� k� �x� y� dydx�

The functions A and B are given by A �x� y� � D� �u� �x� y�D� �v� �x� y� and B �x� y� ��
D� �f � �x� y�D
 �v� �x� y� with the operators Dj of order mj de�ned in the previous section�
The kernel functions ki are assumed to satisfy the assumptions of the previous section
with � � ��

In the �rst part we will present coordinate transforms which render the integrands
above analytic such that they can be treated by standard cubature methods� We empha�
size that these transformations does not contain any approximation process�

The integrands of the integrals corresponding to aK and FK are analytic and can be
approximated by standard techniques� In the following we will concentrate on the integrals
a� and F�� Here� the integrands have a singular� near�singular� or regular behaviour which
requires di�erent transformations� The following four basis cases have to be distinguished�



��  Identical Panels!� Kx � Ky�

��  Common Edge!� Kx and Ky share exactly an edge�

��  Common Vertex!� Kx and Ky share exactly a vertex�

��  Regular Case!� Kx and Ky are disjoint�

Condition ��� does not guarantee that every pair Kx� Ky � � satis�es one of the four
cases listed above� However� it is clear that one of the panels Kx� Ky can be subdi�
vided such that the arising sub�panels satisfy one of the conditions above� The methods
presented below then have to be applied to the sub�panels� Hence� we assume for the
following that any pair of panels Kx � Ky satis�es one and only one of the conditions
above�

In the following we will discuss these four cases in detail�

THE CASE OF IDENTICAL PANELS

Here� we consider integrals of the type

Ii �� lim
���

Z
K�K

kx�yk��

H �x� y� k �x� y� dydx

with H is either the function A or B de�ned above� The kernel function k is assumed to
satisfy the assumptions on the kernel functions with � � �� We transform this integral
onto the scaled master element �h �� h�� by the transformation 	hK ��x� �� 	K ��x�h�
with 	K de�ned by ��� and h �� diamK� In local coordinates� the integrand is given by

kloc ��x� �y� � � k
�
	hK ��x� � 	hK ��y�

�
Hloc ��x� �y� � � gK ��x� gK ��y�H

�
	hK ��x� � 	hK ��y�

�

with

gK ��x� ��

						

�

�	hK ��x�

��xi
�
�	hK ��x�

��xj

�

��i�j��

						
���

�

In local coordinates the integral Ii takes the form

Ii �� lim
���

Z h

�

Z �x�

�

Z h

�

Z �y�

�
k�x��yk��

Hloc ��x� �y� kloc ��x� �y� d�yd�x�

The problem with this integral is that the location of the singularity is not �xed and
cannot be cancelled by degenerate coordinate transforms as� e�g�� polar coordinates� The
purpose of the following coordinate transforms is to �x the singularity by introducing
relative coordinates as proposed in ���� and ���� The variable �y is replaced by �y � z � �x
and hence� the singularity of the kernel function is �xed at the origin z � �y � �x � ��



The domain of the ��x� z��integration can be described by the union of the following six
domains

D� �

�����
����

�h � z� � ��
�h � z� � z��
�z� � �x� � h�
�z� � �x� � �x��

�����
���� D� �

�����
����

� � z� � h�
z� � h � z� � ��

�z� � �x� � h� z��
�z� � �x� � �x��

�����
����

D� �

�����
����

�h � z� � ��
z� � z� � ��
�z� � �x� � h�

�z� � �x� � z� � �x� � z��

�����
���� D
 �

�����
����

� � z� � h�
z� � z� � h�

z� � z� � �x� � h� z��
� � �x� � z� � �x� � z��

�����
����

D� �

�����
����

�h � z� � ��
� � z� � z� � h�
z� � z� � �x� � h�

� � �x� � z� � �x� � z��

�����
���� D
 �

�����
����

� � z� � h�
� � z� � z��

� � �x� � h� z��
� � �x� � �x��

�����
����

Hence� the integral Ii takes the form

Ii � lim
���


X
j��

Z
Dj

kzk��

Hloc ��x� z � �x� kloc ��x� z � �x� d�xdz�

Let T h
d denote the scaled d�dimensional unit simplex

T h
d ��

n
�x � lR

d
� j j�xjl� � h

o

and Rd �� ��� ��d� The following coordinate transforms map ���w�� w�� w�� � R� � T h
�

onto the domain Dj ��
BBBBB�
z
��	
�

z
��	
�

�x
��	
�

�x��	�

�
CCCCCA �

�
BBB�

�w��
�w�

w� � w� � w�

w� � w�

�
CCCA �

�
BBBBB�
z
��	
�

z
��	
�

�x
��	
�

�x��	�

�
CCCCCA �

�
BBB�

w��
w� �� � ��

w� �� � �� � w� � w�

w� ��� �� � w�

�
CCCA �

�
BBBBB�
z
��	
�

z
��	
�

�x��	�

�x
��	
�

�
CCCCCA �

�
BBB�

�w�

�w��
w� � w� � w�

w�� � w�

�
CCCA �

�
BBBBB�
z
�
	
�

z
�
	
�

�x�
	�

�x
�
	
�

�
CCCCCA �

�
BBB�

w��
w�

w� �� � �� � w� � w�

w�

�
CCCA �

�
BBBBB�
z
��	
�

z
��	
�

�x
��	
�

�x��	�

�
CCCCCA �

�
BBB�

�w��
w� ��� ��

w� � w� � w�

w�

�
CCCA �

�
BBBBB�
z
�
	
�

z
�
	
�

�x
�
	
�

�x�
	�

�
CCCCCA �

�
BBB�

w�

w��
w� � w�

w�

�
CCCA �

The determinant of the Jacobi matrix equals w� and thus� the integral Ii can be written
in the form

Ii �
Z
R�

Z
Th
�

w�


X
j��

Hloc

�
�x�j	� z�j	 � �x�j	

�
kloc

�
�x�j	� z�j	 � �x�j	

�
dwd�� ����



It was shown in ����� ����� ���� that the integrand above is analytic� This implies that stan�
dard cubature techniques with properly chosen orders approximates ���� to any required
accuracy�

THE CASE OF A COMMON EDGE

In this section we consider the computation of

Ie ��
Z
K��K�

H �x� y� k �x� y�dydx�

The transformations in the case of a common edge are similar as for identical panels�
However� the character of the singularity slightly changes� Let K�� K� be two surface
triangles which share exactly one edge� Let the parameter domains are given by �h

� �� �h

and �h
� ��

n
�y � lR

� j ��y����y��
T � �h

o
� Let the mapping 	 � �h

� ��h
� � K� �K� be bi�

Lipschitz continuous� For �x � �h
� and �y � �h

�� the integrand in local coordinates is given
by

kloc ��x� �y� � � k �	 ��x� � 	 ��y��

Hloc ��x� �y� � � H �	 ��x� � 	 ��y�� gK� ��x� gK� ��y�

and Ie takes the form

Ie ��
Z h

�

Z �x�

�

Z h

�

Z �

��y�
Hloc ��x� �y� kloc ��x� �y� d�yd�x�

Due to the fact that 	 is bi�Lipschitz continuous� the kernel function behaves singular if
and only if �x � �y� i�e�� �x� � �y� � �x� � �y� � �� The location of the singularity is �xed
by introducing one�dimensional relative coordinates �y� � z� � �x�� �y� � z�� �x� � z�� The
integration domain can be described as the union of the following six four�dimensional
domains

D� �

�����
����

� � z� � h
�h � z� � �z�
�h� z� � z� � �
�z� � z� � �x� � h

�����
���� � D� �

�����
����

� � z� � h
�z� � z� � �

�h� z� � z� � �z� � z�
�z� � z� � �x� � h

�����
���� �

D� �

�����
����

� � z� � h
�z� � z� � �

�z� � z� � z� � �
z� � �x� � h

�����
���� � D
 �

�����
����

� � z� � h
� � z� � h� z�

�h � z� � �z� � z�
�z� � z� � �x� � h� z�

�����
���� �

D� �

�����
����

� � z� � h
� � z� � h� z�

�z� � z� � z� � �z�
z� � �x� � h� z�

�����
���� � D
 �

�����
����

� � z� � h
� � z� � h � z�
�z� � z� � �

z� � �x� � h� z�

�����
���� �

The integral in these coordinates has the representation

Ie ��

X

j��

Z
Dj

Hloc

��
�x�
z�

�
�
�
z���x�
z�

��
kloc

��
�x�
z�

�
�
�
z���x�
z�

��
d�x�dz�



The following coordinate transforms map the coordinates ���w� � R� � T h
� onto the

domain of integration�

�
BBBBB�

�z��	�

z
��	
�

z
��	
�

�x
��	
�

�
CCCCCA �

�
BBB�

�w���
w� ��� � ��
w�����
w� � w�

�
CCCA �

�
BBBBB�

z
��	
�

z
��	
�

z
��	
�

�x
��	
�

�
CCCCCA �

�
BBB�

�w�����
w� ����� � ��

w���
w� � w�

�
CCCA �

�
BBBBB�

�z
��	
�

z
��	
�

z
��	
�

�x��	�

�
CCCCCA �

�
BBB�
w� ��� � ��
�w�����

w�

w� � w�

�
CCCA �

�
BBBBB�

�z
�
	
�

z
�
	
�

z
�
	
�

�x�
	�

�
CCCCCA �

�
BBB�

w� ��� � �����
�w�

w�����
w� ��� �� � ����� � w�

�
CCCA �

�
BBBBB�

�z��	�

z
��	
�

z
��	
�

�x
��	
�

�
CCCCCA �

�
BBB�
w� �� � �����

�w���
w�����

w����� � w�

�
CCCA �

�
BBBBB�

�z�
	�

z
�
	
�

z
�
	
�

�x
�
	
�

�
CCCCCA �

�
BBB�
w� ��� ���
�w�����
w���

w��� � w�

�
CCCA �

The determinant of the Jacobi matrix is given for any of the transformations above by
w�
�� Analogously as in ����� ����� ���� one shows that the integrand of the following repre�

sentation of Ie is analytic�

Ie ��
Z
R�

Z
Th
�

��w
�
�


X
j��

Hloc

��
�x�j��

z
�j�
�

�� �
z
�j�
� ��x�j��

z
�j�
�

�
kloc

��
�x�j��

z
�j�
�

�� �
z
�j�
� ��x�j��

z
�j�
�

�
dwd�� ����

Again� this integral can be approximated to any desired accuracy by standard cubature
methods with properly chosen order�

Finally� we have to discuss the case that the panels have a common vertex� This is
done in the following section�

THE CASE OF A COMMON VERTEX

Let K�� K� be two surface triangles which have exactly one common point� The refer�
ence domains are given by �h

� �� �h and �h
� ��

n
�y � lR

� j ��y � �h
o
� By our assumptions

on the surface and the triangulation we may assume that there is a bi�Lipschitz�continuous
mapping 	 � �h

� ��h
� � K� �K� which is analytic on each reference element� The inte�

gral in local coordinates is given by

Ip �
Z h

�

Z �x�

�

Z �

�h

Z �

�y�
Hloc ��x� �y� kloc ��x� �y� d�yd�x�

where we adopt the notations of the previous section� We split the domain of integration
according to

Ip �
Z h

�

Z �x�

�

Z �

��x�

Z �

�y�
Hloc ��x� �y� kloc ��x� �y� d�yd�x�

Z �

�h

Z �

�y�

Z ��y�

�

Z �x�

�
Hloc ��x� �y� kloc ��x� �y� d�xd�y�



The following transformations maps ���� ��� ��� w� � R��T h
� onto the domains of integra�

tion� �
BBBBB�

�x
��	
�

�x��	�

�y
��	
�

�y��	�

�
CCCCCA �

�
BBB�

w
��w
���w
�����w

�
CCCA �

�
BBBBB�

�x
��	
�

�x��	�

�y
��	
�

�y��	�

�
CCCCCA �

�
BBB�

��w
����w
�w
���w

�
CCCA �

In the new coordinates� the integral takes the form

Ip �
Z
R�

Z
Th
�

��w
�

�X
i��

Hloc

�
�x�i	� �y�i	

�
kloc

�
�x�i	� �y�i	

�
dwd�� ����

In ����� ����� ���� it was shown that the integrand above is analytic and thus� can be
approximated to any required accuracy with standard methods of properly chosen order�

It remains to consider the far�eld case where K��K� � � holds� However� in this case
the integrand is analytic and can be approximated by standard cubature methods with
properly chosen order to any desired accuracy� In the following section we brie"y sketch
the cubature error analysis in appropriate norms�

APPROXIMATION OF THE INTEGRALS AND CUBATURE ERROR ANALYSIS

As mentioned above the integrands of the �nal integral representations are analytic
and can be approximated by standard cubature formulae� The domains of integration
are given by tensor products of the form Rd� � T h

d�
with d� � d� � �� We will use tensor

product Gau# formulae for the integration overRd� while for the variables contained in T h
d�

we employ abstract cubature formulae which are exact for polynomials of a predescribed
degree� The reason for working with abstract formulae of a certain degree of exactness is
that� especially for the h�version of the BEM� the use of Gau#�Legendre tensor formulae
is sub�optimal on T h

d�
for practical problem sizes� However� the question which rule is

optimal or convenient depends on the speci�c implementation and might be di�erent for
di�erent situations� We refer to ��� and ���� for formulae which are exact for polynomials
of certain orders on the domains T h

d�
�

The estimates for the �local� cubature error are used to adapt the degrees of exactness
to the consistency and stability requirements of the Galerkin discretization� Therefore� we
will present the error estimates in terms of Sobolev norms since the consistency analysis
for Galerkin methods is conveniently expressed in such norms�

In order to avoid too many technicalities� we restrict to triangulations which are quasi�
uniform and non�degenerate

maxfdiamK � K � �g �� h�
minfdiamBK � K � �g 	 �h�

where BK denotes the largest ball contained in K and the constant � does not depend on
K�



Furthermore� we assume that the inverse estimate holds which we will use in the form
that� for integers l�m with �
 � l � m� there exists a constant C � C �l�m� such that�
for all v � Vk�p �K�� the estimate

kvkW l�p � Chm�l���p�� kvkm

holds�
We will now come to the cubature error estimates� Let D � lR

d be a domain� A
cubature rule M	

D has exactness degree 
 if� for all f �
Q
	 �D��

E	
D �f � ��

				
Z
D
f �x� dx �M	

D �f �
				 � �

holds� The domains under consideration are of the form Rd� � T h
d�

with d� � d� � ��
The notation Q	 �f � stands for the tensor cubature method G	�

Rd�
M	�

Th
d�

where G	�
Rd�

denotes

the tensor Gau# formula composed of properly scaled one�dimensional Gau#�Legendre
formulae G	�

����	 of order 
��
In ���� we have already considered the far�eld case� Hence� we will concentrate here on

the singular cases� We begin with the case of identical panelsK� � K�� The representation
���� is approximated by G	�

R�
M	�

Th
�
�gi� where gi ���w� is an abbreviation of the integrand

of ����� The following theorem concerns the cubature error�

Theorem � The cubature error is given by E	

R��Th
�
��

				Ii �G	�
R�
M	�

Th
�
�gi�
				� Let � � s� t

and p denote the polynomial degree of the trial space� In the case of H �x� y� � A �x� y�
we have

E	

R��T
h
�
� Ch

�
�� � ���	��� kukm�

kvkm�
� h	����s�t kukp�s kvkp�t

�
with a constant � independent of the discretization parameters h and p and the orders mj

of the operators Dj de�ned at the beginning of the previous section�
For H �x� y� � B �x� y� we obtain

E	
R��Th

�
� Ch

�
�� � ���	��� kfkm�

kvkm�
� h	����t kfk	��� kvkp�t

�
�

Proof� The proof is essentially the same as the proof of ����� The only di�erence is the
estimate of the trial functions u and v in suitable ellipses E of analyticity� The arguments
of u and v range in intervals I of length h� Hence� we obtain

u �x� �
pX

j��

X
j�j�j

�

�$
u��	 �y� �x� y��

for any y of the integration interval and x � E� In combination with the inverse estimate
we obtain for dist ��E� I� � O ����

max
x�E

ju �x�j �
pX

j��

�

j$
jujW j�� �dist ��E� I��j � Ch�� kukp

and for dist ��E� I� � O �h��

max
x�E

ju �x�j � Ch��
pX

j��

jujj h
j � Ch��

pX
j��

h�j kuk� h
j � Ch�� kuk� �



If Dj is not the identity but a di�erentiating operator the estimate can be obtained
in the same fashion but the inverse inequality has to be applied in the form of jujj �

Chj�� kuk��
Next we consider the case that the panels K� and K� share exactly one edge� We

approximate the integral in ���� by G	�
R�
M	�

Th
�
�ge� where ge ���w� denotes the integrand of

����� The following theorem concerns the cubature error�

Theorem � Let s� t 	 �� For H � A� the cubature error E	
R��Th

�
��

				Ie �G	�
R�
M	�

Th
�
�ge�

				
can be estimated by

E	

R��Th
�
� C

�
�� � ���	��� kukm�

kvkm�
� h	����s�t kukp�s kvkp�t

�

while for H � B we obtain

E	
R��Th

�
� C

�
�� � ���	��� kfkm�

kvkm�
� h	����t kfk	��� kvkp�t

�
�

Proof� The proof is essentially the same as worked out in ���� with the samemodi�cations
as pointed out in the previous proof�

It remains to discuss the case that K� and K� share exactly one vertex� We approx�
imate the integral representation ���� by G	�

R�
M	�

Th
�
�gp� where gp denotes the integrand of

����� The cubature error is estimated in the following

Theorem � Let s� t 	 �� For H � A� the cubature error E	
R��Th

�
��
				Ip �G	�

R�
M	�

Th
�
�gp�

				
can be estimated by

E	
R��Th

�
� C

�
�� � ���	��� kukm�

kvkm�
� h	����s�t kukp�s kvkp�t

�

while� for H � B� we get

E	
R��Th

�
� C

�
�� � ���	��� kfkm�

kvkm�
� h	����t kfk	��� kvkp�t

�

Proof� Again� the proof of this theorem is analogous as worked out in �����
The regular integrals aK and FK are transformed to the scaled master element T h

� and
approximated by a formula Q	

Th
�
with exactness degree 
� The following theorem concerns

the arising cubature error�

Theorem � Let s� t 	 �� For the approximation of aK �u� v�� the error E	

Th
�
��
			aK �QTh

�

			
can be estimated by

E	

Th
�
� Ch��	�s�t kukp�s kvkp�t

while for the approximation of FK �v� we get

E	

Th
�
� Ch��	�t kukp�t kfk	�� �

Proof� The proof of the �rst assertion is straightforward� while the second one was
proved in ���� Theorem ���

Remark � The regularity assumptions on f in the estimates above can be relaxed such
that the required order of di�erentiability is independent of the degree of exactness �see
��
� Theorem �
��



ANALYSIS OF THE FULLY DISCRETE GALERKIN BEM

The e�ect of numerical cubature is treated as an approximation of the discrete �bi��
linear forms� The cubature orders have to be chosen such that the asymptotic convergence
of the Galerkin method is preserved� In ����� the e�ect of the local cubature error to
the global discretization process was investigated thoroughly in view of stability and
consistency� We can use these results directly to determine the required cubature orders�
They will depend on the polynomial degree of approximation p� the step size h� the norm
in which the error is measured� and are possibly di�erent for di�erent variables�

For simplicity� we assume here full regularity of the variational problem� i�e�� the right�
hand side of ��� is such that

ku� uGks��t � Chp���t�s� kfkp�����s��s�	

is satis�ed for t � ��� p� � � s��� In the following� the orders 
 of the cubature formulae
de�ned above are given such that the error u � �uG converges with the same asymptotic
rate as the Galerkin solution uG� The notation dxe stands for the smallest integer larger
than or equal to x�

� The bilinear form aK is approximated by Q	
K with


 � d� �p � s��e

�  Case of identical panels!� the bilinear form aK�K is approximated by Q	

R��Th
�
with


� � d�p � �s� � t�m�� jlog hj � �e � 
� � d� �p � s��e � ����

�  Case of a common edge!� the bilinear form aKx�Ky is approximated by Q	

R��T
h
�

with

� � d�p� � � �s� � t�m�� jlog hj � �e � 
� � d� �p� s��e � ����

�  Case of a common point!� the bilinear form aKx�Ky is approximated by QR��Th
�

with

� � d�p� � � �s� � t�m�� jlog hj � �e � 
� � d� �p� s��e � ��
�

The degrees of exactness for the approximation of the linear form FK� FK��K� are the
same as the analog orders of the bilinear form� The cubature orders for the far�eld cases
can be found in �����
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